ptrace: unify FDPIC implementations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28
29 /*
30 * Check the RCU kernel configuration parameters and print informative
31 * messages about anything out of the ordinary. If you like #ifdef, you
32 * will love this function.
33 */
34 static void __init rcu_bootup_announce_oddness(void)
35 {
36 #ifdef CONFIG_RCU_TRACE
37 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
38 #endif
39 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
40 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
41 CONFIG_RCU_FANOUT);
42 #endif
43 #ifdef CONFIG_RCU_FANOUT_EXACT
44 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
45 #endif
46 #ifdef CONFIG_RCU_FAST_NO_HZ
47 printk(KERN_INFO
48 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
49 #endif
50 #ifdef CONFIG_PROVE_RCU
51 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
52 #endif
53 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
54 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
55 #endif
56 #ifndef CONFIG_RCU_CPU_STALL_DETECTOR
57 printk(KERN_INFO
58 "\tRCU-based detection of stalled CPUs is disabled.\n");
59 #endif
60 #ifndef CONFIG_RCU_CPU_STALL_VERBOSE
61 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
62 #endif
63 #if NUM_RCU_LVL_4 != 0
64 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
65 #endif
66 }
67
68 #ifdef CONFIG_TREE_PREEMPT_RCU
69
70 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
71 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
72
73 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
74
75 /*
76 * Tell them what RCU they are running.
77 */
78 static void __init rcu_bootup_announce(void)
79 {
80 printk(KERN_INFO "Preemptable hierarchical RCU implementation.\n");
81 rcu_bootup_announce_oddness();
82 }
83
84 /*
85 * Return the number of RCU-preempt batches processed thus far
86 * for debug and statistics.
87 */
88 long rcu_batches_completed_preempt(void)
89 {
90 return rcu_preempt_state.completed;
91 }
92 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
93
94 /*
95 * Return the number of RCU batches processed thus far for debug & stats.
96 */
97 long rcu_batches_completed(void)
98 {
99 return rcu_batches_completed_preempt();
100 }
101 EXPORT_SYMBOL_GPL(rcu_batches_completed);
102
103 /*
104 * Force a quiescent state for preemptible RCU.
105 */
106 void rcu_force_quiescent_state(void)
107 {
108 force_quiescent_state(&rcu_preempt_state, 0);
109 }
110 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
111
112 /*
113 * Record a preemptable-RCU quiescent state for the specified CPU. Note
114 * that this just means that the task currently running on the CPU is
115 * not in a quiescent state. There might be any number of tasks blocked
116 * while in an RCU read-side critical section.
117 *
118 * Unlike the other rcu_*_qs() functions, callers to this function
119 * must disable irqs in order to protect the assignment to
120 * ->rcu_read_unlock_special.
121 */
122 static void rcu_preempt_qs(int cpu)
123 {
124 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
125
126 rdp->passed_quiesc_completed = rdp->gpnum - 1;
127 barrier();
128 rdp->passed_quiesc = 1;
129 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
130 }
131
132 /*
133 * We have entered the scheduler, and the current task might soon be
134 * context-switched away from. If this task is in an RCU read-side
135 * critical section, we will no longer be able to rely on the CPU to
136 * record that fact, so we enqueue the task on the appropriate entry
137 * of the blocked_tasks[] array. The task will dequeue itself when
138 * it exits the outermost enclosing RCU read-side critical section.
139 * Therefore, the current grace period cannot be permitted to complete
140 * until the blocked_tasks[] entry indexed by the low-order bit of
141 * rnp->gpnum empties.
142 *
143 * Caller must disable preemption.
144 */
145 static void rcu_preempt_note_context_switch(int cpu)
146 {
147 struct task_struct *t = current;
148 unsigned long flags;
149 int phase;
150 struct rcu_data *rdp;
151 struct rcu_node *rnp;
152
153 if (t->rcu_read_lock_nesting &&
154 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
155
156 /* Possibly blocking in an RCU read-side critical section. */
157 rdp = rcu_preempt_state.rda[cpu];
158 rnp = rdp->mynode;
159 raw_spin_lock_irqsave(&rnp->lock, flags);
160 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
161 t->rcu_blocked_node = rnp;
162
163 /*
164 * If this CPU has already checked in, then this task
165 * will hold up the next grace period rather than the
166 * current grace period. Queue the task accordingly.
167 * If the task is queued for the current grace period
168 * (i.e., this CPU has not yet passed through a quiescent
169 * state for the current grace period), then as long
170 * as that task remains queued, the current grace period
171 * cannot end.
172 *
173 * But first, note that the current CPU must still be
174 * on line!
175 */
176 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
177 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
178 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
179 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
180 raw_spin_unlock_irqrestore(&rnp->lock, flags);
181 }
182
183 /*
184 * Either we were not in an RCU read-side critical section to
185 * begin with, or we have now recorded that critical section
186 * globally. Either way, we can now note a quiescent state
187 * for this CPU. Again, if we were in an RCU read-side critical
188 * section, and if that critical section was blocking the current
189 * grace period, then the fact that the task has been enqueued
190 * means that we continue to block the current grace period.
191 */
192 local_irq_save(flags);
193 rcu_preempt_qs(cpu);
194 local_irq_restore(flags);
195 }
196
197 /*
198 * Tree-preemptable RCU implementation for rcu_read_lock().
199 * Just increment ->rcu_read_lock_nesting, shared state will be updated
200 * if we block.
201 */
202 void __rcu_read_lock(void)
203 {
204 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
205 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
206 }
207 EXPORT_SYMBOL_GPL(__rcu_read_lock);
208
209 /*
210 * Check for preempted RCU readers blocking the current grace period
211 * for the specified rcu_node structure. If the caller needs a reliable
212 * answer, it must hold the rcu_node's ->lock.
213 */
214 static int rcu_preempted_readers(struct rcu_node *rnp)
215 {
216 int phase = rnp->gpnum & 0x1;
217
218 return !list_empty(&rnp->blocked_tasks[phase]) ||
219 !list_empty(&rnp->blocked_tasks[phase + 2]);
220 }
221
222 /*
223 * Record a quiescent state for all tasks that were previously queued
224 * on the specified rcu_node structure and that were blocking the current
225 * RCU grace period. The caller must hold the specified rnp->lock with
226 * irqs disabled, and this lock is released upon return, but irqs remain
227 * disabled.
228 */
229 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
230 __releases(rnp->lock)
231 {
232 unsigned long mask;
233 struct rcu_node *rnp_p;
234
235 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
236 raw_spin_unlock_irqrestore(&rnp->lock, flags);
237 return; /* Still need more quiescent states! */
238 }
239
240 rnp_p = rnp->parent;
241 if (rnp_p == NULL) {
242 /*
243 * Either there is only one rcu_node in the tree,
244 * or tasks were kicked up to root rcu_node due to
245 * CPUs going offline.
246 */
247 rcu_report_qs_rsp(&rcu_preempt_state, flags);
248 return;
249 }
250
251 /* Report up the rest of the hierarchy. */
252 mask = rnp->grpmask;
253 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
254 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
255 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
256 }
257
258 /*
259 * Handle special cases during rcu_read_unlock(), such as needing to
260 * notify RCU core processing or task having blocked during the RCU
261 * read-side critical section.
262 */
263 static void rcu_read_unlock_special(struct task_struct *t)
264 {
265 int empty;
266 int empty_exp;
267 unsigned long flags;
268 struct rcu_node *rnp;
269 int special;
270
271 /* NMI handlers cannot block and cannot safely manipulate state. */
272 if (in_nmi())
273 return;
274
275 local_irq_save(flags);
276
277 /*
278 * If RCU core is waiting for this CPU to exit critical section,
279 * let it know that we have done so.
280 */
281 special = t->rcu_read_unlock_special;
282 if (special & RCU_READ_UNLOCK_NEED_QS) {
283 rcu_preempt_qs(smp_processor_id());
284 }
285
286 /* Hardware IRQ handlers cannot block. */
287 if (in_irq()) {
288 local_irq_restore(flags);
289 return;
290 }
291
292 /* Clean up if blocked during RCU read-side critical section. */
293 if (special & RCU_READ_UNLOCK_BLOCKED) {
294 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
295
296 /*
297 * Remove this task from the list it blocked on. The
298 * task can migrate while we acquire the lock, but at
299 * most one time. So at most two passes through loop.
300 */
301 for (;;) {
302 rnp = t->rcu_blocked_node;
303 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
304 if (rnp == t->rcu_blocked_node)
305 break;
306 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
307 }
308 empty = !rcu_preempted_readers(rnp);
309 empty_exp = !rcu_preempted_readers_exp(rnp);
310 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
311 list_del_init(&t->rcu_node_entry);
312 t->rcu_blocked_node = NULL;
313
314 /*
315 * If this was the last task on the current list, and if
316 * we aren't waiting on any CPUs, report the quiescent state.
317 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
318 */
319 if (empty)
320 raw_spin_unlock_irqrestore(&rnp->lock, flags);
321 else
322 rcu_report_unblock_qs_rnp(rnp, flags);
323
324 /*
325 * If this was the last task on the expedited lists,
326 * then we need to report up the rcu_node hierarchy.
327 */
328 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
329 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
330 } else {
331 local_irq_restore(flags);
332 }
333 }
334
335 /*
336 * Tree-preemptable RCU implementation for rcu_read_unlock().
337 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
338 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
339 * invoke rcu_read_unlock_special() to clean up after a context switch
340 * in an RCU read-side critical section and other special cases.
341 */
342 void __rcu_read_unlock(void)
343 {
344 struct task_struct *t = current;
345
346 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
347 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
348 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
349 rcu_read_unlock_special(t);
350 #ifdef CONFIG_PROVE_LOCKING
351 WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
352 #endif /* #ifdef CONFIG_PROVE_LOCKING */
353 }
354 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
355
356 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
357
358 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
359
360 /*
361 * Dump detailed information for all tasks blocking the current RCU
362 * grace period on the specified rcu_node structure.
363 */
364 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
365 {
366 unsigned long flags;
367 struct list_head *lp;
368 int phase;
369 struct task_struct *t;
370
371 if (rcu_preempted_readers(rnp)) {
372 raw_spin_lock_irqsave(&rnp->lock, flags);
373 phase = rnp->gpnum & 0x1;
374 lp = &rnp->blocked_tasks[phase];
375 list_for_each_entry(t, lp, rcu_node_entry)
376 sched_show_task(t);
377 raw_spin_unlock_irqrestore(&rnp->lock, flags);
378 }
379 }
380
381 /*
382 * Dump detailed information for all tasks blocking the current RCU
383 * grace period.
384 */
385 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
386 {
387 struct rcu_node *rnp = rcu_get_root(rsp);
388
389 rcu_print_detail_task_stall_rnp(rnp);
390 rcu_for_each_leaf_node(rsp, rnp)
391 rcu_print_detail_task_stall_rnp(rnp);
392 }
393
394 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
395
396 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
397 {
398 }
399
400 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
401
402 /*
403 * Scan the current list of tasks blocked within RCU read-side critical
404 * sections, printing out the tid of each.
405 */
406 static void rcu_print_task_stall(struct rcu_node *rnp)
407 {
408 struct list_head *lp;
409 int phase;
410 struct task_struct *t;
411
412 if (rcu_preempted_readers(rnp)) {
413 phase = rnp->gpnum & 0x1;
414 lp = &rnp->blocked_tasks[phase];
415 list_for_each_entry(t, lp, rcu_node_entry)
416 printk(" P%d", t->pid);
417 }
418 }
419
420 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
421
422 /*
423 * Check that the list of blocked tasks for the newly completed grace
424 * period is in fact empty. It is a serious bug to complete a grace
425 * period that still has RCU readers blocked! This function must be
426 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
427 * must be held by the caller.
428 */
429 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
430 {
431 WARN_ON_ONCE(rcu_preempted_readers(rnp));
432 WARN_ON_ONCE(rnp->qsmask);
433 }
434
435 #ifdef CONFIG_HOTPLUG_CPU
436
437 /*
438 * Handle tasklist migration for case in which all CPUs covered by the
439 * specified rcu_node have gone offline. Move them up to the root
440 * rcu_node. The reason for not just moving them to the immediate
441 * parent is to remove the need for rcu_read_unlock_special() to
442 * make more than two attempts to acquire the target rcu_node's lock.
443 * Returns true if there were tasks blocking the current RCU grace
444 * period.
445 *
446 * Returns 1 if there was previously a task blocking the current grace
447 * period on the specified rcu_node structure.
448 *
449 * The caller must hold rnp->lock with irqs disabled.
450 */
451 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
452 struct rcu_node *rnp,
453 struct rcu_data *rdp)
454 {
455 int i;
456 struct list_head *lp;
457 struct list_head *lp_root;
458 int retval = 0;
459 struct rcu_node *rnp_root = rcu_get_root(rsp);
460 struct task_struct *tp;
461
462 if (rnp == rnp_root) {
463 WARN_ONCE(1, "Last CPU thought to be offlined?");
464 return 0; /* Shouldn't happen: at least one CPU online. */
465 }
466 WARN_ON_ONCE(rnp != rdp->mynode &&
467 (!list_empty(&rnp->blocked_tasks[0]) ||
468 !list_empty(&rnp->blocked_tasks[1]) ||
469 !list_empty(&rnp->blocked_tasks[2]) ||
470 !list_empty(&rnp->blocked_tasks[3])));
471
472 /*
473 * Move tasks up to root rcu_node. Rely on the fact that the
474 * root rcu_node can be at most one ahead of the rest of the
475 * rcu_nodes in terms of gp_num value. This fact allows us to
476 * move the blocked_tasks[] array directly, element by element.
477 */
478 if (rcu_preempted_readers(rnp))
479 retval |= RCU_OFL_TASKS_NORM_GP;
480 if (rcu_preempted_readers_exp(rnp))
481 retval |= RCU_OFL_TASKS_EXP_GP;
482 for (i = 0; i < 4; i++) {
483 lp = &rnp->blocked_tasks[i];
484 lp_root = &rnp_root->blocked_tasks[i];
485 while (!list_empty(lp)) {
486 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
487 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
488 list_del(&tp->rcu_node_entry);
489 tp->rcu_blocked_node = rnp_root;
490 list_add(&tp->rcu_node_entry, lp_root);
491 raw_spin_unlock(&rnp_root->lock); /* irqs remain disabled */
492 }
493 }
494 return retval;
495 }
496
497 /*
498 * Do CPU-offline processing for preemptable RCU.
499 */
500 static void rcu_preempt_offline_cpu(int cpu)
501 {
502 __rcu_offline_cpu(cpu, &rcu_preempt_state);
503 }
504
505 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
506
507 /*
508 * Check for a quiescent state from the current CPU. When a task blocks,
509 * the task is recorded in the corresponding CPU's rcu_node structure,
510 * which is checked elsewhere.
511 *
512 * Caller must disable hard irqs.
513 */
514 static void rcu_preempt_check_callbacks(int cpu)
515 {
516 struct task_struct *t = current;
517
518 if (t->rcu_read_lock_nesting == 0) {
519 rcu_preempt_qs(cpu);
520 return;
521 }
522 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
523 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
524 }
525
526 /*
527 * Process callbacks for preemptable RCU.
528 */
529 static void rcu_preempt_process_callbacks(void)
530 {
531 __rcu_process_callbacks(&rcu_preempt_state,
532 &__get_cpu_var(rcu_preempt_data));
533 }
534
535 /*
536 * Queue a preemptable-RCU callback for invocation after a grace period.
537 */
538 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
539 {
540 __call_rcu(head, func, &rcu_preempt_state);
541 }
542 EXPORT_SYMBOL_GPL(call_rcu);
543
544 /**
545 * synchronize_rcu - wait until a grace period has elapsed.
546 *
547 * Control will return to the caller some time after a full grace
548 * period has elapsed, in other words after all currently executing RCU
549 * read-side critical sections have completed. RCU read-side critical
550 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
551 * and may be nested.
552 */
553 void synchronize_rcu(void)
554 {
555 struct rcu_synchronize rcu;
556
557 if (!rcu_scheduler_active)
558 return;
559
560 init_rcu_head_on_stack(&rcu.head);
561 init_completion(&rcu.completion);
562 /* Will wake me after RCU finished. */
563 call_rcu(&rcu.head, wakeme_after_rcu);
564 /* Wait for it. */
565 wait_for_completion(&rcu.completion);
566 destroy_rcu_head_on_stack(&rcu.head);
567 }
568 EXPORT_SYMBOL_GPL(synchronize_rcu);
569
570 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
571 static long sync_rcu_preempt_exp_count;
572 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
573
574 /*
575 * Return non-zero if there are any tasks in RCU read-side critical
576 * sections blocking the current preemptible-RCU expedited grace period.
577 * If there is no preemptible-RCU expedited grace period currently in
578 * progress, returns zero unconditionally.
579 */
580 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
581 {
582 return !list_empty(&rnp->blocked_tasks[2]) ||
583 !list_empty(&rnp->blocked_tasks[3]);
584 }
585
586 /*
587 * return non-zero if there is no RCU expedited grace period in progress
588 * for the specified rcu_node structure, in other words, if all CPUs and
589 * tasks covered by the specified rcu_node structure have done their bit
590 * for the current expedited grace period. Works only for preemptible
591 * RCU -- other RCU implementation use other means.
592 *
593 * Caller must hold sync_rcu_preempt_exp_mutex.
594 */
595 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
596 {
597 return !rcu_preempted_readers_exp(rnp) &&
598 ACCESS_ONCE(rnp->expmask) == 0;
599 }
600
601 /*
602 * Report the exit from RCU read-side critical section for the last task
603 * that queued itself during or before the current expedited preemptible-RCU
604 * grace period. This event is reported either to the rcu_node structure on
605 * which the task was queued or to one of that rcu_node structure's ancestors,
606 * recursively up the tree. (Calm down, calm down, we do the recursion
607 * iteratively!)
608 *
609 * Caller must hold sync_rcu_preempt_exp_mutex.
610 */
611 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
612 {
613 unsigned long flags;
614 unsigned long mask;
615
616 raw_spin_lock_irqsave(&rnp->lock, flags);
617 for (;;) {
618 if (!sync_rcu_preempt_exp_done(rnp))
619 break;
620 if (rnp->parent == NULL) {
621 wake_up(&sync_rcu_preempt_exp_wq);
622 break;
623 }
624 mask = rnp->grpmask;
625 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
626 rnp = rnp->parent;
627 raw_spin_lock(&rnp->lock); /* irqs already disabled */
628 rnp->expmask &= ~mask;
629 }
630 raw_spin_unlock_irqrestore(&rnp->lock, flags);
631 }
632
633 /*
634 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
635 * grace period for the specified rcu_node structure. If there are no such
636 * tasks, report it up the rcu_node hierarchy.
637 *
638 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
639 */
640 static void
641 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
642 {
643 int must_wait;
644
645 raw_spin_lock(&rnp->lock); /* irqs already disabled */
646 list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]);
647 list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]);
648 must_wait = rcu_preempted_readers_exp(rnp);
649 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
650 if (!must_wait)
651 rcu_report_exp_rnp(rsp, rnp);
652 }
653
654 /*
655 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
656 * is to invoke synchronize_sched_expedited() to push all the tasks to
657 * the ->blocked_tasks[] lists, move all entries from the first set of
658 * ->blocked_tasks[] lists to the second set, and finally wait for this
659 * second set to drain.
660 */
661 void synchronize_rcu_expedited(void)
662 {
663 unsigned long flags;
664 struct rcu_node *rnp;
665 struct rcu_state *rsp = &rcu_preempt_state;
666 long snap;
667 int trycount = 0;
668
669 smp_mb(); /* Caller's modifications seen first by other CPUs. */
670 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
671 smp_mb(); /* Above access cannot bleed into critical section. */
672
673 /*
674 * Acquire lock, falling back to synchronize_rcu() if too many
675 * lock-acquisition failures. Of course, if someone does the
676 * expedited grace period for us, just leave.
677 */
678 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
679 if (trycount++ < 10)
680 udelay(trycount * num_online_cpus());
681 else {
682 synchronize_rcu();
683 return;
684 }
685 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
686 goto mb_ret; /* Others did our work for us. */
687 }
688 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
689 goto unlock_mb_ret; /* Others did our work for us. */
690
691 /* force all RCU readers onto blocked_tasks[]. */
692 synchronize_sched_expedited();
693
694 raw_spin_lock_irqsave(&rsp->onofflock, flags);
695
696 /* Initialize ->expmask for all non-leaf rcu_node structures. */
697 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
698 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
699 rnp->expmask = rnp->qsmaskinit;
700 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
701 }
702
703 /* Snapshot current state of ->blocked_tasks[] lists. */
704 rcu_for_each_leaf_node(rsp, rnp)
705 sync_rcu_preempt_exp_init(rsp, rnp);
706 if (NUM_RCU_NODES > 1)
707 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
708
709 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
710
711 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */
712 rnp = rcu_get_root(rsp);
713 wait_event(sync_rcu_preempt_exp_wq,
714 sync_rcu_preempt_exp_done(rnp));
715
716 /* Clean up and exit. */
717 smp_mb(); /* ensure expedited GP seen before counter increment. */
718 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
719 unlock_mb_ret:
720 mutex_unlock(&sync_rcu_preempt_exp_mutex);
721 mb_ret:
722 smp_mb(); /* ensure subsequent action seen after grace period. */
723 }
724 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
725
726 /*
727 * Check to see if there is any immediate preemptable-RCU-related work
728 * to be done.
729 */
730 static int rcu_preempt_pending(int cpu)
731 {
732 return __rcu_pending(&rcu_preempt_state,
733 &per_cpu(rcu_preempt_data, cpu));
734 }
735
736 /*
737 * Does preemptable RCU need the CPU to stay out of dynticks mode?
738 */
739 static int rcu_preempt_needs_cpu(int cpu)
740 {
741 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
742 }
743
744 /**
745 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
746 */
747 void rcu_barrier(void)
748 {
749 _rcu_barrier(&rcu_preempt_state, call_rcu);
750 }
751 EXPORT_SYMBOL_GPL(rcu_barrier);
752
753 /*
754 * Initialize preemptable RCU's per-CPU data.
755 */
756 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
757 {
758 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
759 }
760
761 /*
762 * Move preemptable RCU's callbacks to ->orphan_cbs_list.
763 */
764 static void rcu_preempt_send_cbs_to_orphanage(void)
765 {
766 rcu_send_cbs_to_orphanage(&rcu_preempt_state);
767 }
768
769 /*
770 * Initialize preemptable RCU's state structures.
771 */
772 static void __init __rcu_init_preempt(void)
773 {
774 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
775 }
776
777 /*
778 * Check for a task exiting while in a preemptable-RCU read-side
779 * critical section, clean up if so. No need to issue warnings,
780 * as debug_check_no_locks_held() already does this if lockdep
781 * is enabled.
782 */
783 void exit_rcu(void)
784 {
785 struct task_struct *t = current;
786
787 if (t->rcu_read_lock_nesting == 0)
788 return;
789 t->rcu_read_lock_nesting = 1;
790 rcu_read_unlock();
791 }
792
793 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
794
795 /*
796 * Tell them what RCU they are running.
797 */
798 static void __init rcu_bootup_announce(void)
799 {
800 printk(KERN_INFO "Hierarchical RCU implementation.\n");
801 rcu_bootup_announce_oddness();
802 }
803
804 /*
805 * Return the number of RCU batches processed thus far for debug & stats.
806 */
807 long rcu_batches_completed(void)
808 {
809 return rcu_batches_completed_sched();
810 }
811 EXPORT_SYMBOL_GPL(rcu_batches_completed);
812
813 /*
814 * Force a quiescent state for RCU, which, because there is no preemptible
815 * RCU, becomes the same as rcu-sched.
816 */
817 void rcu_force_quiescent_state(void)
818 {
819 rcu_sched_force_quiescent_state();
820 }
821 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
822
823 /*
824 * Because preemptable RCU does not exist, we never have to check for
825 * CPUs being in quiescent states.
826 */
827 static void rcu_preempt_note_context_switch(int cpu)
828 {
829 }
830
831 /*
832 * Because preemptable RCU does not exist, there are never any preempted
833 * RCU readers.
834 */
835 static int rcu_preempted_readers(struct rcu_node *rnp)
836 {
837 return 0;
838 }
839
840 #ifdef CONFIG_HOTPLUG_CPU
841
842 /* Because preemptible RCU does not exist, no quieting of tasks. */
843 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
844 {
845 raw_spin_unlock_irqrestore(&rnp->lock, flags);
846 }
847
848 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
849
850 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
851
852 /*
853 * Because preemptable RCU does not exist, we never have to check for
854 * tasks blocked within RCU read-side critical sections.
855 */
856 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
857 {
858 }
859
860 /*
861 * Because preemptable RCU does not exist, we never have to check for
862 * tasks blocked within RCU read-side critical sections.
863 */
864 static void rcu_print_task_stall(struct rcu_node *rnp)
865 {
866 }
867
868 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
869
870 /*
871 * Because there is no preemptable RCU, there can be no readers blocked,
872 * so there is no need to check for blocked tasks. So check only for
873 * bogus qsmask values.
874 */
875 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
876 {
877 WARN_ON_ONCE(rnp->qsmask);
878 }
879
880 #ifdef CONFIG_HOTPLUG_CPU
881
882 /*
883 * Because preemptable RCU does not exist, it never needs to migrate
884 * tasks that were blocked within RCU read-side critical sections, and
885 * such non-existent tasks cannot possibly have been blocking the current
886 * grace period.
887 */
888 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
889 struct rcu_node *rnp,
890 struct rcu_data *rdp)
891 {
892 return 0;
893 }
894
895 /*
896 * Because preemptable RCU does not exist, it never needs CPU-offline
897 * processing.
898 */
899 static void rcu_preempt_offline_cpu(int cpu)
900 {
901 }
902
903 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
904
905 /*
906 * Because preemptable RCU does not exist, it never has any callbacks
907 * to check.
908 */
909 static void rcu_preempt_check_callbacks(int cpu)
910 {
911 }
912
913 /*
914 * Because preemptable RCU does not exist, it never has any callbacks
915 * to process.
916 */
917 static void rcu_preempt_process_callbacks(void)
918 {
919 }
920
921 /*
922 * In classic RCU, call_rcu() is just call_rcu_sched().
923 */
924 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
925 {
926 call_rcu_sched(head, func);
927 }
928 EXPORT_SYMBOL_GPL(call_rcu);
929
930 /*
931 * Wait for an rcu-preempt grace period, but make it happen quickly.
932 * But because preemptable RCU does not exist, map to rcu-sched.
933 */
934 void synchronize_rcu_expedited(void)
935 {
936 synchronize_sched_expedited();
937 }
938 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
939
940 #ifdef CONFIG_HOTPLUG_CPU
941
942 /*
943 * Because preemptable RCU does not exist, there is never any need to
944 * report on tasks preempted in RCU read-side critical sections during
945 * expedited RCU grace periods.
946 */
947 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
948 {
949 return;
950 }
951
952 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
953
954 /*
955 * Because preemptable RCU does not exist, it never has any work to do.
956 */
957 static int rcu_preempt_pending(int cpu)
958 {
959 return 0;
960 }
961
962 /*
963 * Because preemptable RCU does not exist, it never needs any CPU.
964 */
965 static int rcu_preempt_needs_cpu(int cpu)
966 {
967 return 0;
968 }
969
970 /*
971 * Because preemptable RCU does not exist, rcu_barrier() is just
972 * another name for rcu_barrier_sched().
973 */
974 void rcu_barrier(void)
975 {
976 rcu_barrier_sched();
977 }
978 EXPORT_SYMBOL_GPL(rcu_barrier);
979
980 /*
981 * Because preemptable RCU does not exist, there is no per-CPU
982 * data to initialize.
983 */
984 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
985 {
986 }
987
988 /*
989 * Because there is no preemptable RCU, there are no callbacks to move.
990 */
991 static void rcu_preempt_send_cbs_to_orphanage(void)
992 {
993 }
994
995 /*
996 * Because preemptable RCU does not exist, it need not be initialized.
997 */
998 static void __init __rcu_init_preempt(void)
999 {
1000 }
1001
1002 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1003
1004 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1005
1006 /*
1007 * Check to see if any future RCU-related work will need to be done
1008 * by the current CPU, even if none need be done immediately, returning
1009 * 1 if so. This function is part of the RCU implementation; it is -not-
1010 * an exported member of the RCU API.
1011 *
1012 * Because we have preemptible RCU, just check whether this CPU needs
1013 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1014 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1015 */
1016 int rcu_needs_cpu(int cpu)
1017 {
1018 return rcu_needs_cpu_quick_check(cpu);
1019 }
1020
1021 /*
1022 * Check to see if we need to continue a callback-flush operations to
1023 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1024 * entry is not configured, so we never do need to.
1025 */
1026 static void rcu_needs_cpu_flush(void)
1027 {
1028 }
1029
1030 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1031
1032 #define RCU_NEEDS_CPU_FLUSHES 5
1033 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1034 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1035
1036 /*
1037 * Check to see if any future RCU-related work will need to be done
1038 * by the current CPU, even if none need be done immediately, returning
1039 * 1 if so. This function is part of the RCU implementation; it is -not-
1040 * an exported member of the RCU API.
1041 *
1042 * Because we are not supporting preemptible RCU, attempt to accelerate
1043 * any current grace periods so that RCU no longer needs this CPU, but
1044 * only if all other CPUs are already in dynticks-idle mode. This will
1045 * allow the CPU cores to be powered down immediately, as opposed to after
1046 * waiting many milliseconds for grace periods to elapse.
1047 *
1048 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1049 * disabled, we do one pass of force_quiescent_state(), then do a
1050 * raise_softirq() to cause rcu_process_callbacks() to be invoked later.
1051 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1052 */
1053 int rcu_needs_cpu(int cpu)
1054 {
1055 int c = 0;
1056 int snap;
1057 int snap_nmi;
1058 int thatcpu;
1059
1060 /* Check for being in the holdoff period. */
1061 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
1062 return rcu_needs_cpu_quick_check(cpu);
1063
1064 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1065 for_each_online_cpu(thatcpu) {
1066 if (thatcpu == cpu)
1067 continue;
1068 snap = per_cpu(rcu_dynticks, thatcpu).dynticks;
1069 snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi;
1070 smp_mb(); /* Order sampling of snap with end of grace period. */
1071 if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) {
1072 per_cpu(rcu_dyntick_drain, cpu) = 0;
1073 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1074 return rcu_needs_cpu_quick_check(cpu);
1075 }
1076 }
1077
1078 /* Check and update the rcu_dyntick_drain sequencing. */
1079 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1080 /* First time through, initialize the counter. */
1081 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
1082 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1083 /* We have hit the limit, so time to give up. */
1084 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1085 return rcu_needs_cpu_quick_check(cpu);
1086 }
1087
1088 /* Do one step pushing remaining RCU callbacks through. */
1089 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1090 rcu_sched_qs(cpu);
1091 force_quiescent_state(&rcu_sched_state, 0);
1092 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
1093 }
1094 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1095 rcu_bh_qs(cpu);
1096 force_quiescent_state(&rcu_bh_state, 0);
1097 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1098 }
1099
1100 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1101 if (c)
1102 raise_softirq(RCU_SOFTIRQ);
1103 return c;
1104 }
1105
1106 /*
1107 * Check to see if we need to continue a callback-flush operations to
1108 * allow the last CPU to enter dyntick-idle mode.
1109 */
1110 static void rcu_needs_cpu_flush(void)
1111 {
1112 int cpu = smp_processor_id();
1113 unsigned long flags;
1114
1115 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
1116 return;
1117 local_irq_save(flags);
1118 (void)rcu_needs_cpu(cpu);
1119 local_irq_restore(flags);
1120 }
1121
1122 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */