Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55
56 #include "rcutree.h"
57 #include <trace/events/rcu.h>
58
59 #include "rcu.h"
60
61 /* Data structures. */
62
63 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64
65 #define RCU_STATE_INITIALIZER(sname, cr) { \
66 .level = { &sname##_state.node[0] }, \
67 .call = cr, \
68 .fqs_state = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
76 .name = #sname, \
77 }
78
79 struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
81 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82
83 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
84 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85
86 static struct rcu_state *rcu_state;
87 LIST_HEAD(rcu_struct_flavors);
88
89 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91 module_param(rcu_fanout_leaf, int, 0);
92 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99 };
100 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
102 /*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
111 int rcu_scheduler_active __read_mostly;
112 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
114 /*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126 static int rcu_scheduler_fully_active __read_mostly;
127
128 #ifdef CONFIG_RCU_BOOST
129
130 /*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
135 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
136 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
138 DEFINE_PER_CPU(char, rcu_cpu_has_work);
139
140 #endif /* #ifdef CONFIG_RCU_BOOST */
141
142 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
143 static void invoke_rcu_core(void);
144 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
145
146 /*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155 unsigned long rcutorture_testseq;
156 unsigned long rcutorture_vernum;
157
158 /*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163 static int rcu_gp_in_progress(struct rcu_state *rsp)
164 {
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166 }
167
168 /*
169 * Note a quiescent state. Because we do not need to know
170 * how many quiescent states passed, just if there was at least
171 * one since the start of the grace period, this just sets a flag.
172 * The caller must have disabled preemption.
173 */
174 void rcu_sched_qs(int cpu)
175 {
176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
177
178 rdp->passed_quiesce_gpnum = rdp->gpnum;
179 barrier();
180 if (rdp->passed_quiesce == 0)
181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 rdp->passed_quiesce = 1;
183 }
184
185 void rcu_bh_qs(int cpu)
186 {
187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188
189 rdp->passed_quiesce_gpnum = rdp->gpnum;
190 barrier();
191 if (rdp->passed_quiesce == 0)
192 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
193 rdp->passed_quiesce = 1;
194 }
195
196 /*
197 * Note a context switch. This is a quiescent state for RCU-sched,
198 * and requires special handling for preemptible RCU.
199 * The caller must have disabled preemption.
200 */
201 void rcu_note_context_switch(int cpu)
202 {
203 trace_rcu_utilization("Start context switch");
204 rcu_sched_qs(cpu);
205 rcu_preempt_note_context_switch(cpu);
206 trace_rcu_utilization("End context switch");
207 }
208 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
209
210 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
211 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
212 .dynticks = ATOMIC_INIT(1),
213 };
214
215 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216 static int qhimark = 10000; /* If this many pending, ignore blimit. */
217 static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
219 module_param(blimit, int, 0);
220 module_param(qhimark, int, 0);
221 module_param(qlowmark, int, 0);
222
223 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
226 module_param(rcu_cpu_stall_suppress, int, 0644);
227 module_param(rcu_cpu_stall_timeout, int, 0644);
228
229 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
230 static int rcu_pending(int cpu);
231
232 /*
233 * Return the number of RCU-sched batches processed thus far for debug & stats.
234 */
235 long rcu_batches_completed_sched(void)
236 {
237 return rcu_sched_state.completed;
238 }
239 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
240
241 /*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244 long rcu_batches_completed_bh(void)
245 {
246 return rcu_bh_state.completed;
247 }
248 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
250 /*
251 * Force a quiescent state for RCU BH.
252 */
253 void rcu_bh_force_quiescent_state(void)
254 {
255 force_quiescent_state(&rcu_bh_state, 0);
256 }
257 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
259 /*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266 void rcutorture_record_test_transition(void)
267 {
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270 }
271 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273 /*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278 void rcutorture_record_progress(unsigned long vernum)
279 {
280 rcutorture_vernum++;
281 }
282 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
284 /*
285 * Force a quiescent state for RCU-sched.
286 */
287 void rcu_sched_force_quiescent_state(void)
288 {
289 force_quiescent_state(&rcu_sched_state, 0);
290 }
291 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
293 /*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296 static int
297 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298 {
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
300 }
301
302 /*
303 * Does the current CPU require a yet-as-unscheduled grace period?
304 */
305 static int
306 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
307 {
308 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
309 }
310
311 /*
312 * Return the root node of the specified rcu_state structure.
313 */
314 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
315 {
316 return &rsp->node[0];
317 }
318
319 /*
320 * If the specified CPU is offline, tell the caller that it is in
321 * a quiescent state. Otherwise, whack it with a reschedule IPI.
322 * Grace periods can end up waiting on an offline CPU when that
323 * CPU is in the process of coming online -- it will be added to the
324 * rcu_node bitmasks before it actually makes it online. The same thing
325 * can happen while a CPU is in the process of coming online. Because this
326 * race is quite rare, we check for it after detecting that the grace
327 * period has been delayed rather than checking each and every CPU
328 * each and every time we start a new grace period.
329 */
330 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
331 {
332 /*
333 * If the CPU is offline for more than a jiffy, it is in a quiescent
334 * state. We can trust its state not to change because interrupts
335 * are disabled. The reason for the jiffy's worth of slack is to
336 * handle CPUs initializing on the way up and finding their way
337 * to the idle loop on the way down.
338 */
339 if (cpu_is_offline(rdp->cpu) &&
340 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
341 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
342 rdp->offline_fqs++;
343 return 1;
344 }
345 return 0;
346 }
347
348 /*
349 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
350 *
351 * If the new value of the ->dynticks_nesting counter now is zero,
352 * we really have entered idle, and must do the appropriate accounting.
353 * The caller must have disabled interrupts.
354 */
355 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
356 {
357 trace_rcu_dyntick("Start", oldval, 0);
358 if (!is_idle_task(current)) {
359 struct task_struct *idle = idle_task(smp_processor_id());
360
361 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
362 ftrace_dump(DUMP_ORIG);
363 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
364 current->pid, current->comm,
365 idle->pid, idle->comm); /* must be idle task! */
366 }
367 rcu_prepare_for_idle(smp_processor_id());
368 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
369 smp_mb__before_atomic_inc(); /* See above. */
370 atomic_inc(&rdtp->dynticks);
371 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
372 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
373
374 /*
375 * The idle task is not permitted to enter the idle loop while
376 * in an RCU read-side critical section.
377 */
378 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
379 "Illegal idle entry in RCU read-side critical section.");
380 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
381 "Illegal idle entry in RCU-bh read-side critical section.");
382 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
383 "Illegal idle entry in RCU-sched read-side critical section.");
384 }
385
386 /**
387 * rcu_idle_enter - inform RCU that current CPU is entering idle
388 *
389 * Enter idle mode, in other words, -leave- the mode in which RCU
390 * read-side critical sections can occur. (Though RCU read-side
391 * critical sections can occur in irq handlers in idle, a possibility
392 * handled by irq_enter() and irq_exit().)
393 *
394 * We crowbar the ->dynticks_nesting field to zero to allow for
395 * the possibility of usermode upcalls having messed up our count
396 * of interrupt nesting level during the prior busy period.
397 */
398 void rcu_idle_enter(void)
399 {
400 unsigned long flags;
401 long long oldval;
402 struct rcu_dynticks *rdtp;
403
404 local_irq_save(flags);
405 rdtp = &__get_cpu_var(rcu_dynticks);
406 oldval = rdtp->dynticks_nesting;
407 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
408 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
409 rdtp->dynticks_nesting = 0;
410 else
411 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
412 rcu_idle_enter_common(rdtp, oldval);
413 local_irq_restore(flags);
414 }
415 EXPORT_SYMBOL_GPL(rcu_idle_enter);
416
417 /**
418 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
419 *
420 * Exit from an interrupt handler, which might possibly result in entering
421 * idle mode, in other words, leaving the mode in which read-side critical
422 * sections can occur.
423 *
424 * This code assumes that the idle loop never does anything that might
425 * result in unbalanced calls to irq_enter() and irq_exit(). If your
426 * architecture violates this assumption, RCU will give you what you
427 * deserve, good and hard. But very infrequently and irreproducibly.
428 *
429 * Use things like work queues to work around this limitation.
430 *
431 * You have been warned.
432 */
433 void rcu_irq_exit(void)
434 {
435 unsigned long flags;
436 long long oldval;
437 struct rcu_dynticks *rdtp;
438
439 local_irq_save(flags);
440 rdtp = &__get_cpu_var(rcu_dynticks);
441 oldval = rdtp->dynticks_nesting;
442 rdtp->dynticks_nesting--;
443 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
444 if (rdtp->dynticks_nesting)
445 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
446 else
447 rcu_idle_enter_common(rdtp, oldval);
448 local_irq_restore(flags);
449 }
450
451 /*
452 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
453 *
454 * If the new value of the ->dynticks_nesting counter was previously zero,
455 * we really have exited idle, and must do the appropriate accounting.
456 * The caller must have disabled interrupts.
457 */
458 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
459 {
460 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
461 atomic_inc(&rdtp->dynticks);
462 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
463 smp_mb__after_atomic_inc(); /* See above. */
464 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
465 rcu_cleanup_after_idle(smp_processor_id());
466 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
467 if (!is_idle_task(current)) {
468 struct task_struct *idle = idle_task(smp_processor_id());
469
470 trace_rcu_dyntick("Error on exit: not idle task",
471 oldval, rdtp->dynticks_nesting);
472 ftrace_dump(DUMP_ORIG);
473 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
474 current->pid, current->comm,
475 idle->pid, idle->comm); /* must be idle task! */
476 }
477 }
478
479 /**
480 * rcu_idle_exit - inform RCU that current CPU is leaving idle
481 *
482 * Exit idle mode, in other words, -enter- the mode in which RCU
483 * read-side critical sections can occur.
484 *
485 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
486 * allow for the possibility of usermode upcalls messing up our count
487 * of interrupt nesting level during the busy period that is just
488 * now starting.
489 */
490 void rcu_idle_exit(void)
491 {
492 unsigned long flags;
493 struct rcu_dynticks *rdtp;
494 long long oldval;
495
496 local_irq_save(flags);
497 rdtp = &__get_cpu_var(rcu_dynticks);
498 oldval = rdtp->dynticks_nesting;
499 WARN_ON_ONCE(oldval < 0);
500 if (oldval & DYNTICK_TASK_NEST_MASK)
501 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
502 else
503 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
504 rcu_idle_exit_common(rdtp, oldval);
505 local_irq_restore(flags);
506 }
507 EXPORT_SYMBOL_GPL(rcu_idle_exit);
508
509 /**
510 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
511 *
512 * Enter an interrupt handler, which might possibly result in exiting
513 * idle mode, in other words, entering the mode in which read-side critical
514 * sections can occur.
515 *
516 * Note that the Linux kernel is fully capable of entering an interrupt
517 * handler that it never exits, for example when doing upcalls to
518 * user mode! This code assumes that the idle loop never does upcalls to
519 * user mode. If your architecture does do upcalls from the idle loop (or
520 * does anything else that results in unbalanced calls to the irq_enter()
521 * and irq_exit() functions), RCU will give you what you deserve, good
522 * and hard. But very infrequently and irreproducibly.
523 *
524 * Use things like work queues to work around this limitation.
525 *
526 * You have been warned.
527 */
528 void rcu_irq_enter(void)
529 {
530 unsigned long flags;
531 struct rcu_dynticks *rdtp;
532 long long oldval;
533
534 local_irq_save(flags);
535 rdtp = &__get_cpu_var(rcu_dynticks);
536 oldval = rdtp->dynticks_nesting;
537 rdtp->dynticks_nesting++;
538 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
539 if (oldval)
540 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
541 else
542 rcu_idle_exit_common(rdtp, oldval);
543 local_irq_restore(flags);
544 }
545
546 /**
547 * rcu_nmi_enter - inform RCU of entry to NMI context
548 *
549 * If the CPU was idle with dynamic ticks active, and there is no
550 * irq handler running, this updates rdtp->dynticks_nmi to let the
551 * RCU grace-period handling know that the CPU is active.
552 */
553 void rcu_nmi_enter(void)
554 {
555 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
556
557 if (rdtp->dynticks_nmi_nesting == 0 &&
558 (atomic_read(&rdtp->dynticks) & 0x1))
559 return;
560 rdtp->dynticks_nmi_nesting++;
561 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
562 atomic_inc(&rdtp->dynticks);
563 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
564 smp_mb__after_atomic_inc(); /* See above. */
565 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
566 }
567
568 /**
569 * rcu_nmi_exit - inform RCU of exit from NMI context
570 *
571 * If the CPU was idle with dynamic ticks active, and there is no
572 * irq handler running, this updates rdtp->dynticks_nmi to let the
573 * RCU grace-period handling know that the CPU is no longer active.
574 */
575 void rcu_nmi_exit(void)
576 {
577 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
578
579 if (rdtp->dynticks_nmi_nesting == 0 ||
580 --rdtp->dynticks_nmi_nesting != 0)
581 return;
582 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
583 smp_mb__before_atomic_inc(); /* See above. */
584 atomic_inc(&rdtp->dynticks);
585 smp_mb__after_atomic_inc(); /* Force delay to next write. */
586 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
587 }
588
589 /**
590 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
591 *
592 * If the current CPU is in its idle loop and is neither in an interrupt
593 * or NMI handler, return true.
594 */
595 int rcu_is_cpu_idle(void)
596 {
597 int ret;
598
599 preempt_disable();
600 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
601 preempt_enable();
602 return ret;
603 }
604 EXPORT_SYMBOL(rcu_is_cpu_idle);
605
606 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
607
608 /*
609 * Is the current CPU online? Disable preemption to avoid false positives
610 * that could otherwise happen due to the current CPU number being sampled,
611 * this task being preempted, its old CPU being taken offline, resuming
612 * on some other CPU, then determining that its old CPU is now offline.
613 * It is OK to use RCU on an offline processor during initial boot, hence
614 * the check for rcu_scheduler_fully_active. Note also that it is OK
615 * for a CPU coming online to use RCU for one jiffy prior to marking itself
616 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
617 * offline to continue to use RCU for one jiffy after marking itself
618 * offline in the cpu_online_mask. This leniency is necessary given the
619 * non-atomic nature of the online and offline processing, for example,
620 * the fact that a CPU enters the scheduler after completing the CPU_DYING
621 * notifiers.
622 *
623 * This is also why RCU internally marks CPUs online during the
624 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
625 *
626 * Disable checking if in an NMI handler because we cannot safely report
627 * errors from NMI handlers anyway.
628 */
629 bool rcu_lockdep_current_cpu_online(void)
630 {
631 struct rcu_data *rdp;
632 struct rcu_node *rnp;
633 bool ret;
634
635 if (in_nmi())
636 return 1;
637 preempt_disable();
638 rdp = &__get_cpu_var(rcu_sched_data);
639 rnp = rdp->mynode;
640 ret = (rdp->grpmask & rnp->qsmaskinit) ||
641 !rcu_scheduler_fully_active;
642 preempt_enable();
643 return ret;
644 }
645 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
646
647 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
648
649 /**
650 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
651 *
652 * If the current CPU is idle or running at a first-level (not nested)
653 * interrupt from idle, return true. The caller must have at least
654 * disabled preemption.
655 */
656 int rcu_is_cpu_rrupt_from_idle(void)
657 {
658 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
659 }
660
661 /*
662 * Snapshot the specified CPU's dynticks counter so that we can later
663 * credit them with an implicit quiescent state. Return 1 if this CPU
664 * is in dynticks idle mode, which is an extended quiescent state.
665 */
666 static int dyntick_save_progress_counter(struct rcu_data *rdp)
667 {
668 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
669 return (rdp->dynticks_snap & 0x1) == 0;
670 }
671
672 /*
673 * Return true if the specified CPU has passed through a quiescent
674 * state by virtue of being in or having passed through an dynticks
675 * idle state since the last call to dyntick_save_progress_counter()
676 * for this same CPU.
677 */
678 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
679 {
680 unsigned int curr;
681 unsigned int snap;
682
683 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
684 snap = (unsigned int)rdp->dynticks_snap;
685
686 /*
687 * If the CPU passed through or entered a dynticks idle phase with
688 * no active irq/NMI handlers, then we can safely pretend that the CPU
689 * already acknowledged the request to pass through a quiescent
690 * state. Either way, that CPU cannot possibly be in an RCU
691 * read-side critical section that started before the beginning
692 * of the current RCU grace period.
693 */
694 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
695 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
696 rdp->dynticks_fqs++;
697 return 1;
698 }
699
700 /* Go check for the CPU being offline. */
701 return rcu_implicit_offline_qs(rdp);
702 }
703
704 static int jiffies_till_stall_check(void)
705 {
706 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
707
708 /*
709 * Limit check must be consistent with the Kconfig limits
710 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
711 */
712 if (till_stall_check < 3) {
713 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
714 till_stall_check = 3;
715 } else if (till_stall_check > 300) {
716 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
717 till_stall_check = 300;
718 }
719 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
720 }
721
722 static void record_gp_stall_check_time(struct rcu_state *rsp)
723 {
724 rsp->gp_start = jiffies;
725 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
726 }
727
728 static void print_other_cpu_stall(struct rcu_state *rsp)
729 {
730 int cpu;
731 long delta;
732 unsigned long flags;
733 int ndetected = 0;
734 struct rcu_node *rnp = rcu_get_root(rsp);
735
736 /* Only let one CPU complain about others per time interval. */
737
738 raw_spin_lock_irqsave(&rnp->lock, flags);
739 delta = jiffies - rsp->jiffies_stall;
740 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
741 raw_spin_unlock_irqrestore(&rnp->lock, flags);
742 return;
743 }
744 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
745 raw_spin_unlock_irqrestore(&rnp->lock, flags);
746
747 /*
748 * OK, time to rat on our buddy...
749 * See Documentation/RCU/stallwarn.txt for info on how to debug
750 * RCU CPU stall warnings.
751 */
752 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
753 rsp->name);
754 print_cpu_stall_info_begin();
755 rcu_for_each_leaf_node(rsp, rnp) {
756 raw_spin_lock_irqsave(&rnp->lock, flags);
757 ndetected += rcu_print_task_stall(rnp);
758 raw_spin_unlock_irqrestore(&rnp->lock, flags);
759 if (rnp->qsmask == 0)
760 continue;
761 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
762 if (rnp->qsmask & (1UL << cpu)) {
763 print_cpu_stall_info(rsp, rnp->grplo + cpu);
764 ndetected++;
765 }
766 }
767
768 /*
769 * Now rat on any tasks that got kicked up to the root rcu_node
770 * due to CPU offlining.
771 */
772 rnp = rcu_get_root(rsp);
773 raw_spin_lock_irqsave(&rnp->lock, flags);
774 ndetected += rcu_print_task_stall(rnp);
775 raw_spin_unlock_irqrestore(&rnp->lock, flags);
776
777 print_cpu_stall_info_end();
778 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
779 smp_processor_id(), (long)(jiffies - rsp->gp_start));
780 if (ndetected == 0)
781 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
782 else if (!trigger_all_cpu_backtrace())
783 dump_stack();
784
785 /* If so configured, complain about tasks blocking the grace period. */
786
787 rcu_print_detail_task_stall(rsp);
788
789 force_quiescent_state(rsp, 0); /* Kick them all. */
790 }
791
792 static void print_cpu_stall(struct rcu_state *rsp)
793 {
794 unsigned long flags;
795 struct rcu_node *rnp = rcu_get_root(rsp);
796
797 /*
798 * OK, time to rat on ourselves...
799 * See Documentation/RCU/stallwarn.txt for info on how to debug
800 * RCU CPU stall warnings.
801 */
802 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
803 print_cpu_stall_info_begin();
804 print_cpu_stall_info(rsp, smp_processor_id());
805 print_cpu_stall_info_end();
806 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
807 if (!trigger_all_cpu_backtrace())
808 dump_stack();
809
810 raw_spin_lock_irqsave(&rnp->lock, flags);
811 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
812 rsp->jiffies_stall = jiffies +
813 3 * jiffies_till_stall_check() + 3;
814 raw_spin_unlock_irqrestore(&rnp->lock, flags);
815
816 set_need_resched(); /* kick ourselves to get things going. */
817 }
818
819 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
820 {
821 unsigned long j;
822 unsigned long js;
823 struct rcu_node *rnp;
824
825 if (rcu_cpu_stall_suppress)
826 return;
827 j = ACCESS_ONCE(jiffies);
828 js = ACCESS_ONCE(rsp->jiffies_stall);
829 rnp = rdp->mynode;
830 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
831
832 /* We haven't checked in, so go dump stack. */
833 print_cpu_stall(rsp);
834
835 } else if (rcu_gp_in_progress(rsp) &&
836 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
837
838 /* They had a few time units to dump stack, so complain. */
839 print_other_cpu_stall(rsp);
840 }
841 }
842
843 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
844 {
845 rcu_cpu_stall_suppress = 1;
846 return NOTIFY_DONE;
847 }
848
849 /**
850 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
851 *
852 * Set the stall-warning timeout way off into the future, thus preventing
853 * any RCU CPU stall-warning messages from appearing in the current set of
854 * RCU grace periods.
855 *
856 * The caller must disable hard irqs.
857 */
858 void rcu_cpu_stall_reset(void)
859 {
860 struct rcu_state *rsp;
861
862 for_each_rcu_flavor(rsp)
863 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
864 }
865
866 static struct notifier_block rcu_panic_block = {
867 .notifier_call = rcu_panic,
868 };
869
870 static void __init check_cpu_stall_init(void)
871 {
872 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
873 }
874
875 /*
876 * Update CPU-local rcu_data state to record the newly noticed grace period.
877 * This is used both when we started the grace period and when we notice
878 * that someone else started the grace period. The caller must hold the
879 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
880 * and must have irqs disabled.
881 */
882 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
883 {
884 if (rdp->gpnum != rnp->gpnum) {
885 /*
886 * If the current grace period is waiting for this CPU,
887 * set up to detect a quiescent state, otherwise don't
888 * go looking for one.
889 */
890 rdp->gpnum = rnp->gpnum;
891 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
892 if (rnp->qsmask & rdp->grpmask) {
893 rdp->qs_pending = 1;
894 rdp->passed_quiesce = 0;
895 } else {
896 rdp->qs_pending = 0;
897 }
898 zero_cpu_stall_ticks(rdp);
899 }
900 }
901
902 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
903 {
904 unsigned long flags;
905 struct rcu_node *rnp;
906
907 local_irq_save(flags);
908 rnp = rdp->mynode;
909 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
910 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
911 local_irq_restore(flags);
912 return;
913 }
914 __note_new_gpnum(rsp, rnp, rdp);
915 raw_spin_unlock_irqrestore(&rnp->lock, flags);
916 }
917
918 /*
919 * Did someone else start a new RCU grace period start since we last
920 * checked? Update local state appropriately if so. Must be called
921 * on the CPU corresponding to rdp.
922 */
923 static int
924 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
925 {
926 unsigned long flags;
927 int ret = 0;
928
929 local_irq_save(flags);
930 if (rdp->gpnum != rsp->gpnum) {
931 note_new_gpnum(rsp, rdp);
932 ret = 1;
933 }
934 local_irq_restore(flags);
935 return ret;
936 }
937
938 /*
939 * Initialize the specified rcu_data structure's callback list to empty.
940 */
941 static void init_callback_list(struct rcu_data *rdp)
942 {
943 int i;
944
945 rdp->nxtlist = NULL;
946 for (i = 0; i < RCU_NEXT_SIZE; i++)
947 rdp->nxttail[i] = &rdp->nxtlist;
948 }
949
950 /*
951 * Advance this CPU's callbacks, but only if the current grace period
952 * has ended. This may be called only from the CPU to whom the rdp
953 * belongs. In addition, the corresponding leaf rcu_node structure's
954 * ->lock must be held by the caller, with irqs disabled.
955 */
956 static void
957 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
958 {
959 /* Did another grace period end? */
960 if (rdp->completed != rnp->completed) {
961
962 /* Advance callbacks. No harm if list empty. */
963 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
964 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
965 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
966
967 /* Remember that we saw this grace-period completion. */
968 rdp->completed = rnp->completed;
969 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
970
971 /*
972 * If we were in an extended quiescent state, we may have
973 * missed some grace periods that others CPUs handled on
974 * our behalf. Catch up with this state to avoid noting
975 * spurious new grace periods. If another grace period
976 * has started, then rnp->gpnum will have advanced, so
977 * we will detect this later on.
978 */
979 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
980 rdp->gpnum = rdp->completed;
981
982 /*
983 * If RCU does not need a quiescent state from this CPU,
984 * then make sure that this CPU doesn't go looking for one.
985 */
986 if ((rnp->qsmask & rdp->grpmask) == 0)
987 rdp->qs_pending = 0;
988 }
989 }
990
991 /*
992 * Advance this CPU's callbacks, but only if the current grace period
993 * has ended. This may be called only from the CPU to whom the rdp
994 * belongs.
995 */
996 static void
997 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
998 {
999 unsigned long flags;
1000 struct rcu_node *rnp;
1001
1002 local_irq_save(flags);
1003 rnp = rdp->mynode;
1004 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1005 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1006 local_irq_restore(flags);
1007 return;
1008 }
1009 __rcu_process_gp_end(rsp, rnp, rdp);
1010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1011 }
1012
1013 /*
1014 * Do per-CPU grace-period initialization for running CPU. The caller
1015 * must hold the lock of the leaf rcu_node structure corresponding to
1016 * this CPU.
1017 */
1018 static void
1019 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1020 {
1021 /* Prior grace period ended, so advance callbacks for current CPU. */
1022 __rcu_process_gp_end(rsp, rnp, rdp);
1023
1024 /*
1025 * Because this CPU just now started the new grace period, we know
1026 * that all of its callbacks will be covered by this upcoming grace
1027 * period, even the ones that were registered arbitrarily recently.
1028 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1029 *
1030 * Other CPUs cannot be sure exactly when the grace period started.
1031 * Therefore, their recently registered callbacks must pass through
1032 * an additional RCU_NEXT_READY stage, so that they will be handled
1033 * by the next RCU grace period.
1034 */
1035 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1036 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1037
1038 /* Set state so that this CPU will detect the next quiescent state. */
1039 __note_new_gpnum(rsp, rnp, rdp);
1040 }
1041
1042 /*
1043 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1044 * in preparation for detecting the next grace period. The caller must hold
1045 * the root node's ->lock, which is released before return. Hard irqs must
1046 * be disabled.
1047 *
1048 * Note that it is legal for a dying CPU (which is marked as offline) to
1049 * invoke this function. This can happen when the dying CPU reports its
1050 * quiescent state.
1051 */
1052 static void
1053 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1054 __releases(rcu_get_root(rsp)->lock)
1055 {
1056 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1057 struct rcu_node *rnp = rcu_get_root(rsp);
1058
1059 if (!rcu_scheduler_fully_active ||
1060 !cpu_needs_another_gp(rsp, rdp)) {
1061 /*
1062 * Either the scheduler hasn't yet spawned the first
1063 * non-idle task or this CPU does not need another
1064 * grace period. Either way, don't start a new grace
1065 * period.
1066 */
1067 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1068 return;
1069 }
1070
1071 if (rsp->fqs_active) {
1072 /*
1073 * This CPU needs a grace period, but force_quiescent_state()
1074 * is running. Tell it to start one on this CPU's behalf.
1075 */
1076 rsp->fqs_need_gp = 1;
1077 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1078 return;
1079 }
1080
1081 /* Advance to a new grace period and initialize state. */
1082 rsp->gpnum++;
1083 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1084 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1085 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1086 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1087 record_gp_stall_check_time(rsp);
1088 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1089
1090 /* Exclude any concurrent CPU-hotplug operations. */
1091 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1092
1093 /*
1094 * Set the quiescent-state-needed bits in all the rcu_node
1095 * structures for all currently online CPUs in breadth-first
1096 * order, starting from the root rcu_node structure. This
1097 * operation relies on the layout of the hierarchy within the
1098 * rsp->node[] array. Note that other CPUs will access only
1099 * the leaves of the hierarchy, which still indicate that no
1100 * grace period is in progress, at least until the corresponding
1101 * leaf node has been initialized. In addition, we have excluded
1102 * CPU-hotplug operations.
1103 *
1104 * Note that the grace period cannot complete until we finish
1105 * the initialization process, as there will be at least one
1106 * qsmask bit set in the root node until that time, namely the
1107 * one corresponding to this CPU, due to the fact that we have
1108 * irqs disabled.
1109 */
1110 rcu_for_each_node_breadth_first(rsp, rnp) {
1111 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1112 rcu_preempt_check_blocked_tasks(rnp);
1113 rnp->qsmask = rnp->qsmaskinit;
1114 rnp->gpnum = rsp->gpnum;
1115 rnp->completed = rsp->completed;
1116 if (rnp == rdp->mynode)
1117 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1118 rcu_preempt_boost_start_gp(rnp);
1119 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1120 rnp->level, rnp->grplo,
1121 rnp->grphi, rnp->qsmask);
1122 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1123 }
1124
1125 rnp = rcu_get_root(rsp);
1126 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1127 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1128 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1129 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1130 }
1131
1132 /*
1133 * Report a full set of quiescent states to the specified rcu_state
1134 * data structure. This involves cleaning up after the prior grace
1135 * period and letting rcu_start_gp() start up the next grace period
1136 * if one is needed. Note that the caller must hold rnp->lock, as
1137 * required by rcu_start_gp(), which will release it.
1138 */
1139 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1140 __releases(rcu_get_root(rsp)->lock)
1141 {
1142 unsigned long gp_duration;
1143 struct rcu_node *rnp = rcu_get_root(rsp);
1144 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1145
1146 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1147
1148 /*
1149 * Ensure that all grace-period and pre-grace-period activity
1150 * is seen before the assignment to rsp->completed.
1151 */
1152 smp_mb(); /* See above block comment. */
1153 gp_duration = jiffies - rsp->gp_start;
1154 if (gp_duration > rsp->gp_max)
1155 rsp->gp_max = gp_duration;
1156
1157 /*
1158 * We know the grace period is complete, but to everyone else
1159 * it appears to still be ongoing. But it is also the case
1160 * that to everyone else it looks like there is nothing that
1161 * they can do to advance the grace period. It is therefore
1162 * safe for us to drop the lock in order to mark the grace
1163 * period as completed in all of the rcu_node structures.
1164 *
1165 * But if this CPU needs another grace period, it will take
1166 * care of this while initializing the next grace period.
1167 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1168 * because the callbacks have not yet been advanced: Those
1169 * callbacks are waiting on the grace period that just now
1170 * completed.
1171 */
1172 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1173 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1174
1175 /*
1176 * Propagate new ->completed value to rcu_node structures
1177 * so that other CPUs don't have to wait until the start
1178 * of the next grace period to process their callbacks.
1179 */
1180 rcu_for_each_node_breadth_first(rsp, rnp) {
1181 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1182 rnp->completed = rsp->gpnum;
1183 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1184 }
1185 rnp = rcu_get_root(rsp);
1186 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1187 }
1188
1189 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1190 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1191 rsp->fqs_state = RCU_GP_IDLE;
1192 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1193 }
1194
1195 /*
1196 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1197 * Allows quiescent states for a group of CPUs to be reported at one go
1198 * to the specified rcu_node structure, though all the CPUs in the group
1199 * must be represented by the same rcu_node structure (which need not be
1200 * a leaf rcu_node structure, though it often will be). That structure's
1201 * lock must be held upon entry, and it is released before return.
1202 */
1203 static void
1204 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1205 struct rcu_node *rnp, unsigned long flags)
1206 __releases(rnp->lock)
1207 {
1208 struct rcu_node *rnp_c;
1209
1210 /* Walk up the rcu_node hierarchy. */
1211 for (;;) {
1212 if (!(rnp->qsmask & mask)) {
1213
1214 /* Our bit has already been cleared, so done. */
1215 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1216 return;
1217 }
1218 rnp->qsmask &= ~mask;
1219 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1220 mask, rnp->qsmask, rnp->level,
1221 rnp->grplo, rnp->grphi,
1222 !!rnp->gp_tasks);
1223 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1224
1225 /* Other bits still set at this level, so done. */
1226 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1227 return;
1228 }
1229 mask = rnp->grpmask;
1230 if (rnp->parent == NULL) {
1231
1232 /* No more levels. Exit loop holding root lock. */
1233
1234 break;
1235 }
1236 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1237 rnp_c = rnp;
1238 rnp = rnp->parent;
1239 raw_spin_lock_irqsave(&rnp->lock, flags);
1240 WARN_ON_ONCE(rnp_c->qsmask);
1241 }
1242
1243 /*
1244 * Get here if we are the last CPU to pass through a quiescent
1245 * state for this grace period. Invoke rcu_report_qs_rsp()
1246 * to clean up and start the next grace period if one is needed.
1247 */
1248 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1249 }
1250
1251 /*
1252 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1253 * structure. This must be either called from the specified CPU, or
1254 * called when the specified CPU is known to be offline (and when it is
1255 * also known that no other CPU is concurrently trying to help the offline
1256 * CPU). The lastcomp argument is used to make sure we are still in the
1257 * grace period of interest. We don't want to end the current grace period
1258 * based on quiescent states detected in an earlier grace period!
1259 */
1260 static void
1261 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1262 {
1263 unsigned long flags;
1264 unsigned long mask;
1265 struct rcu_node *rnp;
1266
1267 rnp = rdp->mynode;
1268 raw_spin_lock_irqsave(&rnp->lock, flags);
1269 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1270
1271 /*
1272 * The grace period in which this quiescent state was
1273 * recorded has ended, so don't report it upwards.
1274 * We will instead need a new quiescent state that lies
1275 * within the current grace period.
1276 */
1277 rdp->passed_quiesce = 0; /* need qs for new gp. */
1278 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1279 return;
1280 }
1281 mask = rdp->grpmask;
1282 if ((rnp->qsmask & mask) == 0) {
1283 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1284 } else {
1285 rdp->qs_pending = 0;
1286
1287 /*
1288 * This GP can't end until cpu checks in, so all of our
1289 * callbacks can be processed during the next GP.
1290 */
1291 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1292
1293 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1294 }
1295 }
1296
1297 /*
1298 * Check to see if there is a new grace period of which this CPU
1299 * is not yet aware, and if so, set up local rcu_data state for it.
1300 * Otherwise, see if this CPU has just passed through its first
1301 * quiescent state for this grace period, and record that fact if so.
1302 */
1303 static void
1304 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1305 {
1306 /* If there is now a new grace period, record and return. */
1307 if (check_for_new_grace_period(rsp, rdp))
1308 return;
1309
1310 /*
1311 * Does this CPU still need to do its part for current grace period?
1312 * If no, return and let the other CPUs do their part as well.
1313 */
1314 if (!rdp->qs_pending)
1315 return;
1316
1317 /*
1318 * Was there a quiescent state since the beginning of the grace
1319 * period? If no, then exit and wait for the next call.
1320 */
1321 if (!rdp->passed_quiesce)
1322 return;
1323
1324 /*
1325 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1326 * judge of that).
1327 */
1328 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1329 }
1330
1331 #ifdef CONFIG_HOTPLUG_CPU
1332
1333 /*
1334 * Send the specified CPU's RCU callbacks to the orphanage. The
1335 * specified CPU must be offline, and the caller must hold the
1336 * ->onofflock.
1337 */
1338 static void
1339 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1340 struct rcu_node *rnp, struct rcu_data *rdp)
1341 {
1342 /*
1343 * Orphan the callbacks. First adjust the counts. This is safe
1344 * because ->onofflock excludes _rcu_barrier()'s adoption of
1345 * the callbacks, thus no memory barrier is required.
1346 */
1347 if (rdp->nxtlist != NULL) {
1348 rsp->qlen_lazy += rdp->qlen_lazy;
1349 rsp->qlen += rdp->qlen;
1350 rdp->n_cbs_orphaned += rdp->qlen;
1351 rdp->qlen_lazy = 0;
1352 ACCESS_ONCE(rdp->qlen) = 0;
1353 }
1354
1355 /*
1356 * Next, move those callbacks still needing a grace period to
1357 * the orphanage, where some other CPU will pick them up.
1358 * Some of the callbacks might have gone partway through a grace
1359 * period, but that is too bad. They get to start over because we
1360 * cannot assume that grace periods are synchronized across CPUs.
1361 * We don't bother updating the ->nxttail[] array yet, instead
1362 * we just reset the whole thing later on.
1363 */
1364 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1365 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1366 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1367 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1368 }
1369
1370 /*
1371 * Then move the ready-to-invoke callbacks to the orphanage,
1372 * where some other CPU will pick them up. These will not be
1373 * required to pass though another grace period: They are done.
1374 */
1375 if (rdp->nxtlist != NULL) {
1376 *rsp->orphan_donetail = rdp->nxtlist;
1377 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1378 }
1379
1380 /* Finally, initialize the rcu_data structure's list to empty. */
1381 init_callback_list(rdp);
1382 }
1383
1384 /*
1385 * Adopt the RCU callbacks from the specified rcu_state structure's
1386 * orphanage. The caller must hold the ->onofflock.
1387 */
1388 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1389 {
1390 int i;
1391 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1392
1393 /*
1394 * If there is an rcu_barrier() operation in progress, then
1395 * only the task doing that operation is permitted to adopt
1396 * callbacks. To do otherwise breaks rcu_barrier() and friends
1397 * by causing them to fail to wait for the callbacks in the
1398 * orphanage.
1399 */
1400 if (rsp->rcu_barrier_in_progress &&
1401 rsp->rcu_barrier_in_progress != current)
1402 return;
1403
1404 /* Do the accounting first. */
1405 rdp->qlen_lazy += rsp->qlen_lazy;
1406 rdp->qlen += rsp->qlen;
1407 rdp->n_cbs_adopted += rsp->qlen;
1408 if (rsp->qlen_lazy != rsp->qlen)
1409 rcu_idle_count_callbacks_posted();
1410 rsp->qlen_lazy = 0;
1411 rsp->qlen = 0;
1412
1413 /*
1414 * We do not need a memory barrier here because the only way we
1415 * can get here if there is an rcu_barrier() in flight is if
1416 * we are the task doing the rcu_barrier().
1417 */
1418
1419 /* First adopt the ready-to-invoke callbacks. */
1420 if (rsp->orphan_donelist != NULL) {
1421 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1422 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1423 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1424 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1425 rdp->nxttail[i] = rsp->orphan_donetail;
1426 rsp->orphan_donelist = NULL;
1427 rsp->orphan_donetail = &rsp->orphan_donelist;
1428 }
1429
1430 /* And then adopt the callbacks that still need a grace period. */
1431 if (rsp->orphan_nxtlist != NULL) {
1432 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1433 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1434 rsp->orphan_nxtlist = NULL;
1435 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1436 }
1437 }
1438
1439 /*
1440 * Trace the fact that this CPU is going offline.
1441 */
1442 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1443 {
1444 RCU_TRACE(unsigned long mask);
1445 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1446 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1447
1448 RCU_TRACE(mask = rdp->grpmask);
1449 trace_rcu_grace_period(rsp->name,
1450 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1451 "cpuofl");
1452 }
1453
1454 /*
1455 * The CPU has been completely removed, and some other CPU is reporting
1456 * this fact from process context. Do the remainder of the cleanup,
1457 * including orphaning the outgoing CPU's RCU callbacks, and also
1458 * adopting them, if there is no _rcu_barrier() instance running.
1459 * There can only be one CPU hotplug operation at a time, so no other
1460 * CPU can be attempting to update rcu_cpu_kthread_task.
1461 */
1462 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1463 {
1464 unsigned long flags;
1465 unsigned long mask;
1466 int need_report = 0;
1467 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1468 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1469
1470 /* Adjust any no-longer-needed kthreads. */
1471 rcu_stop_cpu_kthread(cpu);
1472 rcu_node_kthread_setaffinity(rnp, -1);
1473
1474 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1475
1476 /* Exclude any attempts to start a new grace period. */
1477 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1478
1479 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1480 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1481 rcu_adopt_orphan_cbs(rsp);
1482
1483 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1484 mask = rdp->grpmask; /* rnp->grplo is constant. */
1485 do {
1486 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1487 rnp->qsmaskinit &= ~mask;
1488 if (rnp->qsmaskinit != 0) {
1489 if (rnp != rdp->mynode)
1490 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1491 break;
1492 }
1493 if (rnp == rdp->mynode)
1494 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1495 else
1496 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1497 mask = rnp->grpmask;
1498 rnp = rnp->parent;
1499 } while (rnp != NULL);
1500
1501 /*
1502 * We still hold the leaf rcu_node structure lock here, and
1503 * irqs are still disabled. The reason for this subterfuge is
1504 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1505 * held leads to deadlock.
1506 */
1507 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1508 rnp = rdp->mynode;
1509 if (need_report & RCU_OFL_TASKS_NORM_GP)
1510 rcu_report_unblock_qs_rnp(rnp, flags);
1511 else
1512 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1513 if (need_report & RCU_OFL_TASKS_EXP_GP)
1514 rcu_report_exp_rnp(rsp, rnp, true);
1515 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1516 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1517 cpu, rdp->qlen, rdp->nxtlist);
1518 }
1519
1520 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1521
1522 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1523 {
1524 }
1525
1526 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1527 {
1528 }
1529
1530 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1531 {
1532 }
1533
1534 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1535
1536 /*
1537 * Invoke any RCU callbacks that have made it to the end of their grace
1538 * period. Thottle as specified by rdp->blimit.
1539 */
1540 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1541 {
1542 unsigned long flags;
1543 struct rcu_head *next, *list, **tail;
1544 int bl, count, count_lazy, i;
1545
1546 /* If no callbacks are ready, just return.*/
1547 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1548 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1549 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1550 need_resched(), is_idle_task(current),
1551 rcu_is_callbacks_kthread());
1552 return;
1553 }
1554
1555 /*
1556 * Extract the list of ready callbacks, disabling to prevent
1557 * races with call_rcu() from interrupt handlers.
1558 */
1559 local_irq_save(flags);
1560 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1561 bl = rdp->blimit;
1562 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1563 list = rdp->nxtlist;
1564 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1565 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1566 tail = rdp->nxttail[RCU_DONE_TAIL];
1567 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1568 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1569 rdp->nxttail[i] = &rdp->nxtlist;
1570 local_irq_restore(flags);
1571
1572 /* Invoke callbacks. */
1573 count = count_lazy = 0;
1574 while (list) {
1575 next = list->next;
1576 prefetch(next);
1577 debug_rcu_head_unqueue(list);
1578 if (__rcu_reclaim(rsp->name, list))
1579 count_lazy++;
1580 list = next;
1581 /* Stop only if limit reached and CPU has something to do. */
1582 if (++count >= bl &&
1583 (need_resched() ||
1584 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1585 break;
1586 }
1587
1588 local_irq_save(flags);
1589 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1590 is_idle_task(current),
1591 rcu_is_callbacks_kthread());
1592
1593 /* Update count, and requeue any remaining callbacks. */
1594 if (list != NULL) {
1595 *tail = rdp->nxtlist;
1596 rdp->nxtlist = list;
1597 for (i = 0; i < RCU_NEXT_SIZE; i++)
1598 if (&rdp->nxtlist == rdp->nxttail[i])
1599 rdp->nxttail[i] = tail;
1600 else
1601 break;
1602 }
1603 smp_mb(); /* List handling before counting for rcu_barrier(). */
1604 rdp->qlen_lazy -= count_lazy;
1605 ACCESS_ONCE(rdp->qlen) -= count;
1606 rdp->n_cbs_invoked += count;
1607
1608 /* Reinstate batch limit if we have worked down the excess. */
1609 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1610 rdp->blimit = blimit;
1611
1612 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1613 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1614 rdp->qlen_last_fqs_check = 0;
1615 rdp->n_force_qs_snap = rsp->n_force_qs;
1616 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1617 rdp->qlen_last_fqs_check = rdp->qlen;
1618 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1619
1620 local_irq_restore(flags);
1621
1622 /* Re-invoke RCU core processing if there are callbacks remaining. */
1623 if (cpu_has_callbacks_ready_to_invoke(rdp))
1624 invoke_rcu_core();
1625 }
1626
1627 /*
1628 * Check to see if this CPU is in a non-context-switch quiescent state
1629 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1630 * Also schedule RCU core processing.
1631 *
1632 * This function must be called from hardirq context. It is normally
1633 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1634 * false, there is no point in invoking rcu_check_callbacks().
1635 */
1636 void rcu_check_callbacks(int cpu, int user)
1637 {
1638 trace_rcu_utilization("Start scheduler-tick");
1639 increment_cpu_stall_ticks();
1640 if (user || rcu_is_cpu_rrupt_from_idle()) {
1641
1642 /*
1643 * Get here if this CPU took its interrupt from user
1644 * mode or from the idle loop, and if this is not a
1645 * nested interrupt. In this case, the CPU is in
1646 * a quiescent state, so note it.
1647 *
1648 * No memory barrier is required here because both
1649 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1650 * variables that other CPUs neither access nor modify,
1651 * at least not while the corresponding CPU is online.
1652 */
1653
1654 rcu_sched_qs(cpu);
1655 rcu_bh_qs(cpu);
1656
1657 } else if (!in_softirq()) {
1658
1659 /*
1660 * Get here if this CPU did not take its interrupt from
1661 * softirq, in other words, if it is not interrupting
1662 * a rcu_bh read-side critical section. This is an _bh
1663 * critical section, so note it.
1664 */
1665
1666 rcu_bh_qs(cpu);
1667 }
1668 rcu_preempt_check_callbacks(cpu);
1669 if (rcu_pending(cpu))
1670 invoke_rcu_core();
1671 trace_rcu_utilization("End scheduler-tick");
1672 }
1673
1674 /*
1675 * Scan the leaf rcu_node structures, processing dyntick state for any that
1676 * have not yet encountered a quiescent state, using the function specified.
1677 * Also initiate boosting for any threads blocked on the root rcu_node.
1678 *
1679 * The caller must have suppressed start of new grace periods.
1680 */
1681 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1682 {
1683 unsigned long bit;
1684 int cpu;
1685 unsigned long flags;
1686 unsigned long mask;
1687 struct rcu_node *rnp;
1688
1689 rcu_for_each_leaf_node(rsp, rnp) {
1690 mask = 0;
1691 raw_spin_lock_irqsave(&rnp->lock, flags);
1692 if (!rcu_gp_in_progress(rsp)) {
1693 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1694 return;
1695 }
1696 if (rnp->qsmask == 0) {
1697 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1698 continue;
1699 }
1700 cpu = rnp->grplo;
1701 bit = 1;
1702 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1703 if ((rnp->qsmask & bit) != 0 &&
1704 f(per_cpu_ptr(rsp->rda, cpu)))
1705 mask |= bit;
1706 }
1707 if (mask != 0) {
1708
1709 /* rcu_report_qs_rnp() releases rnp->lock. */
1710 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1711 continue;
1712 }
1713 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1714 }
1715 rnp = rcu_get_root(rsp);
1716 if (rnp->qsmask == 0) {
1717 raw_spin_lock_irqsave(&rnp->lock, flags);
1718 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1719 }
1720 }
1721
1722 /*
1723 * Force quiescent states on reluctant CPUs, and also detect which
1724 * CPUs are in dyntick-idle mode.
1725 */
1726 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1727 {
1728 unsigned long flags;
1729 struct rcu_node *rnp = rcu_get_root(rsp);
1730
1731 trace_rcu_utilization("Start fqs");
1732 if (!rcu_gp_in_progress(rsp)) {
1733 trace_rcu_utilization("End fqs");
1734 return; /* No grace period in progress, nothing to force. */
1735 }
1736 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1737 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1738 trace_rcu_utilization("End fqs");
1739 return; /* Someone else is already on the job. */
1740 }
1741 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1742 goto unlock_fqs_ret; /* no emergency and done recently. */
1743 rsp->n_force_qs++;
1744 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1745 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1746 if(!rcu_gp_in_progress(rsp)) {
1747 rsp->n_force_qs_ngp++;
1748 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1749 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1750 }
1751 rsp->fqs_active = 1;
1752 switch (rsp->fqs_state) {
1753 case RCU_GP_IDLE:
1754 case RCU_GP_INIT:
1755
1756 break; /* grace period idle or initializing, ignore. */
1757
1758 case RCU_SAVE_DYNTICK:
1759
1760 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1761
1762 /* Record dyntick-idle state. */
1763 force_qs_rnp(rsp, dyntick_save_progress_counter);
1764 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1765 if (rcu_gp_in_progress(rsp))
1766 rsp->fqs_state = RCU_FORCE_QS;
1767 break;
1768
1769 case RCU_FORCE_QS:
1770
1771 /* Check dyntick-idle state, send IPI to laggarts. */
1772 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1773 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1774
1775 /* Leave state in case more forcing is required. */
1776
1777 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1778 break;
1779 }
1780 rsp->fqs_active = 0;
1781 if (rsp->fqs_need_gp) {
1782 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1783 rsp->fqs_need_gp = 0;
1784 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1785 trace_rcu_utilization("End fqs");
1786 return;
1787 }
1788 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1789 unlock_fqs_ret:
1790 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1791 trace_rcu_utilization("End fqs");
1792 }
1793
1794 /*
1795 * This does the RCU core processing work for the specified rcu_state
1796 * and rcu_data structures. This may be called only from the CPU to
1797 * whom the rdp belongs.
1798 */
1799 static void
1800 __rcu_process_callbacks(struct rcu_state *rsp)
1801 {
1802 unsigned long flags;
1803 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1804
1805 WARN_ON_ONCE(rdp->beenonline == 0);
1806
1807 /*
1808 * If an RCU GP has gone long enough, go check for dyntick
1809 * idle CPUs and, if needed, send resched IPIs.
1810 */
1811 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1812 force_quiescent_state(rsp, 1);
1813
1814 /*
1815 * Advance callbacks in response to end of earlier grace
1816 * period that some other CPU ended.
1817 */
1818 rcu_process_gp_end(rsp, rdp);
1819
1820 /* Update RCU state based on any recent quiescent states. */
1821 rcu_check_quiescent_state(rsp, rdp);
1822
1823 /* Does this CPU require a not-yet-started grace period? */
1824 if (cpu_needs_another_gp(rsp, rdp)) {
1825 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1826 rcu_start_gp(rsp, flags); /* releases above lock */
1827 }
1828
1829 /* If there are callbacks ready, invoke them. */
1830 if (cpu_has_callbacks_ready_to_invoke(rdp))
1831 invoke_rcu_callbacks(rsp, rdp);
1832 }
1833
1834 /*
1835 * Do RCU core processing for the current CPU.
1836 */
1837 static void rcu_process_callbacks(struct softirq_action *unused)
1838 {
1839 struct rcu_state *rsp;
1840
1841 trace_rcu_utilization("Start RCU core");
1842 for_each_rcu_flavor(rsp)
1843 __rcu_process_callbacks(rsp);
1844 trace_rcu_utilization("End RCU core");
1845 }
1846
1847 /*
1848 * Schedule RCU callback invocation. If the specified type of RCU
1849 * does not support RCU priority boosting, just do a direct call,
1850 * otherwise wake up the per-CPU kernel kthread. Note that because we
1851 * are running on the current CPU with interrupts disabled, the
1852 * rcu_cpu_kthread_task cannot disappear out from under us.
1853 */
1854 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1855 {
1856 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1857 return;
1858 if (likely(!rsp->boost)) {
1859 rcu_do_batch(rsp, rdp);
1860 return;
1861 }
1862 invoke_rcu_callbacks_kthread();
1863 }
1864
1865 static void invoke_rcu_core(void)
1866 {
1867 raise_softirq(RCU_SOFTIRQ);
1868 }
1869
1870 /*
1871 * Handle any core-RCU processing required by a call_rcu() invocation.
1872 */
1873 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1874 struct rcu_head *head, unsigned long flags)
1875 {
1876 /*
1877 * If called from an extended quiescent state, invoke the RCU
1878 * core in order to force a re-evaluation of RCU's idleness.
1879 */
1880 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1881 invoke_rcu_core();
1882
1883 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1884 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1885 return;
1886
1887 /*
1888 * Force the grace period if too many callbacks or too long waiting.
1889 * Enforce hysteresis, and don't invoke force_quiescent_state()
1890 * if some other CPU has recently done so. Also, don't bother
1891 * invoking force_quiescent_state() if the newly enqueued callback
1892 * is the only one waiting for a grace period to complete.
1893 */
1894 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1895
1896 /* Are we ignoring a completed grace period? */
1897 rcu_process_gp_end(rsp, rdp);
1898 check_for_new_grace_period(rsp, rdp);
1899
1900 /* Start a new grace period if one not already started. */
1901 if (!rcu_gp_in_progress(rsp)) {
1902 unsigned long nestflag;
1903 struct rcu_node *rnp_root = rcu_get_root(rsp);
1904
1905 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1906 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1907 } else {
1908 /* Give the grace period a kick. */
1909 rdp->blimit = LONG_MAX;
1910 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1911 *rdp->nxttail[RCU_DONE_TAIL] != head)
1912 force_quiescent_state(rsp, 0);
1913 rdp->n_force_qs_snap = rsp->n_force_qs;
1914 rdp->qlen_last_fqs_check = rdp->qlen;
1915 }
1916 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1917 force_quiescent_state(rsp, 1);
1918 }
1919
1920 static void
1921 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1922 struct rcu_state *rsp, bool lazy)
1923 {
1924 unsigned long flags;
1925 struct rcu_data *rdp;
1926
1927 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1928 debug_rcu_head_queue(head);
1929 head->func = func;
1930 head->next = NULL;
1931
1932 smp_mb(); /* Ensure RCU update seen before callback registry. */
1933
1934 /*
1935 * Opportunistically note grace-period endings and beginnings.
1936 * Note that we might see a beginning right after we see an
1937 * end, but never vice versa, since this CPU has to pass through
1938 * a quiescent state betweentimes.
1939 */
1940 local_irq_save(flags);
1941 rdp = this_cpu_ptr(rsp->rda);
1942
1943 /* Add the callback to our list. */
1944 ACCESS_ONCE(rdp->qlen)++;
1945 if (lazy)
1946 rdp->qlen_lazy++;
1947 else
1948 rcu_idle_count_callbacks_posted();
1949 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1950 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1951 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1952
1953 if (__is_kfree_rcu_offset((unsigned long)func))
1954 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1955 rdp->qlen_lazy, rdp->qlen);
1956 else
1957 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1958
1959 /* Go handle any RCU core processing required. */
1960 __call_rcu_core(rsp, rdp, head, flags);
1961 local_irq_restore(flags);
1962 }
1963
1964 /*
1965 * Queue an RCU-sched callback for invocation after a grace period.
1966 */
1967 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1968 {
1969 __call_rcu(head, func, &rcu_sched_state, 0);
1970 }
1971 EXPORT_SYMBOL_GPL(call_rcu_sched);
1972
1973 /*
1974 * Queue an RCU callback for invocation after a quicker grace period.
1975 */
1976 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1977 {
1978 __call_rcu(head, func, &rcu_bh_state, 0);
1979 }
1980 EXPORT_SYMBOL_GPL(call_rcu_bh);
1981
1982 /*
1983 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1984 * any blocking grace-period wait automatically implies a grace period
1985 * if there is only one CPU online at any point time during execution
1986 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1987 * occasionally incorrectly indicate that there are multiple CPUs online
1988 * when there was in fact only one the whole time, as this just adds
1989 * some overhead: RCU still operates correctly.
1990 */
1991 static inline int rcu_blocking_is_gp(void)
1992 {
1993 int ret;
1994
1995 might_sleep(); /* Check for RCU read-side critical section. */
1996 preempt_disable();
1997 ret = num_online_cpus() <= 1;
1998 preempt_enable();
1999 return ret;
2000 }
2001
2002 /**
2003 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2004 *
2005 * Control will return to the caller some time after a full rcu-sched
2006 * grace period has elapsed, in other words after all currently executing
2007 * rcu-sched read-side critical sections have completed. These read-side
2008 * critical sections are delimited by rcu_read_lock_sched() and
2009 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2010 * local_irq_disable(), and so on may be used in place of
2011 * rcu_read_lock_sched().
2012 *
2013 * This means that all preempt_disable code sequences, including NMI and
2014 * hardware-interrupt handlers, in progress on entry will have completed
2015 * before this primitive returns. However, this does not guarantee that
2016 * softirq handlers will have completed, since in some kernels, these
2017 * handlers can run in process context, and can block.
2018 *
2019 * This primitive provides the guarantees made by the (now removed)
2020 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2021 * guarantees that rcu_read_lock() sections will have completed.
2022 * In "classic RCU", these two guarantees happen to be one and
2023 * the same, but can differ in realtime RCU implementations.
2024 */
2025 void synchronize_sched(void)
2026 {
2027 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2028 !lock_is_held(&rcu_lock_map) &&
2029 !lock_is_held(&rcu_sched_lock_map),
2030 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2031 if (rcu_blocking_is_gp())
2032 return;
2033 wait_rcu_gp(call_rcu_sched);
2034 }
2035 EXPORT_SYMBOL_GPL(synchronize_sched);
2036
2037 /**
2038 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2039 *
2040 * Control will return to the caller some time after a full rcu_bh grace
2041 * period has elapsed, in other words after all currently executing rcu_bh
2042 * read-side critical sections have completed. RCU read-side critical
2043 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2044 * and may be nested.
2045 */
2046 void synchronize_rcu_bh(void)
2047 {
2048 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2049 !lock_is_held(&rcu_lock_map) &&
2050 !lock_is_held(&rcu_sched_lock_map),
2051 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2052 if (rcu_blocking_is_gp())
2053 return;
2054 wait_rcu_gp(call_rcu_bh);
2055 }
2056 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2057
2058 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2059 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2060
2061 static int synchronize_sched_expedited_cpu_stop(void *data)
2062 {
2063 /*
2064 * There must be a full memory barrier on each affected CPU
2065 * between the time that try_stop_cpus() is called and the
2066 * time that it returns.
2067 *
2068 * In the current initial implementation of cpu_stop, the
2069 * above condition is already met when the control reaches
2070 * this point and the following smp_mb() is not strictly
2071 * necessary. Do smp_mb() anyway for documentation and
2072 * robustness against future implementation changes.
2073 */
2074 smp_mb(); /* See above comment block. */
2075 return 0;
2076 }
2077
2078 /**
2079 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2080 *
2081 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2082 * approach to force the grace period to end quickly. This consumes
2083 * significant time on all CPUs and is unfriendly to real-time workloads,
2084 * so is thus not recommended for any sort of common-case code. In fact,
2085 * if you are using synchronize_sched_expedited() in a loop, please
2086 * restructure your code to batch your updates, and then use a single
2087 * synchronize_sched() instead.
2088 *
2089 * Note that it is illegal to call this function while holding any lock
2090 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2091 * to call this function from a CPU-hotplug notifier. Failing to observe
2092 * these restriction will result in deadlock.
2093 *
2094 * This implementation can be thought of as an application of ticket
2095 * locking to RCU, with sync_sched_expedited_started and
2096 * sync_sched_expedited_done taking on the roles of the halves
2097 * of the ticket-lock word. Each task atomically increments
2098 * sync_sched_expedited_started upon entry, snapshotting the old value,
2099 * then attempts to stop all the CPUs. If this succeeds, then each
2100 * CPU will have executed a context switch, resulting in an RCU-sched
2101 * grace period. We are then done, so we use atomic_cmpxchg() to
2102 * update sync_sched_expedited_done to match our snapshot -- but
2103 * only if someone else has not already advanced past our snapshot.
2104 *
2105 * On the other hand, if try_stop_cpus() fails, we check the value
2106 * of sync_sched_expedited_done. If it has advanced past our
2107 * initial snapshot, then someone else must have forced a grace period
2108 * some time after we took our snapshot. In this case, our work is
2109 * done for us, and we can simply return. Otherwise, we try again,
2110 * but keep our initial snapshot for purposes of checking for someone
2111 * doing our work for us.
2112 *
2113 * If we fail too many times in a row, we fall back to synchronize_sched().
2114 */
2115 void synchronize_sched_expedited(void)
2116 {
2117 int firstsnap, s, snap, trycount = 0;
2118
2119 /* Note that atomic_inc_return() implies full memory barrier. */
2120 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2121 get_online_cpus();
2122 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2123
2124 /*
2125 * Each pass through the following loop attempts to force a
2126 * context switch on each CPU.
2127 */
2128 while (try_stop_cpus(cpu_online_mask,
2129 synchronize_sched_expedited_cpu_stop,
2130 NULL) == -EAGAIN) {
2131 put_online_cpus();
2132
2133 /* No joy, try again later. Or just synchronize_sched(). */
2134 if (trycount++ < 10) {
2135 udelay(trycount * num_online_cpus());
2136 } else {
2137 synchronize_sched();
2138 return;
2139 }
2140
2141 /* Check to see if someone else did our work for us. */
2142 s = atomic_read(&sync_sched_expedited_done);
2143 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2144 smp_mb(); /* ensure test happens before caller kfree */
2145 return;
2146 }
2147
2148 /*
2149 * Refetching sync_sched_expedited_started allows later
2150 * callers to piggyback on our grace period. We subtract
2151 * 1 to get the same token that the last incrementer got.
2152 * We retry after they started, so our grace period works
2153 * for them, and they started after our first try, so their
2154 * grace period works for us.
2155 */
2156 get_online_cpus();
2157 snap = atomic_read(&sync_sched_expedited_started);
2158 smp_mb(); /* ensure read is before try_stop_cpus(). */
2159 }
2160
2161 /*
2162 * Everyone up to our most recent fetch is covered by our grace
2163 * period. Update the counter, but only if our work is still
2164 * relevant -- which it won't be if someone who started later
2165 * than we did beat us to the punch.
2166 */
2167 do {
2168 s = atomic_read(&sync_sched_expedited_done);
2169 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2170 smp_mb(); /* ensure test happens before caller kfree */
2171 break;
2172 }
2173 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2174
2175 put_online_cpus();
2176 }
2177 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2178
2179 /*
2180 * Check to see if there is any immediate RCU-related work to be done
2181 * by the current CPU, for the specified type of RCU, returning 1 if so.
2182 * The checks are in order of increasing expense: checks that can be
2183 * carried out against CPU-local state are performed first. However,
2184 * we must check for CPU stalls first, else we might not get a chance.
2185 */
2186 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2187 {
2188 struct rcu_node *rnp = rdp->mynode;
2189
2190 rdp->n_rcu_pending++;
2191
2192 /* Check for CPU stalls, if enabled. */
2193 check_cpu_stall(rsp, rdp);
2194
2195 /* Is the RCU core waiting for a quiescent state from this CPU? */
2196 if (rcu_scheduler_fully_active &&
2197 rdp->qs_pending && !rdp->passed_quiesce) {
2198
2199 /*
2200 * If force_quiescent_state() coming soon and this CPU
2201 * needs a quiescent state, and this is either RCU-sched
2202 * or RCU-bh, force a local reschedule.
2203 */
2204 rdp->n_rp_qs_pending++;
2205 if (!rdp->preemptible &&
2206 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2207 jiffies))
2208 set_need_resched();
2209 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2210 rdp->n_rp_report_qs++;
2211 return 1;
2212 }
2213
2214 /* Does this CPU have callbacks ready to invoke? */
2215 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2216 rdp->n_rp_cb_ready++;
2217 return 1;
2218 }
2219
2220 /* Has RCU gone idle with this CPU needing another grace period? */
2221 if (cpu_needs_another_gp(rsp, rdp)) {
2222 rdp->n_rp_cpu_needs_gp++;
2223 return 1;
2224 }
2225
2226 /* Has another RCU grace period completed? */
2227 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2228 rdp->n_rp_gp_completed++;
2229 return 1;
2230 }
2231
2232 /* Has a new RCU grace period started? */
2233 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2234 rdp->n_rp_gp_started++;
2235 return 1;
2236 }
2237
2238 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2239 if (rcu_gp_in_progress(rsp) &&
2240 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2241 rdp->n_rp_need_fqs++;
2242 return 1;
2243 }
2244
2245 /* nothing to do */
2246 rdp->n_rp_need_nothing++;
2247 return 0;
2248 }
2249
2250 /*
2251 * Check to see if there is any immediate RCU-related work to be done
2252 * by the current CPU, returning 1 if so. This function is part of the
2253 * RCU implementation; it is -not- an exported member of the RCU API.
2254 */
2255 static int rcu_pending(int cpu)
2256 {
2257 struct rcu_state *rsp;
2258
2259 for_each_rcu_flavor(rsp)
2260 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2261 return 1;
2262 return 0;
2263 }
2264
2265 /*
2266 * Check to see if any future RCU-related work will need to be done
2267 * by the current CPU, even if none need be done immediately, returning
2268 * 1 if so.
2269 */
2270 static int rcu_cpu_has_callbacks(int cpu)
2271 {
2272 struct rcu_state *rsp;
2273
2274 /* RCU callbacks either ready or pending? */
2275 for_each_rcu_flavor(rsp)
2276 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2277 return 1;
2278 return 0;
2279 }
2280
2281 /*
2282 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2283 * the compiler is expected to optimize this away.
2284 */
2285 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2286 int cpu, unsigned long done)
2287 {
2288 trace_rcu_barrier(rsp->name, s, cpu,
2289 atomic_read(&rsp->barrier_cpu_count), done);
2290 }
2291
2292 /*
2293 * RCU callback function for _rcu_barrier(). If we are last, wake
2294 * up the task executing _rcu_barrier().
2295 */
2296 static void rcu_barrier_callback(struct rcu_head *rhp)
2297 {
2298 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2299 struct rcu_state *rsp = rdp->rsp;
2300
2301 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2302 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2303 complete(&rsp->barrier_completion);
2304 } else {
2305 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2306 }
2307 }
2308
2309 /*
2310 * Called with preemption disabled, and from cross-cpu IRQ context.
2311 */
2312 static void rcu_barrier_func(void *type)
2313 {
2314 struct rcu_state *rsp = type;
2315 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2316
2317 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2318 atomic_inc(&rsp->barrier_cpu_count);
2319 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2320 }
2321
2322 /*
2323 * Orchestrate the specified type of RCU barrier, waiting for all
2324 * RCU callbacks of the specified type to complete.
2325 */
2326 static void _rcu_barrier(struct rcu_state *rsp)
2327 {
2328 int cpu;
2329 unsigned long flags;
2330 struct rcu_data *rdp;
2331 struct rcu_data rd;
2332 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2333 unsigned long snap_done;
2334
2335 init_rcu_head_on_stack(&rd.barrier_head);
2336 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2337
2338 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2339 mutex_lock(&rsp->barrier_mutex);
2340
2341 /*
2342 * Ensure that all prior references, including to ->n_barrier_done,
2343 * are ordered before the _rcu_barrier() machinery.
2344 */
2345 smp_mb(); /* See above block comment. */
2346
2347 /*
2348 * Recheck ->n_barrier_done to see if others did our work for us.
2349 * This means checking ->n_barrier_done for an even-to-odd-to-even
2350 * transition. The "if" expression below therefore rounds the old
2351 * value up to the next even number and adds two before comparing.
2352 */
2353 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2354 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2355 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2356 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2357 smp_mb(); /* caller's subsequent code after above check. */
2358 mutex_unlock(&rsp->barrier_mutex);
2359 return;
2360 }
2361
2362 /*
2363 * Increment ->n_barrier_done to avoid duplicate work. Use
2364 * ACCESS_ONCE() to prevent the compiler from speculating
2365 * the increment to precede the early-exit check.
2366 */
2367 ACCESS_ONCE(rsp->n_barrier_done)++;
2368 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2369 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2370 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2371
2372 /*
2373 * Initialize the count to one rather than to zero in order to
2374 * avoid a too-soon return to zero in case of a short grace period
2375 * (or preemption of this task). Also flag this task as doing
2376 * an rcu_barrier(). This will prevent anyone else from adopting
2377 * orphaned callbacks, which could cause otherwise failure if a
2378 * CPU went offline and quickly came back online. To see this,
2379 * consider the following sequence of events:
2380 *
2381 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2382 * 2. CPU 1 goes offline, orphaning its callbacks.
2383 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2384 * 4. CPU 1 comes back online.
2385 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2386 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2387 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2388 */
2389 init_completion(&rsp->barrier_completion);
2390 atomic_set(&rsp->barrier_cpu_count, 1);
2391 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2392 rsp->rcu_barrier_in_progress = current;
2393 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2394
2395 /*
2396 * Force every CPU with callbacks to register a new callback
2397 * that will tell us when all the preceding callbacks have
2398 * been invoked. If an offline CPU has callbacks, wait for
2399 * it to either come back online or to finish orphaning those
2400 * callbacks.
2401 */
2402 for_each_possible_cpu(cpu) {
2403 preempt_disable();
2404 rdp = per_cpu_ptr(rsp->rda, cpu);
2405 if (cpu_is_offline(cpu)) {
2406 _rcu_barrier_trace(rsp, "Offline", cpu,
2407 rsp->n_barrier_done);
2408 preempt_enable();
2409 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2410 schedule_timeout_interruptible(1);
2411 } else if (ACCESS_ONCE(rdp->qlen)) {
2412 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2413 rsp->n_barrier_done);
2414 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2415 preempt_enable();
2416 } else {
2417 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2418 rsp->n_barrier_done);
2419 preempt_enable();
2420 }
2421 }
2422
2423 /*
2424 * Now that all online CPUs have rcu_barrier_callback() callbacks
2425 * posted, we can adopt all of the orphaned callbacks and place
2426 * an rcu_barrier_callback() callback after them. When that is done,
2427 * we are guaranteed to have an rcu_barrier_callback() callback
2428 * following every callback that could possibly have been
2429 * registered before _rcu_barrier() was called.
2430 */
2431 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2432 rcu_adopt_orphan_cbs(rsp);
2433 rsp->rcu_barrier_in_progress = NULL;
2434 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2435 atomic_inc(&rsp->barrier_cpu_count);
2436 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2437 rd.rsp = rsp;
2438 rsp->call(&rd.barrier_head, rcu_barrier_callback);
2439
2440 /*
2441 * Now that we have an rcu_barrier_callback() callback on each
2442 * CPU, and thus each counted, remove the initial count.
2443 */
2444 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2445 complete(&rsp->barrier_completion);
2446
2447 /* Increment ->n_barrier_done to prevent duplicate work. */
2448 smp_mb(); /* Keep increment after above mechanism. */
2449 ACCESS_ONCE(rsp->n_barrier_done)++;
2450 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2451 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2452 smp_mb(); /* Keep increment before caller's subsequent code. */
2453
2454 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2455 wait_for_completion(&rsp->barrier_completion);
2456
2457 /* Other rcu_barrier() invocations can now safely proceed. */
2458 mutex_unlock(&rsp->barrier_mutex);
2459
2460 destroy_rcu_head_on_stack(&rd.barrier_head);
2461 }
2462
2463 /**
2464 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2465 */
2466 void rcu_barrier_bh(void)
2467 {
2468 _rcu_barrier(&rcu_bh_state);
2469 }
2470 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2471
2472 /**
2473 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2474 */
2475 void rcu_barrier_sched(void)
2476 {
2477 _rcu_barrier(&rcu_sched_state);
2478 }
2479 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2480
2481 /*
2482 * Do boot-time initialization of a CPU's per-CPU RCU data.
2483 */
2484 static void __init
2485 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2486 {
2487 unsigned long flags;
2488 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2489 struct rcu_node *rnp = rcu_get_root(rsp);
2490
2491 /* Set up local state, ensuring consistent view of global state. */
2492 raw_spin_lock_irqsave(&rnp->lock, flags);
2493 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2494 init_callback_list(rdp);
2495 rdp->qlen_lazy = 0;
2496 ACCESS_ONCE(rdp->qlen) = 0;
2497 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2498 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2499 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2500 rdp->cpu = cpu;
2501 rdp->rsp = rsp;
2502 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2503 }
2504
2505 /*
2506 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2507 * offline event can be happening at a given time. Note also that we
2508 * can accept some slop in the rsp->completed access due to the fact
2509 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2510 */
2511 static void __cpuinit
2512 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2513 {
2514 unsigned long flags;
2515 unsigned long mask;
2516 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2517 struct rcu_node *rnp = rcu_get_root(rsp);
2518
2519 /* Set up local state, ensuring consistent view of global state. */
2520 raw_spin_lock_irqsave(&rnp->lock, flags);
2521 rdp->beenonline = 1; /* We have now been online. */
2522 rdp->preemptible = preemptible;
2523 rdp->qlen_last_fqs_check = 0;
2524 rdp->n_force_qs_snap = rsp->n_force_qs;
2525 rdp->blimit = blimit;
2526 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2527 atomic_set(&rdp->dynticks->dynticks,
2528 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2529 rcu_prepare_for_idle_init(cpu);
2530 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2531
2532 /*
2533 * A new grace period might start here. If so, we won't be part
2534 * of it, but that is OK, as we are currently in a quiescent state.
2535 */
2536
2537 /* Exclude any attempts to start a new GP on large systems. */
2538 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2539
2540 /* Add CPU to rcu_node bitmasks. */
2541 rnp = rdp->mynode;
2542 mask = rdp->grpmask;
2543 do {
2544 /* Exclude any attempts to start a new GP on small systems. */
2545 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2546 rnp->qsmaskinit |= mask;
2547 mask = rnp->grpmask;
2548 if (rnp == rdp->mynode) {
2549 /*
2550 * If there is a grace period in progress, we will
2551 * set up to wait for it next time we run the
2552 * RCU core code.
2553 */
2554 rdp->gpnum = rnp->completed;
2555 rdp->completed = rnp->completed;
2556 rdp->passed_quiesce = 0;
2557 rdp->qs_pending = 0;
2558 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2559 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2560 }
2561 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2562 rnp = rnp->parent;
2563 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2564
2565 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2566 }
2567
2568 static void __cpuinit rcu_prepare_cpu(int cpu)
2569 {
2570 struct rcu_state *rsp;
2571
2572 for_each_rcu_flavor(rsp)
2573 rcu_init_percpu_data(cpu, rsp,
2574 strcmp(rsp->name, "rcu_preempt") == 0);
2575 }
2576
2577 /*
2578 * Handle CPU online/offline notification events.
2579 */
2580 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2581 unsigned long action, void *hcpu)
2582 {
2583 long cpu = (long)hcpu;
2584 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2585 struct rcu_node *rnp = rdp->mynode;
2586 struct rcu_state *rsp;
2587
2588 trace_rcu_utilization("Start CPU hotplug");
2589 switch (action) {
2590 case CPU_UP_PREPARE:
2591 case CPU_UP_PREPARE_FROZEN:
2592 rcu_prepare_cpu(cpu);
2593 rcu_prepare_kthreads(cpu);
2594 break;
2595 case CPU_ONLINE:
2596 case CPU_DOWN_FAILED:
2597 rcu_node_kthread_setaffinity(rnp, -1);
2598 rcu_cpu_kthread_setrt(cpu, 1);
2599 break;
2600 case CPU_DOWN_PREPARE:
2601 rcu_node_kthread_setaffinity(rnp, cpu);
2602 rcu_cpu_kthread_setrt(cpu, 0);
2603 break;
2604 case CPU_DYING:
2605 case CPU_DYING_FROZEN:
2606 /*
2607 * The whole machine is "stopped" except this CPU, so we can
2608 * touch any data without introducing corruption. We send the
2609 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2610 */
2611 for_each_rcu_flavor(rsp)
2612 rcu_cleanup_dying_cpu(rsp);
2613 rcu_cleanup_after_idle(cpu);
2614 break;
2615 case CPU_DEAD:
2616 case CPU_DEAD_FROZEN:
2617 case CPU_UP_CANCELED:
2618 case CPU_UP_CANCELED_FROZEN:
2619 for_each_rcu_flavor(rsp)
2620 rcu_cleanup_dead_cpu(cpu, rsp);
2621 break;
2622 default:
2623 break;
2624 }
2625 trace_rcu_utilization("End CPU hotplug");
2626 return NOTIFY_OK;
2627 }
2628
2629 /*
2630 * This function is invoked towards the end of the scheduler's initialization
2631 * process. Before this is called, the idle task might contain
2632 * RCU read-side critical sections (during which time, this idle
2633 * task is booting the system). After this function is called, the
2634 * idle tasks are prohibited from containing RCU read-side critical
2635 * sections. This function also enables RCU lockdep checking.
2636 */
2637 void rcu_scheduler_starting(void)
2638 {
2639 WARN_ON(num_online_cpus() != 1);
2640 WARN_ON(nr_context_switches() > 0);
2641 rcu_scheduler_active = 1;
2642 }
2643
2644 /*
2645 * Compute the per-level fanout, either using the exact fanout specified
2646 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2647 */
2648 #ifdef CONFIG_RCU_FANOUT_EXACT
2649 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2650 {
2651 int i;
2652
2653 for (i = rcu_num_lvls - 1; i > 0; i--)
2654 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2655 rsp->levelspread[0] = rcu_fanout_leaf;
2656 }
2657 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2658 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2659 {
2660 int ccur;
2661 int cprv;
2662 int i;
2663
2664 cprv = NR_CPUS;
2665 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2666 ccur = rsp->levelcnt[i];
2667 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2668 cprv = ccur;
2669 }
2670 }
2671 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2672
2673 /*
2674 * Helper function for rcu_init() that initializes one rcu_state structure.
2675 */
2676 static void __init rcu_init_one(struct rcu_state *rsp,
2677 struct rcu_data __percpu *rda)
2678 {
2679 static char *buf[] = { "rcu_node_level_0",
2680 "rcu_node_level_1",
2681 "rcu_node_level_2",
2682 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2683 int cpustride = 1;
2684 int i;
2685 int j;
2686 struct rcu_node *rnp;
2687
2688 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2689
2690 /* Initialize the level-tracking arrays. */
2691
2692 for (i = 0; i < rcu_num_lvls; i++)
2693 rsp->levelcnt[i] = num_rcu_lvl[i];
2694 for (i = 1; i < rcu_num_lvls; i++)
2695 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2696 rcu_init_levelspread(rsp);
2697
2698 /* Initialize the elements themselves, starting from the leaves. */
2699
2700 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2701 cpustride *= rsp->levelspread[i];
2702 rnp = rsp->level[i];
2703 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2704 raw_spin_lock_init(&rnp->lock);
2705 lockdep_set_class_and_name(&rnp->lock,
2706 &rcu_node_class[i], buf[i]);
2707 rnp->gpnum = 0;
2708 rnp->qsmask = 0;
2709 rnp->qsmaskinit = 0;
2710 rnp->grplo = j * cpustride;
2711 rnp->grphi = (j + 1) * cpustride - 1;
2712 if (rnp->grphi >= NR_CPUS)
2713 rnp->grphi = NR_CPUS - 1;
2714 if (i == 0) {
2715 rnp->grpnum = 0;
2716 rnp->grpmask = 0;
2717 rnp->parent = NULL;
2718 } else {
2719 rnp->grpnum = j % rsp->levelspread[i - 1];
2720 rnp->grpmask = 1UL << rnp->grpnum;
2721 rnp->parent = rsp->level[i - 1] +
2722 j / rsp->levelspread[i - 1];
2723 }
2724 rnp->level = i;
2725 INIT_LIST_HEAD(&rnp->blkd_tasks);
2726 }
2727 }
2728
2729 rsp->rda = rda;
2730 rnp = rsp->level[rcu_num_lvls - 1];
2731 for_each_possible_cpu(i) {
2732 while (i > rnp->grphi)
2733 rnp++;
2734 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2735 rcu_boot_init_percpu_data(i, rsp);
2736 }
2737 list_add(&rsp->flavors, &rcu_struct_flavors);
2738 }
2739
2740 /*
2741 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2742 * replace the definitions in rcutree.h because those are needed to size
2743 * the ->node array in the rcu_state structure.
2744 */
2745 static void __init rcu_init_geometry(void)
2746 {
2747 int i;
2748 int j;
2749 int n = nr_cpu_ids;
2750 int rcu_capacity[MAX_RCU_LVLS + 1];
2751
2752 /* If the compile-time values are accurate, just leave. */
2753 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2754 return;
2755
2756 /*
2757 * Compute number of nodes that can be handled an rcu_node tree
2758 * with the given number of levels. Setting rcu_capacity[0] makes
2759 * some of the arithmetic easier.
2760 */
2761 rcu_capacity[0] = 1;
2762 rcu_capacity[1] = rcu_fanout_leaf;
2763 for (i = 2; i <= MAX_RCU_LVLS; i++)
2764 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2765
2766 /*
2767 * The boot-time rcu_fanout_leaf parameter is only permitted
2768 * to increase the leaf-level fanout, not decrease it. Of course,
2769 * the leaf-level fanout cannot exceed the number of bits in
2770 * the rcu_node masks. Finally, the tree must be able to accommodate
2771 * the configured number of CPUs. Complain and fall back to the
2772 * compile-time values if these limits are exceeded.
2773 */
2774 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2775 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2776 n > rcu_capacity[MAX_RCU_LVLS]) {
2777 WARN_ON(1);
2778 return;
2779 }
2780
2781 /* Calculate the number of rcu_nodes at each level of the tree. */
2782 for (i = 1; i <= MAX_RCU_LVLS; i++)
2783 if (n <= rcu_capacity[i]) {
2784 for (j = 0; j <= i; j++)
2785 num_rcu_lvl[j] =
2786 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2787 rcu_num_lvls = i;
2788 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2789 num_rcu_lvl[j] = 0;
2790 break;
2791 }
2792
2793 /* Calculate the total number of rcu_node structures. */
2794 rcu_num_nodes = 0;
2795 for (i = 0; i <= MAX_RCU_LVLS; i++)
2796 rcu_num_nodes += num_rcu_lvl[i];
2797 rcu_num_nodes -= n;
2798 }
2799
2800 void __init rcu_init(void)
2801 {
2802 int cpu;
2803
2804 rcu_bootup_announce();
2805 rcu_init_geometry();
2806 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2807 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2808 __rcu_init_preempt();
2809 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2810
2811 /*
2812 * We don't need protection against CPU-hotplug here because
2813 * this is called early in boot, before either interrupts
2814 * or the scheduler are operational.
2815 */
2816 cpu_notifier(rcu_cpu_notify, 0);
2817 for_each_online_cpu(cpu)
2818 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2819 check_cpu_stall_init();
2820 }
2821
2822 #include "rcutree_plugin.h"