rcu: Handle unbalanced rcu_node configurations with few CPUs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = -300, \
72 .completed = -300, \
73 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .name = #sname, \
78 }
79
80 struct rcu_state rcu_sched_state =
81 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
82 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
83
84 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
85 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
86
87 static struct rcu_state *rcu_state;
88 LIST_HEAD(rcu_struct_flavors);
89
90 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
91 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
92 module_param(rcu_fanout_leaf, int, 0444);
93 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
94 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
95 NUM_RCU_LVL_0,
96 NUM_RCU_LVL_1,
97 NUM_RCU_LVL_2,
98 NUM_RCU_LVL_3,
99 NUM_RCU_LVL_4,
100 };
101 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
102
103 /*
104 * The rcu_scheduler_active variable transitions from zero to one just
105 * before the first task is spawned. So when this variable is zero, RCU
106 * can assume that there is but one task, allowing RCU to (for example)
107 * optimized synchronize_sched() to a simple barrier(). When this variable
108 * is one, RCU must actually do all the hard work required to detect real
109 * grace periods. This variable is also used to suppress boot-time false
110 * positives from lockdep-RCU error checking.
111 */
112 int rcu_scheduler_active __read_mostly;
113 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
114
115 /*
116 * The rcu_scheduler_fully_active variable transitions from zero to one
117 * during the early_initcall() processing, which is after the scheduler
118 * is capable of creating new tasks. So RCU processing (for example,
119 * creating tasks for RCU priority boosting) must be delayed until after
120 * rcu_scheduler_fully_active transitions from zero to one. We also
121 * currently delay invocation of any RCU callbacks until after this point.
122 *
123 * It might later prove better for people registering RCU callbacks during
124 * early boot to take responsibility for these callbacks, but one step at
125 * a time.
126 */
127 static int rcu_scheduler_fully_active __read_mostly;
128
129 #ifdef CONFIG_RCU_BOOST
130
131 /*
132 * Control variables for per-CPU and per-rcu_node kthreads. These
133 * handle all flavors of RCU.
134 */
135 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
136 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
137 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142
143 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147 /*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158
159 /*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168
169 /*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175 void rcu_sched_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191 }
192
193 /*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198 void rcu_note_context_switch(int cpu)
199 {
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210 };
211
212 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
213 static int qhimark = 10000; /* If this many pending, ignore blimit. */
214 static int qlowmark = 100; /* Once only this many pending, use blimit. */
215
216 module_param(blimit, int, 0444);
217 module_param(qhimark, int, 0444);
218 module_param(qlowmark, int, 0444);
219
220 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
221 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
222
223 module_param(rcu_cpu_stall_suppress, int, 0644);
224 module_param(rcu_cpu_stall_timeout, int, 0644);
225
226 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
227 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
228
229 module_param(jiffies_till_first_fqs, ulong, 0644);
230 module_param(jiffies_till_next_fqs, ulong, 0644);
231
232 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
233 static void force_quiescent_state(struct rcu_state *rsp);
234 static int rcu_pending(int cpu);
235
236 /*
237 * Return the number of RCU-sched batches processed thus far for debug & stats.
238 */
239 long rcu_batches_completed_sched(void)
240 {
241 return rcu_sched_state.completed;
242 }
243 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
244
245 /*
246 * Return the number of RCU BH batches processed thus far for debug & stats.
247 */
248 long rcu_batches_completed_bh(void)
249 {
250 return rcu_bh_state.completed;
251 }
252 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
253
254 /*
255 * Force a quiescent state for RCU BH.
256 */
257 void rcu_bh_force_quiescent_state(void)
258 {
259 force_quiescent_state(&rcu_bh_state);
260 }
261 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
262
263 /*
264 * Record the number of times rcutorture tests have been initiated and
265 * terminated. This information allows the debugfs tracing stats to be
266 * correlated to the rcutorture messages, even when the rcutorture module
267 * is being repeatedly loaded and unloaded. In other words, we cannot
268 * store this state in rcutorture itself.
269 */
270 void rcutorture_record_test_transition(void)
271 {
272 rcutorture_testseq++;
273 rcutorture_vernum = 0;
274 }
275 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
276
277 /*
278 * Record the number of writer passes through the current rcutorture test.
279 * This is also used to correlate debugfs tracing stats with the rcutorture
280 * messages.
281 */
282 void rcutorture_record_progress(unsigned long vernum)
283 {
284 rcutorture_vernum++;
285 }
286 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
287
288 /*
289 * Force a quiescent state for RCU-sched.
290 */
291 void rcu_sched_force_quiescent_state(void)
292 {
293 force_quiescent_state(&rcu_sched_state);
294 }
295 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
296
297 /*
298 * Does the CPU have callbacks ready to be invoked?
299 */
300 static int
301 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
302 {
303 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
304 }
305
306 /*
307 * Does the current CPU require a yet-as-unscheduled grace period?
308 */
309 static int
310 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
311 {
312 return *rdp->nxttail[RCU_DONE_TAIL +
313 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
314 !rcu_gp_in_progress(rsp);
315 }
316
317 /*
318 * Return the root node of the specified rcu_state structure.
319 */
320 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
321 {
322 return &rsp->node[0];
323 }
324
325 /*
326 * If the specified CPU is offline, tell the caller that it is in
327 * a quiescent state. Otherwise, whack it with a reschedule IPI.
328 * Grace periods can end up waiting on an offline CPU when that
329 * CPU is in the process of coming online -- it will be added to the
330 * rcu_node bitmasks before it actually makes it online. The same thing
331 * can happen while a CPU is in the process of coming online. Because this
332 * race is quite rare, we check for it after detecting that the grace
333 * period has been delayed rather than checking each and every CPU
334 * each and every time we start a new grace period.
335 */
336 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
337 {
338 /*
339 * If the CPU is offline for more than a jiffy, it is in a quiescent
340 * state. We can trust its state not to change because interrupts
341 * are disabled. The reason for the jiffy's worth of slack is to
342 * handle CPUs initializing on the way up and finding their way
343 * to the idle loop on the way down.
344 */
345 if (cpu_is_offline(rdp->cpu) &&
346 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
347 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
348 rdp->offline_fqs++;
349 return 1;
350 }
351 return 0;
352 }
353
354 /*
355 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
356 *
357 * If the new value of the ->dynticks_nesting counter now is zero,
358 * we really have entered idle, and must do the appropriate accounting.
359 * The caller must have disabled interrupts.
360 */
361 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
362 {
363 trace_rcu_dyntick("Start", oldval, 0);
364 if (!is_idle_task(current)) {
365 struct task_struct *idle = idle_task(smp_processor_id());
366
367 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
368 ftrace_dump(DUMP_ORIG);
369 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
370 current->pid, current->comm,
371 idle->pid, idle->comm); /* must be idle task! */
372 }
373 rcu_prepare_for_idle(smp_processor_id());
374 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
375 smp_mb__before_atomic_inc(); /* See above. */
376 atomic_inc(&rdtp->dynticks);
377 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
378 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
379
380 /*
381 * The idle task is not permitted to enter the idle loop while
382 * in an RCU read-side critical section.
383 */
384 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
385 "Illegal idle entry in RCU read-side critical section.");
386 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
387 "Illegal idle entry in RCU-bh read-side critical section.");
388 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
389 "Illegal idle entry in RCU-sched read-side critical section.");
390 }
391
392 /**
393 * rcu_idle_enter - inform RCU that current CPU is entering idle
394 *
395 * Enter idle mode, in other words, -leave- the mode in which RCU
396 * read-side critical sections can occur. (Though RCU read-side
397 * critical sections can occur in irq handlers in idle, a possibility
398 * handled by irq_enter() and irq_exit().)
399 *
400 * We crowbar the ->dynticks_nesting field to zero to allow for
401 * the possibility of usermode upcalls having messed up our count
402 * of interrupt nesting level during the prior busy period.
403 */
404 void rcu_idle_enter(void)
405 {
406 unsigned long flags;
407 long long oldval;
408 struct rcu_dynticks *rdtp;
409
410 local_irq_save(flags);
411 rdtp = &__get_cpu_var(rcu_dynticks);
412 oldval = rdtp->dynticks_nesting;
413 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
414 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
415 rdtp->dynticks_nesting = 0;
416 else
417 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
418 rcu_idle_enter_common(rdtp, oldval);
419 local_irq_restore(flags);
420 }
421 EXPORT_SYMBOL_GPL(rcu_idle_enter);
422
423 /**
424 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
425 *
426 * Exit from an interrupt handler, which might possibly result in entering
427 * idle mode, in other words, leaving the mode in which read-side critical
428 * sections can occur.
429 *
430 * This code assumes that the idle loop never does anything that might
431 * result in unbalanced calls to irq_enter() and irq_exit(). If your
432 * architecture violates this assumption, RCU will give you what you
433 * deserve, good and hard. But very infrequently and irreproducibly.
434 *
435 * Use things like work queues to work around this limitation.
436 *
437 * You have been warned.
438 */
439 void rcu_irq_exit(void)
440 {
441 unsigned long flags;
442 long long oldval;
443 struct rcu_dynticks *rdtp;
444
445 local_irq_save(flags);
446 rdtp = &__get_cpu_var(rcu_dynticks);
447 oldval = rdtp->dynticks_nesting;
448 rdtp->dynticks_nesting--;
449 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
450 if (rdtp->dynticks_nesting)
451 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
452 else
453 rcu_idle_enter_common(rdtp, oldval);
454 local_irq_restore(flags);
455 }
456
457 /*
458 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
459 *
460 * If the new value of the ->dynticks_nesting counter was previously zero,
461 * we really have exited idle, and must do the appropriate accounting.
462 * The caller must have disabled interrupts.
463 */
464 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
465 {
466 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
467 atomic_inc(&rdtp->dynticks);
468 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
469 smp_mb__after_atomic_inc(); /* See above. */
470 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
471 rcu_cleanup_after_idle(smp_processor_id());
472 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
473 if (!is_idle_task(current)) {
474 struct task_struct *idle = idle_task(smp_processor_id());
475
476 trace_rcu_dyntick("Error on exit: not idle task",
477 oldval, rdtp->dynticks_nesting);
478 ftrace_dump(DUMP_ORIG);
479 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
480 current->pid, current->comm,
481 idle->pid, idle->comm); /* must be idle task! */
482 }
483 }
484
485 /**
486 * rcu_idle_exit - inform RCU that current CPU is leaving idle
487 *
488 * Exit idle mode, in other words, -enter- the mode in which RCU
489 * read-side critical sections can occur.
490 *
491 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
492 * allow for the possibility of usermode upcalls messing up our count
493 * of interrupt nesting level during the busy period that is just
494 * now starting.
495 */
496 void rcu_idle_exit(void)
497 {
498 unsigned long flags;
499 struct rcu_dynticks *rdtp;
500 long long oldval;
501
502 local_irq_save(flags);
503 rdtp = &__get_cpu_var(rcu_dynticks);
504 oldval = rdtp->dynticks_nesting;
505 WARN_ON_ONCE(oldval < 0);
506 if (oldval & DYNTICK_TASK_NEST_MASK)
507 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
508 else
509 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
510 rcu_idle_exit_common(rdtp, oldval);
511 local_irq_restore(flags);
512 }
513 EXPORT_SYMBOL_GPL(rcu_idle_exit);
514
515 /**
516 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
517 *
518 * Enter an interrupt handler, which might possibly result in exiting
519 * idle mode, in other words, entering the mode in which read-side critical
520 * sections can occur.
521 *
522 * Note that the Linux kernel is fully capable of entering an interrupt
523 * handler that it never exits, for example when doing upcalls to
524 * user mode! This code assumes that the idle loop never does upcalls to
525 * user mode. If your architecture does do upcalls from the idle loop (or
526 * does anything else that results in unbalanced calls to the irq_enter()
527 * and irq_exit() functions), RCU will give you what you deserve, good
528 * and hard. But very infrequently and irreproducibly.
529 *
530 * Use things like work queues to work around this limitation.
531 *
532 * You have been warned.
533 */
534 void rcu_irq_enter(void)
535 {
536 unsigned long flags;
537 struct rcu_dynticks *rdtp;
538 long long oldval;
539
540 local_irq_save(flags);
541 rdtp = &__get_cpu_var(rcu_dynticks);
542 oldval = rdtp->dynticks_nesting;
543 rdtp->dynticks_nesting++;
544 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
545 if (oldval)
546 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
547 else
548 rcu_idle_exit_common(rdtp, oldval);
549 local_irq_restore(flags);
550 }
551
552 /**
553 * rcu_nmi_enter - inform RCU of entry to NMI context
554 *
555 * If the CPU was idle with dynamic ticks active, and there is no
556 * irq handler running, this updates rdtp->dynticks_nmi to let the
557 * RCU grace-period handling know that the CPU is active.
558 */
559 void rcu_nmi_enter(void)
560 {
561 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
562
563 if (rdtp->dynticks_nmi_nesting == 0 &&
564 (atomic_read(&rdtp->dynticks) & 0x1))
565 return;
566 rdtp->dynticks_nmi_nesting++;
567 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
568 atomic_inc(&rdtp->dynticks);
569 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
570 smp_mb__after_atomic_inc(); /* See above. */
571 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
572 }
573
574 /**
575 * rcu_nmi_exit - inform RCU of exit from NMI context
576 *
577 * If the CPU was idle with dynamic ticks active, and there is no
578 * irq handler running, this updates rdtp->dynticks_nmi to let the
579 * RCU grace-period handling know that the CPU is no longer active.
580 */
581 void rcu_nmi_exit(void)
582 {
583 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
584
585 if (rdtp->dynticks_nmi_nesting == 0 ||
586 --rdtp->dynticks_nmi_nesting != 0)
587 return;
588 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
589 smp_mb__before_atomic_inc(); /* See above. */
590 atomic_inc(&rdtp->dynticks);
591 smp_mb__after_atomic_inc(); /* Force delay to next write. */
592 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
593 }
594
595 /**
596 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
597 *
598 * If the current CPU is in its idle loop and is neither in an interrupt
599 * or NMI handler, return true.
600 */
601 int rcu_is_cpu_idle(void)
602 {
603 int ret;
604
605 preempt_disable();
606 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
607 preempt_enable();
608 return ret;
609 }
610 EXPORT_SYMBOL(rcu_is_cpu_idle);
611
612 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
613
614 /*
615 * Is the current CPU online? Disable preemption to avoid false positives
616 * that could otherwise happen due to the current CPU number being sampled,
617 * this task being preempted, its old CPU being taken offline, resuming
618 * on some other CPU, then determining that its old CPU is now offline.
619 * It is OK to use RCU on an offline processor during initial boot, hence
620 * the check for rcu_scheduler_fully_active. Note also that it is OK
621 * for a CPU coming online to use RCU for one jiffy prior to marking itself
622 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
623 * offline to continue to use RCU for one jiffy after marking itself
624 * offline in the cpu_online_mask. This leniency is necessary given the
625 * non-atomic nature of the online and offline processing, for example,
626 * the fact that a CPU enters the scheduler after completing the CPU_DYING
627 * notifiers.
628 *
629 * This is also why RCU internally marks CPUs online during the
630 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
631 *
632 * Disable checking if in an NMI handler because we cannot safely report
633 * errors from NMI handlers anyway.
634 */
635 bool rcu_lockdep_current_cpu_online(void)
636 {
637 struct rcu_data *rdp;
638 struct rcu_node *rnp;
639 bool ret;
640
641 if (in_nmi())
642 return 1;
643 preempt_disable();
644 rdp = &__get_cpu_var(rcu_sched_data);
645 rnp = rdp->mynode;
646 ret = (rdp->grpmask & rnp->qsmaskinit) ||
647 !rcu_scheduler_fully_active;
648 preempt_enable();
649 return ret;
650 }
651 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
652
653 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
654
655 /**
656 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
657 *
658 * If the current CPU is idle or running at a first-level (not nested)
659 * interrupt from idle, return true. The caller must have at least
660 * disabled preemption.
661 */
662 int rcu_is_cpu_rrupt_from_idle(void)
663 {
664 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
665 }
666
667 /*
668 * Snapshot the specified CPU's dynticks counter so that we can later
669 * credit them with an implicit quiescent state. Return 1 if this CPU
670 * is in dynticks idle mode, which is an extended quiescent state.
671 */
672 static int dyntick_save_progress_counter(struct rcu_data *rdp)
673 {
674 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
675 return (rdp->dynticks_snap & 0x1) == 0;
676 }
677
678 /*
679 * Return true if the specified CPU has passed through a quiescent
680 * state by virtue of being in or having passed through an dynticks
681 * idle state since the last call to dyntick_save_progress_counter()
682 * for this same CPU.
683 */
684 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
685 {
686 unsigned int curr;
687 unsigned int snap;
688
689 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
690 snap = (unsigned int)rdp->dynticks_snap;
691
692 /*
693 * If the CPU passed through or entered a dynticks idle phase with
694 * no active irq/NMI handlers, then we can safely pretend that the CPU
695 * already acknowledged the request to pass through a quiescent
696 * state. Either way, that CPU cannot possibly be in an RCU
697 * read-side critical section that started before the beginning
698 * of the current RCU grace period.
699 */
700 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
701 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
702 rdp->dynticks_fqs++;
703 return 1;
704 }
705
706 /* Go check for the CPU being offline. */
707 return rcu_implicit_offline_qs(rdp);
708 }
709
710 static int jiffies_till_stall_check(void)
711 {
712 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
713
714 /*
715 * Limit check must be consistent with the Kconfig limits
716 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
717 */
718 if (till_stall_check < 3) {
719 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
720 till_stall_check = 3;
721 } else if (till_stall_check > 300) {
722 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
723 till_stall_check = 300;
724 }
725 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
726 }
727
728 static void record_gp_stall_check_time(struct rcu_state *rsp)
729 {
730 rsp->gp_start = jiffies;
731 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
732 }
733
734 static void print_other_cpu_stall(struct rcu_state *rsp)
735 {
736 int cpu;
737 long delta;
738 unsigned long flags;
739 int ndetected = 0;
740 struct rcu_node *rnp = rcu_get_root(rsp);
741
742 /* Only let one CPU complain about others per time interval. */
743
744 raw_spin_lock_irqsave(&rnp->lock, flags);
745 delta = jiffies - rsp->jiffies_stall;
746 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
747 raw_spin_unlock_irqrestore(&rnp->lock, flags);
748 return;
749 }
750 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
751 raw_spin_unlock_irqrestore(&rnp->lock, flags);
752
753 /*
754 * OK, time to rat on our buddy...
755 * See Documentation/RCU/stallwarn.txt for info on how to debug
756 * RCU CPU stall warnings.
757 */
758 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
759 rsp->name);
760 print_cpu_stall_info_begin();
761 rcu_for_each_leaf_node(rsp, rnp) {
762 raw_spin_lock_irqsave(&rnp->lock, flags);
763 ndetected += rcu_print_task_stall(rnp);
764 raw_spin_unlock_irqrestore(&rnp->lock, flags);
765 if (rnp->qsmask == 0)
766 continue;
767 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
768 if (rnp->qsmask & (1UL << cpu)) {
769 print_cpu_stall_info(rsp, rnp->grplo + cpu);
770 ndetected++;
771 }
772 }
773
774 /*
775 * Now rat on any tasks that got kicked up to the root rcu_node
776 * due to CPU offlining.
777 */
778 rnp = rcu_get_root(rsp);
779 raw_spin_lock_irqsave(&rnp->lock, flags);
780 ndetected += rcu_print_task_stall(rnp);
781 raw_spin_unlock_irqrestore(&rnp->lock, flags);
782
783 print_cpu_stall_info_end();
784 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
785 smp_processor_id(), (long)(jiffies - rsp->gp_start));
786 if (ndetected == 0)
787 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
788 else if (!trigger_all_cpu_backtrace())
789 dump_stack();
790
791 /* Complain about tasks blocking the grace period. */
792
793 rcu_print_detail_task_stall(rsp);
794
795 force_quiescent_state(rsp); /* Kick them all. */
796 }
797
798 static void print_cpu_stall(struct rcu_state *rsp)
799 {
800 unsigned long flags;
801 struct rcu_node *rnp = rcu_get_root(rsp);
802
803 /*
804 * OK, time to rat on ourselves...
805 * See Documentation/RCU/stallwarn.txt for info on how to debug
806 * RCU CPU stall warnings.
807 */
808 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
809 print_cpu_stall_info_begin();
810 print_cpu_stall_info(rsp, smp_processor_id());
811 print_cpu_stall_info_end();
812 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
813 if (!trigger_all_cpu_backtrace())
814 dump_stack();
815
816 raw_spin_lock_irqsave(&rnp->lock, flags);
817 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
818 rsp->jiffies_stall = jiffies +
819 3 * jiffies_till_stall_check() + 3;
820 raw_spin_unlock_irqrestore(&rnp->lock, flags);
821
822 set_need_resched(); /* kick ourselves to get things going. */
823 }
824
825 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
826 {
827 unsigned long j;
828 unsigned long js;
829 struct rcu_node *rnp;
830
831 if (rcu_cpu_stall_suppress)
832 return;
833 j = ACCESS_ONCE(jiffies);
834 js = ACCESS_ONCE(rsp->jiffies_stall);
835 rnp = rdp->mynode;
836 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
837
838 /* We haven't checked in, so go dump stack. */
839 print_cpu_stall(rsp);
840
841 } else if (rcu_gp_in_progress(rsp) &&
842 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
843
844 /* They had a few time units to dump stack, so complain. */
845 print_other_cpu_stall(rsp);
846 }
847 }
848
849 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
850 {
851 rcu_cpu_stall_suppress = 1;
852 return NOTIFY_DONE;
853 }
854
855 /**
856 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
857 *
858 * Set the stall-warning timeout way off into the future, thus preventing
859 * any RCU CPU stall-warning messages from appearing in the current set of
860 * RCU grace periods.
861 *
862 * The caller must disable hard irqs.
863 */
864 void rcu_cpu_stall_reset(void)
865 {
866 struct rcu_state *rsp;
867
868 for_each_rcu_flavor(rsp)
869 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
870 }
871
872 static struct notifier_block rcu_panic_block = {
873 .notifier_call = rcu_panic,
874 };
875
876 static void __init check_cpu_stall_init(void)
877 {
878 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
879 }
880
881 /*
882 * Update CPU-local rcu_data state to record the newly noticed grace period.
883 * This is used both when we started the grace period and when we notice
884 * that someone else started the grace period. The caller must hold the
885 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
886 * and must have irqs disabled.
887 */
888 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
889 {
890 if (rdp->gpnum != rnp->gpnum) {
891 /*
892 * If the current grace period is waiting for this CPU,
893 * set up to detect a quiescent state, otherwise don't
894 * go looking for one.
895 */
896 rdp->gpnum = rnp->gpnum;
897 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
898 rdp->passed_quiesce = 0;
899 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
900 zero_cpu_stall_ticks(rdp);
901 }
902 }
903
904 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
905 {
906 unsigned long flags;
907 struct rcu_node *rnp;
908
909 local_irq_save(flags);
910 rnp = rdp->mynode;
911 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
912 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
913 local_irq_restore(flags);
914 return;
915 }
916 __note_new_gpnum(rsp, rnp, rdp);
917 raw_spin_unlock_irqrestore(&rnp->lock, flags);
918 }
919
920 /*
921 * Did someone else start a new RCU grace period start since we last
922 * checked? Update local state appropriately if so. Must be called
923 * on the CPU corresponding to rdp.
924 */
925 static int
926 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
927 {
928 unsigned long flags;
929 int ret = 0;
930
931 local_irq_save(flags);
932 if (rdp->gpnum != rsp->gpnum) {
933 note_new_gpnum(rsp, rdp);
934 ret = 1;
935 }
936 local_irq_restore(flags);
937 return ret;
938 }
939
940 /*
941 * Initialize the specified rcu_data structure's callback list to empty.
942 */
943 static void init_callback_list(struct rcu_data *rdp)
944 {
945 int i;
946
947 rdp->nxtlist = NULL;
948 for (i = 0; i < RCU_NEXT_SIZE; i++)
949 rdp->nxttail[i] = &rdp->nxtlist;
950 }
951
952 /*
953 * Advance this CPU's callbacks, but only if the current grace period
954 * has ended. This may be called only from the CPU to whom the rdp
955 * belongs. In addition, the corresponding leaf rcu_node structure's
956 * ->lock must be held by the caller, with irqs disabled.
957 */
958 static void
959 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
960 {
961 /* Did another grace period end? */
962 if (rdp->completed != rnp->completed) {
963
964 /* Advance callbacks. No harm if list empty. */
965 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
966 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
967 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
968
969 /* Remember that we saw this grace-period completion. */
970 rdp->completed = rnp->completed;
971 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
972
973 /*
974 * If we were in an extended quiescent state, we may have
975 * missed some grace periods that others CPUs handled on
976 * our behalf. Catch up with this state to avoid noting
977 * spurious new grace periods. If another grace period
978 * has started, then rnp->gpnum will have advanced, so
979 * we will detect this later on. Of course, any quiescent
980 * states we found for the old GP are now invalid.
981 */
982 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
983 rdp->gpnum = rdp->completed;
984 rdp->passed_quiesce = 0;
985 }
986
987 /*
988 * If RCU does not need a quiescent state from this CPU,
989 * then make sure that this CPU doesn't go looking for one.
990 */
991 if ((rnp->qsmask & rdp->grpmask) == 0)
992 rdp->qs_pending = 0;
993 }
994 }
995
996 /*
997 * Advance this CPU's callbacks, but only if the current grace period
998 * has ended. This may be called only from the CPU to whom the rdp
999 * belongs.
1000 */
1001 static void
1002 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1003 {
1004 unsigned long flags;
1005 struct rcu_node *rnp;
1006
1007 local_irq_save(flags);
1008 rnp = rdp->mynode;
1009 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1010 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1011 local_irq_restore(flags);
1012 return;
1013 }
1014 __rcu_process_gp_end(rsp, rnp, rdp);
1015 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1016 }
1017
1018 /*
1019 * Do per-CPU grace-period initialization for running CPU. The caller
1020 * must hold the lock of the leaf rcu_node structure corresponding to
1021 * this CPU.
1022 */
1023 static void
1024 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1025 {
1026 /* Prior grace period ended, so advance callbacks for current CPU. */
1027 __rcu_process_gp_end(rsp, rnp, rdp);
1028
1029 /* Set state so that this CPU will detect the next quiescent state. */
1030 __note_new_gpnum(rsp, rnp, rdp);
1031 }
1032
1033 /*
1034 * Initialize a new grace period.
1035 */
1036 static int rcu_gp_init(struct rcu_state *rsp)
1037 {
1038 struct rcu_data *rdp;
1039 struct rcu_node *rnp = rcu_get_root(rsp);
1040
1041 raw_spin_lock_irq(&rnp->lock);
1042 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1043
1044 if (rcu_gp_in_progress(rsp)) {
1045 /* Grace period already in progress, don't start another. */
1046 raw_spin_unlock_irq(&rnp->lock);
1047 return 0;
1048 }
1049
1050 /* Advance to a new grace period and initialize state. */
1051 rsp->gpnum++;
1052 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1053 record_gp_stall_check_time(rsp);
1054 raw_spin_unlock_irq(&rnp->lock);
1055
1056 /* Exclude any concurrent CPU-hotplug operations. */
1057 get_online_cpus();
1058
1059 /*
1060 * Set the quiescent-state-needed bits in all the rcu_node
1061 * structures for all currently online CPUs in breadth-first order,
1062 * starting from the root rcu_node structure, relying on the layout
1063 * of the tree within the rsp->node[] array. Note that other CPUs
1064 * will access only the leaves of the hierarchy, thus seeing that no
1065 * grace period is in progress, at least until the corresponding
1066 * leaf node has been initialized. In addition, we have excluded
1067 * CPU-hotplug operations.
1068 *
1069 * The grace period cannot complete until the initialization
1070 * process finishes, because this kthread handles both.
1071 */
1072 rcu_for_each_node_breadth_first(rsp, rnp) {
1073 raw_spin_lock_irq(&rnp->lock);
1074 rdp = this_cpu_ptr(rsp->rda);
1075 rcu_preempt_check_blocked_tasks(rnp);
1076 rnp->qsmask = rnp->qsmaskinit;
1077 rnp->gpnum = rsp->gpnum;
1078 WARN_ON_ONCE(rnp->completed != rsp->completed);
1079 rnp->completed = rsp->completed;
1080 if (rnp == rdp->mynode)
1081 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1082 rcu_preempt_boost_start_gp(rnp);
1083 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1084 rnp->level, rnp->grplo,
1085 rnp->grphi, rnp->qsmask);
1086 raw_spin_unlock_irq(&rnp->lock);
1087 #ifdef CONFIG_PROVE_RCU_DELAY
1088 if ((random32() % (rcu_num_nodes * 8)) == 0)
1089 schedule_timeout_uninterruptible(2);
1090 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1091 cond_resched();
1092 }
1093
1094 put_online_cpus();
1095 return 1;
1096 }
1097
1098 /*
1099 * Do one round of quiescent-state forcing.
1100 */
1101 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1102 {
1103 int fqs_state = fqs_state_in;
1104 struct rcu_node *rnp = rcu_get_root(rsp);
1105
1106 rsp->n_force_qs++;
1107 if (fqs_state == RCU_SAVE_DYNTICK) {
1108 /* Collect dyntick-idle snapshots. */
1109 force_qs_rnp(rsp, dyntick_save_progress_counter);
1110 fqs_state = RCU_FORCE_QS;
1111 } else {
1112 /* Handle dyntick-idle and offline CPUs. */
1113 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1114 }
1115 /* Clear flag to prevent immediate re-entry. */
1116 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1117 raw_spin_lock_irq(&rnp->lock);
1118 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1119 raw_spin_unlock_irq(&rnp->lock);
1120 }
1121 return fqs_state;
1122 }
1123
1124 /*
1125 * Clean up after the old grace period.
1126 */
1127 static void rcu_gp_cleanup(struct rcu_state *rsp)
1128 {
1129 unsigned long gp_duration;
1130 struct rcu_data *rdp;
1131 struct rcu_node *rnp = rcu_get_root(rsp);
1132
1133 raw_spin_lock_irq(&rnp->lock);
1134 gp_duration = jiffies - rsp->gp_start;
1135 if (gp_duration > rsp->gp_max)
1136 rsp->gp_max = gp_duration;
1137
1138 /*
1139 * We know the grace period is complete, but to everyone else
1140 * it appears to still be ongoing. But it is also the case
1141 * that to everyone else it looks like there is nothing that
1142 * they can do to advance the grace period. It is therefore
1143 * safe for us to drop the lock in order to mark the grace
1144 * period as completed in all of the rcu_node structures.
1145 */
1146 raw_spin_unlock_irq(&rnp->lock);
1147
1148 /*
1149 * Propagate new ->completed value to rcu_node structures so
1150 * that other CPUs don't have to wait until the start of the next
1151 * grace period to process their callbacks. This also avoids
1152 * some nasty RCU grace-period initialization races by forcing
1153 * the end of the current grace period to be completely recorded in
1154 * all of the rcu_node structures before the beginning of the next
1155 * grace period is recorded in any of the rcu_node structures.
1156 */
1157 rcu_for_each_node_breadth_first(rsp, rnp) {
1158 raw_spin_lock_irq(&rnp->lock);
1159 rnp->completed = rsp->gpnum;
1160 raw_spin_unlock_irq(&rnp->lock);
1161 cond_resched();
1162 }
1163 rnp = rcu_get_root(rsp);
1164 raw_spin_lock_irq(&rnp->lock);
1165
1166 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1167 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1168 rsp->fqs_state = RCU_GP_IDLE;
1169 rdp = this_cpu_ptr(rsp->rda);
1170 if (cpu_needs_another_gp(rsp, rdp))
1171 rsp->gp_flags = 1;
1172 raw_spin_unlock_irq(&rnp->lock);
1173 }
1174
1175 /*
1176 * Body of kthread that handles grace periods.
1177 */
1178 static int __noreturn rcu_gp_kthread(void *arg)
1179 {
1180 int fqs_state;
1181 unsigned long j;
1182 int ret;
1183 struct rcu_state *rsp = arg;
1184 struct rcu_node *rnp = rcu_get_root(rsp);
1185
1186 for (;;) {
1187
1188 /* Handle grace-period start. */
1189 for (;;) {
1190 wait_event_interruptible(rsp->gp_wq,
1191 rsp->gp_flags &
1192 RCU_GP_FLAG_INIT);
1193 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1194 rcu_gp_init(rsp))
1195 break;
1196 cond_resched();
1197 flush_signals(current);
1198 }
1199
1200 /* Handle quiescent-state forcing. */
1201 fqs_state = RCU_SAVE_DYNTICK;
1202 j = jiffies_till_first_fqs;
1203 if (j > HZ) {
1204 j = HZ;
1205 jiffies_till_first_fqs = HZ;
1206 }
1207 for (;;) {
1208 rsp->jiffies_force_qs = jiffies + j;
1209 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1210 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1211 (!ACCESS_ONCE(rnp->qsmask) &&
1212 !rcu_preempt_blocked_readers_cgp(rnp)),
1213 j);
1214 /* If grace period done, leave loop. */
1215 if (!ACCESS_ONCE(rnp->qsmask) &&
1216 !rcu_preempt_blocked_readers_cgp(rnp))
1217 break;
1218 /* If time for quiescent-state forcing, do it. */
1219 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1220 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1221 cond_resched();
1222 } else {
1223 /* Deal with stray signal. */
1224 cond_resched();
1225 flush_signals(current);
1226 }
1227 j = jiffies_till_next_fqs;
1228 if (j > HZ) {
1229 j = HZ;
1230 jiffies_till_next_fqs = HZ;
1231 } else if (j < 1) {
1232 j = 1;
1233 jiffies_till_next_fqs = 1;
1234 }
1235 }
1236
1237 /* Handle grace-period end. */
1238 rcu_gp_cleanup(rsp);
1239 }
1240 }
1241
1242 /*
1243 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1244 * in preparation for detecting the next grace period. The caller must hold
1245 * the root node's ->lock, which is released before return. Hard irqs must
1246 * be disabled.
1247 *
1248 * Note that it is legal for a dying CPU (which is marked as offline) to
1249 * invoke this function. This can happen when the dying CPU reports its
1250 * quiescent state.
1251 */
1252 static void
1253 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1254 __releases(rcu_get_root(rsp)->lock)
1255 {
1256 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1257 struct rcu_node *rnp = rcu_get_root(rsp);
1258
1259 if (!rsp->gp_kthread ||
1260 !cpu_needs_another_gp(rsp, rdp)) {
1261 /*
1262 * Either we have not yet spawned the grace-period
1263 * task or this CPU does not need another grace period.
1264 * Either way, don't start a new grace period.
1265 */
1266 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1267 return;
1268 }
1269
1270 rsp->gp_flags = RCU_GP_FLAG_INIT;
1271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1272 wake_up(&rsp->gp_wq);
1273 }
1274
1275 /*
1276 * Report a full set of quiescent states to the specified rcu_state
1277 * data structure. This involves cleaning up after the prior grace
1278 * period and letting rcu_start_gp() start up the next grace period
1279 * if one is needed. Note that the caller must hold rnp->lock, as
1280 * required by rcu_start_gp(), which will release it.
1281 */
1282 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1283 __releases(rcu_get_root(rsp)->lock)
1284 {
1285 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1286 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1287 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1288 }
1289
1290 /*
1291 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1292 * Allows quiescent states for a group of CPUs to be reported at one go
1293 * to the specified rcu_node structure, though all the CPUs in the group
1294 * must be represented by the same rcu_node structure (which need not be
1295 * a leaf rcu_node structure, though it often will be). That structure's
1296 * lock must be held upon entry, and it is released before return.
1297 */
1298 static void
1299 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1300 struct rcu_node *rnp, unsigned long flags)
1301 __releases(rnp->lock)
1302 {
1303 struct rcu_node *rnp_c;
1304
1305 /* Walk up the rcu_node hierarchy. */
1306 for (;;) {
1307 if (!(rnp->qsmask & mask)) {
1308
1309 /* Our bit has already been cleared, so done. */
1310 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1311 return;
1312 }
1313 rnp->qsmask &= ~mask;
1314 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1315 mask, rnp->qsmask, rnp->level,
1316 rnp->grplo, rnp->grphi,
1317 !!rnp->gp_tasks);
1318 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1319
1320 /* Other bits still set at this level, so done. */
1321 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1322 return;
1323 }
1324 mask = rnp->grpmask;
1325 if (rnp->parent == NULL) {
1326
1327 /* No more levels. Exit loop holding root lock. */
1328
1329 break;
1330 }
1331 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1332 rnp_c = rnp;
1333 rnp = rnp->parent;
1334 raw_spin_lock_irqsave(&rnp->lock, flags);
1335 WARN_ON_ONCE(rnp_c->qsmask);
1336 }
1337
1338 /*
1339 * Get here if we are the last CPU to pass through a quiescent
1340 * state for this grace period. Invoke rcu_report_qs_rsp()
1341 * to clean up and start the next grace period if one is needed.
1342 */
1343 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1344 }
1345
1346 /*
1347 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1348 * structure. This must be either called from the specified CPU, or
1349 * called when the specified CPU is known to be offline (and when it is
1350 * also known that no other CPU is concurrently trying to help the offline
1351 * CPU). The lastcomp argument is used to make sure we are still in the
1352 * grace period of interest. We don't want to end the current grace period
1353 * based on quiescent states detected in an earlier grace period!
1354 */
1355 static void
1356 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1357 {
1358 unsigned long flags;
1359 unsigned long mask;
1360 struct rcu_node *rnp;
1361
1362 rnp = rdp->mynode;
1363 raw_spin_lock_irqsave(&rnp->lock, flags);
1364 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1365 rnp->completed == rnp->gpnum) {
1366
1367 /*
1368 * The grace period in which this quiescent state was
1369 * recorded has ended, so don't report it upwards.
1370 * We will instead need a new quiescent state that lies
1371 * within the current grace period.
1372 */
1373 rdp->passed_quiesce = 0; /* need qs for new gp. */
1374 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1375 return;
1376 }
1377 mask = rdp->grpmask;
1378 if ((rnp->qsmask & mask) == 0) {
1379 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1380 } else {
1381 rdp->qs_pending = 0;
1382
1383 /*
1384 * This GP can't end until cpu checks in, so all of our
1385 * callbacks can be processed during the next GP.
1386 */
1387 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1388
1389 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1390 }
1391 }
1392
1393 /*
1394 * Check to see if there is a new grace period of which this CPU
1395 * is not yet aware, and if so, set up local rcu_data state for it.
1396 * Otherwise, see if this CPU has just passed through its first
1397 * quiescent state for this grace period, and record that fact if so.
1398 */
1399 static void
1400 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1401 {
1402 /* If there is now a new grace period, record and return. */
1403 if (check_for_new_grace_period(rsp, rdp))
1404 return;
1405
1406 /*
1407 * Does this CPU still need to do its part for current grace period?
1408 * If no, return and let the other CPUs do their part as well.
1409 */
1410 if (!rdp->qs_pending)
1411 return;
1412
1413 /*
1414 * Was there a quiescent state since the beginning of the grace
1415 * period? If no, then exit and wait for the next call.
1416 */
1417 if (!rdp->passed_quiesce)
1418 return;
1419
1420 /*
1421 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1422 * judge of that).
1423 */
1424 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1425 }
1426
1427 #ifdef CONFIG_HOTPLUG_CPU
1428
1429 /*
1430 * Send the specified CPU's RCU callbacks to the orphanage. The
1431 * specified CPU must be offline, and the caller must hold the
1432 * ->onofflock.
1433 */
1434 static void
1435 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1436 struct rcu_node *rnp, struct rcu_data *rdp)
1437 {
1438 /*
1439 * Orphan the callbacks. First adjust the counts. This is safe
1440 * because ->onofflock excludes _rcu_barrier()'s adoption of
1441 * the callbacks, thus no memory barrier is required.
1442 */
1443 if (rdp->nxtlist != NULL) {
1444 rsp->qlen_lazy += rdp->qlen_lazy;
1445 rsp->qlen += rdp->qlen;
1446 rdp->n_cbs_orphaned += rdp->qlen;
1447 rdp->qlen_lazy = 0;
1448 ACCESS_ONCE(rdp->qlen) = 0;
1449 }
1450
1451 /*
1452 * Next, move those callbacks still needing a grace period to
1453 * the orphanage, where some other CPU will pick them up.
1454 * Some of the callbacks might have gone partway through a grace
1455 * period, but that is too bad. They get to start over because we
1456 * cannot assume that grace periods are synchronized across CPUs.
1457 * We don't bother updating the ->nxttail[] array yet, instead
1458 * we just reset the whole thing later on.
1459 */
1460 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1461 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1462 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1463 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1464 }
1465
1466 /*
1467 * Then move the ready-to-invoke callbacks to the orphanage,
1468 * where some other CPU will pick them up. These will not be
1469 * required to pass though another grace period: They are done.
1470 */
1471 if (rdp->nxtlist != NULL) {
1472 *rsp->orphan_donetail = rdp->nxtlist;
1473 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1474 }
1475
1476 /* Finally, initialize the rcu_data structure's list to empty. */
1477 init_callback_list(rdp);
1478 }
1479
1480 /*
1481 * Adopt the RCU callbacks from the specified rcu_state structure's
1482 * orphanage. The caller must hold the ->onofflock.
1483 */
1484 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1485 {
1486 int i;
1487 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1488
1489 /*
1490 * If there is an rcu_barrier() operation in progress, then
1491 * only the task doing that operation is permitted to adopt
1492 * callbacks. To do otherwise breaks rcu_barrier() and friends
1493 * by causing them to fail to wait for the callbacks in the
1494 * orphanage.
1495 */
1496 if (rsp->rcu_barrier_in_progress &&
1497 rsp->rcu_barrier_in_progress != current)
1498 return;
1499
1500 /* Do the accounting first. */
1501 rdp->qlen_lazy += rsp->qlen_lazy;
1502 rdp->qlen += rsp->qlen;
1503 rdp->n_cbs_adopted += rsp->qlen;
1504 if (rsp->qlen_lazy != rsp->qlen)
1505 rcu_idle_count_callbacks_posted();
1506 rsp->qlen_lazy = 0;
1507 rsp->qlen = 0;
1508
1509 /*
1510 * We do not need a memory barrier here because the only way we
1511 * can get here if there is an rcu_barrier() in flight is if
1512 * we are the task doing the rcu_barrier().
1513 */
1514
1515 /* First adopt the ready-to-invoke callbacks. */
1516 if (rsp->orphan_donelist != NULL) {
1517 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1518 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1519 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1520 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1521 rdp->nxttail[i] = rsp->orphan_donetail;
1522 rsp->orphan_donelist = NULL;
1523 rsp->orphan_donetail = &rsp->orphan_donelist;
1524 }
1525
1526 /* And then adopt the callbacks that still need a grace period. */
1527 if (rsp->orphan_nxtlist != NULL) {
1528 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1529 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1530 rsp->orphan_nxtlist = NULL;
1531 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1532 }
1533 }
1534
1535 /*
1536 * Trace the fact that this CPU is going offline.
1537 */
1538 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1539 {
1540 RCU_TRACE(unsigned long mask);
1541 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1542 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1543
1544 RCU_TRACE(mask = rdp->grpmask);
1545 trace_rcu_grace_period(rsp->name,
1546 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1547 "cpuofl");
1548 }
1549
1550 /*
1551 * The CPU has been completely removed, and some other CPU is reporting
1552 * this fact from process context. Do the remainder of the cleanup,
1553 * including orphaning the outgoing CPU's RCU callbacks, and also
1554 * adopting them, if there is no _rcu_barrier() instance running.
1555 * There can only be one CPU hotplug operation at a time, so no other
1556 * CPU can be attempting to update rcu_cpu_kthread_task.
1557 */
1558 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1559 {
1560 unsigned long flags;
1561 unsigned long mask;
1562 int need_report = 0;
1563 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1564 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1565
1566 /* Adjust any no-longer-needed kthreads. */
1567 rcu_stop_cpu_kthread(cpu);
1568 rcu_node_kthread_setaffinity(rnp, -1);
1569
1570 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1571
1572 /* Exclude any attempts to start a new grace period. */
1573 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1574
1575 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1576 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1577 rcu_adopt_orphan_cbs(rsp);
1578
1579 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1580 mask = rdp->grpmask; /* rnp->grplo is constant. */
1581 do {
1582 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1583 rnp->qsmaskinit &= ~mask;
1584 if (rnp->qsmaskinit != 0) {
1585 if (rnp != rdp->mynode)
1586 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1587 break;
1588 }
1589 if (rnp == rdp->mynode)
1590 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1591 else
1592 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1593 mask = rnp->grpmask;
1594 rnp = rnp->parent;
1595 } while (rnp != NULL);
1596
1597 /*
1598 * We still hold the leaf rcu_node structure lock here, and
1599 * irqs are still disabled. The reason for this subterfuge is
1600 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1601 * held leads to deadlock.
1602 */
1603 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1604 rnp = rdp->mynode;
1605 if (need_report & RCU_OFL_TASKS_NORM_GP)
1606 rcu_report_unblock_qs_rnp(rnp, flags);
1607 else
1608 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1609 if (need_report & RCU_OFL_TASKS_EXP_GP)
1610 rcu_report_exp_rnp(rsp, rnp, true);
1611 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1612 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1613 cpu, rdp->qlen, rdp->nxtlist);
1614 }
1615
1616 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1617
1618 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1619 {
1620 }
1621
1622 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1623 {
1624 }
1625
1626 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1627 {
1628 }
1629
1630 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1631
1632 /*
1633 * Invoke any RCU callbacks that have made it to the end of their grace
1634 * period. Thottle as specified by rdp->blimit.
1635 */
1636 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1637 {
1638 unsigned long flags;
1639 struct rcu_head *next, *list, **tail;
1640 int bl, count, count_lazy, i;
1641
1642 /* If no callbacks are ready, just return.*/
1643 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1644 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1645 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1646 need_resched(), is_idle_task(current),
1647 rcu_is_callbacks_kthread());
1648 return;
1649 }
1650
1651 /*
1652 * Extract the list of ready callbacks, disabling to prevent
1653 * races with call_rcu() from interrupt handlers.
1654 */
1655 local_irq_save(flags);
1656 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1657 bl = rdp->blimit;
1658 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1659 list = rdp->nxtlist;
1660 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1661 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1662 tail = rdp->nxttail[RCU_DONE_TAIL];
1663 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1664 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1665 rdp->nxttail[i] = &rdp->nxtlist;
1666 local_irq_restore(flags);
1667
1668 /* Invoke callbacks. */
1669 count = count_lazy = 0;
1670 while (list) {
1671 next = list->next;
1672 prefetch(next);
1673 debug_rcu_head_unqueue(list);
1674 if (__rcu_reclaim(rsp->name, list))
1675 count_lazy++;
1676 list = next;
1677 /* Stop only if limit reached and CPU has something to do. */
1678 if (++count >= bl &&
1679 (need_resched() ||
1680 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1681 break;
1682 }
1683
1684 local_irq_save(flags);
1685 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1686 is_idle_task(current),
1687 rcu_is_callbacks_kthread());
1688
1689 /* Update count, and requeue any remaining callbacks. */
1690 if (list != NULL) {
1691 *tail = rdp->nxtlist;
1692 rdp->nxtlist = list;
1693 for (i = 0; i < RCU_NEXT_SIZE; i++)
1694 if (&rdp->nxtlist == rdp->nxttail[i])
1695 rdp->nxttail[i] = tail;
1696 else
1697 break;
1698 }
1699 smp_mb(); /* List handling before counting for rcu_barrier(). */
1700 rdp->qlen_lazy -= count_lazy;
1701 ACCESS_ONCE(rdp->qlen) -= count;
1702 rdp->n_cbs_invoked += count;
1703
1704 /* Reinstate batch limit if we have worked down the excess. */
1705 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1706 rdp->blimit = blimit;
1707
1708 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1709 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1710 rdp->qlen_last_fqs_check = 0;
1711 rdp->n_force_qs_snap = rsp->n_force_qs;
1712 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1713 rdp->qlen_last_fqs_check = rdp->qlen;
1714 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1715
1716 local_irq_restore(flags);
1717
1718 /* Re-invoke RCU core processing if there are callbacks remaining. */
1719 if (cpu_has_callbacks_ready_to_invoke(rdp))
1720 invoke_rcu_core();
1721 }
1722
1723 /*
1724 * Check to see if this CPU is in a non-context-switch quiescent state
1725 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1726 * Also schedule RCU core processing.
1727 *
1728 * This function must be called from hardirq context. It is normally
1729 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1730 * false, there is no point in invoking rcu_check_callbacks().
1731 */
1732 void rcu_check_callbacks(int cpu, int user)
1733 {
1734 trace_rcu_utilization("Start scheduler-tick");
1735 increment_cpu_stall_ticks();
1736 if (user || rcu_is_cpu_rrupt_from_idle()) {
1737
1738 /*
1739 * Get here if this CPU took its interrupt from user
1740 * mode or from the idle loop, and if this is not a
1741 * nested interrupt. In this case, the CPU is in
1742 * a quiescent state, so note it.
1743 *
1744 * No memory barrier is required here because both
1745 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1746 * variables that other CPUs neither access nor modify,
1747 * at least not while the corresponding CPU is online.
1748 */
1749
1750 rcu_sched_qs(cpu);
1751 rcu_bh_qs(cpu);
1752
1753 } else if (!in_softirq()) {
1754
1755 /*
1756 * Get here if this CPU did not take its interrupt from
1757 * softirq, in other words, if it is not interrupting
1758 * a rcu_bh read-side critical section. This is an _bh
1759 * critical section, so note it.
1760 */
1761
1762 rcu_bh_qs(cpu);
1763 }
1764 rcu_preempt_check_callbacks(cpu);
1765 if (rcu_pending(cpu))
1766 invoke_rcu_core();
1767 trace_rcu_utilization("End scheduler-tick");
1768 }
1769
1770 /*
1771 * Scan the leaf rcu_node structures, processing dyntick state for any that
1772 * have not yet encountered a quiescent state, using the function specified.
1773 * Also initiate boosting for any threads blocked on the root rcu_node.
1774 *
1775 * The caller must have suppressed start of new grace periods.
1776 */
1777 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1778 {
1779 unsigned long bit;
1780 int cpu;
1781 unsigned long flags;
1782 unsigned long mask;
1783 struct rcu_node *rnp;
1784
1785 rcu_for_each_leaf_node(rsp, rnp) {
1786 cond_resched();
1787 mask = 0;
1788 raw_spin_lock_irqsave(&rnp->lock, flags);
1789 if (!rcu_gp_in_progress(rsp)) {
1790 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1791 return;
1792 }
1793 if (rnp->qsmask == 0) {
1794 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1795 continue;
1796 }
1797 cpu = rnp->grplo;
1798 bit = 1;
1799 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1800 if ((rnp->qsmask & bit) != 0 &&
1801 f(per_cpu_ptr(rsp->rda, cpu)))
1802 mask |= bit;
1803 }
1804 if (mask != 0) {
1805
1806 /* rcu_report_qs_rnp() releases rnp->lock. */
1807 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1808 continue;
1809 }
1810 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1811 }
1812 rnp = rcu_get_root(rsp);
1813 if (rnp->qsmask == 0) {
1814 raw_spin_lock_irqsave(&rnp->lock, flags);
1815 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1816 }
1817 }
1818
1819 /*
1820 * Force quiescent states on reluctant CPUs, and also detect which
1821 * CPUs are in dyntick-idle mode.
1822 */
1823 static void force_quiescent_state(struct rcu_state *rsp)
1824 {
1825 unsigned long flags;
1826 bool ret;
1827 struct rcu_node *rnp;
1828 struct rcu_node *rnp_old = NULL;
1829
1830 /* Funnel through hierarchy to reduce memory contention. */
1831 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1832 for (; rnp != NULL; rnp = rnp->parent) {
1833 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1834 !raw_spin_trylock(&rnp->fqslock);
1835 if (rnp_old != NULL)
1836 raw_spin_unlock(&rnp_old->fqslock);
1837 if (ret) {
1838 rsp->n_force_qs_lh++;
1839 return;
1840 }
1841 rnp_old = rnp;
1842 }
1843 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1844
1845 /* Reached the root of the rcu_node tree, acquire lock. */
1846 raw_spin_lock_irqsave(&rnp_old->lock, flags);
1847 raw_spin_unlock(&rnp_old->fqslock);
1848 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1849 rsp->n_force_qs_lh++;
1850 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1851 return; /* Someone beat us to it. */
1852 }
1853 rsp->gp_flags |= RCU_GP_FLAG_FQS;
1854 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1855 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1856 }
1857
1858 /*
1859 * This does the RCU core processing work for the specified rcu_state
1860 * and rcu_data structures. This may be called only from the CPU to
1861 * whom the rdp belongs.
1862 */
1863 static void
1864 __rcu_process_callbacks(struct rcu_state *rsp)
1865 {
1866 unsigned long flags;
1867 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1868
1869 WARN_ON_ONCE(rdp->beenonline == 0);
1870
1871 /*
1872 * Advance callbacks in response to end of earlier grace
1873 * period that some other CPU ended.
1874 */
1875 rcu_process_gp_end(rsp, rdp);
1876
1877 /* Update RCU state based on any recent quiescent states. */
1878 rcu_check_quiescent_state(rsp, rdp);
1879
1880 /* Does this CPU require a not-yet-started grace period? */
1881 if (cpu_needs_another_gp(rsp, rdp)) {
1882 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1883 rcu_start_gp(rsp, flags); /* releases above lock */
1884 }
1885
1886 /* If there are callbacks ready, invoke them. */
1887 if (cpu_has_callbacks_ready_to_invoke(rdp))
1888 invoke_rcu_callbacks(rsp, rdp);
1889 }
1890
1891 /*
1892 * Do RCU core processing for the current CPU.
1893 */
1894 static void rcu_process_callbacks(struct softirq_action *unused)
1895 {
1896 struct rcu_state *rsp;
1897
1898 if (cpu_is_offline(smp_processor_id()))
1899 return;
1900 trace_rcu_utilization("Start RCU core");
1901 for_each_rcu_flavor(rsp)
1902 __rcu_process_callbacks(rsp);
1903 trace_rcu_utilization("End RCU core");
1904 }
1905
1906 /*
1907 * Schedule RCU callback invocation. If the specified type of RCU
1908 * does not support RCU priority boosting, just do a direct call,
1909 * otherwise wake up the per-CPU kernel kthread. Note that because we
1910 * are running on the current CPU with interrupts disabled, the
1911 * rcu_cpu_kthread_task cannot disappear out from under us.
1912 */
1913 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1914 {
1915 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1916 return;
1917 if (likely(!rsp->boost)) {
1918 rcu_do_batch(rsp, rdp);
1919 return;
1920 }
1921 invoke_rcu_callbacks_kthread();
1922 }
1923
1924 static void invoke_rcu_core(void)
1925 {
1926 raise_softirq(RCU_SOFTIRQ);
1927 }
1928
1929 /*
1930 * Handle any core-RCU processing required by a call_rcu() invocation.
1931 */
1932 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1933 struct rcu_head *head, unsigned long flags)
1934 {
1935 /*
1936 * If called from an extended quiescent state, invoke the RCU
1937 * core in order to force a re-evaluation of RCU's idleness.
1938 */
1939 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1940 invoke_rcu_core();
1941
1942 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1943 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1944 return;
1945
1946 /*
1947 * Force the grace period if too many callbacks or too long waiting.
1948 * Enforce hysteresis, and don't invoke force_quiescent_state()
1949 * if some other CPU has recently done so. Also, don't bother
1950 * invoking force_quiescent_state() if the newly enqueued callback
1951 * is the only one waiting for a grace period to complete.
1952 */
1953 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1954
1955 /* Are we ignoring a completed grace period? */
1956 rcu_process_gp_end(rsp, rdp);
1957 check_for_new_grace_period(rsp, rdp);
1958
1959 /* Start a new grace period if one not already started. */
1960 if (!rcu_gp_in_progress(rsp)) {
1961 unsigned long nestflag;
1962 struct rcu_node *rnp_root = rcu_get_root(rsp);
1963
1964 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1965 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1966 } else {
1967 /* Give the grace period a kick. */
1968 rdp->blimit = LONG_MAX;
1969 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1970 *rdp->nxttail[RCU_DONE_TAIL] != head)
1971 force_quiescent_state(rsp);
1972 rdp->n_force_qs_snap = rsp->n_force_qs;
1973 rdp->qlen_last_fqs_check = rdp->qlen;
1974 }
1975 }
1976 }
1977
1978 static void
1979 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1980 struct rcu_state *rsp, bool lazy)
1981 {
1982 unsigned long flags;
1983 struct rcu_data *rdp;
1984
1985 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1986 debug_rcu_head_queue(head);
1987 head->func = func;
1988 head->next = NULL;
1989
1990 smp_mb(); /* Ensure RCU update seen before callback registry. */
1991
1992 /*
1993 * Opportunistically note grace-period endings and beginnings.
1994 * Note that we might see a beginning right after we see an
1995 * end, but never vice versa, since this CPU has to pass through
1996 * a quiescent state betweentimes.
1997 */
1998 local_irq_save(flags);
1999 rdp = this_cpu_ptr(rsp->rda);
2000
2001 /* Add the callback to our list. */
2002 ACCESS_ONCE(rdp->qlen)++;
2003 if (lazy)
2004 rdp->qlen_lazy++;
2005 else
2006 rcu_idle_count_callbacks_posted();
2007 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2008 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2009 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2010
2011 if (__is_kfree_rcu_offset((unsigned long)func))
2012 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2013 rdp->qlen_lazy, rdp->qlen);
2014 else
2015 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2016
2017 /* Go handle any RCU core processing required. */
2018 __call_rcu_core(rsp, rdp, head, flags);
2019 local_irq_restore(flags);
2020 }
2021
2022 /*
2023 * Queue an RCU-sched callback for invocation after a grace period.
2024 */
2025 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2026 {
2027 __call_rcu(head, func, &rcu_sched_state, 0);
2028 }
2029 EXPORT_SYMBOL_GPL(call_rcu_sched);
2030
2031 /*
2032 * Queue an RCU callback for invocation after a quicker grace period.
2033 */
2034 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2035 {
2036 __call_rcu(head, func, &rcu_bh_state, 0);
2037 }
2038 EXPORT_SYMBOL_GPL(call_rcu_bh);
2039
2040 /*
2041 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2042 * any blocking grace-period wait automatically implies a grace period
2043 * if there is only one CPU online at any point time during execution
2044 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2045 * occasionally incorrectly indicate that there are multiple CPUs online
2046 * when there was in fact only one the whole time, as this just adds
2047 * some overhead: RCU still operates correctly.
2048 */
2049 static inline int rcu_blocking_is_gp(void)
2050 {
2051 int ret;
2052
2053 might_sleep(); /* Check for RCU read-side critical section. */
2054 preempt_disable();
2055 ret = num_online_cpus() <= 1;
2056 preempt_enable();
2057 return ret;
2058 }
2059
2060 /**
2061 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2062 *
2063 * Control will return to the caller some time after a full rcu-sched
2064 * grace period has elapsed, in other words after all currently executing
2065 * rcu-sched read-side critical sections have completed. These read-side
2066 * critical sections are delimited by rcu_read_lock_sched() and
2067 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2068 * local_irq_disable(), and so on may be used in place of
2069 * rcu_read_lock_sched().
2070 *
2071 * This means that all preempt_disable code sequences, including NMI and
2072 * hardware-interrupt handlers, in progress on entry will have completed
2073 * before this primitive returns. However, this does not guarantee that
2074 * softirq handlers will have completed, since in some kernels, these
2075 * handlers can run in process context, and can block.
2076 *
2077 * This primitive provides the guarantees made by the (now removed)
2078 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2079 * guarantees that rcu_read_lock() sections will have completed.
2080 * In "classic RCU", these two guarantees happen to be one and
2081 * the same, but can differ in realtime RCU implementations.
2082 */
2083 void synchronize_sched(void)
2084 {
2085 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2086 !lock_is_held(&rcu_lock_map) &&
2087 !lock_is_held(&rcu_sched_lock_map),
2088 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2089 if (rcu_blocking_is_gp())
2090 return;
2091 wait_rcu_gp(call_rcu_sched);
2092 }
2093 EXPORT_SYMBOL_GPL(synchronize_sched);
2094
2095 /**
2096 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2097 *
2098 * Control will return to the caller some time after a full rcu_bh grace
2099 * period has elapsed, in other words after all currently executing rcu_bh
2100 * read-side critical sections have completed. RCU read-side critical
2101 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2102 * and may be nested.
2103 */
2104 void synchronize_rcu_bh(void)
2105 {
2106 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2107 !lock_is_held(&rcu_lock_map) &&
2108 !lock_is_held(&rcu_sched_lock_map),
2109 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2110 if (rcu_blocking_is_gp())
2111 return;
2112 wait_rcu_gp(call_rcu_bh);
2113 }
2114 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2115
2116 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2117 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2118
2119 static int synchronize_sched_expedited_cpu_stop(void *data)
2120 {
2121 /*
2122 * There must be a full memory barrier on each affected CPU
2123 * between the time that try_stop_cpus() is called and the
2124 * time that it returns.
2125 *
2126 * In the current initial implementation of cpu_stop, the
2127 * above condition is already met when the control reaches
2128 * this point and the following smp_mb() is not strictly
2129 * necessary. Do smp_mb() anyway for documentation and
2130 * robustness against future implementation changes.
2131 */
2132 smp_mb(); /* See above comment block. */
2133 return 0;
2134 }
2135
2136 /**
2137 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2138 *
2139 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2140 * approach to force the grace period to end quickly. This consumes
2141 * significant time on all CPUs and is unfriendly to real-time workloads,
2142 * so is thus not recommended for any sort of common-case code. In fact,
2143 * if you are using synchronize_sched_expedited() in a loop, please
2144 * restructure your code to batch your updates, and then use a single
2145 * synchronize_sched() instead.
2146 *
2147 * Note that it is illegal to call this function while holding any lock
2148 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2149 * to call this function from a CPU-hotplug notifier. Failing to observe
2150 * these restriction will result in deadlock.
2151 *
2152 * This implementation can be thought of as an application of ticket
2153 * locking to RCU, with sync_sched_expedited_started and
2154 * sync_sched_expedited_done taking on the roles of the halves
2155 * of the ticket-lock word. Each task atomically increments
2156 * sync_sched_expedited_started upon entry, snapshotting the old value,
2157 * then attempts to stop all the CPUs. If this succeeds, then each
2158 * CPU will have executed a context switch, resulting in an RCU-sched
2159 * grace period. We are then done, so we use atomic_cmpxchg() to
2160 * update sync_sched_expedited_done to match our snapshot -- but
2161 * only if someone else has not already advanced past our snapshot.
2162 *
2163 * On the other hand, if try_stop_cpus() fails, we check the value
2164 * of sync_sched_expedited_done. If it has advanced past our
2165 * initial snapshot, then someone else must have forced a grace period
2166 * some time after we took our snapshot. In this case, our work is
2167 * done for us, and we can simply return. Otherwise, we try again,
2168 * but keep our initial snapshot for purposes of checking for someone
2169 * doing our work for us.
2170 *
2171 * If we fail too many times in a row, we fall back to synchronize_sched().
2172 */
2173 void synchronize_sched_expedited(void)
2174 {
2175 int firstsnap, s, snap, trycount = 0;
2176
2177 /* Note that atomic_inc_return() implies full memory barrier. */
2178 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2179 get_online_cpus();
2180 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2181
2182 /*
2183 * Each pass through the following loop attempts to force a
2184 * context switch on each CPU.
2185 */
2186 while (try_stop_cpus(cpu_online_mask,
2187 synchronize_sched_expedited_cpu_stop,
2188 NULL) == -EAGAIN) {
2189 put_online_cpus();
2190
2191 /* No joy, try again later. Or just synchronize_sched(). */
2192 if (trycount++ < 10) {
2193 udelay(trycount * num_online_cpus());
2194 } else {
2195 synchronize_sched();
2196 return;
2197 }
2198
2199 /* Check to see if someone else did our work for us. */
2200 s = atomic_read(&sync_sched_expedited_done);
2201 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2202 smp_mb(); /* ensure test happens before caller kfree */
2203 return;
2204 }
2205
2206 /*
2207 * Refetching sync_sched_expedited_started allows later
2208 * callers to piggyback on our grace period. We subtract
2209 * 1 to get the same token that the last incrementer got.
2210 * We retry after they started, so our grace period works
2211 * for them, and they started after our first try, so their
2212 * grace period works for us.
2213 */
2214 get_online_cpus();
2215 snap = atomic_read(&sync_sched_expedited_started);
2216 smp_mb(); /* ensure read is before try_stop_cpus(). */
2217 }
2218
2219 /*
2220 * Everyone up to our most recent fetch is covered by our grace
2221 * period. Update the counter, but only if our work is still
2222 * relevant -- which it won't be if someone who started later
2223 * than we did beat us to the punch.
2224 */
2225 do {
2226 s = atomic_read(&sync_sched_expedited_done);
2227 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2228 smp_mb(); /* ensure test happens before caller kfree */
2229 break;
2230 }
2231 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2232
2233 put_online_cpus();
2234 }
2235 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2236
2237 /*
2238 * Check to see if there is any immediate RCU-related work to be done
2239 * by the current CPU, for the specified type of RCU, returning 1 if so.
2240 * The checks are in order of increasing expense: checks that can be
2241 * carried out against CPU-local state are performed first. However,
2242 * we must check for CPU stalls first, else we might not get a chance.
2243 */
2244 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2245 {
2246 struct rcu_node *rnp = rdp->mynode;
2247
2248 rdp->n_rcu_pending++;
2249
2250 /* Check for CPU stalls, if enabled. */
2251 check_cpu_stall(rsp, rdp);
2252
2253 /* Is the RCU core waiting for a quiescent state from this CPU? */
2254 if (rcu_scheduler_fully_active &&
2255 rdp->qs_pending && !rdp->passed_quiesce) {
2256 rdp->n_rp_qs_pending++;
2257 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2258 rdp->n_rp_report_qs++;
2259 return 1;
2260 }
2261
2262 /* Does this CPU have callbacks ready to invoke? */
2263 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2264 rdp->n_rp_cb_ready++;
2265 return 1;
2266 }
2267
2268 /* Has RCU gone idle with this CPU needing another grace period? */
2269 if (cpu_needs_another_gp(rsp, rdp)) {
2270 rdp->n_rp_cpu_needs_gp++;
2271 return 1;
2272 }
2273
2274 /* Has another RCU grace period completed? */
2275 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2276 rdp->n_rp_gp_completed++;
2277 return 1;
2278 }
2279
2280 /* Has a new RCU grace period started? */
2281 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2282 rdp->n_rp_gp_started++;
2283 return 1;
2284 }
2285
2286 /* nothing to do */
2287 rdp->n_rp_need_nothing++;
2288 return 0;
2289 }
2290
2291 /*
2292 * Check to see if there is any immediate RCU-related work to be done
2293 * by the current CPU, returning 1 if so. This function is part of the
2294 * RCU implementation; it is -not- an exported member of the RCU API.
2295 */
2296 static int rcu_pending(int cpu)
2297 {
2298 struct rcu_state *rsp;
2299
2300 for_each_rcu_flavor(rsp)
2301 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2302 return 1;
2303 return 0;
2304 }
2305
2306 /*
2307 * Check to see if any future RCU-related work will need to be done
2308 * by the current CPU, even if none need be done immediately, returning
2309 * 1 if so.
2310 */
2311 static int rcu_cpu_has_callbacks(int cpu)
2312 {
2313 struct rcu_state *rsp;
2314
2315 /* RCU callbacks either ready or pending? */
2316 for_each_rcu_flavor(rsp)
2317 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2318 return 1;
2319 return 0;
2320 }
2321
2322 /*
2323 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2324 * the compiler is expected to optimize this away.
2325 */
2326 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2327 int cpu, unsigned long done)
2328 {
2329 trace_rcu_barrier(rsp->name, s, cpu,
2330 atomic_read(&rsp->barrier_cpu_count), done);
2331 }
2332
2333 /*
2334 * RCU callback function for _rcu_barrier(). If we are last, wake
2335 * up the task executing _rcu_barrier().
2336 */
2337 static void rcu_barrier_callback(struct rcu_head *rhp)
2338 {
2339 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2340 struct rcu_state *rsp = rdp->rsp;
2341
2342 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2343 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2344 complete(&rsp->barrier_completion);
2345 } else {
2346 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2347 }
2348 }
2349
2350 /*
2351 * Called with preemption disabled, and from cross-cpu IRQ context.
2352 */
2353 static void rcu_barrier_func(void *type)
2354 {
2355 struct rcu_state *rsp = type;
2356 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2357
2358 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2359 atomic_inc(&rsp->barrier_cpu_count);
2360 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2361 }
2362
2363 /*
2364 * Orchestrate the specified type of RCU barrier, waiting for all
2365 * RCU callbacks of the specified type to complete.
2366 */
2367 static void _rcu_barrier(struct rcu_state *rsp)
2368 {
2369 int cpu;
2370 unsigned long flags;
2371 struct rcu_data *rdp;
2372 struct rcu_data rd;
2373 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2374 unsigned long snap_done;
2375
2376 init_rcu_head_on_stack(&rd.barrier_head);
2377 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2378
2379 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2380 mutex_lock(&rsp->barrier_mutex);
2381
2382 /*
2383 * Ensure that all prior references, including to ->n_barrier_done,
2384 * are ordered before the _rcu_barrier() machinery.
2385 */
2386 smp_mb(); /* See above block comment. */
2387
2388 /*
2389 * Recheck ->n_barrier_done to see if others did our work for us.
2390 * This means checking ->n_barrier_done for an even-to-odd-to-even
2391 * transition. The "if" expression below therefore rounds the old
2392 * value up to the next even number and adds two before comparing.
2393 */
2394 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2395 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2396 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2397 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2398 smp_mb(); /* caller's subsequent code after above check. */
2399 mutex_unlock(&rsp->barrier_mutex);
2400 return;
2401 }
2402
2403 /*
2404 * Increment ->n_barrier_done to avoid duplicate work. Use
2405 * ACCESS_ONCE() to prevent the compiler from speculating
2406 * the increment to precede the early-exit check.
2407 */
2408 ACCESS_ONCE(rsp->n_barrier_done)++;
2409 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2410 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2411 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2412
2413 /*
2414 * Initialize the count to one rather than to zero in order to
2415 * avoid a too-soon return to zero in case of a short grace period
2416 * (or preemption of this task). Also flag this task as doing
2417 * an rcu_barrier(). This will prevent anyone else from adopting
2418 * orphaned callbacks, which could cause otherwise failure if a
2419 * CPU went offline and quickly came back online. To see this,
2420 * consider the following sequence of events:
2421 *
2422 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2423 * 2. CPU 1 goes offline, orphaning its callbacks.
2424 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2425 * 4. CPU 1 comes back online.
2426 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2427 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2428 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2429 */
2430 init_completion(&rsp->barrier_completion);
2431 atomic_set(&rsp->barrier_cpu_count, 1);
2432 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2433 rsp->rcu_barrier_in_progress = current;
2434 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2435
2436 /*
2437 * Force every CPU with callbacks to register a new callback
2438 * that will tell us when all the preceding callbacks have
2439 * been invoked. If an offline CPU has callbacks, wait for
2440 * it to either come back online or to finish orphaning those
2441 * callbacks.
2442 */
2443 for_each_possible_cpu(cpu) {
2444 preempt_disable();
2445 rdp = per_cpu_ptr(rsp->rda, cpu);
2446 if (cpu_is_offline(cpu)) {
2447 _rcu_barrier_trace(rsp, "Offline", cpu,
2448 rsp->n_barrier_done);
2449 preempt_enable();
2450 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2451 schedule_timeout_interruptible(1);
2452 } else if (ACCESS_ONCE(rdp->qlen)) {
2453 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2454 rsp->n_barrier_done);
2455 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2456 preempt_enable();
2457 } else {
2458 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2459 rsp->n_barrier_done);
2460 preempt_enable();
2461 }
2462 }
2463
2464 /*
2465 * Now that all online CPUs have rcu_barrier_callback() callbacks
2466 * posted, we can adopt all of the orphaned callbacks and place
2467 * an rcu_barrier_callback() callback after them. When that is done,
2468 * we are guaranteed to have an rcu_barrier_callback() callback
2469 * following every callback that could possibly have been
2470 * registered before _rcu_barrier() was called.
2471 */
2472 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2473 rcu_adopt_orphan_cbs(rsp);
2474 rsp->rcu_barrier_in_progress = NULL;
2475 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2476 atomic_inc(&rsp->barrier_cpu_count);
2477 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2478 rd.rsp = rsp;
2479 rsp->call(&rd.barrier_head, rcu_barrier_callback);
2480
2481 /*
2482 * Now that we have an rcu_barrier_callback() callback on each
2483 * CPU, and thus each counted, remove the initial count.
2484 */
2485 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2486 complete(&rsp->barrier_completion);
2487
2488 /* Increment ->n_barrier_done to prevent duplicate work. */
2489 smp_mb(); /* Keep increment after above mechanism. */
2490 ACCESS_ONCE(rsp->n_barrier_done)++;
2491 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2492 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2493 smp_mb(); /* Keep increment before caller's subsequent code. */
2494
2495 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2496 wait_for_completion(&rsp->barrier_completion);
2497
2498 /* Other rcu_barrier() invocations can now safely proceed. */
2499 mutex_unlock(&rsp->barrier_mutex);
2500
2501 destroy_rcu_head_on_stack(&rd.barrier_head);
2502 }
2503
2504 /**
2505 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2506 */
2507 void rcu_barrier_bh(void)
2508 {
2509 _rcu_barrier(&rcu_bh_state);
2510 }
2511 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2512
2513 /**
2514 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2515 */
2516 void rcu_barrier_sched(void)
2517 {
2518 _rcu_barrier(&rcu_sched_state);
2519 }
2520 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2521
2522 /*
2523 * Do boot-time initialization of a CPU's per-CPU RCU data.
2524 */
2525 static void __init
2526 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2527 {
2528 unsigned long flags;
2529 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2530 struct rcu_node *rnp = rcu_get_root(rsp);
2531
2532 /* Set up local state, ensuring consistent view of global state. */
2533 raw_spin_lock_irqsave(&rnp->lock, flags);
2534 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2535 init_callback_list(rdp);
2536 rdp->qlen_lazy = 0;
2537 ACCESS_ONCE(rdp->qlen) = 0;
2538 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2539 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2540 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2541 rdp->cpu = cpu;
2542 rdp->rsp = rsp;
2543 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2544 }
2545
2546 /*
2547 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2548 * offline event can be happening at a given time. Note also that we
2549 * can accept some slop in the rsp->completed access due to the fact
2550 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2551 */
2552 static void __cpuinit
2553 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2554 {
2555 unsigned long flags;
2556 unsigned long mask;
2557 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2558 struct rcu_node *rnp = rcu_get_root(rsp);
2559
2560 /* Set up local state, ensuring consistent view of global state. */
2561 raw_spin_lock_irqsave(&rnp->lock, flags);
2562 rdp->beenonline = 1; /* We have now been online. */
2563 rdp->preemptible = preemptible;
2564 rdp->qlen_last_fqs_check = 0;
2565 rdp->n_force_qs_snap = rsp->n_force_qs;
2566 rdp->blimit = blimit;
2567 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2568 atomic_set(&rdp->dynticks->dynticks,
2569 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2570 rcu_prepare_for_idle_init(cpu);
2571 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2572
2573 /*
2574 * A new grace period might start here. If so, we won't be part
2575 * of it, but that is OK, as we are currently in a quiescent state.
2576 */
2577
2578 /* Exclude any attempts to start a new GP on large systems. */
2579 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2580
2581 /* Add CPU to rcu_node bitmasks. */
2582 rnp = rdp->mynode;
2583 mask = rdp->grpmask;
2584 do {
2585 /* Exclude any attempts to start a new GP on small systems. */
2586 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2587 rnp->qsmaskinit |= mask;
2588 mask = rnp->grpmask;
2589 if (rnp == rdp->mynode) {
2590 /*
2591 * If there is a grace period in progress, we will
2592 * set up to wait for it next time we run the
2593 * RCU core code.
2594 */
2595 rdp->gpnum = rnp->completed;
2596 rdp->completed = rnp->completed;
2597 rdp->passed_quiesce = 0;
2598 rdp->qs_pending = 0;
2599 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2600 }
2601 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2602 rnp = rnp->parent;
2603 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2604
2605 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2606 }
2607
2608 static void __cpuinit rcu_prepare_cpu(int cpu)
2609 {
2610 struct rcu_state *rsp;
2611
2612 for_each_rcu_flavor(rsp)
2613 rcu_init_percpu_data(cpu, rsp,
2614 strcmp(rsp->name, "rcu_preempt") == 0);
2615 }
2616
2617 /*
2618 * Handle CPU online/offline notification events.
2619 */
2620 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2621 unsigned long action, void *hcpu)
2622 {
2623 long cpu = (long)hcpu;
2624 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2625 struct rcu_node *rnp = rdp->mynode;
2626 struct rcu_state *rsp;
2627
2628 trace_rcu_utilization("Start CPU hotplug");
2629 switch (action) {
2630 case CPU_UP_PREPARE:
2631 case CPU_UP_PREPARE_FROZEN:
2632 rcu_prepare_cpu(cpu);
2633 rcu_prepare_kthreads(cpu);
2634 break;
2635 case CPU_ONLINE:
2636 case CPU_DOWN_FAILED:
2637 rcu_node_kthread_setaffinity(rnp, -1);
2638 rcu_cpu_kthread_setrt(cpu, 1);
2639 break;
2640 case CPU_DOWN_PREPARE:
2641 rcu_node_kthread_setaffinity(rnp, cpu);
2642 rcu_cpu_kthread_setrt(cpu, 0);
2643 break;
2644 case CPU_DYING:
2645 case CPU_DYING_FROZEN:
2646 /*
2647 * The whole machine is "stopped" except this CPU, so we can
2648 * touch any data without introducing corruption. We send the
2649 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2650 */
2651 for_each_rcu_flavor(rsp)
2652 rcu_cleanup_dying_cpu(rsp);
2653 rcu_cleanup_after_idle(cpu);
2654 break;
2655 case CPU_DEAD:
2656 case CPU_DEAD_FROZEN:
2657 case CPU_UP_CANCELED:
2658 case CPU_UP_CANCELED_FROZEN:
2659 for_each_rcu_flavor(rsp)
2660 rcu_cleanup_dead_cpu(cpu, rsp);
2661 break;
2662 default:
2663 break;
2664 }
2665 trace_rcu_utilization("End CPU hotplug");
2666 return NOTIFY_OK;
2667 }
2668
2669 /*
2670 * Spawn the kthread that handles this RCU flavor's grace periods.
2671 */
2672 static int __init rcu_spawn_gp_kthread(void)
2673 {
2674 unsigned long flags;
2675 struct rcu_node *rnp;
2676 struct rcu_state *rsp;
2677 struct task_struct *t;
2678
2679 for_each_rcu_flavor(rsp) {
2680 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2681 BUG_ON(IS_ERR(t));
2682 rnp = rcu_get_root(rsp);
2683 raw_spin_lock_irqsave(&rnp->lock, flags);
2684 rsp->gp_kthread = t;
2685 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2686 }
2687 return 0;
2688 }
2689 early_initcall(rcu_spawn_gp_kthread);
2690
2691 /*
2692 * This function is invoked towards the end of the scheduler's initialization
2693 * process. Before this is called, the idle task might contain
2694 * RCU read-side critical sections (during which time, this idle
2695 * task is booting the system). After this function is called, the
2696 * idle tasks are prohibited from containing RCU read-side critical
2697 * sections. This function also enables RCU lockdep checking.
2698 */
2699 void rcu_scheduler_starting(void)
2700 {
2701 WARN_ON(num_online_cpus() != 1);
2702 WARN_ON(nr_context_switches() > 0);
2703 rcu_scheduler_active = 1;
2704 }
2705
2706 /*
2707 * Compute the per-level fanout, either using the exact fanout specified
2708 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2709 */
2710 #ifdef CONFIG_RCU_FANOUT_EXACT
2711 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2712 {
2713 int i;
2714
2715 for (i = rcu_num_lvls - 1; i > 0; i--)
2716 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2717 rsp->levelspread[0] = rcu_fanout_leaf;
2718 }
2719 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2720 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2721 {
2722 int ccur;
2723 int cprv;
2724 int i;
2725
2726 cprv = nr_cpu_ids;
2727 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2728 ccur = rsp->levelcnt[i];
2729 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2730 cprv = ccur;
2731 }
2732 }
2733 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2734
2735 /*
2736 * Helper function for rcu_init() that initializes one rcu_state structure.
2737 */
2738 static void __init rcu_init_one(struct rcu_state *rsp,
2739 struct rcu_data __percpu *rda)
2740 {
2741 static char *buf[] = { "rcu_node_0",
2742 "rcu_node_1",
2743 "rcu_node_2",
2744 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2745 static char *fqs[] = { "rcu_node_fqs_0",
2746 "rcu_node_fqs_1",
2747 "rcu_node_fqs_2",
2748 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2749 int cpustride = 1;
2750 int i;
2751 int j;
2752 struct rcu_node *rnp;
2753
2754 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2755
2756 /* Initialize the level-tracking arrays. */
2757
2758 for (i = 0; i < rcu_num_lvls; i++)
2759 rsp->levelcnt[i] = num_rcu_lvl[i];
2760 for (i = 1; i < rcu_num_lvls; i++)
2761 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2762 rcu_init_levelspread(rsp);
2763
2764 /* Initialize the elements themselves, starting from the leaves. */
2765
2766 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2767 cpustride *= rsp->levelspread[i];
2768 rnp = rsp->level[i];
2769 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2770 raw_spin_lock_init(&rnp->lock);
2771 lockdep_set_class_and_name(&rnp->lock,
2772 &rcu_node_class[i], buf[i]);
2773 raw_spin_lock_init(&rnp->fqslock);
2774 lockdep_set_class_and_name(&rnp->fqslock,
2775 &rcu_fqs_class[i], fqs[i]);
2776 rnp->gpnum = rsp->gpnum;
2777 rnp->completed = rsp->completed;
2778 rnp->qsmask = 0;
2779 rnp->qsmaskinit = 0;
2780 rnp->grplo = j * cpustride;
2781 rnp->grphi = (j + 1) * cpustride - 1;
2782 if (rnp->grphi >= NR_CPUS)
2783 rnp->grphi = NR_CPUS - 1;
2784 if (i == 0) {
2785 rnp->grpnum = 0;
2786 rnp->grpmask = 0;
2787 rnp->parent = NULL;
2788 } else {
2789 rnp->grpnum = j % rsp->levelspread[i - 1];
2790 rnp->grpmask = 1UL << rnp->grpnum;
2791 rnp->parent = rsp->level[i - 1] +
2792 j / rsp->levelspread[i - 1];
2793 }
2794 rnp->level = i;
2795 INIT_LIST_HEAD(&rnp->blkd_tasks);
2796 }
2797 }
2798
2799 rsp->rda = rda;
2800 init_waitqueue_head(&rsp->gp_wq);
2801 rnp = rsp->level[rcu_num_lvls - 1];
2802 for_each_possible_cpu(i) {
2803 while (i > rnp->grphi)
2804 rnp++;
2805 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2806 rcu_boot_init_percpu_data(i, rsp);
2807 }
2808 list_add(&rsp->flavors, &rcu_struct_flavors);
2809 }
2810
2811 /*
2812 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2813 * replace the definitions in rcutree.h because those are needed to size
2814 * the ->node array in the rcu_state structure.
2815 */
2816 static void __init rcu_init_geometry(void)
2817 {
2818 int i;
2819 int j;
2820 int n = nr_cpu_ids;
2821 int rcu_capacity[MAX_RCU_LVLS + 1];
2822
2823 /* If the compile-time values are accurate, just leave. */
2824 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2825 return;
2826
2827 /*
2828 * Compute number of nodes that can be handled an rcu_node tree
2829 * with the given number of levels. Setting rcu_capacity[0] makes
2830 * some of the arithmetic easier.
2831 */
2832 rcu_capacity[0] = 1;
2833 rcu_capacity[1] = rcu_fanout_leaf;
2834 for (i = 2; i <= MAX_RCU_LVLS; i++)
2835 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2836
2837 /*
2838 * The boot-time rcu_fanout_leaf parameter is only permitted
2839 * to increase the leaf-level fanout, not decrease it. Of course,
2840 * the leaf-level fanout cannot exceed the number of bits in
2841 * the rcu_node masks. Finally, the tree must be able to accommodate
2842 * the configured number of CPUs. Complain and fall back to the
2843 * compile-time values if these limits are exceeded.
2844 */
2845 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2846 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2847 n > rcu_capacity[MAX_RCU_LVLS]) {
2848 WARN_ON(1);
2849 return;
2850 }
2851
2852 /* Calculate the number of rcu_nodes at each level of the tree. */
2853 for (i = 1; i <= MAX_RCU_LVLS; i++)
2854 if (n <= rcu_capacity[i]) {
2855 for (j = 0; j <= i; j++)
2856 num_rcu_lvl[j] =
2857 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2858 rcu_num_lvls = i;
2859 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2860 num_rcu_lvl[j] = 0;
2861 break;
2862 }
2863
2864 /* Calculate the total number of rcu_node structures. */
2865 rcu_num_nodes = 0;
2866 for (i = 0; i <= MAX_RCU_LVLS; i++)
2867 rcu_num_nodes += num_rcu_lvl[i];
2868 rcu_num_nodes -= n;
2869 }
2870
2871 void __init rcu_init(void)
2872 {
2873 int cpu;
2874
2875 rcu_bootup_announce();
2876 rcu_init_geometry();
2877 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2878 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2879 __rcu_init_preempt();
2880 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2881
2882 /*
2883 * We don't need protection against CPU-hotplug here because
2884 * this is called early in boot, before either interrupts
2885 * or the scheduler are operational.
2886 */
2887 cpu_notifier(rcu_cpu_notify, 0);
2888 for_each_online_cpu(cpu)
2889 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2890 check_cpu_stall_init();
2891 }
2892
2893 #include "rcutree_plugin.h"