rcu: Disable preemption in rcu_is_cpu_idle()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53
54 #include "rcutree.h"
55 #include <trace/events/rcu.h>
56
57 #include "rcu.h"
58
59 /* Data structures. */
60
61 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63 #define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80 }
81
82 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89
90 /*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99 int rcu_scheduler_active __read_mostly;
100 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102 /*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114 static int rcu_scheduler_fully_active __read_mostly;
115
116 #ifdef CONFIG_RCU_BOOST
117
118 /*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126 DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128 #endif /* #ifdef CONFIG_RCU_BOOST */
129
130 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 static void invoke_rcu_core(void);
132 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134 /*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143 unsigned long rcutorture_testseq;
144 unsigned long rcutorture_vernum;
145
146 /*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 {
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154 }
155
156 /*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162 void rcu_sched_qs(int cpu)
163 {
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171 }
172
173 void rcu_bh_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 /*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189 void rcu_note_context_switch(int cpu)
190 {
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195 }
196 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = LLONG_MAX / 2,
200 .dynticks = ATOMIC_INIT(1),
201 };
202
203 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204 static int qhimark = 10000; /* If this many pending, ignore blimit. */
205 static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207 module_param(blimit, int, 0);
208 module_param(qhimark, int, 0);
209 module_param(qlowmark, int, 0);
210
211 int rcu_cpu_stall_suppress __read_mostly;
212 module_param(rcu_cpu_stall_suppress, int, 0644);
213
214 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215 static int rcu_pending(int cpu);
216
217 /*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220 long rcu_batches_completed_sched(void)
221 {
222 return rcu_sched_state.completed;
223 }
224 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226 /*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229 long rcu_batches_completed_bh(void)
230 {
231 return rcu_bh_state.completed;
232 }
233 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235 /*
236 * Force a quiescent state for RCU BH.
237 */
238 void rcu_bh_force_quiescent_state(void)
239 {
240 force_quiescent_state(&rcu_bh_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244 /*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251 void rcutorture_record_test_transition(void)
252 {
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255 }
256 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258 /*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263 void rcutorture_record_progress(unsigned long vernum)
264 {
265 rcutorture_vernum++;
266 }
267 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269 /*
270 * Force a quiescent state for RCU-sched.
271 */
272 void rcu_sched_force_quiescent_state(void)
273 {
274 force_quiescent_state(&rcu_sched_state, 0);
275 }
276 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278 /*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281 static int
282 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283 {
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285 }
286
287 /*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290 static int
291 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292 {
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 }
295
296 /*
297 * Return the root node of the specified rcu_state structure.
298 */
299 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300 {
301 return &rsp->node[0];
302 }
303
304 #ifdef CONFIG_SMP
305
306 /*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318 {
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 rdp->offline_fqs++;
326 return 1;
327 }
328
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340 }
341
342 #endif /* #ifdef CONFIG_SMP */
343
344 /*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
351 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp)
352 {
353 if (rdtp->dynticks_nesting) {
354 trace_rcu_dyntick("--=", rdtp->dynticks_nesting);
355 return;
356 }
357 trace_rcu_dyntick("Start", rdtp->dynticks_nesting);
358 if (!idle_cpu(smp_processor_id())) {
359 WARN_ON_ONCE(1); /* must be idle task! */
360 trace_rcu_dyntick("Error on entry: not idle task",
361 rdtp->dynticks_nesting);
362 ftrace_dump(DUMP_ALL);
363 }
364 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
365 smp_mb__before_atomic_inc(); /* See above. */
366 atomic_inc(&rdtp->dynticks);
367 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
368 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
369 }
370
371 /**
372 * rcu_idle_enter - inform RCU that current CPU is entering idle
373 *
374 * Enter idle mode, in other words, -leave- the mode in which RCU
375 * read-side critical sections can occur. (Though RCU read-side
376 * critical sections can occur in irq handlers in idle, a possibility
377 * handled by irq_enter() and irq_exit().)
378 *
379 * We crowbar the ->dynticks_nesting field to zero to allow for
380 * the possibility of usermode upcalls having messed up our count
381 * of interrupt nesting level during the prior busy period.
382 */
383 void rcu_idle_enter(void)
384 {
385 unsigned long flags;
386 struct rcu_dynticks *rdtp;
387
388 local_irq_save(flags);
389 rdtp = &__get_cpu_var(rcu_dynticks);
390 rdtp->dynticks_nesting = 0;
391 rcu_idle_enter_common(rdtp);
392 local_irq_restore(flags);
393 }
394
395 /**
396 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
397 *
398 * Exit from an interrupt handler, which might possibly result in entering
399 * idle mode, in other words, leaving the mode in which read-side critical
400 * sections can occur.
401 *
402 * This code assumes that the idle loop never does anything that might
403 * result in unbalanced calls to irq_enter() and irq_exit(). If your
404 * architecture violates this assumption, RCU will give you what you
405 * deserve, good and hard. But very infrequently and irreproducibly.
406 *
407 * Use things like work queues to work around this limitation.
408 *
409 * You have been warned.
410 */
411 void rcu_irq_exit(void)
412 {
413 unsigned long flags;
414 struct rcu_dynticks *rdtp;
415
416 local_irq_save(flags);
417 rdtp = &__get_cpu_var(rcu_dynticks);
418 rdtp->dynticks_nesting--;
419 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
420 rcu_idle_enter_common(rdtp);
421 local_irq_restore(flags);
422 }
423
424 /*
425 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
426 *
427 * If the new value of the ->dynticks_nesting counter was previously zero,
428 * we really have exited idle, and must do the appropriate accounting.
429 * The caller must have disabled interrupts.
430 */
431 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
432 {
433 if (oldval) {
434 trace_rcu_dyntick("++=", rdtp->dynticks_nesting);
435 return;
436 }
437 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
438 atomic_inc(&rdtp->dynticks);
439 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
440 smp_mb__after_atomic_inc(); /* See above. */
441 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
442 trace_rcu_dyntick("End", oldval);
443 if (!idle_cpu(smp_processor_id())) {
444 WARN_ON_ONCE(1); /* must be idle task! */
445 trace_rcu_dyntick("Error on exit: not idle task", oldval);
446 ftrace_dump(DUMP_ALL);
447 }
448 }
449
450 /**
451 * rcu_idle_exit - inform RCU that current CPU is leaving idle
452 *
453 * Exit idle mode, in other words, -enter- the mode in which RCU
454 * read-side critical sections can occur.
455 *
456 * We crowbar the ->dynticks_nesting field to LLONG_MAX/2 to allow for
457 * the possibility of usermode upcalls messing up our count
458 * of interrupt nesting level during the busy period that is just
459 * now starting.
460 */
461 void rcu_idle_exit(void)
462 {
463 unsigned long flags;
464 struct rcu_dynticks *rdtp;
465 long long oldval;
466
467 local_irq_save(flags);
468 rdtp = &__get_cpu_var(rcu_dynticks);
469 oldval = rdtp->dynticks_nesting;
470 WARN_ON_ONCE(oldval != 0);
471 rdtp->dynticks_nesting = LLONG_MAX / 2;
472 rcu_idle_exit_common(rdtp, oldval);
473 local_irq_restore(flags);
474 }
475
476 /**
477 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
478 *
479 * Enter an interrupt handler, which might possibly result in exiting
480 * idle mode, in other words, entering the mode in which read-side critical
481 * sections can occur.
482 *
483 * Note that the Linux kernel is fully capable of entering an interrupt
484 * handler that it never exits, for example when doing upcalls to
485 * user mode! This code assumes that the idle loop never does upcalls to
486 * user mode. If your architecture does do upcalls from the idle loop (or
487 * does anything else that results in unbalanced calls to the irq_enter()
488 * and irq_exit() functions), RCU will give you what you deserve, good
489 * and hard. But very infrequently and irreproducibly.
490 *
491 * Use things like work queues to work around this limitation.
492 *
493 * You have been warned.
494 */
495 void rcu_irq_enter(void)
496 {
497 unsigned long flags;
498 struct rcu_dynticks *rdtp;
499 long long oldval;
500
501 local_irq_save(flags);
502 rdtp = &__get_cpu_var(rcu_dynticks);
503 oldval = rdtp->dynticks_nesting;
504 rdtp->dynticks_nesting++;
505 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
506 rcu_idle_exit_common(rdtp, oldval);
507 local_irq_restore(flags);
508 }
509
510 /**
511 * rcu_nmi_enter - inform RCU of entry to NMI context
512 *
513 * If the CPU was idle with dynamic ticks active, and there is no
514 * irq handler running, this updates rdtp->dynticks_nmi to let the
515 * RCU grace-period handling know that the CPU is active.
516 */
517 void rcu_nmi_enter(void)
518 {
519 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
520
521 if (rdtp->dynticks_nmi_nesting == 0 &&
522 (atomic_read(&rdtp->dynticks) & 0x1))
523 return;
524 rdtp->dynticks_nmi_nesting++;
525 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
526 atomic_inc(&rdtp->dynticks);
527 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
528 smp_mb__after_atomic_inc(); /* See above. */
529 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
530 }
531
532 /**
533 * rcu_nmi_exit - inform RCU of exit from NMI context
534 *
535 * If the CPU was idle with dynamic ticks active, and there is no
536 * irq handler running, this updates rdtp->dynticks_nmi to let the
537 * RCU grace-period handling know that the CPU is no longer active.
538 */
539 void rcu_nmi_exit(void)
540 {
541 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
542
543 if (rdtp->dynticks_nmi_nesting == 0 ||
544 --rdtp->dynticks_nmi_nesting != 0)
545 return;
546 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
547 smp_mb__before_atomic_inc(); /* See above. */
548 atomic_inc(&rdtp->dynticks);
549 smp_mb__after_atomic_inc(); /* Force delay to next write. */
550 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
551 }
552
553 #ifdef CONFIG_PROVE_RCU
554
555 /**
556 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
557 *
558 * If the current CPU is in its idle loop and is neither in an interrupt
559 * or NMI handler, return true.
560 */
561 int rcu_is_cpu_idle(void)
562 {
563 int ret;
564
565 preempt_disable();
566 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
567 preempt_enable();
568 return ret;
569 }
570
571 #endif /* #ifdef CONFIG_PROVE_RCU */
572
573 /**
574 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
575 *
576 * If the current CPU is idle or running at a first-level (not nested)
577 * interrupt from idle, return true. The caller must have at least
578 * disabled preemption.
579 */
580 int rcu_is_cpu_rrupt_from_idle(void)
581 {
582 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
583 }
584
585 #ifdef CONFIG_SMP
586
587 /*
588 * Snapshot the specified CPU's dynticks counter so that we can later
589 * credit them with an implicit quiescent state. Return 1 if this CPU
590 * is in dynticks idle mode, which is an extended quiescent state.
591 */
592 static int dyntick_save_progress_counter(struct rcu_data *rdp)
593 {
594 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
595 return 0;
596 }
597
598 /*
599 * Return true if the specified CPU has passed through a quiescent
600 * state by virtue of being in or having passed through an dynticks
601 * idle state since the last call to dyntick_save_progress_counter()
602 * for this same CPU.
603 */
604 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
605 {
606 unsigned int curr;
607 unsigned int snap;
608
609 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
610 snap = (unsigned int)rdp->dynticks_snap;
611
612 /*
613 * If the CPU passed through or entered a dynticks idle phase with
614 * no active irq/NMI handlers, then we can safely pretend that the CPU
615 * already acknowledged the request to pass through a quiescent
616 * state. Either way, that CPU cannot possibly be in an RCU
617 * read-side critical section that started before the beginning
618 * of the current RCU grace period.
619 */
620 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
621 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
622 rdp->dynticks_fqs++;
623 return 1;
624 }
625
626 /* Go check for the CPU being offline. */
627 return rcu_implicit_offline_qs(rdp);
628 }
629
630 #endif /* #ifdef CONFIG_SMP */
631
632 int rcu_cpu_stall_suppress __read_mostly;
633
634 static void record_gp_stall_check_time(struct rcu_state *rsp)
635 {
636 rsp->gp_start = jiffies;
637 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
638 }
639
640 static void print_other_cpu_stall(struct rcu_state *rsp)
641 {
642 int cpu;
643 long delta;
644 unsigned long flags;
645 int ndetected;
646 struct rcu_node *rnp = rcu_get_root(rsp);
647
648 /* Only let one CPU complain about others per time interval. */
649
650 raw_spin_lock_irqsave(&rnp->lock, flags);
651 delta = jiffies - rsp->jiffies_stall;
652 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
653 raw_spin_unlock_irqrestore(&rnp->lock, flags);
654 return;
655 }
656 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
657
658 /*
659 * Now rat on any tasks that got kicked up to the root rcu_node
660 * due to CPU offlining.
661 */
662 ndetected = rcu_print_task_stall(rnp);
663 raw_spin_unlock_irqrestore(&rnp->lock, flags);
664
665 /*
666 * OK, time to rat on our buddy...
667 * See Documentation/RCU/stallwarn.txt for info on how to debug
668 * RCU CPU stall warnings.
669 */
670 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
671 rsp->name);
672 rcu_for_each_leaf_node(rsp, rnp) {
673 raw_spin_lock_irqsave(&rnp->lock, flags);
674 ndetected += rcu_print_task_stall(rnp);
675 raw_spin_unlock_irqrestore(&rnp->lock, flags);
676 if (rnp->qsmask == 0)
677 continue;
678 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
679 if (rnp->qsmask & (1UL << cpu)) {
680 printk(" %d", rnp->grplo + cpu);
681 ndetected++;
682 }
683 }
684 printk("} (detected by %d, t=%ld jiffies)\n",
685 smp_processor_id(), (long)(jiffies - rsp->gp_start));
686 if (ndetected == 0)
687 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
688 else if (!trigger_all_cpu_backtrace())
689 dump_stack();
690
691 /* If so configured, complain about tasks blocking the grace period. */
692
693 rcu_print_detail_task_stall(rsp);
694
695 force_quiescent_state(rsp, 0); /* Kick them all. */
696 }
697
698 static void print_cpu_stall(struct rcu_state *rsp)
699 {
700 unsigned long flags;
701 struct rcu_node *rnp = rcu_get_root(rsp);
702
703 /*
704 * OK, time to rat on ourselves...
705 * See Documentation/RCU/stallwarn.txt for info on how to debug
706 * RCU CPU stall warnings.
707 */
708 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
709 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
710 if (!trigger_all_cpu_backtrace())
711 dump_stack();
712
713 raw_spin_lock_irqsave(&rnp->lock, flags);
714 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
715 rsp->jiffies_stall =
716 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
717 raw_spin_unlock_irqrestore(&rnp->lock, flags);
718
719 set_need_resched(); /* kick ourselves to get things going. */
720 }
721
722 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
723 {
724 unsigned long j;
725 unsigned long js;
726 struct rcu_node *rnp;
727
728 if (rcu_cpu_stall_suppress)
729 return;
730 j = ACCESS_ONCE(jiffies);
731 js = ACCESS_ONCE(rsp->jiffies_stall);
732 rnp = rdp->mynode;
733 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
734
735 /* We haven't checked in, so go dump stack. */
736 print_cpu_stall(rsp);
737
738 } else if (rcu_gp_in_progress(rsp) &&
739 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
740
741 /* They had a few time units to dump stack, so complain. */
742 print_other_cpu_stall(rsp);
743 }
744 }
745
746 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
747 {
748 rcu_cpu_stall_suppress = 1;
749 return NOTIFY_DONE;
750 }
751
752 /**
753 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
754 *
755 * Set the stall-warning timeout way off into the future, thus preventing
756 * any RCU CPU stall-warning messages from appearing in the current set of
757 * RCU grace periods.
758 *
759 * The caller must disable hard irqs.
760 */
761 void rcu_cpu_stall_reset(void)
762 {
763 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
764 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
765 rcu_preempt_stall_reset();
766 }
767
768 static struct notifier_block rcu_panic_block = {
769 .notifier_call = rcu_panic,
770 };
771
772 static void __init check_cpu_stall_init(void)
773 {
774 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
775 }
776
777 /*
778 * Update CPU-local rcu_data state to record the newly noticed grace period.
779 * This is used both when we started the grace period and when we notice
780 * that someone else started the grace period. The caller must hold the
781 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
782 * and must have irqs disabled.
783 */
784 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
785 {
786 if (rdp->gpnum != rnp->gpnum) {
787 /*
788 * If the current grace period is waiting for this CPU,
789 * set up to detect a quiescent state, otherwise don't
790 * go looking for one.
791 */
792 rdp->gpnum = rnp->gpnum;
793 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
794 if (rnp->qsmask & rdp->grpmask) {
795 rdp->qs_pending = 1;
796 rdp->passed_quiesce = 0;
797 } else
798 rdp->qs_pending = 0;
799 }
800 }
801
802 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
803 {
804 unsigned long flags;
805 struct rcu_node *rnp;
806
807 local_irq_save(flags);
808 rnp = rdp->mynode;
809 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
810 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
811 local_irq_restore(flags);
812 return;
813 }
814 __note_new_gpnum(rsp, rnp, rdp);
815 raw_spin_unlock_irqrestore(&rnp->lock, flags);
816 }
817
818 /*
819 * Did someone else start a new RCU grace period start since we last
820 * checked? Update local state appropriately if so. Must be called
821 * on the CPU corresponding to rdp.
822 */
823 static int
824 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
825 {
826 unsigned long flags;
827 int ret = 0;
828
829 local_irq_save(flags);
830 if (rdp->gpnum != rsp->gpnum) {
831 note_new_gpnum(rsp, rdp);
832 ret = 1;
833 }
834 local_irq_restore(flags);
835 return ret;
836 }
837
838 /*
839 * Advance this CPU's callbacks, but only if the current grace period
840 * has ended. This may be called only from the CPU to whom the rdp
841 * belongs. In addition, the corresponding leaf rcu_node structure's
842 * ->lock must be held by the caller, with irqs disabled.
843 */
844 static void
845 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
846 {
847 /* Did another grace period end? */
848 if (rdp->completed != rnp->completed) {
849
850 /* Advance callbacks. No harm if list empty. */
851 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
852 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
853 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
854
855 /* Remember that we saw this grace-period completion. */
856 rdp->completed = rnp->completed;
857 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
858
859 /*
860 * If we were in an extended quiescent state, we may have
861 * missed some grace periods that others CPUs handled on
862 * our behalf. Catch up with this state to avoid noting
863 * spurious new grace periods. If another grace period
864 * has started, then rnp->gpnum will have advanced, so
865 * we will detect this later on.
866 */
867 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
868 rdp->gpnum = rdp->completed;
869
870 /*
871 * If RCU does not need a quiescent state from this CPU,
872 * then make sure that this CPU doesn't go looking for one.
873 */
874 if ((rnp->qsmask & rdp->grpmask) == 0)
875 rdp->qs_pending = 0;
876 }
877 }
878
879 /*
880 * Advance this CPU's callbacks, but only if the current grace period
881 * has ended. This may be called only from the CPU to whom the rdp
882 * belongs.
883 */
884 static void
885 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
886 {
887 unsigned long flags;
888 struct rcu_node *rnp;
889
890 local_irq_save(flags);
891 rnp = rdp->mynode;
892 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
893 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
894 local_irq_restore(flags);
895 return;
896 }
897 __rcu_process_gp_end(rsp, rnp, rdp);
898 raw_spin_unlock_irqrestore(&rnp->lock, flags);
899 }
900
901 /*
902 * Do per-CPU grace-period initialization for running CPU. The caller
903 * must hold the lock of the leaf rcu_node structure corresponding to
904 * this CPU.
905 */
906 static void
907 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
908 {
909 /* Prior grace period ended, so advance callbacks for current CPU. */
910 __rcu_process_gp_end(rsp, rnp, rdp);
911
912 /*
913 * Because this CPU just now started the new grace period, we know
914 * that all of its callbacks will be covered by this upcoming grace
915 * period, even the ones that were registered arbitrarily recently.
916 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
917 *
918 * Other CPUs cannot be sure exactly when the grace period started.
919 * Therefore, their recently registered callbacks must pass through
920 * an additional RCU_NEXT_READY stage, so that they will be handled
921 * by the next RCU grace period.
922 */
923 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
924 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
925
926 /* Set state so that this CPU will detect the next quiescent state. */
927 __note_new_gpnum(rsp, rnp, rdp);
928 }
929
930 /*
931 * Start a new RCU grace period if warranted, re-initializing the hierarchy
932 * in preparation for detecting the next grace period. The caller must hold
933 * the root node's ->lock, which is released before return. Hard irqs must
934 * be disabled.
935 */
936 static void
937 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
938 __releases(rcu_get_root(rsp)->lock)
939 {
940 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
941 struct rcu_node *rnp = rcu_get_root(rsp);
942
943 if (!rcu_scheduler_fully_active ||
944 !cpu_needs_another_gp(rsp, rdp)) {
945 /*
946 * Either the scheduler hasn't yet spawned the first
947 * non-idle task or this CPU does not need another
948 * grace period. Either way, don't start a new grace
949 * period.
950 */
951 raw_spin_unlock_irqrestore(&rnp->lock, flags);
952 return;
953 }
954
955 if (rsp->fqs_active) {
956 /*
957 * This CPU needs a grace period, but force_quiescent_state()
958 * is running. Tell it to start one on this CPU's behalf.
959 */
960 rsp->fqs_need_gp = 1;
961 raw_spin_unlock_irqrestore(&rnp->lock, flags);
962 return;
963 }
964
965 /* Advance to a new grace period and initialize state. */
966 rsp->gpnum++;
967 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
968 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
969 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
970 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
971 record_gp_stall_check_time(rsp);
972
973 /* Special-case the common single-level case. */
974 if (NUM_RCU_NODES == 1) {
975 rcu_preempt_check_blocked_tasks(rnp);
976 rnp->qsmask = rnp->qsmaskinit;
977 rnp->gpnum = rsp->gpnum;
978 rnp->completed = rsp->completed;
979 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
980 rcu_start_gp_per_cpu(rsp, rnp, rdp);
981 rcu_preempt_boost_start_gp(rnp);
982 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
983 rnp->level, rnp->grplo,
984 rnp->grphi, rnp->qsmask);
985 raw_spin_unlock_irqrestore(&rnp->lock, flags);
986 return;
987 }
988
989 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
990
991
992 /* Exclude any concurrent CPU-hotplug operations. */
993 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
994
995 /*
996 * Set the quiescent-state-needed bits in all the rcu_node
997 * structures for all currently online CPUs in breadth-first
998 * order, starting from the root rcu_node structure. This
999 * operation relies on the layout of the hierarchy within the
1000 * rsp->node[] array. Note that other CPUs will access only
1001 * the leaves of the hierarchy, which still indicate that no
1002 * grace period is in progress, at least until the corresponding
1003 * leaf node has been initialized. In addition, we have excluded
1004 * CPU-hotplug operations.
1005 *
1006 * Note that the grace period cannot complete until we finish
1007 * the initialization process, as there will be at least one
1008 * qsmask bit set in the root node until that time, namely the
1009 * one corresponding to this CPU, due to the fact that we have
1010 * irqs disabled.
1011 */
1012 rcu_for_each_node_breadth_first(rsp, rnp) {
1013 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1014 rcu_preempt_check_blocked_tasks(rnp);
1015 rnp->qsmask = rnp->qsmaskinit;
1016 rnp->gpnum = rsp->gpnum;
1017 rnp->completed = rsp->completed;
1018 if (rnp == rdp->mynode)
1019 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1020 rcu_preempt_boost_start_gp(rnp);
1021 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1022 rnp->level, rnp->grplo,
1023 rnp->grphi, rnp->qsmask);
1024 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1025 }
1026
1027 rnp = rcu_get_root(rsp);
1028 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1029 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1030 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1031 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1032 }
1033
1034 /*
1035 * Report a full set of quiescent states to the specified rcu_state
1036 * data structure. This involves cleaning up after the prior grace
1037 * period and letting rcu_start_gp() start up the next grace period
1038 * if one is needed. Note that the caller must hold rnp->lock, as
1039 * required by rcu_start_gp(), which will release it.
1040 */
1041 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1042 __releases(rcu_get_root(rsp)->lock)
1043 {
1044 unsigned long gp_duration;
1045 struct rcu_node *rnp = rcu_get_root(rsp);
1046 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1047
1048 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1049
1050 /*
1051 * Ensure that all grace-period and pre-grace-period activity
1052 * is seen before the assignment to rsp->completed.
1053 */
1054 smp_mb(); /* See above block comment. */
1055 gp_duration = jiffies - rsp->gp_start;
1056 if (gp_duration > rsp->gp_max)
1057 rsp->gp_max = gp_duration;
1058
1059 /*
1060 * We know the grace period is complete, but to everyone else
1061 * it appears to still be ongoing. But it is also the case
1062 * that to everyone else it looks like there is nothing that
1063 * they can do to advance the grace period. It is therefore
1064 * safe for us to drop the lock in order to mark the grace
1065 * period as completed in all of the rcu_node structures.
1066 *
1067 * But if this CPU needs another grace period, it will take
1068 * care of this while initializing the next grace period.
1069 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1070 * because the callbacks have not yet been advanced: Those
1071 * callbacks are waiting on the grace period that just now
1072 * completed.
1073 */
1074 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1075 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1076
1077 /*
1078 * Propagate new ->completed value to rcu_node structures
1079 * so that other CPUs don't have to wait until the start
1080 * of the next grace period to process their callbacks.
1081 */
1082 rcu_for_each_node_breadth_first(rsp, rnp) {
1083 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1084 rnp->completed = rsp->gpnum;
1085 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1086 }
1087 rnp = rcu_get_root(rsp);
1088 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1089 }
1090
1091 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1092 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1093 rsp->fqs_state = RCU_GP_IDLE;
1094 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1095 }
1096
1097 /*
1098 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1099 * Allows quiescent states for a group of CPUs to be reported at one go
1100 * to the specified rcu_node structure, though all the CPUs in the group
1101 * must be represented by the same rcu_node structure (which need not be
1102 * a leaf rcu_node structure, though it often will be). That structure's
1103 * lock must be held upon entry, and it is released before return.
1104 */
1105 static void
1106 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1107 struct rcu_node *rnp, unsigned long flags)
1108 __releases(rnp->lock)
1109 {
1110 struct rcu_node *rnp_c;
1111
1112 /* Walk up the rcu_node hierarchy. */
1113 for (;;) {
1114 if (!(rnp->qsmask & mask)) {
1115
1116 /* Our bit has already been cleared, so done. */
1117 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1118 return;
1119 }
1120 rnp->qsmask &= ~mask;
1121 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1122 mask, rnp->qsmask, rnp->level,
1123 rnp->grplo, rnp->grphi,
1124 !!rnp->gp_tasks);
1125 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1126
1127 /* Other bits still set at this level, so done. */
1128 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1129 return;
1130 }
1131 mask = rnp->grpmask;
1132 if (rnp->parent == NULL) {
1133
1134 /* No more levels. Exit loop holding root lock. */
1135
1136 break;
1137 }
1138 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1139 rnp_c = rnp;
1140 rnp = rnp->parent;
1141 raw_spin_lock_irqsave(&rnp->lock, flags);
1142 WARN_ON_ONCE(rnp_c->qsmask);
1143 }
1144
1145 /*
1146 * Get here if we are the last CPU to pass through a quiescent
1147 * state for this grace period. Invoke rcu_report_qs_rsp()
1148 * to clean up and start the next grace period if one is needed.
1149 */
1150 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1151 }
1152
1153 /*
1154 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1155 * structure. This must be either called from the specified CPU, or
1156 * called when the specified CPU is known to be offline (and when it is
1157 * also known that no other CPU is concurrently trying to help the offline
1158 * CPU). The lastcomp argument is used to make sure we are still in the
1159 * grace period of interest. We don't want to end the current grace period
1160 * based on quiescent states detected in an earlier grace period!
1161 */
1162 static void
1163 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1164 {
1165 unsigned long flags;
1166 unsigned long mask;
1167 struct rcu_node *rnp;
1168
1169 rnp = rdp->mynode;
1170 raw_spin_lock_irqsave(&rnp->lock, flags);
1171 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1172
1173 /*
1174 * The grace period in which this quiescent state was
1175 * recorded has ended, so don't report it upwards.
1176 * We will instead need a new quiescent state that lies
1177 * within the current grace period.
1178 */
1179 rdp->passed_quiesce = 0; /* need qs for new gp. */
1180 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1181 return;
1182 }
1183 mask = rdp->grpmask;
1184 if ((rnp->qsmask & mask) == 0) {
1185 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1186 } else {
1187 rdp->qs_pending = 0;
1188
1189 /*
1190 * This GP can't end until cpu checks in, so all of our
1191 * callbacks can be processed during the next GP.
1192 */
1193 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1194
1195 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1196 }
1197 }
1198
1199 /*
1200 * Check to see if there is a new grace period of which this CPU
1201 * is not yet aware, and if so, set up local rcu_data state for it.
1202 * Otherwise, see if this CPU has just passed through its first
1203 * quiescent state for this grace period, and record that fact if so.
1204 */
1205 static void
1206 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1207 {
1208 /* If there is now a new grace period, record and return. */
1209 if (check_for_new_grace_period(rsp, rdp))
1210 return;
1211
1212 /*
1213 * Does this CPU still need to do its part for current grace period?
1214 * If no, return and let the other CPUs do their part as well.
1215 */
1216 if (!rdp->qs_pending)
1217 return;
1218
1219 /*
1220 * Was there a quiescent state since the beginning of the grace
1221 * period? If no, then exit and wait for the next call.
1222 */
1223 if (!rdp->passed_quiesce)
1224 return;
1225
1226 /*
1227 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1228 * judge of that).
1229 */
1230 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1231 }
1232
1233 #ifdef CONFIG_HOTPLUG_CPU
1234
1235 /*
1236 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1237 * Synchronization is not required because this function executes
1238 * in stop_machine() context.
1239 */
1240 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1241 {
1242 int i;
1243 /* current DYING CPU is cleared in the cpu_online_mask */
1244 int receive_cpu = cpumask_any(cpu_online_mask);
1245 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1246 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1247
1248 if (rdp->nxtlist == NULL)
1249 return; /* irqs disabled, so comparison is stable. */
1250
1251 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1252 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1253 receive_rdp->qlen += rdp->qlen;
1254 receive_rdp->n_cbs_adopted += rdp->qlen;
1255 rdp->n_cbs_orphaned += rdp->qlen;
1256
1257 rdp->nxtlist = NULL;
1258 for (i = 0; i < RCU_NEXT_SIZE; i++)
1259 rdp->nxttail[i] = &rdp->nxtlist;
1260 rdp->qlen = 0;
1261 }
1262
1263 /*
1264 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1265 * and move all callbacks from the outgoing CPU to the current one.
1266 * There can only be one CPU hotplug operation at a time, so no other
1267 * CPU can be attempting to update rcu_cpu_kthread_task.
1268 */
1269 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1270 {
1271 unsigned long flags;
1272 unsigned long mask;
1273 int need_report = 0;
1274 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1275 struct rcu_node *rnp;
1276
1277 rcu_stop_cpu_kthread(cpu);
1278
1279 /* Exclude any attempts to start a new grace period. */
1280 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1281
1282 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1283 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1284 mask = rdp->grpmask; /* rnp->grplo is constant. */
1285 do {
1286 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1287 rnp->qsmaskinit &= ~mask;
1288 if (rnp->qsmaskinit != 0) {
1289 if (rnp != rdp->mynode)
1290 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1291 else
1292 trace_rcu_grace_period(rsp->name,
1293 rnp->gpnum + 1 -
1294 !!(rnp->qsmask & mask),
1295 "cpuofl");
1296 break;
1297 }
1298 if (rnp == rdp->mynode) {
1299 trace_rcu_grace_period(rsp->name,
1300 rnp->gpnum + 1 -
1301 !!(rnp->qsmask & mask),
1302 "cpuofl");
1303 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1304 } else
1305 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1306 mask = rnp->grpmask;
1307 rnp = rnp->parent;
1308 } while (rnp != NULL);
1309
1310 /*
1311 * We still hold the leaf rcu_node structure lock here, and
1312 * irqs are still disabled. The reason for this subterfuge is
1313 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1314 * held leads to deadlock.
1315 */
1316 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1317 rnp = rdp->mynode;
1318 if (need_report & RCU_OFL_TASKS_NORM_GP)
1319 rcu_report_unblock_qs_rnp(rnp, flags);
1320 else
1321 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1322 if (need_report & RCU_OFL_TASKS_EXP_GP)
1323 rcu_report_exp_rnp(rsp, rnp);
1324 rcu_node_kthread_setaffinity(rnp, -1);
1325 }
1326
1327 /*
1328 * Remove the specified CPU from the RCU hierarchy and move any pending
1329 * callbacks that it might have to the current CPU. This code assumes
1330 * that at least one CPU in the system will remain running at all times.
1331 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1332 */
1333 static void rcu_offline_cpu(int cpu)
1334 {
1335 __rcu_offline_cpu(cpu, &rcu_sched_state);
1336 __rcu_offline_cpu(cpu, &rcu_bh_state);
1337 rcu_preempt_offline_cpu(cpu);
1338 }
1339
1340 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1341
1342 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1343 {
1344 }
1345
1346 static void rcu_offline_cpu(int cpu)
1347 {
1348 }
1349
1350 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1351
1352 /*
1353 * Invoke any RCU callbacks that have made it to the end of their grace
1354 * period. Thottle as specified by rdp->blimit.
1355 */
1356 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1357 {
1358 unsigned long flags;
1359 struct rcu_head *next, *list, **tail;
1360 int bl, count;
1361
1362 /* If no callbacks are ready, just return.*/
1363 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1364 trace_rcu_batch_start(rsp->name, 0, 0);
1365 trace_rcu_batch_end(rsp->name, 0);
1366 return;
1367 }
1368
1369 /*
1370 * Extract the list of ready callbacks, disabling to prevent
1371 * races with call_rcu() from interrupt handlers.
1372 */
1373 local_irq_save(flags);
1374 bl = rdp->blimit;
1375 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1376 list = rdp->nxtlist;
1377 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1378 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1379 tail = rdp->nxttail[RCU_DONE_TAIL];
1380 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1381 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1382 rdp->nxttail[count] = &rdp->nxtlist;
1383 local_irq_restore(flags);
1384
1385 /* Invoke callbacks. */
1386 count = 0;
1387 while (list) {
1388 next = list->next;
1389 prefetch(next);
1390 debug_rcu_head_unqueue(list);
1391 __rcu_reclaim(rsp->name, list);
1392 list = next;
1393 if (++count >= bl)
1394 break;
1395 }
1396
1397 local_irq_save(flags);
1398 trace_rcu_batch_end(rsp->name, count);
1399
1400 /* Update count, and requeue any remaining callbacks. */
1401 rdp->qlen -= count;
1402 rdp->n_cbs_invoked += count;
1403 if (list != NULL) {
1404 *tail = rdp->nxtlist;
1405 rdp->nxtlist = list;
1406 for (count = 0; count < RCU_NEXT_SIZE; count++)
1407 if (&rdp->nxtlist == rdp->nxttail[count])
1408 rdp->nxttail[count] = tail;
1409 else
1410 break;
1411 }
1412
1413 /* Reinstate batch limit if we have worked down the excess. */
1414 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1415 rdp->blimit = blimit;
1416
1417 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1418 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1419 rdp->qlen_last_fqs_check = 0;
1420 rdp->n_force_qs_snap = rsp->n_force_qs;
1421 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1422 rdp->qlen_last_fqs_check = rdp->qlen;
1423
1424 local_irq_restore(flags);
1425
1426 /* Re-invoke RCU core processing if there are callbacks remaining. */
1427 if (cpu_has_callbacks_ready_to_invoke(rdp))
1428 invoke_rcu_core();
1429 }
1430
1431 /*
1432 * Check to see if this CPU is in a non-context-switch quiescent state
1433 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1434 * Also schedule RCU core processing.
1435 *
1436 * This function must be called from hardirq context. It is normally
1437 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1438 * false, there is no point in invoking rcu_check_callbacks().
1439 */
1440 void rcu_check_callbacks(int cpu, int user)
1441 {
1442 trace_rcu_utilization("Start scheduler-tick");
1443 if (user || rcu_is_cpu_rrupt_from_idle()) {
1444
1445 /*
1446 * Get here if this CPU took its interrupt from user
1447 * mode or from the idle loop, and if this is not a
1448 * nested interrupt. In this case, the CPU is in
1449 * a quiescent state, so note it.
1450 *
1451 * No memory barrier is required here because both
1452 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1453 * variables that other CPUs neither access nor modify,
1454 * at least not while the corresponding CPU is online.
1455 */
1456
1457 rcu_sched_qs(cpu);
1458 rcu_bh_qs(cpu);
1459
1460 } else if (!in_softirq()) {
1461
1462 /*
1463 * Get here if this CPU did not take its interrupt from
1464 * softirq, in other words, if it is not interrupting
1465 * a rcu_bh read-side critical section. This is an _bh
1466 * critical section, so note it.
1467 */
1468
1469 rcu_bh_qs(cpu);
1470 }
1471 rcu_preempt_check_callbacks(cpu);
1472 if (rcu_pending(cpu))
1473 invoke_rcu_core();
1474 trace_rcu_utilization("End scheduler-tick");
1475 }
1476
1477 #ifdef CONFIG_SMP
1478
1479 /*
1480 * Scan the leaf rcu_node structures, processing dyntick state for any that
1481 * have not yet encountered a quiescent state, using the function specified.
1482 * Also initiate boosting for any threads blocked on the root rcu_node.
1483 *
1484 * The caller must have suppressed start of new grace periods.
1485 */
1486 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1487 {
1488 unsigned long bit;
1489 int cpu;
1490 unsigned long flags;
1491 unsigned long mask;
1492 struct rcu_node *rnp;
1493
1494 rcu_for_each_leaf_node(rsp, rnp) {
1495 mask = 0;
1496 raw_spin_lock_irqsave(&rnp->lock, flags);
1497 if (!rcu_gp_in_progress(rsp)) {
1498 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1499 return;
1500 }
1501 if (rnp->qsmask == 0) {
1502 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1503 continue;
1504 }
1505 cpu = rnp->grplo;
1506 bit = 1;
1507 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1508 if ((rnp->qsmask & bit) != 0 &&
1509 f(per_cpu_ptr(rsp->rda, cpu)))
1510 mask |= bit;
1511 }
1512 if (mask != 0) {
1513
1514 /* rcu_report_qs_rnp() releases rnp->lock. */
1515 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1516 continue;
1517 }
1518 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1519 }
1520 rnp = rcu_get_root(rsp);
1521 if (rnp->qsmask == 0) {
1522 raw_spin_lock_irqsave(&rnp->lock, flags);
1523 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1524 }
1525 }
1526
1527 /*
1528 * Force quiescent states on reluctant CPUs, and also detect which
1529 * CPUs are in dyntick-idle mode.
1530 */
1531 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1532 {
1533 unsigned long flags;
1534 struct rcu_node *rnp = rcu_get_root(rsp);
1535
1536 trace_rcu_utilization("Start fqs");
1537 if (!rcu_gp_in_progress(rsp)) {
1538 trace_rcu_utilization("End fqs");
1539 return; /* No grace period in progress, nothing to force. */
1540 }
1541 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1542 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1543 trace_rcu_utilization("End fqs");
1544 return; /* Someone else is already on the job. */
1545 }
1546 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1547 goto unlock_fqs_ret; /* no emergency and done recently. */
1548 rsp->n_force_qs++;
1549 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1550 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1551 if(!rcu_gp_in_progress(rsp)) {
1552 rsp->n_force_qs_ngp++;
1553 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1554 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1555 }
1556 rsp->fqs_active = 1;
1557 switch (rsp->fqs_state) {
1558 case RCU_GP_IDLE:
1559 case RCU_GP_INIT:
1560
1561 break; /* grace period idle or initializing, ignore. */
1562
1563 case RCU_SAVE_DYNTICK:
1564 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1565 break; /* So gcc recognizes the dead code. */
1566
1567 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1568
1569 /* Record dyntick-idle state. */
1570 force_qs_rnp(rsp, dyntick_save_progress_counter);
1571 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1572 if (rcu_gp_in_progress(rsp))
1573 rsp->fqs_state = RCU_FORCE_QS;
1574 break;
1575
1576 case RCU_FORCE_QS:
1577
1578 /* Check dyntick-idle state, send IPI to laggarts. */
1579 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1580 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1581
1582 /* Leave state in case more forcing is required. */
1583
1584 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1585 break;
1586 }
1587 rsp->fqs_active = 0;
1588 if (rsp->fqs_need_gp) {
1589 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1590 rsp->fqs_need_gp = 0;
1591 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1592 trace_rcu_utilization("End fqs");
1593 return;
1594 }
1595 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1596 unlock_fqs_ret:
1597 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1598 trace_rcu_utilization("End fqs");
1599 }
1600
1601 #else /* #ifdef CONFIG_SMP */
1602
1603 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1604 {
1605 set_need_resched();
1606 }
1607
1608 #endif /* #else #ifdef CONFIG_SMP */
1609
1610 /*
1611 * This does the RCU core processing work for the specified rcu_state
1612 * and rcu_data structures. This may be called only from the CPU to
1613 * whom the rdp belongs.
1614 */
1615 static void
1616 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1617 {
1618 unsigned long flags;
1619
1620 WARN_ON_ONCE(rdp->beenonline == 0);
1621
1622 /*
1623 * If an RCU GP has gone long enough, go check for dyntick
1624 * idle CPUs and, if needed, send resched IPIs.
1625 */
1626 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1627 force_quiescent_state(rsp, 1);
1628
1629 /*
1630 * Advance callbacks in response to end of earlier grace
1631 * period that some other CPU ended.
1632 */
1633 rcu_process_gp_end(rsp, rdp);
1634
1635 /* Update RCU state based on any recent quiescent states. */
1636 rcu_check_quiescent_state(rsp, rdp);
1637
1638 /* Does this CPU require a not-yet-started grace period? */
1639 if (cpu_needs_another_gp(rsp, rdp)) {
1640 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1641 rcu_start_gp(rsp, flags); /* releases above lock */
1642 }
1643
1644 /* If there are callbacks ready, invoke them. */
1645 if (cpu_has_callbacks_ready_to_invoke(rdp))
1646 invoke_rcu_callbacks(rsp, rdp);
1647 }
1648
1649 /*
1650 * Do RCU core processing for the current CPU.
1651 */
1652 static void rcu_process_callbacks(struct softirq_action *unused)
1653 {
1654 trace_rcu_utilization("Start RCU core");
1655 __rcu_process_callbacks(&rcu_sched_state,
1656 &__get_cpu_var(rcu_sched_data));
1657 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1658 rcu_preempt_process_callbacks();
1659 trace_rcu_utilization("End RCU core");
1660 }
1661
1662 /*
1663 * Schedule RCU callback invocation. If the specified type of RCU
1664 * does not support RCU priority boosting, just do a direct call,
1665 * otherwise wake up the per-CPU kernel kthread. Note that because we
1666 * are running on the current CPU with interrupts disabled, the
1667 * rcu_cpu_kthread_task cannot disappear out from under us.
1668 */
1669 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1670 {
1671 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1672 return;
1673 if (likely(!rsp->boost)) {
1674 rcu_do_batch(rsp, rdp);
1675 return;
1676 }
1677 invoke_rcu_callbacks_kthread();
1678 }
1679
1680 static void invoke_rcu_core(void)
1681 {
1682 raise_softirq(RCU_SOFTIRQ);
1683 }
1684
1685 static void
1686 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1687 struct rcu_state *rsp)
1688 {
1689 unsigned long flags;
1690 struct rcu_data *rdp;
1691
1692 debug_rcu_head_queue(head);
1693 head->func = func;
1694 head->next = NULL;
1695
1696 smp_mb(); /* Ensure RCU update seen before callback registry. */
1697
1698 /*
1699 * Opportunistically note grace-period endings and beginnings.
1700 * Note that we might see a beginning right after we see an
1701 * end, but never vice versa, since this CPU has to pass through
1702 * a quiescent state betweentimes.
1703 */
1704 local_irq_save(flags);
1705 rdp = this_cpu_ptr(rsp->rda);
1706
1707 /* Add the callback to our list. */
1708 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1709 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1710 rdp->qlen++;
1711
1712 if (__is_kfree_rcu_offset((unsigned long)func))
1713 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1714 rdp->qlen);
1715 else
1716 trace_rcu_callback(rsp->name, head, rdp->qlen);
1717
1718 /* If interrupts were disabled, don't dive into RCU core. */
1719 if (irqs_disabled_flags(flags)) {
1720 local_irq_restore(flags);
1721 return;
1722 }
1723
1724 /*
1725 * Force the grace period if too many callbacks or too long waiting.
1726 * Enforce hysteresis, and don't invoke force_quiescent_state()
1727 * if some other CPU has recently done so. Also, don't bother
1728 * invoking force_quiescent_state() if the newly enqueued callback
1729 * is the only one waiting for a grace period to complete.
1730 */
1731 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1732
1733 /* Are we ignoring a completed grace period? */
1734 rcu_process_gp_end(rsp, rdp);
1735 check_for_new_grace_period(rsp, rdp);
1736
1737 /* Start a new grace period if one not already started. */
1738 if (!rcu_gp_in_progress(rsp)) {
1739 unsigned long nestflag;
1740 struct rcu_node *rnp_root = rcu_get_root(rsp);
1741
1742 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1743 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1744 } else {
1745 /* Give the grace period a kick. */
1746 rdp->blimit = LONG_MAX;
1747 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1748 *rdp->nxttail[RCU_DONE_TAIL] != head)
1749 force_quiescent_state(rsp, 0);
1750 rdp->n_force_qs_snap = rsp->n_force_qs;
1751 rdp->qlen_last_fqs_check = rdp->qlen;
1752 }
1753 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1754 force_quiescent_state(rsp, 1);
1755 local_irq_restore(flags);
1756 }
1757
1758 /*
1759 * Queue an RCU-sched callback for invocation after a grace period.
1760 */
1761 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1762 {
1763 __call_rcu(head, func, &rcu_sched_state);
1764 }
1765 EXPORT_SYMBOL_GPL(call_rcu_sched);
1766
1767 /*
1768 * Queue an RCU for invocation after a quicker grace period.
1769 */
1770 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1771 {
1772 __call_rcu(head, func, &rcu_bh_state);
1773 }
1774 EXPORT_SYMBOL_GPL(call_rcu_bh);
1775
1776 /**
1777 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1778 *
1779 * Control will return to the caller some time after a full rcu-sched
1780 * grace period has elapsed, in other words after all currently executing
1781 * rcu-sched read-side critical sections have completed. These read-side
1782 * critical sections are delimited by rcu_read_lock_sched() and
1783 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1784 * local_irq_disable(), and so on may be used in place of
1785 * rcu_read_lock_sched().
1786 *
1787 * This means that all preempt_disable code sequences, including NMI and
1788 * hardware-interrupt handlers, in progress on entry will have completed
1789 * before this primitive returns. However, this does not guarantee that
1790 * softirq handlers will have completed, since in some kernels, these
1791 * handlers can run in process context, and can block.
1792 *
1793 * This primitive provides the guarantees made by the (now removed)
1794 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1795 * guarantees that rcu_read_lock() sections will have completed.
1796 * In "classic RCU", these two guarantees happen to be one and
1797 * the same, but can differ in realtime RCU implementations.
1798 */
1799 void synchronize_sched(void)
1800 {
1801 if (rcu_blocking_is_gp())
1802 return;
1803 wait_rcu_gp(call_rcu_sched);
1804 }
1805 EXPORT_SYMBOL_GPL(synchronize_sched);
1806
1807 /**
1808 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1809 *
1810 * Control will return to the caller some time after a full rcu_bh grace
1811 * period has elapsed, in other words after all currently executing rcu_bh
1812 * read-side critical sections have completed. RCU read-side critical
1813 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1814 * and may be nested.
1815 */
1816 void synchronize_rcu_bh(void)
1817 {
1818 if (rcu_blocking_is_gp())
1819 return;
1820 wait_rcu_gp(call_rcu_bh);
1821 }
1822 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1823
1824 /*
1825 * Check to see if there is any immediate RCU-related work to be done
1826 * by the current CPU, for the specified type of RCU, returning 1 if so.
1827 * The checks are in order of increasing expense: checks that can be
1828 * carried out against CPU-local state are performed first. However,
1829 * we must check for CPU stalls first, else we might not get a chance.
1830 */
1831 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1832 {
1833 struct rcu_node *rnp = rdp->mynode;
1834
1835 rdp->n_rcu_pending++;
1836
1837 /* Check for CPU stalls, if enabled. */
1838 check_cpu_stall(rsp, rdp);
1839
1840 /* Is the RCU core waiting for a quiescent state from this CPU? */
1841 if (rcu_scheduler_fully_active &&
1842 rdp->qs_pending && !rdp->passed_quiesce) {
1843
1844 /*
1845 * If force_quiescent_state() coming soon and this CPU
1846 * needs a quiescent state, and this is either RCU-sched
1847 * or RCU-bh, force a local reschedule.
1848 */
1849 rdp->n_rp_qs_pending++;
1850 if (!rdp->preemptible &&
1851 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1852 jiffies))
1853 set_need_resched();
1854 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1855 rdp->n_rp_report_qs++;
1856 return 1;
1857 }
1858
1859 /* Does this CPU have callbacks ready to invoke? */
1860 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1861 rdp->n_rp_cb_ready++;
1862 return 1;
1863 }
1864
1865 /* Has RCU gone idle with this CPU needing another grace period? */
1866 if (cpu_needs_another_gp(rsp, rdp)) {
1867 rdp->n_rp_cpu_needs_gp++;
1868 return 1;
1869 }
1870
1871 /* Has another RCU grace period completed? */
1872 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1873 rdp->n_rp_gp_completed++;
1874 return 1;
1875 }
1876
1877 /* Has a new RCU grace period started? */
1878 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1879 rdp->n_rp_gp_started++;
1880 return 1;
1881 }
1882
1883 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1884 if (rcu_gp_in_progress(rsp) &&
1885 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1886 rdp->n_rp_need_fqs++;
1887 return 1;
1888 }
1889
1890 /* nothing to do */
1891 rdp->n_rp_need_nothing++;
1892 return 0;
1893 }
1894
1895 /*
1896 * Check to see if there is any immediate RCU-related work to be done
1897 * by the current CPU, returning 1 if so. This function is part of the
1898 * RCU implementation; it is -not- an exported member of the RCU API.
1899 */
1900 static int rcu_pending(int cpu)
1901 {
1902 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1903 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1904 rcu_preempt_pending(cpu);
1905 }
1906
1907 /*
1908 * Check to see if any future RCU-related work will need to be done
1909 * by the current CPU, even if none need be done immediately, returning
1910 * 1 if so.
1911 */
1912 static int rcu_needs_cpu_quick_check(int cpu)
1913 {
1914 /* RCU callbacks either ready or pending? */
1915 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1916 per_cpu(rcu_bh_data, cpu).nxtlist ||
1917 rcu_preempt_needs_cpu(cpu);
1918 }
1919
1920 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1921 static atomic_t rcu_barrier_cpu_count;
1922 static DEFINE_MUTEX(rcu_barrier_mutex);
1923 static struct completion rcu_barrier_completion;
1924
1925 static void rcu_barrier_callback(struct rcu_head *notused)
1926 {
1927 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1928 complete(&rcu_barrier_completion);
1929 }
1930
1931 /*
1932 * Called with preemption disabled, and from cross-cpu IRQ context.
1933 */
1934 static void rcu_barrier_func(void *type)
1935 {
1936 int cpu = smp_processor_id();
1937 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1938 void (*call_rcu_func)(struct rcu_head *head,
1939 void (*func)(struct rcu_head *head));
1940
1941 atomic_inc(&rcu_barrier_cpu_count);
1942 call_rcu_func = type;
1943 call_rcu_func(head, rcu_barrier_callback);
1944 }
1945
1946 /*
1947 * Orchestrate the specified type of RCU barrier, waiting for all
1948 * RCU callbacks of the specified type to complete.
1949 */
1950 static void _rcu_barrier(struct rcu_state *rsp,
1951 void (*call_rcu_func)(struct rcu_head *head,
1952 void (*func)(struct rcu_head *head)))
1953 {
1954 BUG_ON(in_interrupt());
1955 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1956 mutex_lock(&rcu_barrier_mutex);
1957 init_completion(&rcu_barrier_completion);
1958 /*
1959 * Initialize rcu_barrier_cpu_count to 1, then invoke
1960 * rcu_barrier_func() on each CPU, so that each CPU also has
1961 * incremented rcu_barrier_cpu_count. Only then is it safe to
1962 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1963 * might complete its grace period before all of the other CPUs
1964 * did their increment, causing this function to return too
1965 * early. Note that on_each_cpu() disables irqs, which prevents
1966 * any CPUs from coming online or going offline until each online
1967 * CPU has queued its RCU-barrier callback.
1968 */
1969 atomic_set(&rcu_barrier_cpu_count, 1);
1970 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1971 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1972 complete(&rcu_barrier_completion);
1973 wait_for_completion(&rcu_barrier_completion);
1974 mutex_unlock(&rcu_barrier_mutex);
1975 }
1976
1977 /**
1978 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1979 */
1980 void rcu_barrier_bh(void)
1981 {
1982 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1983 }
1984 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1985
1986 /**
1987 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1988 */
1989 void rcu_barrier_sched(void)
1990 {
1991 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1992 }
1993 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1994
1995 /*
1996 * Do boot-time initialization of a CPU's per-CPU RCU data.
1997 */
1998 static void __init
1999 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2000 {
2001 unsigned long flags;
2002 int i;
2003 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2004 struct rcu_node *rnp = rcu_get_root(rsp);
2005
2006 /* Set up local state, ensuring consistent view of global state. */
2007 raw_spin_lock_irqsave(&rnp->lock, flags);
2008 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2009 rdp->nxtlist = NULL;
2010 for (i = 0; i < RCU_NEXT_SIZE; i++)
2011 rdp->nxttail[i] = &rdp->nxtlist;
2012 rdp->qlen = 0;
2013 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2014 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != LLONG_MAX / 2);
2015 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2016 rdp->cpu = cpu;
2017 rdp->rsp = rsp;
2018 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2019 }
2020
2021 /*
2022 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2023 * offline event can be happening at a given time. Note also that we
2024 * can accept some slop in the rsp->completed access due to the fact
2025 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2026 */
2027 static void __cpuinit
2028 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2029 {
2030 unsigned long flags;
2031 unsigned long mask;
2032 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2033 struct rcu_node *rnp = rcu_get_root(rsp);
2034
2035 /* Set up local state, ensuring consistent view of global state. */
2036 raw_spin_lock_irqsave(&rnp->lock, flags);
2037 rdp->beenonline = 1; /* We have now been online. */
2038 rdp->preemptible = preemptible;
2039 rdp->qlen_last_fqs_check = 0;
2040 rdp->n_force_qs_snap = rsp->n_force_qs;
2041 rdp->blimit = blimit;
2042 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != LLONG_MAX / 2);
2043 WARN_ON_ONCE((atomic_read(&rdp->dynticks->dynticks) & 0x1) != 1);
2044 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2045
2046 /*
2047 * A new grace period might start here. If so, we won't be part
2048 * of it, but that is OK, as we are currently in a quiescent state.
2049 */
2050
2051 /* Exclude any attempts to start a new GP on large systems. */
2052 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2053
2054 /* Add CPU to rcu_node bitmasks. */
2055 rnp = rdp->mynode;
2056 mask = rdp->grpmask;
2057 do {
2058 /* Exclude any attempts to start a new GP on small systems. */
2059 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2060 rnp->qsmaskinit |= mask;
2061 mask = rnp->grpmask;
2062 if (rnp == rdp->mynode) {
2063 /*
2064 * If there is a grace period in progress, we will
2065 * set up to wait for it next time we run the
2066 * RCU core code.
2067 */
2068 rdp->gpnum = rnp->completed;
2069 rdp->completed = rnp->completed;
2070 rdp->passed_quiesce = 0;
2071 rdp->qs_pending = 0;
2072 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2073 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2074 }
2075 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2076 rnp = rnp->parent;
2077 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2078
2079 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2080 }
2081
2082 static void __cpuinit rcu_prepare_cpu(int cpu)
2083 {
2084 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2085 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2086 rcu_preempt_init_percpu_data(cpu);
2087 }
2088
2089 /*
2090 * Handle CPU online/offline notification events.
2091 */
2092 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2093 unsigned long action, void *hcpu)
2094 {
2095 long cpu = (long)hcpu;
2096 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2097 struct rcu_node *rnp = rdp->mynode;
2098
2099 trace_rcu_utilization("Start CPU hotplug");
2100 switch (action) {
2101 case CPU_UP_PREPARE:
2102 case CPU_UP_PREPARE_FROZEN:
2103 rcu_prepare_cpu(cpu);
2104 rcu_prepare_kthreads(cpu);
2105 break;
2106 case CPU_ONLINE:
2107 case CPU_DOWN_FAILED:
2108 rcu_node_kthread_setaffinity(rnp, -1);
2109 rcu_cpu_kthread_setrt(cpu, 1);
2110 break;
2111 case CPU_DOWN_PREPARE:
2112 rcu_node_kthread_setaffinity(rnp, cpu);
2113 rcu_cpu_kthread_setrt(cpu, 0);
2114 break;
2115 case CPU_DYING:
2116 case CPU_DYING_FROZEN:
2117 /*
2118 * The whole machine is "stopped" except this CPU, so we can
2119 * touch any data without introducing corruption. We send the
2120 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2121 */
2122 rcu_send_cbs_to_online(&rcu_bh_state);
2123 rcu_send_cbs_to_online(&rcu_sched_state);
2124 rcu_preempt_send_cbs_to_online();
2125 break;
2126 case CPU_DEAD:
2127 case CPU_DEAD_FROZEN:
2128 case CPU_UP_CANCELED:
2129 case CPU_UP_CANCELED_FROZEN:
2130 rcu_offline_cpu(cpu);
2131 break;
2132 default:
2133 break;
2134 }
2135 trace_rcu_utilization("End CPU hotplug");
2136 return NOTIFY_OK;
2137 }
2138
2139 /*
2140 * This function is invoked towards the end of the scheduler's initialization
2141 * process. Before this is called, the idle task might contain
2142 * RCU read-side critical sections (during which time, this idle
2143 * task is booting the system). After this function is called, the
2144 * idle tasks are prohibited from containing RCU read-side critical
2145 * sections. This function also enables RCU lockdep checking.
2146 */
2147 void rcu_scheduler_starting(void)
2148 {
2149 WARN_ON(num_online_cpus() != 1);
2150 WARN_ON(nr_context_switches() > 0);
2151 rcu_scheduler_active = 1;
2152 }
2153
2154 /*
2155 * Compute the per-level fanout, either using the exact fanout specified
2156 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2157 */
2158 #ifdef CONFIG_RCU_FANOUT_EXACT
2159 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2160 {
2161 int i;
2162
2163 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2164 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2165 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2166 }
2167 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2168 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2169 {
2170 int ccur;
2171 int cprv;
2172 int i;
2173
2174 cprv = NR_CPUS;
2175 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2176 ccur = rsp->levelcnt[i];
2177 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2178 cprv = ccur;
2179 }
2180 }
2181 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2182
2183 /*
2184 * Helper function for rcu_init() that initializes one rcu_state structure.
2185 */
2186 static void __init rcu_init_one(struct rcu_state *rsp,
2187 struct rcu_data __percpu *rda)
2188 {
2189 static char *buf[] = { "rcu_node_level_0",
2190 "rcu_node_level_1",
2191 "rcu_node_level_2",
2192 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2193 int cpustride = 1;
2194 int i;
2195 int j;
2196 struct rcu_node *rnp;
2197
2198 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2199
2200 /* Initialize the level-tracking arrays. */
2201
2202 for (i = 1; i < NUM_RCU_LVLS; i++)
2203 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2204 rcu_init_levelspread(rsp);
2205
2206 /* Initialize the elements themselves, starting from the leaves. */
2207
2208 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2209 cpustride *= rsp->levelspread[i];
2210 rnp = rsp->level[i];
2211 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2212 raw_spin_lock_init(&rnp->lock);
2213 lockdep_set_class_and_name(&rnp->lock,
2214 &rcu_node_class[i], buf[i]);
2215 rnp->gpnum = 0;
2216 rnp->qsmask = 0;
2217 rnp->qsmaskinit = 0;
2218 rnp->grplo = j * cpustride;
2219 rnp->grphi = (j + 1) * cpustride - 1;
2220 if (rnp->grphi >= NR_CPUS)
2221 rnp->grphi = NR_CPUS - 1;
2222 if (i == 0) {
2223 rnp->grpnum = 0;
2224 rnp->grpmask = 0;
2225 rnp->parent = NULL;
2226 } else {
2227 rnp->grpnum = j % rsp->levelspread[i - 1];
2228 rnp->grpmask = 1UL << rnp->grpnum;
2229 rnp->parent = rsp->level[i - 1] +
2230 j / rsp->levelspread[i - 1];
2231 }
2232 rnp->level = i;
2233 INIT_LIST_HEAD(&rnp->blkd_tasks);
2234 }
2235 }
2236
2237 rsp->rda = rda;
2238 rnp = rsp->level[NUM_RCU_LVLS - 1];
2239 for_each_possible_cpu(i) {
2240 while (i > rnp->grphi)
2241 rnp++;
2242 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2243 rcu_boot_init_percpu_data(i, rsp);
2244 }
2245 }
2246
2247 void __init rcu_init(void)
2248 {
2249 int cpu;
2250
2251 rcu_bootup_announce();
2252 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2253 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2254 __rcu_init_preempt();
2255 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2256
2257 /*
2258 * We don't need protection against CPU-hotplug here because
2259 * this is called early in boot, before either interrupts
2260 * or the scheduler are operational.
2261 */
2262 cpu_notifier(rcu_cpu_notify, 0);
2263 for_each_online_cpu(cpu)
2264 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2265 check_cpu_stall_init();
2266 }
2267
2268 #include "rcutree_plugin.h"