Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56
57 #include "rcu.h"
58
59 /* Data structures. */
60
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .signaled = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80 }
81
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89
90 /*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102 /*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114 static int rcu_scheduler_fully_active __read_mostly;
115
116 #ifdef CONFIG_RCU_BOOST
117
118 /*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134 /*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145
146 /*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155
156 /*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162 void rcu_sched_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171 }
172
173 void rcu_bh_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 /*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189 void rcu_note_context_switch(int cpu)
190 {
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198 #ifdef CONFIG_NO_HZ
199 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
200 .dynticks_nesting = 1,
201 .dynticks = ATOMIC_INIT(1),
202 };
203 #endif /* #ifdef CONFIG_NO_HZ */
204
205 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
206 static int qhimark = 10000; /* If this many pending, ignore blimit. */
207 static int qlowmark = 100; /* Once only this many pending, use blimit. */
208
209 module_param(blimit, int, 0);
210 module_param(qhimark, int, 0);
211 module_param(qlowmark, int, 0);
212
213 int rcu_cpu_stall_suppress __read_mostly;
214 module_param(rcu_cpu_stall_suppress, int, 0644);
215
216 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
217 static int rcu_pending(int cpu);
218
219 /*
220 * Return the number of RCU-sched batches processed thus far for debug & stats.
221 */
222 long rcu_batches_completed_sched(void)
223 {
224 return rcu_sched_state.completed;
225 }
226 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
227
228 /*
229 * Return the number of RCU BH batches processed thus far for debug & stats.
230 */
231 long rcu_batches_completed_bh(void)
232 {
233 return rcu_bh_state.completed;
234 }
235 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
236
237 /*
238 * Force a quiescent state for RCU BH.
239 */
240 void rcu_bh_force_quiescent_state(void)
241 {
242 force_quiescent_state(&rcu_bh_state, 0);
243 }
244 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
245
246 /*
247 * Record the number of times rcutorture tests have been initiated and
248 * terminated. This information allows the debugfs tracing stats to be
249 * correlated to the rcutorture messages, even when the rcutorture module
250 * is being repeatedly loaded and unloaded. In other words, we cannot
251 * store this state in rcutorture itself.
252 */
253 void rcutorture_record_test_transition(void)
254 {
255 rcutorture_testseq++;
256 rcutorture_vernum = 0;
257 }
258 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
259
260 /*
261 * Record the number of writer passes through the current rcutorture test.
262 * This is also used to correlate debugfs tracing stats with the rcutorture
263 * messages.
264 */
265 void rcutorture_record_progress(unsigned long vernum)
266 {
267 rcutorture_vernum++;
268 }
269 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
270
271 /*
272 * Force a quiescent state for RCU-sched.
273 */
274 void rcu_sched_force_quiescent_state(void)
275 {
276 force_quiescent_state(&rcu_sched_state, 0);
277 }
278 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
279
280 /*
281 * Does the CPU have callbacks ready to be invoked?
282 */
283 static int
284 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
285 {
286 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
287 }
288
289 /*
290 * Does the current CPU require a yet-as-unscheduled grace period?
291 */
292 static int
293 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
294 {
295 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
296 }
297
298 /*
299 * Return the root node of the specified rcu_state structure.
300 */
301 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
302 {
303 return &rsp->node[0];
304 }
305
306 #ifdef CONFIG_SMP
307
308 /*
309 * If the specified CPU is offline, tell the caller that it is in
310 * a quiescent state. Otherwise, whack it with a reschedule IPI.
311 * Grace periods can end up waiting on an offline CPU when that
312 * CPU is in the process of coming online -- it will be added to the
313 * rcu_node bitmasks before it actually makes it online. The same thing
314 * can happen while a CPU is in the process of coming online. Because this
315 * race is quite rare, we check for it after detecting that the grace
316 * period has been delayed rather than checking each and every CPU
317 * each and every time we start a new grace period.
318 */
319 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
320 {
321 /*
322 * If the CPU is offline, it is in a quiescent state. We can
323 * trust its state not to change because interrupts are disabled.
324 */
325 if (cpu_is_offline(rdp->cpu)) {
326 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
327 rdp->offline_fqs++;
328 return 1;
329 }
330
331 /* If preemptible RCU, no point in sending reschedule IPI. */
332 if (rdp->preemptible)
333 return 0;
334
335 /* The CPU is online, so send it a reschedule IPI. */
336 if (rdp->cpu != smp_processor_id())
337 smp_send_reschedule(rdp->cpu);
338 else
339 set_need_resched();
340 rdp->resched_ipi++;
341 return 0;
342 }
343
344 #endif /* #ifdef CONFIG_SMP */
345
346 #ifdef CONFIG_NO_HZ
347
348 /**
349 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
350 *
351 * Enter nohz mode, in other words, -leave- the mode in which RCU
352 * read-side critical sections can occur. (Though RCU read-side
353 * critical sections can occur in irq handlers in nohz mode, a possibility
354 * handled by rcu_irq_enter() and rcu_irq_exit()).
355 */
356 void rcu_enter_nohz(void)
357 {
358 unsigned long flags;
359 struct rcu_dynticks *rdtp;
360
361 local_irq_save(flags);
362 rdtp = &__get_cpu_var(rcu_dynticks);
363 if (--rdtp->dynticks_nesting) {
364 local_irq_restore(flags);
365 return;
366 }
367 trace_rcu_dyntick("Start");
368 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
369 smp_mb__before_atomic_inc(); /* See above. */
370 atomic_inc(&rdtp->dynticks);
371 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
372 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
373 local_irq_restore(flags);
374 }
375
376 /*
377 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
378 *
379 * Exit nohz mode, in other words, -enter- the mode in which RCU
380 * read-side critical sections normally occur.
381 */
382 void rcu_exit_nohz(void)
383 {
384 unsigned long flags;
385 struct rcu_dynticks *rdtp;
386
387 local_irq_save(flags);
388 rdtp = &__get_cpu_var(rcu_dynticks);
389 if (rdtp->dynticks_nesting++) {
390 local_irq_restore(flags);
391 return;
392 }
393 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
394 atomic_inc(&rdtp->dynticks);
395 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
396 smp_mb__after_atomic_inc(); /* See above. */
397 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
398 trace_rcu_dyntick("End");
399 local_irq_restore(flags);
400 }
401
402 /**
403 * rcu_nmi_enter - inform RCU of entry to NMI context
404 *
405 * If the CPU was idle with dynamic ticks active, and there is no
406 * irq handler running, this updates rdtp->dynticks_nmi to let the
407 * RCU grace-period handling know that the CPU is active.
408 */
409 void rcu_nmi_enter(void)
410 {
411 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
412
413 if (rdtp->dynticks_nmi_nesting == 0 &&
414 (atomic_read(&rdtp->dynticks) & 0x1))
415 return;
416 rdtp->dynticks_nmi_nesting++;
417 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
418 atomic_inc(&rdtp->dynticks);
419 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
420 smp_mb__after_atomic_inc(); /* See above. */
421 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
422 }
423
424 /**
425 * rcu_nmi_exit - inform RCU of exit from NMI context
426 *
427 * If the CPU was idle with dynamic ticks active, and there is no
428 * irq handler running, this updates rdtp->dynticks_nmi to let the
429 * RCU grace-period handling know that the CPU is no longer active.
430 */
431 void rcu_nmi_exit(void)
432 {
433 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
434
435 if (rdtp->dynticks_nmi_nesting == 0 ||
436 --rdtp->dynticks_nmi_nesting != 0)
437 return;
438 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
439 smp_mb__before_atomic_inc(); /* See above. */
440 atomic_inc(&rdtp->dynticks);
441 smp_mb__after_atomic_inc(); /* Force delay to next write. */
442 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
443 }
444
445 /**
446 * rcu_irq_enter - inform RCU of entry to hard irq context
447 *
448 * If the CPU was idle with dynamic ticks active, this updates the
449 * rdtp->dynticks to let the RCU handling know that the CPU is active.
450 */
451 void rcu_irq_enter(void)
452 {
453 rcu_exit_nohz();
454 }
455
456 /**
457 * rcu_irq_exit - inform RCU of exit from hard irq context
458 *
459 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
460 * to put let the RCU handling be aware that the CPU is going back to idle
461 * with no ticks.
462 */
463 void rcu_irq_exit(void)
464 {
465 rcu_enter_nohz();
466 }
467
468 #ifdef CONFIG_SMP
469
470 /*
471 * Snapshot the specified CPU's dynticks counter so that we can later
472 * credit them with an implicit quiescent state. Return 1 if this CPU
473 * is in dynticks idle mode, which is an extended quiescent state.
474 */
475 static int dyntick_save_progress_counter(struct rcu_data *rdp)
476 {
477 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
478 return 0;
479 }
480
481 /*
482 * Return true if the specified CPU has passed through a quiescent
483 * state by virtue of being in or having passed through an dynticks
484 * idle state since the last call to dyntick_save_progress_counter()
485 * for this same CPU.
486 */
487 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
488 {
489 unsigned int curr;
490 unsigned int snap;
491
492 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
493 snap = (unsigned int)rdp->dynticks_snap;
494
495 /*
496 * If the CPU passed through or entered a dynticks idle phase with
497 * no active irq/NMI handlers, then we can safely pretend that the CPU
498 * already acknowledged the request to pass through a quiescent
499 * state. Either way, that CPU cannot possibly be in an RCU
500 * read-side critical section that started before the beginning
501 * of the current RCU grace period.
502 */
503 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
504 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
505 rdp->dynticks_fqs++;
506 return 1;
507 }
508
509 /* Go check for the CPU being offline. */
510 return rcu_implicit_offline_qs(rdp);
511 }
512
513 #endif /* #ifdef CONFIG_SMP */
514
515 #else /* #ifdef CONFIG_NO_HZ */
516
517 #ifdef CONFIG_SMP
518
519 static int dyntick_save_progress_counter(struct rcu_data *rdp)
520 {
521 return 0;
522 }
523
524 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
525 {
526 return rcu_implicit_offline_qs(rdp);
527 }
528
529 #endif /* #ifdef CONFIG_SMP */
530
531 #endif /* #else #ifdef CONFIG_NO_HZ */
532
533 int rcu_cpu_stall_suppress __read_mostly;
534
535 static void record_gp_stall_check_time(struct rcu_state *rsp)
536 {
537 rsp->gp_start = jiffies;
538 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
539 }
540
541 static void print_other_cpu_stall(struct rcu_state *rsp)
542 {
543 int cpu;
544 long delta;
545 unsigned long flags;
546 int ndetected;
547 struct rcu_node *rnp = rcu_get_root(rsp);
548
549 /* Only let one CPU complain about others per time interval. */
550
551 raw_spin_lock_irqsave(&rnp->lock, flags);
552 delta = jiffies - rsp->jiffies_stall;
553 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
554 raw_spin_unlock_irqrestore(&rnp->lock, flags);
555 return;
556 }
557 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
558
559 /*
560 * Now rat on any tasks that got kicked up to the root rcu_node
561 * due to CPU offlining.
562 */
563 ndetected = rcu_print_task_stall(rnp);
564 raw_spin_unlock_irqrestore(&rnp->lock, flags);
565
566 /*
567 * OK, time to rat on our buddy...
568 * See Documentation/RCU/stallwarn.txt for info on how to debug
569 * RCU CPU stall warnings.
570 */
571 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
572 rsp->name);
573 rcu_for_each_leaf_node(rsp, rnp) {
574 raw_spin_lock_irqsave(&rnp->lock, flags);
575 ndetected += rcu_print_task_stall(rnp);
576 raw_spin_unlock_irqrestore(&rnp->lock, flags);
577 if (rnp->qsmask == 0)
578 continue;
579 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
580 if (rnp->qsmask & (1UL << cpu)) {
581 printk(" %d", rnp->grplo + cpu);
582 ndetected++;
583 }
584 }
585 printk("} (detected by %d, t=%ld jiffies)\n",
586 smp_processor_id(), (long)(jiffies - rsp->gp_start));
587 if (ndetected == 0)
588 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
589 else if (!trigger_all_cpu_backtrace())
590 dump_stack();
591
592 /* If so configured, complain about tasks blocking the grace period. */
593
594 rcu_print_detail_task_stall(rsp);
595
596 force_quiescent_state(rsp, 0); /* Kick them all. */
597 }
598
599 static void print_cpu_stall(struct rcu_state *rsp)
600 {
601 unsigned long flags;
602 struct rcu_node *rnp = rcu_get_root(rsp);
603
604 /*
605 * OK, time to rat on ourselves...
606 * See Documentation/RCU/stallwarn.txt for info on how to debug
607 * RCU CPU stall warnings.
608 */
609 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
610 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
611 if (!trigger_all_cpu_backtrace())
612 dump_stack();
613
614 raw_spin_lock_irqsave(&rnp->lock, flags);
615 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
616 rsp->jiffies_stall =
617 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
618 raw_spin_unlock_irqrestore(&rnp->lock, flags);
619
620 set_need_resched(); /* kick ourselves to get things going. */
621 }
622
623 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
624 {
625 unsigned long j;
626 unsigned long js;
627 struct rcu_node *rnp;
628
629 if (rcu_cpu_stall_suppress)
630 return;
631 j = ACCESS_ONCE(jiffies);
632 js = ACCESS_ONCE(rsp->jiffies_stall);
633 rnp = rdp->mynode;
634 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
635
636 /* We haven't checked in, so go dump stack. */
637 print_cpu_stall(rsp);
638
639 } else if (rcu_gp_in_progress(rsp) &&
640 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
641
642 /* They had a few time units to dump stack, so complain. */
643 print_other_cpu_stall(rsp);
644 }
645 }
646
647 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
648 {
649 rcu_cpu_stall_suppress = 1;
650 return NOTIFY_DONE;
651 }
652
653 /**
654 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
655 *
656 * Set the stall-warning timeout way off into the future, thus preventing
657 * any RCU CPU stall-warning messages from appearing in the current set of
658 * RCU grace periods.
659 *
660 * The caller must disable hard irqs.
661 */
662 void rcu_cpu_stall_reset(void)
663 {
664 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
665 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
666 rcu_preempt_stall_reset();
667 }
668
669 static struct notifier_block rcu_panic_block = {
670 .notifier_call = rcu_panic,
671 };
672
673 static void __init check_cpu_stall_init(void)
674 {
675 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
676 }
677
678 /*
679 * Update CPU-local rcu_data state to record the newly noticed grace period.
680 * This is used both when we started the grace period and when we notice
681 * that someone else started the grace period. The caller must hold the
682 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
683 * and must have irqs disabled.
684 */
685 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
686 {
687 if (rdp->gpnum != rnp->gpnum) {
688 /*
689 * If the current grace period is waiting for this CPU,
690 * set up to detect a quiescent state, otherwise don't
691 * go looking for one.
692 */
693 rdp->gpnum = rnp->gpnum;
694 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
695 if (rnp->qsmask & rdp->grpmask) {
696 rdp->qs_pending = 1;
697 rdp->passed_quiesce = 0;
698 } else
699 rdp->qs_pending = 0;
700 }
701 }
702
703 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
704 {
705 unsigned long flags;
706 struct rcu_node *rnp;
707
708 local_irq_save(flags);
709 rnp = rdp->mynode;
710 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
711 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
712 local_irq_restore(flags);
713 return;
714 }
715 __note_new_gpnum(rsp, rnp, rdp);
716 raw_spin_unlock_irqrestore(&rnp->lock, flags);
717 }
718
719 /*
720 * Did someone else start a new RCU grace period start since we last
721 * checked? Update local state appropriately if so. Must be called
722 * on the CPU corresponding to rdp.
723 */
724 static int
725 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
726 {
727 unsigned long flags;
728 int ret = 0;
729
730 local_irq_save(flags);
731 if (rdp->gpnum != rsp->gpnum) {
732 note_new_gpnum(rsp, rdp);
733 ret = 1;
734 }
735 local_irq_restore(flags);
736 return ret;
737 }
738
739 /*
740 * Advance this CPU's callbacks, but only if the current grace period
741 * has ended. This may be called only from the CPU to whom the rdp
742 * belongs. In addition, the corresponding leaf rcu_node structure's
743 * ->lock must be held by the caller, with irqs disabled.
744 */
745 static void
746 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
747 {
748 /* Did another grace period end? */
749 if (rdp->completed != rnp->completed) {
750
751 /* Advance callbacks. No harm if list empty. */
752 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
753 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
754 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
755
756 /* Remember that we saw this grace-period completion. */
757 rdp->completed = rnp->completed;
758 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
759
760 /*
761 * If we were in an extended quiescent state, we may have
762 * missed some grace periods that others CPUs handled on
763 * our behalf. Catch up with this state to avoid noting
764 * spurious new grace periods. If another grace period
765 * has started, then rnp->gpnum will have advanced, so
766 * we will detect this later on.
767 */
768 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
769 rdp->gpnum = rdp->completed;
770
771 /*
772 * If RCU does not need a quiescent state from this CPU,
773 * then make sure that this CPU doesn't go looking for one.
774 */
775 if ((rnp->qsmask & rdp->grpmask) == 0)
776 rdp->qs_pending = 0;
777 }
778 }
779
780 /*
781 * Advance this CPU's callbacks, but only if the current grace period
782 * has ended. This may be called only from the CPU to whom the rdp
783 * belongs.
784 */
785 static void
786 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
787 {
788 unsigned long flags;
789 struct rcu_node *rnp;
790
791 local_irq_save(flags);
792 rnp = rdp->mynode;
793 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
794 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
795 local_irq_restore(flags);
796 return;
797 }
798 __rcu_process_gp_end(rsp, rnp, rdp);
799 raw_spin_unlock_irqrestore(&rnp->lock, flags);
800 }
801
802 /*
803 * Do per-CPU grace-period initialization for running CPU. The caller
804 * must hold the lock of the leaf rcu_node structure corresponding to
805 * this CPU.
806 */
807 static void
808 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
809 {
810 /* Prior grace period ended, so advance callbacks for current CPU. */
811 __rcu_process_gp_end(rsp, rnp, rdp);
812
813 /*
814 * Because this CPU just now started the new grace period, we know
815 * that all of its callbacks will be covered by this upcoming grace
816 * period, even the ones that were registered arbitrarily recently.
817 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
818 *
819 * Other CPUs cannot be sure exactly when the grace period started.
820 * Therefore, their recently registered callbacks must pass through
821 * an additional RCU_NEXT_READY stage, so that they will be handled
822 * by the next RCU grace period.
823 */
824 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
825 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
826
827 /* Set state so that this CPU will detect the next quiescent state. */
828 __note_new_gpnum(rsp, rnp, rdp);
829 }
830
831 /*
832 * Start a new RCU grace period if warranted, re-initializing the hierarchy
833 * in preparation for detecting the next grace period. The caller must hold
834 * the root node's ->lock, which is released before return. Hard irqs must
835 * be disabled.
836 */
837 static void
838 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
839 __releases(rcu_get_root(rsp)->lock)
840 {
841 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
842 struct rcu_node *rnp = rcu_get_root(rsp);
843
844 if (!rcu_scheduler_fully_active ||
845 !cpu_needs_another_gp(rsp, rdp)) {
846 /*
847 * Either the scheduler hasn't yet spawned the first
848 * non-idle task or this CPU does not need another
849 * grace period. Either way, don't start a new grace
850 * period.
851 */
852 raw_spin_unlock_irqrestore(&rnp->lock, flags);
853 return;
854 }
855
856 if (rsp->fqs_active) {
857 /*
858 * This CPU needs a grace period, but force_quiescent_state()
859 * is running. Tell it to start one on this CPU's behalf.
860 */
861 rsp->fqs_need_gp = 1;
862 raw_spin_unlock_irqrestore(&rnp->lock, flags);
863 return;
864 }
865
866 /* Advance to a new grace period and initialize state. */
867 rsp->gpnum++;
868 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
869 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
870 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
871 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
872 record_gp_stall_check_time(rsp);
873
874 /* Special-case the common single-level case. */
875 if (NUM_RCU_NODES == 1) {
876 rcu_preempt_check_blocked_tasks(rnp);
877 rnp->qsmask = rnp->qsmaskinit;
878 rnp->gpnum = rsp->gpnum;
879 rnp->completed = rsp->completed;
880 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
881 rcu_start_gp_per_cpu(rsp, rnp, rdp);
882 rcu_preempt_boost_start_gp(rnp);
883 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
884 rnp->level, rnp->grplo,
885 rnp->grphi, rnp->qsmask);
886 raw_spin_unlock_irqrestore(&rnp->lock, flags);
887 return;
888 }
889
890 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
891
892
893 /* Exclude any concurrent CPU-hotplug operations. */
894 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
895
896 /*
897 * Set the quiescent-state-needed bits in all the rcu_node
898 * structures for all currently online CPUs in breadth-first
899 * order, starting from the root rcu_node structure. This
900 * operation relies on the layout of the hierarchy within the
901 * rsp->node[] array. Note that other CPUs will access only
902 * the leaves of the hierarchy, which still indicate that no
903 * grace period is in progress, at least until the corresponding
904 * leaf node has been initialized. In addition, we have excluded
905 * CPU-hotplug operations.
906 *
907 * Note that the grace period cannot complete until we finish
908 * the initialization process, as there will be at least one
909 * qsmask bit set in the root node until that time, namely the
910 * one corresponding to this CPU, due to the fact that we have
911 * irqs disabled.
912 */
913 rcu_for_each_node_breadth_first(rsp, rnp) {
914 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
915 rcu_preempt_check_blocked_tasks(rnp);
916 rnp->qsmask = rnp->qsmaskinit;
917 rnp->gpnum = rsp->gpnum;
918 rnp->completed = rsp->completed;
919 if (rnp == rdp->mynode)
920 rcu_start_gp_per_cpu(rsp, rnp, rdp);
921 rcu_preempt_boost_start_gp(rnp);
922 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
923 rnp->level, rnp->grplo,
924 rnp->grphi, rnp->qsmask);
925 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
926 }
927
928 rnp = rcu_get_root(rsp);
929 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
930 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
931 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
932 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
933 }
934
935 /*
936 * Report a full set of quiescent states to the specified rcu_state
937 * data structure. This involves cleaning up after the prior grace
938 * period and letting rcu_start_gp() start up the next grace period
939 * if one is needed. Note that the caller must hold rnp->lock, as
940 * required by rcu_start_gp(), which will release it.
941 */
942 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
943 __releases(rcu_get_root(rsp)->lock)
944 {
945 unsigned long gp_duration;
946 struct rcu_node *rnp = rcu_get_root(rsp);
947 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
948
949 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
950
951 /*
952 * Ensure that all grace-period and pre-grace-period activity
953 * is seen before the assignment to rsp->completed.
954 */
955 smp_mb(); /* See above block comment. */
956 gp_duration = jiffies - rsp->gp_start;
957 if (gp_duration > rsp->gp_max)
958 rsp->gp_max = gp_duration;
959
960 /*
961 * We know the grace period is complete, but to everyone else
962 * it appears to still be ongoing. But it is also the case
963 * that to everyone else it looks like there is nothing that
964 * they can do to advance the grace period. It is therefore
965 * safe for us to drop the lock in order to mark the grace
966 * period as completed in all of the rcu_node structures.
967 *
968 * But if this CPU needs another grace period, it will take
969 * care of this while initializing the next grace period.
970 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
971 * because the callbacks have not yet been advanced: Those
972 * callbacks are waiting on the grace period that just now
973 * completed.
974 */
975 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
976 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
977
978 /*
979 * Propagate new ->completed value to rcu_node structures
980 * so that other CPUs don't have to wait until the start
981 * of the next grace period to process their callbacks.
982 */
983 rcu_for_each_node_breadth_first(rsp, rnp) {
984 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
985 rnp->completed = rsp->gpnum;
986 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
987 }
988 rnp = rcu_get_root(rsp);
989 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
990 }
991
992 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
993 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
994 rsp->signaled = RCU_GP_IDLE;
995 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
996 }
997
998 /*
999 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1000 * Allows quiescent states for a group of CPUs to be reported at one go
1001 * to the specified rcu_node structure, though all the CPUs in the group
1002 * must be represented by the same rcu_node structure (which need not be
1003 * a leaf rcu_node structure, though it often will be). That structure's
1004 * lock must be held upon entry, and it is released before return.
1005 */
1006 static void
1007 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1008 struct rcu_node *rnp, unsigned long flags)
1009 __releases(rnp->lock)
1010 {
1011 struct rcu_node *rnp_c;
1012
1013 /* Walk up the rcu_node hierarchy. */
1014 for (;;) {
1015 if (!(rnp->qsmask & mask)) {
1016
1017 /* Our bit has already been cleared, so done. */
1018 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1019 return;
1020 }
1021 rnp->qsmask &= ~mask;
1022 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1023 mask, rnp->qsmask, rnp->level,
1024 rnp->grplo, rnp->grphi,
1025 !!rnp->gp_tasks);
1026 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1027
1028 /* Other bits still set at this level, so done. */
1029 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1030 return;
1031 }
1032 mask = rnp->grpmask;
1033 if (rnp->parent == NULL) {
1034
1035 /* No more levels. Exit loop holding root lock. */
1036
1037 break;
1038 }
1039 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1040 rnp_c = rnp;
1041 rnp = rnp->parent;
1042 raw_spin_lock_irqsave(&rnp->lock, flags);
1043 WARN_ON_ONCE(rnp_c->qsmask);
1044 }
1045
1046 /*
1047 * Get here if we are the last CPU to pass through a quiescent
1048 * state for this grace period. Invoke rcu_report_qs_rsp()
1049 * to clean up and start the next grace period if one is needed.
1050 */
1051 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1052 }
1053
1054 /*
1055 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1056 * structure. This must be either called from the specified CPU, or
1057 * called when the specified CPU is known to be offline (and when it is
1058 * also known that no other CPU is concurrently trying to help the offline
1059 * CPU). The lastcomp argument is used to make sure we are still in the
1060 * grace period of interest. We don't want to end the current grace period
1061 * based on quiescent states detected in an earlier grace period!
1062 */
1063 static void
1064 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1065 {
1066 unsigned long flags;
1067 unsigned long mask;
1068 struct rcu_node *rnp;
1069
1070 rnp = rdp->mynode;
1071 raw_spin_lock_irqsave(&rnp->lock, flags);
1072 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1073
1074 /*
1075 * The grace period in which this quiescent state was
1076 * recorded has ended, so don't report it upwards.
1077 * We will instead need a new quiescent state that lies
1078 * within the current grace period.
1079 */
1080 rdp->passed_quiesce = 0; /* need qs for new gp. */
1081 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1082 return;
1083 }
1084 mask = rdp->grpmask;
1085 if ((rnp->qsmask & mask) == 0) {
1086 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1087 } else {
1088 rdp->qs_pending = 0;
1089
1090 /*
1091 * This GP can't end until cpu checks in, so all of our
1092 * callbacks can be processed during the next GP.
1093 */
1094 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1095
1096 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1097 }
1098 }
1099
1100 /*
1101 * Check to see if there is a new grace period of which this CPU
1102 * is not yet aware, and if so, set up local rcu_data state for it.
1103 * Otherwise, see if this CPU has just passed through its first
1104 * quiescent state for this grace period, and record that fact if so.
1105 */
1106 static void
1107 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1108 {
1109 /* If there is now a new grace period, record and return. */
1110 if (check_for_new_grace_period(rsp, rdp))
1111 return;
1112
1113 /*
1114 * Does this CPU still need to do its part for current grace period?
1115 * If no, return and let the other CPUs do their part as well.
1116 */
1117 if (!rdp->qs_pending)
1118 return;
1119
1120 /*
1121 * Was there a quiescent state since the beginning of the grace
1122 * period? If no, then exit and wait for the next call.
1123 */
1124 if (!rdp->passed_quiesce)
1125 return;
1126
1127 /*
1128 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1129 * judge of that).
1130 */
1131 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1132 }
1133
1134 #ifdef CONFIG_HOTPLUG_CPU
1135
1136 /*
1137 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1138 * Synchronization is not required because this function executes
1139 * in stop_machine() context.
1140 */
1141 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1142 {
1143 int i;
1144 /* current DYING CPU is cleared in the cpu_online_mask */
1145 int receive_cpu = cpumask_any(cpu_online_mask);
1146 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1147 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1148
1149 if (rdp->nxtlist == NULL)
1150 return; /* irqs disabled, so comparison is stable. */
1151
1152 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1153 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1154 receive_rdp->qlen += rdp->qlen;
1155 receive_rdp->n_cbs_adopted += rdp->qlen;
1156 rdp->n_cbs_orphaned += rdp->qlen;
1157
1158 rdp->nxtlist = NULL;
1159 for (i = 0; i < RCU_NEXT_SIZE; i++)
1160 rdp->nxttail[i] = &rdp->nxtlist;
1161 rdp->qlen = 0;
1162 }
1163
1164 /*
1165 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1166 * and move all callbacks from the outgoing CPU to the current one.
1167 * There can only be one CPU hotplug operation at a time, so no other
1168 * CPU can be attempting to update rcu_cpu_kthread_task.
1169 */
1170 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1171 {
1172 unsigned long flags;
1173 unsigned long mask;
1174 int need_report = 0;
1175 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1176 struct rcu_node *rnp;
1177
1178 rcu_stop_cpu_kthread(cpu);
1179
1180 /* Exclude any attempts to start a new grace period. */
1181 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1182
1183 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1184 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1185 mask = rdp->grpmask; /* rnp->grplo is constant. */
1186 do {
1187 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1188 rnp->qsmaskinit &= ~mask;
1189 if (rnp->qsmaskinit != 0) {
1190 if (rnp != rdp->mynode)
1191 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1192 else
1193 trace_rcu_grace_period(rsp->name,
1194 rnp->gpnum + 1 -
1195 !!(rnp->qsmask & mask),
1196 "cpuofl");
1197 break;
1198 }
1199 if (rnp == rdp->mynode) {
1200 trace_rcu_grace_period(rsp->name,
1201 rnp->gpnum + 1 -
1202 !!(rnp->qsmask & mask),
1203 "cpuofl");
1204 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1205 } else
1206 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1207 mask = rnp->grpmask;
1208 rnp = rnp->parent;
1209 } while (rnp != NULL);
1210
1211 /*
1212 * We still hold the leaf rcu_node structure lock here, and
1213 * irqs are still disabled. The reason for this subterfuge is
1214 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1215 * held leads to deadlock.
1216 */
1217 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1218 rnp = rdp->mynode;
1219 if (need_report & RCU_OFL_TASKS_NORM_GP)
1220 rcu_report_unblock_qs_rnp(rnp, flags);
1221 else
1222 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1223 if (need_report & RCU_OFL_TASKS_EXP_GP)
1224 rcu_report_exp_rnp(rsp, rnp);
1225 rcu_node_kthread_setaffinity(rnp, -1);
1226 }
1227
1228 /*
1229 * Remove the specified CPU from the RCU hierarchy and move any pending
1230 * callbacks that it might have to the current CPU. This code assumes
1231 * that at least one CPU in the system will remain running at all times.
1232 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1233 */
1234 static void rcu_offline_cpu(int cpu)
1235 {
1236 __rcu_offline_cpu(cpu, &rcu_sched_state);
1237 __rcu_offline_cpu(cpu, &rcu_bh_state);
1238 rcu_preempt_offline_cpu(cpu);
1239 }
1240
1241 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1242
1243 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1244 {
1245 }
1246
1247 static void rcu_offline_cpu(int cpu)
1248 {
1249 }
1250
1251 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1252
1253 /*
1254 * Invoke any RCU callbacks that have made it to the end of their grace
1255 * period. Thottle as specified by rdp->blimit.
1256 */
1257 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1258 {
1259 unsigned long flags;
1260 struct rcu_head *next, *list, **tail;
1261 int bl, count;
1262
1263 /* If no callbacks are ready, just return.*/
1264 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1265 trace_rcu_batch_start(rsp->name, 0, 0);
1266 trace_rcu_batch_end(rsp->name, 0);
1267 return;
1268 }
1269
1270 /*
1271 * Extract the list of ready callbacks, disabling to prevent
1272 * races with call_rcu() from interrupt handlers.
1273 */
1274 local_irq_save(flags);
1275 bl = rdp->blimit;
1276 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1277 list = rdp->nxtlist;
1278 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1279 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1280 tail = rdp->nxttail[RCU_DONE_TAIL];
1281 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1282 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1283 rdp->nxttail[count] = &rdp->nxtlist;
1284 local_irq_restore(flags);
1285
1286 /* Invoke callbacks. */
1287 count = 0;
1288 while (list) {
1289 next = list->next;
1290 prefetch(next);
1291 debug_rcu_head_unqueue(list);
1292 __rcu_reclaim(rsp->name, list);
1293 list = next;
1294 if (++count >= bl)
1295 break;
1296 }
1297
1298 local_irq_save(flags);
1299 trace_rcu_batch_end(rsp->name, count);
1300
1301 /* Update count, and requeue any remaining callbacks. */
1302 rdp->qlen -= count;
1303 rdp->n_cbs_invoked += count;
1304 if (list != NULL) {
1305 *tail = rdp->nxtlist;
1306 rdp->nxtlist = list;
1307 for (count = 0; count < RCU_NEXT_SIZE; count++)
1308 if (&rdp->nxtlist == rdp->nxttail[count])
1309 rdp->nxttail[count] = tail;
1310 else
1311 break;
1312 }
1313
1314 /* Reinstate batch limit if we have worked down the excess. */
1315 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1316 rdp->blimit = blimit;
1317
1318 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1319 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1320 rdp->qlen_last_fqs_check = 0;
1321 rdp->n_force_qs_snap = rsp->n_force_qs;
1322 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1323 rdp->qlen_last_fqs_check = rdp->qlen;
1324
1325 local_irq_restore(flags);
1326
1327 /* Re-invoke RCU core processing if there are callbacks remaining. */
1328 if (cpu_has_callbacks_ready_to_invoke(rdp))
1329 invoke_rcu_core();
1330 }
1331
1332 /*
1333 * Check to see if this CPU is in a non-context-switch quiescent state
1334 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1335 * Also schedule RCU core processing.
1336 *
1337 * This function must be called with hardirqs disabled. It is normally
1338 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1339 * false, there is no point in invoking rcu_check_callbacks().
1340 */
1341 void rcu_check_callbacks(int cpu, int user)
1342 {
1343 trace_rcu_utilization("Start scheduler-tick");
1344 if (user ||
1345 (idle_cpu(cpu) && rcu_scheduler_active &&
1346 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1347
1348 /*
1349 * Get here if this CPU took its interrupt from user
1350 * mode or from the idle loop, and if this is not a
1351 * nested interrupt. In this case, the CPU is in
1352 * a quiescent state, so note it.
1353 *
1354 * No memory barrier is required here because both
1355 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1356 * variables that other CPUs neither access nor modify,
1357 * at least not while the corresponding CPU is online.
1358 */
1359
1360 rcu_sched_qs(cpu);
1361 rcu_bh_qs(cpu);
1362
1363 } else if (!in_softirq()) {
1364
1365 /*
1366 * Get here if this CPU did not take its interrupt from
1367 * softirq, in other words, if it is not interrupting
1368 * a rcu_bh read-side critical section. This is an _bh
1369 * critical section, so note it.
1370 */
1371
1372 rcu_bh_qs(cpu);
1373 }
1374 rcu_preempt_check_callbacks(cpu);
1375 if (rcu_pending(cpu))
1376 invoke_rcu_core();
1377 trace_rcu_utilization("End scheduler-tick");
1378 }
1379
1380 #ifdef CONFIG_SMP
1381
1382 /*
1383 * Scan the leaf rcu_node structures, processing dyntick state for any that
1384 * have not yet encountered a quiescent state, using the function specified.
1385 * Also initiate boosting for any threads blocked on the root rcu_node.
1386 *
1387 * The caller must have suppressed start of new grace periods.
1388 */
1389 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1390 {
1391 unsigned long bit;
1392 int cpu;
1393 unsigned long flags;
1394 unsigned long mask;
1395 struct rcu_node *rnp;
1396
1397 rcu_for_each_leaf_node(rsp, rnp) {
1398 mask = 0;
1399 raw_spin_lock_irqsave(&rnp->lock, flags);
1400 if (!rcu_gp_in_progress(rsp)) {
1401 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1402 return;
1403 }
1404 if (rnp->qsmask == 0) {
1405 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1406 continue;
1407 }
1408 cpu = rnp->grplo;
1409 bit = 1;
1410 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1411 if ((rnp->qsmask & bit) != 0 &&
1412 f(per_cpu_ptr(rsp->rda, cpu)))
1413 mask |= bit;
1414 }
1415 if (mask != 0) {
1416
1417 /* rcu_report_qs_rnp() releases rnp->lock. */
1418 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1419 continue;
1420 }
1421 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1422 }
1423 rnp = rcu_get_root(rsp);
1424 if (rnp->qsmask == 0) {
1425 raw_spin_lock_irqsave(&rnp->lock, flags);
1426 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1427 }
1428 }
1429
1430 /*
1431 * Force quiescent states on reluctant CPUs, and also detect which
1432 * CPUs are in dyntick-idle mode.
1433 */
1434 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1435 {
1436 unsigned long flags;
1437 struct rcu_node *rnp = rcu_get_root(rsp);
1438
1439 trace_rcu_utilization("Start fqs");
1440 if (!rcu_gp_in_progress(rsp)) {
1441 trace_rcu_utilization("End fqs");
1442 return; /* No grace period in progress, nothing to force. */
1443 }
1444 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1445 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1446 trace_rcu_utilization("End fqs");
1447 return; /* Someone else is already on the job. */
1448 }
1449 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1450 goto unlock_fqs_ret; /* no emergency and done recently. */
1451 rsp->n_force_qs++;
1452 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1453 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1454 if(!rcu_gp_in_progress(rsp)) {
1455 rsp->n_force_qs_ngp++;
1456 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1457 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1458 }
1459 rsp->fqs_active = 1;
1460 switch (rsp->signaled) {
1461 case RCU_GP_IDLE:
1462 case RCU_GP_INIT:
1463
1464 break; /* grace period idle or initializing, ignore. */
1465
1466 case RCU_SAVE_DYNTICK:
1467 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1468 break; /* So gcc recognizes the dead code. */
1469
1470 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1471
1472 /* Record dyntick-idle state. */
1473 force_qs_rnp(rsp, dyntick_save_progress_counter);
1474 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1475 if (rcu_gp_in_progress(rsp))
1476 rsp->signaled = RCU_FORCE_QS;
1477 break;
1478
1479 case RCU_FORCE_QS:
1480
1481 /* Check dyntick-idle state, send IPI to laggarts. */
1482 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1483 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1484
1485 /* Leave state in case more forcing is required. */
1486
1487 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1488 break;
1489 }
1490 rsp->fqs_active = 0;
1491 if (rsp->fqs_need_gp) {
1492 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1493 rsp->fqs_need_gp = 0;
1494 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1495 trace_rcu_utilization("End fqs");
1496 return;
1497 }
1498 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1499 unlock_fqs_ret:
1500 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1501 trace_rcu_utilization("End fqs");
1502 }
1503
1504 #else /* #ifdef CONFIG_SMP */
1505
1506 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1507 {
1508 set_need_resched();
1509 }
1510
1511 #endif /* #else #ifdef CONFIG_SMP */
1512
1513 /*
1514 * This does the RCU core processing work for the specified rcu_state
1515 * and rcu_data structures. This may be called only from the CPU to
1516 * whom the rdp belongs.
1517 */
1518 static void
1519 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1520 {
1521 unsigned long flags;
1522
1523 WARN_ON_ONCE(rdp->beenonline == 0);
1524
1525 /*
1526 * If an RCU GP has gone long enough, go check for dyntick
1527 * idle CPUs and, if needed, send resched IPIs.
1528 */
1529 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1530 force_quiescent_state(rsp, 1);
1531
1532 /*
1533 * Advance callbacks in response to end of earlier grace
1534 * period that some other CPU ended.
1535 */
1536 rcu_process_gp_end(rsp, rdp);
1537
1538 /* Update RCU state based on any recent quiescent states. */
1539 rcu_check_quiescent_state(rsp, rdp);
1540
1541 /* Does this CPU require a not-yet-started grace period? */
1542 if (cpu_needs_another_gp(rsp, rdp)) {
1543 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1544 rcu_start_gp(rsp, flags); /* releases above lock */
1545 }
1546
1547 /* If there are callbacks ready, invoke them. */
1548 if (cpu_has_callbacks_ready_to_invoke(rdp))
1549 invoke_rcu_callbacks(rsp, rdp);
1550 }
1551
1552 /*
1553 * Do RCU core processing for the current CPU.
1554 */
1555 static void rcu_process_callbacks(struct softirq_action *unused)
1556 {
1557 trace_rcu_utilization("Start RCU core");
1558 __rcu_process_callbacks(&rcu_sched_state,
1559 &__get_cpu_var(rcu_sched_data));
1560 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1561 rcu_preempt_process_callbacks();
1562 trace_rcu_utilization("End RCU core");
1563 }
1564
1565 /*
1566 * Schedule RCU callback invocation. If the specified type of RCU
1567 * does not support RCU priority boosting, just do a direct call,
1568 * otherwise wake up the per-CPU kernel kthread. Note that because we
1569 * are running on the current CPU with interrupts disabled, the
1570 * rcu_cpu_kthread_task cannot disappear out from under us.
1571 */
1572 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1573 {
1574 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1575 return;
1576 if (likely(!rsp->boost)) {
1577 rcu_do_batch(rsp, rdp);
1578 return;
1579 }
1580 invoke_rcu_callbacks_kthread();
1581 }
1582
1583 static void invoke_rcu_core(void)
1584 {
1585 raise_softirq(RCU_SOFTIRQ);
1586 }
1587
1588 static void
1589 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1590 struct rcu_state *rsp)
1591 {
1592 unsigned long flags;
1593 struct rcu_data *rdp;
1594
1595 debug_rcu_head_queue(head);
1596 head->func = func;
1597 head->next = NULL;
1598
1599 smp_mb(); /* Ensure RCU update seen before callback registry. */
1600
1601 /*
1602 * Opportunistically note grace-period endings and beginnings.
1603 * Note that we might see a beginning right after we see an
1604 * end, but never vice versa, since this CPU has to pass through
1605 * a quiescent state betweentimes.
1606 */
1607 local_irq_save(flags);
1608 rdp = this_cpu_ptr(rsp->rda);
1609
1610 /* Add the callback to our list. */
1611 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1612 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1613 rdp->qlen++;
1614
1615 if (__is_kfree_rcu_offset((unsigned long)func))
1616 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1617 rdp->qlen);
1618 else
1619 trace_rcu_callback(rsp->name, head, rdp->qlen);
1620
1621 /* If interrupts were disabled, don't dive into RCU core. */
1622 if (irqs_disabled_flags(flags)) {
1623 local_irq_restore(flags);
1624 return;
1625 }
1626
1627 /*
1628 * Force the grace period if too many callbacks or too long waiting.
1629 * Enforce hysteresis, and don't invoke force_quiescent_state()
1630 * if some other CPU has recently done so. Also, don't bother
1631 * invoking force_quiescent_state() if the newly enqueued callback
1632 * is the only one waiting for a grace period to complete.
1633 */
1634 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1635
1636 /* Are we ignoring a completed grace period? */
1637 rcu_process_gp_end(rsp, rdp);
1638 check_for_new_grace_period(rsp, rdp);
1639
1640 /* Start a new grace period if one not already started. */
1641 if (!rcu_gp_in_progress(rsp)) {
1642 unsigned long nestflag;
1643 struct rcu_node *rnp_root = rcu_get_root(rsp);
1644
1645 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1646 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1647 } else {
1648 /* Give the grace period a kick. */
1649 rdp->blimit = LONG_MAX;
1650 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1651 *rdp->nxttail[RCU_DONE_TAIL] != head)
1652 force_quiescent_state(rsp, 0);
1653 rdp->n_force_qs_snap = rsp->n_force_qs;
1654 rdp->qlen_last_fqs_check = rdp->qlen;
1655 }
1656 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1657 force_quiescent_state(rsp, 1);
1658 local_irq_restore(flags);
1659 }
1660
1661 /*
1662 * Queue an RCU-sched callback for invocation after a grace period.
1663 */
1664 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1665 {
1666 __call_rcu(head, func, &rcu_sched_state);
1667 }
1668 EXPORT_SYMBOL_GPL(call_rcu_sched);
1669
1670 /*
1671 * Queue an RCU for invocation after a quicker grace period.
1672 */
1673 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1674 {
1675 __call_rcu(head, func, &rcu_bh_state);
1676 }
1677 EXPORT_SYMBOL_GPL(call_rcu_bh);
1678
1679 /**
1680 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1681 *
1682 * Control will return to the caller some time after a full rcu-sched
1683 * grace period has elapsed, in other words after all currently executing
1684 * rcu-sched read-side critical sections have completed. These read-side
1685 * critical sections are delimited by rcu_read_lock_sched() and
1686 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1687 * local_irq_disable(), and so on may be used in place of
1688 * rcu_read_lock_sched().
1689 *
1690 * This means that all preempt_disable code sequences, including NMI and
1691 * hardware-interrupt handlers, in progress on entry will have completed
1692 * before this primitive returns. However, this does not guarantee that
1693 * softirq handlers will have completed, since in some kernels, these
1694 * handlers can run in process context, and can block.
1695 *
1696 * This primitive provides the guarantees made by the (now removed)
1697 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1698 * guarantees that rcu_read_lock() sections will have completed.
1699 * In "classic RCU", these two guarantees happen to be one and
1700 * the same, but can differ in realtime RCU implementations.
1701 */
1702 void synchronize_sched(void)
1703 {
1704 if (rcu_blocking_is_gp())
1705 return;
1706 wait_rcu_gp(call_rcu_sched);
1707 }
1708 EXPORT_SYMBOL_GPL(synchronize_sched);
1709
1710 /**
1711 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1712 *
1713 * Control will return to the caller some time after a full rcu_bh grace
1714 * period has elapsed, in other words after all currently executing rcu_bh
1715 * read-side critical sections have completed. RCU read-side critical
1716 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1717 * and may be nested.
1718 */
1719 void synchronize_rcu_bh(void)
1720 {
1721 if (rcu_blocking_is_gp())
1722 return;
1723 wait_rcu_gp(call_rcu_bh);
1724 }
1725 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1726
1727 /*
1728 * Check to see if there is any immediate RCU-related work to be done
1729 * by the current CPU, for the specified type of RCU, returning 1 if so.
1730 * The checks are in order of increasing expense: checks that can be
1731 * carried out against CPU-local state are performed first. However,
1732 * we must check for CPU stalls first, else we might not get a chance.
1733 */
1734 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1735 {
1736 struct rcu_node *rnp = rdp->mynode;
1737
1738 rdp->n_rcu_pending++;
1739
1740 /* Check for CPU stalls, if enabled. */
1741 check_cpu_stall(rsp, rdp);
1742
1743 /* Is the RCU core waiting for a quiescent state from this CPU? */
1744 if (rcu_scheduler_fully_active &&
1745 rdp->qs_pending && !rdp->passed_quiesce) {
1746
1747 /*
1748 * If force_quiescent_state() coming soon and this CPU
1749 * needs a quiescent state, and this is either RCU-sched
1750 * or RCU-bh, force a local reschedule.
1751 */
1752 rdp->n_rp_qs_pending++;
1753 if (!rdp->preemptible &&
1754 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1755 jiffies))
1756 set_need_resched();
1757 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1758 rdp->n_rp_report_qs++;
1759 return 1;
1760 }
1761
1762 /* Does this CPU have callbacks ready to invoke? */
1763 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1764 rdp->n_rp_cb_ready++;
1765 return 1;
1766 }
1767
1768 /* Has RCU gone idle with this CPU needing another grace period? */
1769 if (cpu_needs_another_gp(rsp, rdp)) {
1770 rdp->n_rp_cpu_needs_gp++;
1771 return 1;
1772 }
1773
1774 /* Has another RCU grace period completed? */
1775 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1776 rdp->n_rp_gp_completed++;
1777 return 1;
1778 }
1779
1780 /* Has a new RCU grace period started? */
1781 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1782 rdp->n_rp_gp_started++;
1783 return 1;
1784 }
1785
1786 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1787 if (rcu_gp_in_progress(rsp) &&
1788 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1789 rdp->n_rp_need_fqs++;
1790 return 1;
1791 }
1792
1793 /* nothing to do */
1794 rdp->n_rp_need_nothing++;
1795 return 0;
1796 }
1797
1798 /*
1799 * Check to see if there is any immediate RCU-related work to be done
1800 * by the current CPU, returning 1 if so. This function is part of the
1801 * RCU implementation; it is -not- an exported member of the RCU API.
1802 */
1803 static int rcu_pending(int cpu)
1804 {
1805 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1806 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1807 rcu_preempt_pending(cpu);
1808 }
1809
1810 /*
1811 * Check to see if any future RCU-related work will need to be done
1812 * by the current CPU, even if none need be done immediately, returning
1813 * 1 if so.
1814 */
1815 static int rcu_needs_cpu_quick_check(int cpu)
1816 {
1817 /* RCU callbacks either ready or pending? */
1818 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1819 per_cpu(rcu_bh_data, cpu).nxtlist ||
1820 rcu_preempt_needs_cpu(cpu);
1821 }
1822
1823 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1824 static atomic_t rcu_barrier_cpu_count;
1825 static DEFINE_MUTEX(rcu_barrier_mutex);
1826 static struct completion rcu_barrier_completion;
1827
1828 static void rcu_barrier_callback(struct rcu_head *notused)
1829 {
1830 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1831 complete(&rcu_barrier_completion);
1832 }
1833
1834 /*
1835 * Called with preemption disabled, and from cross-cpu IRQ context.
1836 */
1837 static void rcu_barrier_func(void *type)
1838 {
1839 int cpu = smp_processor_id();
1840 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1841 void (*call_rcu_func)(struct rcu_head *head,
1842 void (*func)(struct rcu_head *head));
1843
1844 atomic_inc(&rcu_barrier_cpu_count);
1845 call_rcu_func = type;
1846 call_rcu_func(head, rcu_barrier_callback);
1847 }
1848
1849 /*
1850 * Orchestrate the specified type of RCU barrier, waiting for all
1851 * RCU callbacks of the specified type to complete.
1852 */
1853 static void _rcu_barrier(struct rcu_state *rsp,
1854 void (*call_rcu_func)(struct rcu_head *head,
1855 void (*func)(struct rcu_head *head)))
1856 {
1857 BUG_ON(in_interrupt());
1858 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1859 mutex_lock(&rcu_barrier_mutex);
1860 init_completion(&rcu_barrier_completion);
1861 /*
1862 * Initialize rcu_barrier_cpu_count to 1, then invoke
1863 * rcu_barrier_func() on each CPU, so that each CPU also has
1864 * incremented rcu_barrier_cpu_count. Only then is it safe to
1865 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1866 * might complete its grace period before all of the other CPUs
1867 * did their increment, causing this function to return too
1868 * early. Note that on_each_cpu() disables irqs, which prevents
1869 * any CPUs from coming online or going offline until each online
1870 * CPU has queued its RCU-barrier callback.
1871 */
1872 atomic_set(&rcu_barrier_cpu_count, 1);
1873 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1874 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1875 complete(&rcu_barrier_completion);
1876 wait_for_completion(&rcu_barrier_completion);
1877 mutex_unlock(&rcu_barrier_mutex);
1878 }
1879
1880 /**
1881 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1882 */
1883 void rcu_barrier_bh(void)
1884 {
1885 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1886 }
1887 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1888
1889 /**
1890 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1891 */
1892 void rcu_barrier_sched(void)
1893 {
1894 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1895 }
1896 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1897
1898 /*
1899 * Do boot-time initialization of a CPU's per-CPU RCU data.
1900 */
1901 static void __init
1902 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1903 {
1904 unsigned long flags;
1905 int i;
1906 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1907 struct rcu_node *rnp = rcu_get_root(rsp);
1908
1909 /* Set up local state, ensuring consistent view of global state. */
1910 raw_spin_lock_irqsave(&rnp->lock, flags);
1911 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1912 rdp->nxtlist = NULL;
1913 for (i = 0; i < RCU_NEXT_SIZE; i++)
1914 rdp->nxttail[i] = &rdp->nxtlist;
1915 rdp->qlen = 0;
1916 #ifdef CONFIG_NO_HZ
1917 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1918 #endif /* #ifdef CONFIG_NO_HZ */
1919 rdp->cpu = cpu;
1920 rdp->rsp = rsp;
1921 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1922 }
1923
1924 /*
1925 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1926 * offline event can be happening at a given time. Note also that we
1927 * can accept some slop in the rsp->completed access due to the fact
1928 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1929 */
1930 static void __cpuinit
1931 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1932 {
1933 unsigned long flags;
1934 unsigned long mask;
1935 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1936 struct rcu_node *rnp = rcu_get_root(rsp);
1937
1938 /* Set up local state, ensuring consistent view of global state. */
1939 raw_spin_lock_irqsave(&rnp->lock, flags);
1940 rdp->beenonline = 1; /* We have now been online. */
1941 rdp->preemptible = preemptible;
1942 rdp->qlen_last_fqs_check = 0;
1943 rdp->n_force_qs_snap = rsp->n_force_qs;
1944 rdp->blimit = blimit;
1945 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1946
1947 /*
1948 * A new grace period might start here. If so, we won't be part
1949 * of it, but that is OK, as we are currently in a quiescent state.
1950 */
1951
1952 /* Exclude any attempts to start a new GP on large systems. */
1953 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1954
1955 /* Add CPU to rcu_node bitmasks. */
1956 rnp = rdp->mynode;
1957 mask = rdp->grpmask;
1958 do {
1959 /* Exclude any attempts to start a new GP on small systems. */
1960 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1961 rnp->qsmaskinit |= mask;
1962 mask = rnp->grpmask;
1963 if (rnp == rdp->mynode) {
1964 /*
1965 * If there is a grace period in progress, we will
1966 * set up to wait for it next time we run the
1967 * RCU core code.
1968 */
1969 rdp->gpnum = rnp->completed;
1970 rdp->completed = rnp->completed;
1971 rdp->passed_quiesce = 0;
1972 rdp->qs_pending = 0;
1973 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
1974 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
1975 }
1976 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1977 rnp = rnp->parent;
1978 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1979
1980 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1981 }
1982
1983 static void __cpuinit rcu_prepare_cpu(int cpu)
1984 {
1985 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1986 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1987 rcu_preempt_init_percpu_data(cpu);
1988 }
1989
1990 /*
1991 * Handle CPU online/offline notification events.
1992 */
1993 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1994 unsigned long action, void *hcpu)
1995 {
1996 long cpu = (long)hcpu;
1997 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1998 struct rcu_node *rnp = rdp->mynode;
1999
2000 trace_rcu_utilization("Start CPU hotplug");
2001 switch (action) {
2002 case CPU_UP_PREPARE:
2003 case CPU_UP_PREPARE_FROZEN:
2004 rcu_prepare_cpu(cpu);
2005 rcu_prepare_kthreads(cpu);
2006 break;
2007 case CPU_ONLINE:
2008 case CPU_DOWN_FAILED:
2009 rcu_node_kthread_setaffinity(rnp, -1);
2010 rcu_cpu_kthread_setrt(cpu, 1);
2011 break;
2012 case CPU_DOWN_PREPARE:
2013 rcu_node_kthread_setaffinity(rnp, cpu);
2014 rcu_cpu_kthread_setrt(cpu, 0);
2015 break;
2016 case CPU_DYING:
2017 case CPU_DYING_FROZEN:
2018 /*
2019 * The whole machine is "stopped" except this CPU, so we can
2020 * touch any data without introducing corruption. We send the
2021 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2022 */
2023 rcu_send_cbs_to_online(&rcu_bh_state);
2024 rcu_send_cbs_to_online(&rcu_sched_state);
2025 rcu_preempt_send_cbs_to_online();
2026 break;
2027 case CPU_DEAD:
2028 case CPU_DEAD_FROZEN:
2029 case CPU_UP_CANCELED:
2030 case CPU_UP_CANCELED_FROZEN:
2031 rcu_offline_cpu(cpu);
2032 break;
2033 default:
2034 break;
2035 }
2036 trace_rcu_utilization("End CPU hotplug");
2037 return NOTIFY_OK;
2038 }
2039
2040 /*
2041 * This function is invoked towards the end of the scheduler's initialization
2042 * process. Before this is called, the idle task might contain
2043 * RCU read-side critical sections (during which time, this idle
2044 * task is booting the system). After this function is called, the
2045 * idle tasks are prohibited from containing RCU read-side critical
2046 * sections. This function also enables RCU lockdep checking.
2047 */
2048 void rcu_scheduler_starting(void)
2049 {
2050 WARN_ON(num_online_cpus() != 1);
2051 WARN_ON(nr_context_switches() > 0);
2052 rcu_scheduler_active = 1;
2053 }
2054
2055 /*
2056 * Compute the per-level fanout, either using the exact fanout specified
2057 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2058 */
2059 #ifdef CONFIG_RCU_FANOUT_EXACT
2060 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2061 {
2062 int i;
2063
2064 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2065 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2066 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2067 }
2068 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2069 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2070 {
2071 int ccur;
2072 int cprv;
2073 int i;
2074
2075 cprv = NR_CPUS;
2076 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2077 ccur = rsp->levelcnt[i];
2078 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2079 cprv = ccur;
2080 }
2081 }
2082 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2083
2084 /*
2085 * Helper function for rcu_init() that initializes one rcu_state structure.
2086 */
2087 static void __init rcu_init_one(struct rcu_state *rsp,
2088 struct rcu_data __percpu *rda)
2089 {
2090 static char *buf[] = { "rcu_node_level_0",
2091 "rcu_node_level_1",
2092 "rcu_node_level_2",
2093 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2094 int cpustride = 1;
2095 int i;
2096 int j;
2097 struct rcu_node *rnp;
2098
2099 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2100
2101 /* Initialize the level-tracking arrays. */
2102
2103 for (i = 1; i < NUM_RCU_LVLS; i++)
2104 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2105 rcu_init_levelspread(rsp);
2106
2107 /* Initialize the elements themselves, starting from the leaves. */
2108
2109 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2110 cpustride *= rsp->levelspread[i];
2111 rnp = rsp->level[i];
2112 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2113 raw_spin_lock_init(&rnp->lock);
2114 lockdep_set_class_and_name(&rnp->lock,
2115 &rcu_node_class[i], buf[i]);
2116 rnp->gpnum = 0;
2117 rnp->qsmask = 0;
2118 rnp->qsmaskinit = 0;
2119 rnp->grplo = j * cpustride;
2120 rnp->grphi = (j + 1) * cpustride - 1;
2121 if (rnp->grphi >= NR_CPUS)
2122 rnp->grphi = NR_CPUS - 1;
2123 if (i == 0) {
2124 rnp->grpnum = 0;
2125 rnp->grpmask = 0;
2126 rnp->parent = NULL;
2127 } else {
2128 rnp->grpnum = j % rsp->levelspread[i - 1];
2129 rnp->grpmask = 1UL << rnp->grpnum;
2130 rnp->parent = rsp->level[i - 1] +
2131 j / rsp->levelspread[i - 1];
2132 }
2133 rnp->level = i;
2134 INIT_LIST_HEAD(&rnp->blkd_tasks);
2135 }
2136 }
2137
2138 rsp->rda = rda;
2139 rnp = rsp->level[NUM_RCU_LVLS - 1];
2140 for_each_possible_cpu(i) {
2141 while (i > rnp->grphi)
2142 rnp++;
2143 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2144 rcu_boot_init_percpu_data(i, rsp);
2145 }
2146 }
2147
2148 void __init rcu_init(void)
2149 {
2150 int cpu;
2151
2152 rcu_bootup_announce();
2153 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2154 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2155 __rcu_init_preempt();
2156 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2157
2158 /*
2159 * We don't need protection against CPU-hotplug here because
2160 * this is called early in boot, before either interrupts
2161 * or the scheduler are operational.
2162 */
2163 cpu_notifier(rcu_cpu_notify, 0);
2164 for_each_online_cpu(cpu)
2165 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2166 check_cpu_stall_init();
2167 }
2168
2169 #include "rcutree_plugin.h"