rcu: Remove old memory barriers from rcu_process_callbacks()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52
53 #include "rcutree.h"
54
55 /* Data structures. */
56
57 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
58
59 #define RCU_STATE_INITIALIZER(structname) { \
60 .level = { &structname.node[0] }, \
61 .levelcnt = { \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
63 NUM_RCU_LVL_1, \
64 NUM_RCU_LVL_2, \
65 NUM_RCU_LVL_3, \
66 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75 .name = #structname, \
76 }
77
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83
84 static struct rcu_state *rcu_state;
85
86 int rcu_scheduler_active __read_mostly;
87 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
88
89 /*
90 * Control variables for per-CPU and per-rcu_node kthreads. These
91 * handle all flavors of RCU.
92 */
93 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
94 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
95 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
96 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
97 static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
98 DEFINE_PER_CPU(char, rcu_cpu_has_work);
99 static char rcu_kthreads_spawnable;
100
101 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
102 static void invoke_rcu_cpu_kthread(void);
103
104 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
105
106 /*
107 * Track the rcutorture test sequence number and the update version
108 * number within a given test. The rcutorture_testseq is incremented
109 * on every rcutorture module load and unload, so has an odd value
110 * when a test is running. The rcutorture_vernum is set to zero
111 * when rcutorture starts and is incremented on each rcutorture update.
112 * These variables enable correlating rcutorture output with the
113 * RCU tracing information.
114 */
115 unsigned long rcutorture_testseq;
116 unsigned long rcutorture_vernum;
117
118 /*
119 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
120 * permit this function to be invoked without holding the root rcu_node
121 * structure's ->lock, but of course results can be subject to change.
122 */
123 static int rcu_gp_in_progress(struct rcu_state *rsp)
124 {
125 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
126 }
127
128 /*
129 * Note a quiescent state. Because we do not need to know
130 * how many quiescent states passed, just if there was at least
131 * one since the start of the grace period, this just sets a flag.
132 */
133 void rcu_sched_qs(int cpu)
134 {
135 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
136
137 rdp->passed_quiesc_completed = rdp->gpnum - 1;
138 barrier();
139 rdp->passed_quiesc = 1;
140 }
141
142 void rcu_bh_qs(int cpu)
143 {
144 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
145
146 rdp->passed_quiesc_completed = rdp->gpnum - 1;
147 barrier();
148 rdp->passed_quiesc = 1;
149 }
150
151 /*
152 * Note a context switch. This is a quiescent state for RCU-sched,
153 * and requires special handling for preemptible RCU.
154 */
155 void rcu_note_context_switch(int cpu)
156 {
157 rcu_sched_qs(cpu);
158 rcu_preempt_note_context_switch(cpu);
159 }
160 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
161
162 #ifdef CONFIG_NO_HZ
163 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
164 .dynticks_nesting = 1,
165 .dynticks = 1,
166 };
167 #endif /* #ifdef CONFIG_NO_HZ */
168
169 static int blimit = 10; /* Maximum callbacks per softirq. */
170 static int qhimark = 10000; /* If this many pending, ignore blimit. */
171 static int qlowmark = 100; /* Once only this many pending, use blimit. */
172
173 module_param(blimit, int, 0);
174 module_param(qhimark, int, 0);
175 module_param(qlowmark, int, 0);
176
177 int rcu_cpu_stall_suppress __read_mostly;
178 module_param(rcu_cpu_stall_suppress, int, 0644);
179
180 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
181 static int rcu_pending(int cpu);
182
183 /*
184 * Return the number of RCU-sched batches processed thus far for debug & stats.
185 */
186 long rcu_batches_completed_sched(void)
187 {
188 return rcu_sched_state.completed;
189 }
190 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
191
192 /*
193 * Return the number of RCU BH batches processed thus far for debug & stats.
194 */
195 long rcu_batches_completed_bh(void)
196 {
197 return rcu_bh_state.completed;
198 }
199 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
200
201 /*
202 * Force a quiescent state for RCU BH.
203 */
204 void rcu_bh_force_quiescent_state(void)
205 {
206 force_quiescent_state(&rcu_bh_state, 0);
207 }
208 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
209
210 /*
211 * Record the number of times rcutorture tests have been initiated and
212 * terminated. This information allows the debugfs tracing stats to be
213 * correlated to the rcutorture messages, even when the rcutorture module
214 * is being repeatedly loaded and unloaded. In other words, we cannot
215 * store this state in rcutorture itself.
216 */
217 void rcutorture_record_test_transition(void)
218 {
219 rcutorture_testseq++;
220 rcutorture_vernum = 0;
221 }
222 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
223
224 /*
225 * Record the number of writer passes through the current rcutorture test.
226 * This is also used to correlate debugfs tracing stats with the rcutorture
227 * messages.
228 */
229 void rcutorture_record_progress(unsigned long vernum)
230 {
231 rcutorture_vernum++;
232 }
233 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
234
235 /*
236 * Force a quiescent state for RCU-sched.
237 */
238 void rcu_sched_force_quiescent_state(void)
239 {
240 force_quiescent_state(&rcu_sched_state, 0);
241 }
242 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
243
244 /*
245 * Does the CPU have callbacks ready to be invoked?
246 */
247 static int
248 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
249 {
250 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
251 }
252
253 /*
254 * Does the current CPU require a yet-as-unscheduled grace period?
255 */
256 static int
257 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
258 {
259 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
260 }
261
262 /*
263 * Return the root node of the specified rcu_state structure.
264 */
265 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
266 {
267 return &rsp->node[0];
268 }
269
270 #ifdef CONFIG_SMP
271
272 /*
273 * If the specified CPU is offline, tell the caller that it is in
274 * a quiescent state. Otherwise, whack it with a reschedule IPI.
275 * Grace periods can end up waiting on an offline CPU when that
276 * CPU is in the process of coming online -- it will be added to the
277 * rcu_node bitmasks before it actually makes it online. The same thing
278 * can happen while a CPU is in the process of coming online. Because this
279 * race is quite rare, we check for it after detecting that the grace
280 * period has been delayed rather than checking each and every CPU
281 * each and every time we start a new grace period.
282 */
283 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
284 {
285 /*
286 * If the CPU is offline, it is in a quiescent state. We can
287 * trust its state not to change because interrupts are disabled.
288 */
289 if (cpu_is_offline(rdp->cpu)) {
290 rdp->offline_fqs++;
291 return 1;
292 }
293
294 /* If preemptible RCU, no point in sending reschedule IPI. */
295 if (rdp->preemptible)
296 return 0;
297
298 /* The CPU is online, so send it a reschedule IPI. */
299 if (rdp->cpu != smp_processor_id())
300 smp_send_reschedule(rdp->cpu);
301 else
302 set_need_resched();
303 rdp->resched_ipi++;
304 return 0;
305 }
306
307 #endif /* #ifdef CONFIG_SMP */
308
309 #ifdef CONFIG_NO_HZ
310
311 /**
312 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
313 *
314 * Enter nohz mode, in other words, -leave- the mode in which RCU
315 * read-side critical sections can occur. (Though RCU read-side
316 * critical sections can occur in irq handlers in nohz mode, a possibility
317 * handled by rcu_irq_enter() and rcu_irq_exit()).
318 */
319 void rcu_enter_nohz(void)
320 {
321 unsigned long flags;
322 struct rcu_dynticks *rdtp;
323
324 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
325 local_irq_save(flags);
326 rdtp = &__get_cpu_var(rcu_dynticks);
327 rdtp->dynticks++;
328 rdtp->dynticks_nesting--;
329 WARN_ON_ONCE(rdtp->dynticks & 0x1);
330 local_irq_restore(flags);
331 }
332
333 /*
334 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
335 *
336 * Exit nohz mode, in other words, -enter- the mode in which RCU
337 * read-side critical sections normally occur.
338 */
339 void rcu_exit_nohz(void)
340 {
341 unsigned long flags;
342 struct rcu_dynticks *rdtp;
343
344 local_irq_save(flags);
345 rdtp = &__get_cpu_var(rcu_dynticks);
346 rdtp->dynticks++;
347 rdtp->dynticks_nesting++;
348 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
349 local_irq_restore(flags);
350 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
351 }
352
353 /**
354 * rcu_nmi_enter - inform RCU of entry to NMI context
355 *
356 * If the CPU was idle with dynamic ticks active, and there is no
357 * irq handler running, this updates rdtp->dynticks_nmi to let the
358 * RCU grace-period handling know that the CPU is active.
359 */
360 void rcu_nmi_enter(void)
361 {
362 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
363
364 if (rdtp->dynticks & 0x1)
365 return;
366 rdtp->dynticks_nmi++;
367 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
368 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
369 }
370
371 /**
372 * rcu_nmi_exit - inform RCU of exit from NMI context
373 *
374 * If the CPU was idle with dynamic ticks active, and there is no
375 * irq handler running, this updates rdtp->dynticks_nmi to let the
376 * RCU grace-period handling know that the CPU is no longer active.
377 */
378 void rcu_nmi_exit(void)
379 {
380 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
381
382 if (rdtp->dynticks & 0x1)
383 return;
384 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
385 rdtp->dynticks_nmi++;
386 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
387 }
388
389 /**
390 * rcu_irq_enter - inform RCU of entry to hard irq context
391 *
392 * If the CPU was idle with dynamic ticks active, this updates the
393 * rdtp->dynticks to let the RCU handling know that the CPU is active.
394 */
395 void rcu_irq_enter(void)
396 {
397 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
398
399 if (rdtp->dynticks_nesting++)
400 return;
401 rdtp->dynticks++;
402 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
403 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
404 }
405
406 /**
407 * rcu_irq_exit - inform RCU of exit from hard irq context
408 *
409 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
410 * to put let the RCU handling be aware that the CPU is going back to idle
411 * with no ticks.
412 */
413 void rcu_irq_exit(void)
414 {
415 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
416
417 if (--rdtp->dynticks_nesting)
418 return;
419 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
420 rdtp->dynticks++;
421 WARN_ON_ONCE(rdtp->dynticks & 0x1);
422
423 /* If the interrupt queued a callback, get out of dyntick mode. */
424 if (__this_cpu_read(rcu_sched_data.nxtlist) ||
425 __this_cpu_read(rcu_bh_data.nxtlist))
426 set_need_resched();
427 }
428
429 #ifdef CONFIG_SMP
430
431 /*
432 * Snapshot the specified CPU's dynticks counter so that we can later
433 * credit them with an implicit quiescent state. Return 1 if this CPU
434 * is in dynticks idle mode, which is an extended quiescent state.
435 */
436 static int dyntick_save_progress_counter(struct rcu_data *rdp)
437 {
438 int ret;
439 int snap;
440 int snap_nmi;
441
442 snap = rdp->dynticks->dynticks;
443 snap_nmi = rdp->dynticks->dynticks_nmi;
444 smp_mb(); /* Order sampling of snap with end of grace period. */
445 rdp->dynticks_snap = snap;
446 rdp->dynticks_nmi_snap = snap_nmi;
447 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
448 if (ret)
449 rdp->dynticks_fqs++;
450 return ret;
451 }
452
453 /*
454 * Return true if the specified CPU has passed through a quiescent
455 * state by virtue of being in or having passed through an dynticks
456 * idle state since the last call to dyntick_save_progress_counter()
457 * for this same CPU.
458 */
459 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
460 {
461 long curr;
462 long curr_nmi;
463 long snap;
464 long snap_nmi;
465
466 curr = rdp->dynticks->dynticks;
467 snap = rdp->dynticks_snap;
468 curr_nmi = rdp->dynticks->dynticks_nmi;
469 snap_nmi = rdp->dynticks_nmi_snap;
470 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
471
472 /*
473 * If the CPU passed through or entered a dynticks idle phase with
474 * no active irq/NMI handlers, then we can safely pretend that the CPU
475 * already acknowledged the request to pass through a quiescent
476 * state. Either way, that CPU cannot possibly be in an RCU
477 * read-side critical section that started before the beginning
478 * of the current RCU grace period.
479 */
480 if ((curr != snap || (curr & 0x1) == 0) &&
481 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
482 rdp->dynticks_fqs++;
483 return 1;
484 }
485
486 /* Go check for the CPU being offline. */
487 return rcu_implicit_offline_qs(rdp);
488 }
489
490 #endif /* #ifdef CONFIG_SMP */
491
492 #else /* #ifdef CONFIG_NO_HZ */
493
494 #ifdef CONFIG_SMP
495
496 static int dyntick_save_progress_counter(struct rcu_data *rdp)
497 {
498 return 0;
499 }
500
501 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
502 {
503 return rcu_implicit_offline_qs(rdp);
504 }
505
506 #endif /* #ifdef CONFIG_SMP */
507
508 #endif /* #else #ifdef CONFIG_NO_HZ */
509
510 int rcu_cpu_stall_suppress __read_mostly;
511
512 static void record_gp_stall_check_time(struct rcu_state *rsp)
513 {
514 rsp->gp_start = jiffies;
515 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
516 }
517
518 static void print_other_cpu_stall(struct rcu_state *rsp)
519 {
520 int cpu;
521 long delta;
522 unsigned long flags;
523 struct rcu_node *rnp = rcu_get_root(rsp);
524
525 /* Only let one CPU complain about others per time interval. */
526
527 raw_spin_lock_irqsave(&rnp->lock, flags);
528 delta = jiffies - rsp->jiffies_stall;
529 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
530 raw_spin_unlock_irqrestore(&rnp->lock, flags);
531 return;
532 }
533 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
534
535 /*
536 * Now rat on any tasks that got kicked up to the root rcu_node
537 * due to CPU offlining.
538 */
539 rcu_print_task_stall(rnp);
540 raw_spin_unlock_irqrestore(&rnp->lock, flags);
541
542 /*
543 * OK, time to rat on our buddy...
544 * See Documentation/RCU/stallwarn.txt for info on how to debug
545 * RCU CPU stall warnings.
546 */
547 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
548 rsp->name);
549 rcu_for_each_leaf_node(rsp, rnp) {
550 raw_spin_lock_irqsave(&rnp->lock, flags);
551 rcu_print_task_stall(rnp);
552 raw_spin_unlock_irqrestore(&rnp->lock, flags);
553 if (rnp->qsmask == 0)
554 continue;
555 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
556 if (rnp->qsmask & (1UL << cpu))
557 printk(" %d", rnp->grplo + cpu);
558 }
559 printk("} (detected by %d, t=%ld jiffies)\n",
560 smp_processor_id(), (long)(jiffies - rsp->gp_start));
561 trigger_all_cpu_backtrace();
562
563 /* If so configured, complain about tasks blocking the grace period. */
564
565 rcu_print_detail_task_stall(rsp);
566
567 force_quiescent_state(rsp, 0); /* Kick them all. */
568 }
569
570 static void print_cpu_stall(struct rcu_state *rsp)
571 {
572 unsigned long flags;
573 struct rcu_node *rnp = rcu_get_root(rsp);
574
575 /*
576 * OK, time to rat on ourselves...
577 * See Documentation/RCU/stallwarn.txt for info on how to debug
578 * RCU CPU stall warnings.
579 */
580 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
581 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
582 trigger_all_cpu_backtrace();
583
584 raw_spin_lock_irqsave(&rnp->lock, flags);
585 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
586 rsp->jiffies_stall =
587 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
588 raw_spin_unlock_irqrestore(&rnp->lock, flags);
589
590 set_need_resched(); /* kick ourselves to get things going. */
591 }
592
593 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
594 {
595 unsigned long j;
596 unsigned long js;
597 struct rcu_node *rnp;
598
599 if (rcu_cpu_stall_suppress)
600 return;
601 j = ACCESS_ONCE(jiffies);
602 js = ACCESS_ONCE(rsp->jiffies_stall);
603 rnp = rdp->mynode;
604 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
605
606 /* We haven't checked in, so go dump stack. */
607 print_cpu_stall(rsp);
608
609 } else if (rcu_gp_in_progress(rsp) &&
610 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
611
612 /* They had a few time units to dump stack, so complain. */
613 print_other_cpu_stall(rsp);
614 }
615 }
616
617 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
618 {
619 rcu_cpu_stall_suppress = 1;
620 return NOTIFY_DONE;
621 }
622
623 /**
624 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
625 *
626 * Set the stall-warning timeout way off into the future, thus preventing
627 * any RCU CPU stall-warning messages from appearing in the current set of
628 * RCU grace periods.
629 *
630 * The caller must disable hard irqs.
631 */
632 void rcu_cpu_stall_reset(void)
633 {
634 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
635 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
636 rcu_preempt_stall_reset();
637 }
638
639 static struct notifier_block rcu_panic_block = {
640 .notifier_call = rcu_panic,
641 };
642
643 static void __init check_cpu_stall_init(void)
644 {
645 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
646 }
647
648 /*
649 * Update CPU-local rcu_data state to record the newly noticed grace period.
650 * This is used both when we started the grace period and when we notice
651 * that someone else started the grace period. The caller must hold the
652 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
653 * and must have irqs disabled.
654 */
655 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
656 {
657 if (rdp->gpnum != rnp->gpnum) {
658 /*
659 * If the current grace period is waiting for this CPU,
660 * set up to detect a quiescent state, otherwise don't
661 * go looking for one.
662 */
663 rdp->gpnum = rnp->gpnum;
664 if (rnp->qsmask & rdp->grpmask) {
665 rdp->qs_pending = 1;
666 rdp->passed_quiesc = 0;
667 } else
668 rdp->qs_pending = 0;
669 }
670 }
671
672 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
673 {
674 unsigned long flags;
675 struct rcu_node *rnp;
676
677 local_irq_save(flags);
678 rnp = rdp->mynode;
679 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
680 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
681 local_irq_restore(flags);
682 return;
683 }
684 __note_new_gpnum(rsp, rnp, rdp);
685 raw_spin_unlock_irqrestore(&rnp->lock, flags);
686 }
687
688 /*
689 * Did someone else start a new RCU grace period start since we last
690 * checked? Update local state appropriately if so. Must be called
691 * on the CPU corresponding to rdp.
692 */
693 static int
694 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
695 {
696 unsigned long flags;
697 int ret = 0;
698
699 local_irq_save(flags);
700 if (rdp->gpnum != rsp->gpnum) {
701 note_new_gpnum(rsp, rdp);
702 ret = 1;
703 }
704 local_irq_restore(flags);
705 return ret;
706 }
707
708 /*
709 * Advance this CPU's callbacks, but only if the current grace period
710 * has ended. This may be called only from the CPU to whom the rdp
711 * belongs. In addition, the corresponding leaf rcu_node structure's
712 * ->lock must be held by the caller, with irqs disabled.
713 */
714 static void
715 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
716 {
717 /* Did another grace period end? */
718 if (rdp->completed != rnp->completed) {
719
720 /* Advance callbacks. No harm if list empty. */
721 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
722 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
723 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
724
725 /* Remember that we saw this grace-period completion. */
726 rdp->completed = rnp->completed;
727
728 /*
729 * If we were in an extended quiescent state, we may have
730 * missed some grace periods that others CPUs handled on
731 * our behalf. Catch up with this state to avoid noting
732 * spurious new grace periods. If another grace period
733 * has started, then rnp->gpnum will have advanced, so
734 * we will detect this later on.
735 */
736 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
737 rdp->gpnum = rdp->completed;
738
739 /*
740 * If RCU does not need a quiescent state from this CPU,
741 * then make sure that this CPU doesn't go looking for one.
742 */
743 if ((rnp->qsmask & rdp->grpmask) == 0)
744 rdp->qs_pending = 0;
745 }
746 }
747
748 /*
749 * Advance this CPU's callbacks, but only if the current grace period
750 * has ended. This may be called only from the CPU to whom the rdp
751 * belongs.
752 */
753 static void
754 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
755 {
756 unsigned long flags;
757 struct rcu_node *rnp;
758
759 local_irq_save(flags);
760 rnp = rdp->mynode;
761 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
762 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
763 local_irq_restore(flags);
764 return;
765 }
766 __rcu_process_gp_end(rsp, rnp, rdp);
767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
768 }
769
770 /*
771 * Do per-CPU grace-period initialization for running CPU. The caller
772 * must hold the lock of the leaf rcu_node structure corresponding to
773 * this CPU.
774 */
775 static void
776 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
777 {
778 /* Prior grace period ended, so advance callbacks for current CPU. */
779 __rcu_process_gp_end(rsp, rnp, rdp);
780
781 /*
782 * Because this CPU just now started the new grace period, we know
783 * that all of its callbacks will be covered by this upcoming grace
784 * period, even the ones that were registered arbitrarily recently.
785 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
786 *
787 * Other CPUs cannot be sure exactly when the grace period started.
788 * Therefore, their recently registered callbacks must pass through
789 * an additional RCU_NEXT_READY stage, so that they will be handled
790 * by the next RCU grace period.
791 */
792 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
793 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
794
795 /* Set state so that this CPU will detect the next quiescent state. */
796 __note_new_gpnum(rsp, rnp, rdp);
797 }
798
799 /*
800 * Start a new RCU grace period if warranted, re-initializing the hierarchy
801 * in preparation for detecting the next grace period. The caller must hold
802 * the root node's ->lock, which is released before return. Hard irqs must
803 * be disabled.
804 */
805 static void
806 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
807 __releases(rcu_get_root(rsp)->lock)
808 {
809 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
810 struct rcu_node *rnp = rcu_get_root(rsp);
811
812 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
813 if (cpu_needs_another_gp(rsp, rdp))
814 rsp->fqs_need_gp = 1;
815 if (rnp->completed == rsp->completed) {
816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
817 return;
818 }
819 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
820
821 /*
822 * Propagate new ->completed value to rcu_node structures
823 * so that other CPUs don't have to wait until the start
824 * of the next grace period to process their callbacks.
825 */
826 rcu_for_each_node_breadth_first(rsp, rnp) {
827 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
828 rnp->completed = rsp->completed;
829 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
830 }
831 local_irq_restore(flags);
832 return;
833 }
834
835 /* Advance to a new grace period and initialize state. */
836 rsp->gpnum++;
837 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
838 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
839 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
840 record_gp_stall_check_time(rsp);
841
842 /* Special-case the common single-level case. */
843 if (NUM_RCU_NODES == 1) {
844 rcu_preempt_check_blocked_tasks(rnp);
845 rnp->qsmask = rnp->qsmaskinit;
846 rnp->gpnum = rsp->gpnum;
847 rnp->completed = rsp->completed;
848 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
849 rcu_start_gp_per_cpu(rsp, rnp, rdp);
850 rcu_preempt_boost_start_gp(rnp);
851 raw_spin_unlock_irqrestore(&rnp->lock, flags);
852 return;
853 }
854
855 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
856
857
858 /* Exclude any concurrent CPU-hotplug operations. */
859 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
860
861 /*
862 * Set the quiescent-state-needed bits in all the rcu_node
863 * structures for all currently online CPUs in breadth-first
864 * order, starting from the root rcu_node structure. This
865 * operation relies on the layout of the hierarchy within the
866 * rsp->node[] array. Note that other CPUs will access only
867 * the leaves of the hierarchy, which still indicate that no
868 * grace period is in progress, at least until the corresponding
869 * leaf node has been initialized. In addition, we have excluded
870 * CPU-hotplug operations.
871 *
872 * Note that the grace period cannot complete until we finish
873 * the initialization process, as there will be at least one
874 * qsmask bit set in the root node until that time, namely the
875 * one corresponding to this CPU, due to the fact that we have
876 * irqs disabled.
877 */
878 rcu_for_each_node_breadth_first(rsp, rnp) {
879 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
880 rcu_preempt_check_blocked_tasks(rnp);
881 rnp->qsmask = rnp->qsmaskinit;
882 rnp->gpnum = rsp->gpnum;
883 rnp->completed = rsp->completed;
884 if (rnp == rdp->mynode)
885 rcu_start_gp_per_cpu(rsp, rnp, rdp);
886 rcu_preempt_boost_start_gp(rnp);
887 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
888 }
889
890 rnp = rcu_get_root(rsp);
891 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
892 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
893 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
894 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
895 }
896
897 /*
898 * Report a full set of quiescent states to the specified rcu_state
899 * data structure. This involves cleaning up after the prior grace
900 * period and letting rcu_start_gp() start up the next grace period
901 * if one is needed. Note that the caller must hold rnp->lock, as
902 * required by rcu_start_gp(), which will release it.
903 */
904 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
905 __releases(rcu_get_root(rsp)->lock)
906 {
907 unsigned long gp_duration;
908
909 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
910
911 /*
912 * Ensure that all grace-period and pre-grace-period activity
913 * is seen before the assignment to rsp->completed.
914 */
915 smp_mb(); /* See above block comment. */
916 gp_duration = jiffies - rsp->gp_start;
917 if (gp_duration > rsp->gp_max)
918 rsp->gp_max = gp_duration;
919 rsp->completed = rsp->gpnum;
920 rsp->signaled = RCU_GP_IDLE;
921 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
922 }
923
924 /*
925 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
926 * Allows quiescent states for a group of CPUs to be reported at one go
927 * to the specified rcu_node structure, though all the CPUs in the group
928 * must be represented by the same rcu_node structure (which need not be
929 * a leaf rcu_node structure, though it often will be). That structure's
930 * lock must be held upon entry, and it is released before return.
931 */
932 static void
933 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
934 struct rcu_node *rnp, unsigned long flags)
935 __releases(rnp->lock)
936 {
937 struct rcu_node *rnp_c;
938
939 /* Walk up the rcu_node hierarchy. */
940 for (;;) {
941 if (!(rnp->qsmask & mask)) {
942
943 /* Our bit has already been cleared, so done. */
944 raw_spin_unlock_irqrestore(&rnp->lock, flags);
945 return;
946 }
947 rnp->qsmask &= ~mask;
948 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
949
950 /* Other bits still set at this level, so done. */
951 raw_spin_unlock_irqrestore(&rnp->lock, flags);
952 return;
953 }
954 mask = rnp->grpmask;
955 if (rnp->parent == NULL) {
956
957 /* No more levels. Exit loop holding root lock. */
958
959 break;
960 }
961 raw_spin_unlock_irqrestore(&rnp->lock, flags);
962 rnp_c = rnp;
963 rnp = rnp->parent;
964 raw_spin_lock_irqsave(&rnp->lock, flags);
965 WARN_ON_ONCE(rnp_c->qsmask);
966 }
967
968 /*
969 * Get here if we are the last CPU to pass through a quiescent
970 * state for this grace period. Invoke rcu_report_qs_rsp()
971 * to clean up and start the next grace period if one is needed.
972 */
973 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
974 }
975
976 /*
977 * Record a quiescent state for the specified CPU to that CPU's rcu_data
978 * structure. This must be either called from the specified CPU, or
979 * called when the specified CPU is known to be offline (and when it is
980 * also known that no other CPU is concurrently trying to help the offline
981 * CPU). The lastcomp argument is used to make sure we are still in the
982 * grace period of interest. We don't want to end the current grace period
983 * based on quiescent states detected in an earlier grace period!
984 */
985 static void
986 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
987 {
988 unsigned long flags;
989 unsigned long mask;
990 struct rcu_node *rnp;
991
992 rnp = rdp->mynode;
993 raw_spin_lock_irqsave(&rnp->lock, flags);
994 if (lastcomp != rnp->completed) {
995
996 /*
997 * Someone beat us to it for this grace period, so leave.
998 * The race with GP start is resolved by the fact that we
999 * hold the leaf rcu_node lock, so that the per-CPU bits
1000 * cannot yet be initialized -- so we would simply find our
1001 * CPU's bit already cleared in rcu_report_qs_rnp() if this
1002 * race occurred.
1003 */
1004 rdp->passed_quiesc = 0; /* try again later! */
1005 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1006 return;
1007 }
1008 mask = rdp->grpmask;
1009 if ((rnp->qsmask & mask) == 0) {
1010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1011 } else {
1012 rdp->qs_pending = 0;
1013
1014 /*
1015 * This GP can't end until cpu checks in, so all of our
1016 * callbacks can be processed during the next GP.
1017 */
1018 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1019
1020 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1021 }
1022 }
1023
1024 /*
1025 * Check to see if there is a new grace period of which this CPU
1026 * is not yet aware, and if so, set up local rcu_data state for it.
1027 * Otherwise, see if this CPU has just passed through its first
1028 * quiescent state for this grace period, and record that fact if so.
1029 */
1030 static void
1031 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1032 {
1033 /* If there is now a new grace period, record and return. */
1034 if (check_for_new_grace_period(rsp, rdp))
1035 return;
1036
1037 /*
1038 * Does this CPU still need to do its part for current grace period?
1039 * If no, return and let the other CPUs do their part as well.
1040 */
1041 if (!rdp->qs_pending)
1042 return;
1043
1044 /*
1045 * Was there a quiescent state since the beginning of the grace
1046 * period? If no, then exit and wait for the next call.
1047 */
1048 if (!rdp->passed_quiesc)
1049 return;
1050
1051 /*
1052 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1053 * judge of that).
1054 */
1055 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1056 }
1057
1058 #ifdef CONFIG_HOTPLUG_CPU
1059
1060 /*
1061 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1062 * Synchronization is not required because this function executes
1063 * in stop_machine() context.
1064 */
1065 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1066 {
1067 int i;
1068 /* current DYING CPU is cleared in the cpu_online_mask */
1069 int receive_cpu = cpumask_any(cpu_online_mask);
1070 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1071 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1072
1073 if (rdp->nxtlist == NULL)
1074 return; /* irqs disabled, so comparison is stable. */
1075
1076 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1077 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1078 receive_rdp->qlen += rdp->qlen;
1079 receive_rdp->n_cbs_adopted += rdp->qlen;
1080 rdp->n_cbs_orphaned += rdp->qlen;
1081
1082 rdp->nxtlist = NULL;
1083 for (i = 0; i < RCU_NEXT_SIZE; i++)
1084 rdp->nxttail[i] = &rdp->nxtlist;
1085 rdp->qlen = 0;
1086 }
1087
1088 /*
1089 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1090 * and move all callbacks from the outgoing CPU to the current one.
1091 * There can only be one CPU hotplug operation at a time, so no other
1092 * CPU can be attempting to update rcu_cpu_kthread_task.
1093 */
1094 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1095 {
1096 unsigned long flags;
1097 unsigned long mask;
1098 int need_report = 0;
1099 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1100 struct rcu_node *rnp;
1101 struct task_struct *t;
1102
1103 /* Stop the CPU's kthread. */
1104 t = per_cpu(rcu_cpu_kthread_task, cpu);
1105 if (t != NULL) {
1106 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1107 kthread_stop(t);
1108 }
1109
1110 /* Exclude any attempts to start a new grace period. */
1111 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1112
1113 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1114 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1115 mask = rdp->grpmask; /* rnp->grplo is constant. */
1116 do {
1117 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1118 rnp->qsmaskinit &= ~mask;
1119 if (rnp->qsmaskinit != 0) {
1120 if (rnp != rdp->mynode)
1121 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1122 break;
1123 }
1124 if (rnp == rdp->mynode)
1125 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1126 else
1127 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1128 mask = rnp->grpmask;
1129 rnp = rnp->parent;
1130 } while (rnp != NULL);
1131
1132 /*
1133 * We still hold the leaf rcu_node structure lock here, and
1134 * irqs are still disabled. The reason for this subterfuge is
1135 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1136 * held leads to deadlock.
1137 */
1138 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1139 rnp = rdp->mynode;
1140 if (need_report & RCU_OFL_TASKS_NORM_GP)
1141 rcu_report_unblock_qs_rnp(rnp, flags);
1142 else
1143 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144 if (need_report & RCU_OFL_TASKS_EXP_GP)
1145 rcu_report_exp_rnp(rsp, rnp);
1146 rcu_node_kthread_setaffinity(rnp, -1);
1147 }
1148
1149 /*
1150 * Remove the specified CPU from the RCU hierarchy and move any pending
1151 * callbacks that it might have to the current CPU. This code assumes
1152 * that at least one CPU in the system will remain running at all times.
1153 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1154 */
1155 static void rcu_offline_cpu(int cpu)
1156 {
1157 __rcu_offline_cpu(cpu, &rcu_sched_state);
1158 __rcu_offline_cpu(cpu, &rcu_bh_state);
1159 rcu_preempt_offline_cpu(cpu);
1160 }
1161
1162 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1163
1164 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1165 {
1166 }
1167
1168 static void rcu_offline_cpu(int cpu)
1169 {
1170 }
1171
1172 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1173
1174 /*
1175 * Invoke any RCU callbacks that have made it to the end of their grace
1176 * period. Thottle as specified by rdp->blimit.
1177 */
1178 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1179 {
1180 unsigned long flags;
1181 struct rcu_head *next, *list, **tail;
1182 int count;
1183
1184 /* If no callbacks are ready, just return.*/
1185 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1186 return;
1187
1188 /*
1189 * Extract the list of ready callbacks, disabling to prevent
1190 * races with call_rcu() from interrupt handlers.
1191 */
1192 local_irq_save(flags);
1193 list = rdp->nxtlist;
1194 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1195 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1196 tail = rdp->nxttail[RCU_DONE_TAIL];
1197 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1198 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1199 rdp->nxttail[count] = &rdp->nxtlist;
1200 local_irq_restore(flags);
1201
1202 /* Invoke callbacks. */
1203 count = 0;
1204 while (list) {
1205 next = list->next;
1206 prefetch(next);
1207 debug_rcu_head_unqueue(list);
1208 __rcu_reclaim(list);
1209 list = next;
1210 if (++count >= rdp->blimit)
1211 break;
1212 }
1213
1214 local_irq_save(flags);
1215
1216 /* Update count, and requeue any remaining callbacks. */
1217 rdp->qlen -= count;
1218 rdp->n_cbs_invoked += count;
1219 if (list != NULL) {
1220 *tail = rdp->nxtlist;
1221 rdp->nxtlist = list;
1222 for (count = 0; count < RCU_NEXT_SIZE; count++)
1223 if (&rdp->nxtlist == rdp->nxttail[count])
1224 rdp->nxttail[count] = tail;
1225 else
1226 break;
1227 }
1228
1229 /* Reinstate batch limit if we have worked down the excess. */
1230 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1231 rdp->blimit = blimit;
1232
1233 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1234 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1235 rdp->qlen_last_fqs_check = 0;
1236 rdp->n_force_qs_snap = rsp->n_force_qs;
1237 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1238 rdp->qlen_last_fqs_check = rdp->qlen;
1239
1240 local_irq_restore(flags);
1241
1242 /* Re-raise the RCU softirq if there are callbacks remaining. */
1243 if (cpu_has_callbacks_ready_to_invoke(rdp))
1244 invoke_rcu_cpu_kthread();
1245 }
1246
1247 /*
1248 * Check to see if this CPU is in a non-context-switch quiescent state
1249 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1250 * Also schedule the RCU softirq handler.
1251 *
1252 * This function must be called with hardirqs disabled. It is normally
1253 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1254 * false, there is no point in invoking rcu_check_callbacks().
1255 */
1256 void rcu_check_callbacks(int cpu, int user)
1257 {
1258 if (user ||
1259 (idle_cpu(cpu) && rcu_scheduler_active &&
1260 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1261
1262 /*
1263 * Get here if this CPU took its interrupt from user
1264 * mode or from the idle loop, and if this is not a
1265 * nested interrupt. In this case, the CPU is in
1266 * a quiescent state, so note it.
1267 *
1268 * No memory barrier is required here because both
1269 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1270 * variables that other CPUs neither access nor modify,
1271 * at least not while the corresponding CPU is online.
1272 */
1273
1274 rcu_sched_qs(cpu);
1275 rcu_bh_qs(cpu);
1276
1277 } else if (!in_softirq()) {
1278
1279 /*
1280 * Get here if this CPU did not take its interrupt from
1281 * softirq, in other words, if it is not interrupting
1282 * a rcu_bh read-side critical section. This is an _bh
1283 * critical section, so note it.
1284 */
1285
1286 rcu_bh_qs(cpu);
1287 }
1288 rcu_preempt_check_callbacks(cpu);
1289 if (rcu_pending(cpu))
1290 invoke_rcu_cpu_kthread();
1291 }
1292
1293 #ifdef CONFIG_SMP
1294
1295 /*
1296 * Scan the leaf rcu_node structures, processing dyntick state for any that
1297 * have not yet encountered a quiescent state, using the function specified.
1298 * Also initiate boosting for any threads blocked on the root rcu_node.
1299 *
1300 * The caller must have suppressed start of new grace periods.
1301 */
1302 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1303 {
1304 unsigned long bit;
1305 int cpu;
1306 unsigned long flags;
1307 unsigned long mask;
1308 struct rcu_node *rnp;
1309
1310 rcu_for_each_leaf_node(rsp, rnp) {
1311 mask = 0;
1312 raw_spin_lock_irqsave(&rnp->lock, flags);
1313 if (!rcu_gp_in_progress(rsp)) {
1314 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1315 return;
1316 }
1317 if (rnp->qsmask == 0) {
1318 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1319 continue;
1320 }
1321 cpu = rnp->grplo;
1322 bit = 1;
1323 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1324 if ((rnp->qsmask & bit) != 0 &&
1325 f(per_cpu_ptr(rsp->rda, cpu)))
1326 mask |= bit;
1327 }
1328 if (mask != 0) {
1329
1330 /* rcu_report_qs_rnp() releases rnp->lock. */
1331 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1332 continue;
1333 }
1334 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1335 }
1336 rnp = rcu_get_root(rsp);
1337 if (rnp->qsmask == 0) {
1338 raw_spin_lock_irqsave(&rnp->lock, flags);
1339 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1340 }
1341 }
1342
1343 /*
1344 * Force quiescent states on reluctant CPUs, and also detect which
1345 * CPUs are in dyntick-idle mode.
1346 */
1347 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1348 {
1349 unsigned long flags;
1350 struct rcu_node *rnp = rcu_get_root(rsp);
1351
1352 if (!rcu_gp_in_progress(rsp))
1353 return; /* No grace period in progress, nothing to force. */
1354 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1355 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1356 return; /* Someone else is already on the job. */
1357 }
1358 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1359 goto unlock_fqs_ret; /* no emergency and done recently. */
1360 rsp->n_force_qs++;
1361 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1362 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1363 if(!rcu_gp_in_progress(rsp)) {
1364 rsp->n_force_qs_ngp++;
1365 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1366 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1367 }
1368 rsp->fqs_active = 1;
1369 switch (rsp->signaled) {
1370 case RCU_GP_IDLE:
1371 case RCU_GP_INIT:
1372
1373 break; /* grace period idle or initializing, ignore. */
1374
1375 case RCU_SAVE_DYNTICK:
1376 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1377 break; /* So gcc recognizes the dead code. */
1378
1379 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1380
1381 /* Record dyntick-idle state. */
1382 force_qs_rnp(rsp, dyntick_save_progress_counter);
1383 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1384 if (rcu_gp_in_progress(rsp))
1385 rsp->signaled = RCU_FORCE_QS;
1386 break;
1387
1388 case RCU_FORCE_QS:
1389
1390 /* Check dyntick-idle state, send IPI to laggarts. */
1391 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1392 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1393
1394 /* Leave state in case more forcing is required. */
1395
1396 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1397 break;
1398 }
1399 rsp->fqs_active = 0;
1400 if (rsp->fqs_need_gp) {
1401 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1402 rsp->fqs_need_gp = 0;
1403 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1404 return;
1405 }
1406 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1407 unlock_fqs_ret:
1408 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1409 }
1410
1411 #else /* #ifdef CONFIG_SMP */
1412
1413 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1414 {
1415 set_need_resched();
1416 }
1417
1418 #endif /* #else #ifdef CONFIG_SMP */
1419
1420 /*
1421 * This does the RCU processing work from softirq context for the
1422 * specified rcu_state and rcu_data structures. This may be called
1423 * only from the CPU to whom the rdp belongs.
1424 */
1425 static void
1426 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1427 {
1428 unsigned long flags;
1429
1430 WARN_ON_ONCE(rdp->beenonline == 0);
1431
1432 /*
1433 * If an RCU GP has gone long enough, go check for dyntick
1434 * idle CPUs and, if needed, send resched IPIs.
1435 */
1436 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1437 force_quiescent_state(rsp, 1);
1438
1439 /*
1440 * Advance callbacks in response to end of earlier grace
1441 * period that some other CPU ended.
1442 */
1443 rcu_process_gp_end(rsp, rdp);
1444
1445 /* Update RCU state based on any recent quiescent states. */
1446 rcu_check_quiescent_state(rsp, rdp);
1447
1448 /* Does this CPU require a not-yet-started grace period? */
1449 if (cpu_needs_another_gp(rsp, rdp)) {
1450 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1451 rcu_start_gp(rsp, flags); /* releases above lock */
1452 }
1453
1454 /* If there are callbacks ready, invoke them. */
1455 rcu_do_batch(rsp, rdp);
1456 }
1457
1458 /*
1459 * Do softirq processing for the current CPU.
1460 */
1461 static void rcu_process_callbacks(void)
1462 {
1463 __rcu_process_callbacks(&rcu_sched_state,
1464 &__get_cpu_var(rcu_sched_data));
1465 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1466 rcu_preempt_process_callbacks();
1467
1468 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1469 rcu_needs_cpu_flush();
1470 }
1471
1472 /*
1473 * Wake up the current CPU's kthread. This replaces raise_softirq()
1474 * in earlier versions of RCU. Note that because we are running on
1475 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1476 * cannot disappear out from under us.
1477 */
1478 static void invoke_rcu_cpu_kthread(void)
1479 {
1480 unsigned long flags;
1481
1482 local_irq_save(flags);
1483 __this_cpu_write(rcu_cpu_has_work, 1);
1484 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1485 local_irq_restore(flags);
1486 return;
1487 }
1488 wake_up(&__get_cpu_var(rcu_cpu_wq));
1489 local_irq_restore(flags);
1490 }
1491
1492 /*
1493 * Wake up the specified per-rcu_node-structure kthread.
1494 * Because the per-rcu_node kthreads are immortal, we don't need
1495 * to do anything to keep them alive.
1496 */
1497 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1498 {
1499 struct task_struct *t;
1500
1501 t = rnp->node_kthread_task;
1502 if (t != NULL)
1503 wake_up_process(t);
1504 }
1505
1506 /*
1507 * Set the specified CPU's kthread to run RT or not, as specified by
1508 * the to_rt argument. The CPU-hotplug locks are held, so the task
1509 * is not going away.
1510 */
1511 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1512 {
1513 int policy;
1514 struct sched_param sp;
1515 struct task_struct *t;
1516
1517 t = per_cpu(rcu_cpu_kthread_task, cpu);
1518 if (t == NULL)
1519 return;
1520 if (to_rt) {
1521 policy = SCHED_FIFO;
1522 sp.sched_priority = RCU_KTHREAD_PRIO;
1523 } else {
1524 policy = SCHED_NORMAL;
1525 sp.sched_priority = 0;
1526 }
1527 sched_setscheduler_nocheck(t, policy, &sp);
1528 }
1529
1530 /*
1531 * Timer handler to initiate the waking up of per-CPU kthreads that
1532 * have yielded the CPU due to excess numbers of RCU callbacks.
1533 * We wake up the per-rcu_node kthread, which in turn will wake up
1534 * the booster kthread.
1535 */
1536 static void rcu_cpu_kthread_timer(unsigned long arg)
1537 {
1538 unsigned long flags;
1539 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1540 struct rcu_node *rnp = rdp->mynode;
1541
1542 raw_spin_lock_irqsave(&rnp->lock, flags);
1543 rnp->wakemask |= rdp->grpmask;
1544 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1545 invoke_rcu_node_kthread(rnp);
1546 }
1547
1548 /*
1549 * Drop to non-real-time priority and yield, but only after posting a
1550 * timer that will cause us to regain our real-time priority if we
1551 * remain preempted. Either way, we restore our real-time priority
1552 * before returning.
1553 */
1554 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1555 {
1556 struct sched_param sp;
1557 struct timer_list yield_timer;
1558
1559 setup_timer_on_stack(&yield_timer, f, arg);
1560 mod_timer(&yield_timer, jiffies + 2);
1561 sp.sched_priority = 0;
1562 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1563 set_user_nice(current, 19);
1564 schedule();
1565 sp.sched_priority = RCU_KTHREAD_PRIO;
1566 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1567 del_timer(&yield_timer);
1568 }
1569
1570 /*
1571 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1572 * This can happen while the corresponding CPU is either coming online
1573 * or going offline. We cannot wait until the CPU is fully online
1574 * before starting the kthread, because the various notifier functions
1575 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1576 * the corresponding CPU is online.
1577 *
1578 * Return 1 if the kthread needs to stop, 0 otherwise.
1579 *
1580 * Caller must disable bh. This function can momentarily enable it.
1581 */
1582 static int rcu_cpu_kthread_should_stop(int cpu)
1583 {
1584 while (cpu_is_offline(cpu) ||
1585 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1586 smp_processor_id() != cpu) {
1587 if (kthread_should_stop())
1588 return 1;
1589 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1590 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1591 local_bh_enable();
1592 schedule_timeout_uninterruptible(1);
1593 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1594 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1595 local_bh_disable();
1596 }
1597 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1598 return 0;
1599 }
1600
1601 /*
1602 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1603 * earlier RCU softirq.
1604 */
1605 static int rcu_cpu_kthread(void *arg)
1606 {
1607 int cpu = (int)(long)arg;
1608 unsigned long flags;
1609 int spincnt = 0;
1610 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1611 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1612 char work;
1613 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1614
1615 for (;;) {
1616 *statusp = RCU_KTHREAD_WAITING;
1617 wait_event_interruptible(*wqp,
1618 *workp != 0 || kthread_should_stop());
1619 local_bh_disable();
1620 if (rcu_cpu_kthread_should_stop(cpu)) {
1621 local_bh_enable();
1622 break;
1623 }
1624 *statusp = RCU_KTHREAD_RUNNING;
1625 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1626 local_irq_save(flags);
1627 work = *workp;
1628 *workp = 0;
1629 local_irq_restore(flags);
1630 if (work)
1631 rcu_process_callbacks();
1632 local_bh_enable();
1633 if (*workp != 0)
1634 spincnt++;
1635 else
1636 spincnt = 0;
1637 if (spincnt > 10) {
1638 *statusp = RCU_KTHREAD_YIELDING;
1639 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1640 spincnt = 0;
1641 }
1642 }
1643 *statusp = RCU_KTHREAD_STOPPED;
1644 return 0;
1645 }
1646
1647 /*
1648 * Spawn a per-CPU kthread, setting up affinity and priority.
1649 * Because the CPU hotplug lock is held, no other CPU will be attempting
1650 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1651 * attempting to access it during boot, but the locking in kthread_bind()
1652 * will enforce sufficient ordering.
1653 */
1654 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1655 {
1656 struct sched_param sp;
1657 struct task_struct *t;
1658
1659 if (!rcu_kthreads_spawnable ||
1660 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1661 return 0;
1662 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1663 if (IS_ERR(t))
1664 return PTR_ERR(t);
1665 kthread_bind(t, cpu);
1666 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1667 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1668 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1669 wake_up_process(t);
1670 sp.sched_priority = RCU_KTHREAD_PRIO;
1671 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1672 return 0;
1673 }
1674
1675 /*
1676 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1677 * kthreads when needed. We ignore requests to wake up kthreads
1678 * for offline CPUs, which is OK because force_quiescent_state()
1679 * takes care of this case.
1680 */
1681 static int rcu_node_kthread(void *arg)
1682 {
1683 int cpu;
1684 unsigned long flags;
1685 unsigned long mask;
1686 struct rcu_node *rnp = (struct rcu_node *)arg;
1687 struct sched_param sp;
1688 struct task_struct *t;
1689
1690 for (;;) {
1691 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1692 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0);
1693 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1694 raw_spin_lock_irqsave(&rnp->lock, flags);
1695 mask = rnp->wakemask;
1696 rnp->wakemask = 0;
1697 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1698 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1699 if ((mask & 0x1) == 0)
1700 continue;
1701 preempt_disable();
1702 t = per_cpu(rcu_cpu_kthread_task, cpu);
1703 if (!cpu_online(cpu) || t == NULL) {
1704 preempt_enable();
1705 continue;
1706 }
1707 per_cpu(rcu_cpu_has_work, cpu) = 1;
1708 sp.sched_priority = RCU_KTHREAD_PRIO;
1709 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1710 preempt_enable();
1711 }
1712 }
1713 /* NOTREACHED */
1714 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1715 return 0;
1716 }
1717
1718 /*
1719 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1720 * served by the rcu_node in question. The CPU hotplug lock is still
1721 * held, so the value of rnp->qsmaskinit will be stable.
1722 *
1723 * We don't include outgoingcpu in the affinity set, use -1 if there is
1724 * no outgoing CPU. If there are no CPUs left in the affinity set,
1725 * this function allows the kthread to execute on any CPU.
1726 */
1727 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1728 {
1729 cpumask_var_t cm;
1730 int cpu;
1731 unsigned long mask = rnp->qsmaskinit;
1732
1733 if (rnp->node_kthread_task == NULL)
1734 return;
1735 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1736 return;
1737 cpumask_clear(cm);
1738 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1739 if ((mask & 0x1) && cpu != outgoingcpu)
1740 cpumask_set_cpu(cpu, cm);
1741 if (cpumask_weight(cm) == 0) {
1742 cpumask_setall(cm);
1743 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1744 cpumask_clear_cpu(cpu, cm);
1745 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1746 }
1747 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1748 rcu_boost_kthread_setaffinity(rnp, cm);
1749 free_cpumask_var(cm);
1750 }
1751
1752 /*
1753 * Spawn a per-rcu_node kthread, setting priority and affinity.
1754 * Called during boot before online/offline can happen, or, if
1755 * during runtime, with the main CPU-hotplug locks held. So only
1756 * one of these can be executing at a time.
1757 */
1758 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1759 struct rcu_node *rnp)
1760 {
1761 unsigned long flags;
1762 int rnp_index = rnp - &rsp->node[0];
1763 struct sched_param sp;
1764 struct task_struct *t;
1765
1766 if (!rcu_kthreads_spawnable ||
1767 rnp->qsmaskinit == 0)
1768 return 0;
1769 if (rnp->node_kthread_task == NULL) {
1770 t = kthread_create(rcu_node_kthread, (void *)rnp,
1771 "rcun%d", rnp_index);
1772 if (IS_ERR(t))
1773 return PTR_ERR(t);
1774 raw_spin_lock_irqsave(&rnp->lock, flags);
1775 rnp->node_kthread_task = t;
1776 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1777 wake_up_process(t);
1778 sp.sched_priority = 99;
1779 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1780 }
1781 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1782 }
1783
1784 /*
1785 * Spawn all kthreads -- called as soon as the scheduler is running.
1786 */
1787 static int __init rcu_spawn_kthreads(void)
1788 {
1789 int cpu;
1790 struct rcu_node *rnp;
1791
1792 rcu_kthreads_spawnable = 1;
1793 for_each_possible_cpu(cpu) {
1794 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1795 per_cpu(rcu_cpu_has_work, cpu) = 0;
1796 if (cpu_online(cpu))
1797 (void)rcu_spawn_one_cpu_kthread(cpu);
1798 }
1799 rnp = rcu_get_root(rcu_state);
1800 init_waitqueue_head(&rnp->node_wq);
1801 rcu_init_boost_waitqueue(rnp);
1802 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1803 if (NUM_RCU_NODES > 1)
1804 rcu_for_each_leaf_node(rcu_state, rnp) {
1805 init_waitqueue_head(&rnp->node_wq);
1806 rcu_init_boost_waitqueue(rnp);
1807 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1808 }
1809 return 0;
1810 }
1811 early_initcall(rcu_spawn_kthreads);
1812
1813 static void
1814 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1815 struct rcu_state *rsp)
1816 {
1817 unsigned long flags;
1818 struct rcu_data *rdp;
1819
1820 debug_rcu_head_queue(head);
1821 head->func = func;
1822 head->next = NULL;
1823
1824 smp_mb(); /* Ensure RCU update seen before callback registry. */
1825
1826 /*
1827 * Opportunistically note grace-period endings and beginnings.
1828 * Note that we might see a beginning right after we see an
1829 * end, but never vice versa, since this CPU has to pass through
1830 * a quiescent state betweentimes.
1831 */
1832 local_irq_save(flags);
1833 rdp = this_cpu_ptr(rsp->rda);
1834
1835 /* Add the callback to our list. */
1836 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1837 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1838 rdp->qlen++;
1839
1840 /* If interrupts were disabled, don't dive into RCU core. */
1841 if (irqs_disabled_flags(flags)) {
1842 local_irq_restore(flags);
1843 return;
1844 }
1845
1846 /*
1847 * Force the grace period if too many callbacks or too long waiting.
1848 * Enforce hysteresis, and don't invoke force_quiescent_state()
1849 * if some other CPU has recently done so. Also, don't bother
1850 * invoking force_quiescent_state() if the newly enqueued callback
1851 * is the only one waiting for a grace period to complete.
1852 */
1853 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1854
1855 /* Are we ignoring a completed grace period? */
1856 rcu_process_gp_end(rsp, rdp);
1857 check_for_new_grace_period(rsp, rdp);
1858
1859 /* Start a new grace period if one not already started. */
1860 if (!rcu_gp_in_progress(rsp)) {
1861 unsigned long nestflag;
1862 struct rcu_node *rnp_root = rcu_get_root(rsp);
1863
1864 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1865 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1866 } else {
1867 /* Give the grace period a kick. */
1868 rdp->blimit = LONG_MAX;
1869 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1870 *rdp->nxttail[RCU_DONE_TAIL] != head)
1871 force_quiescent_state(rsp, 0);
1872 rdp->n_force_qs_snap = rsp->n_force_qs;
1873 rdp->qlen_last_fqs_check = rdp->qlen;
1874 }
1875 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1876 force_quiescent_state(rsp, 1);
1877 local_irq_restore(flags);
1878 }
1879
1880 /*
1881 * Queue an RCU-sched callback for invocation after a grace period.
1882 */
1883 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1884 {
1885 __call_rcu(head, func, &rcu_sched_state);
1886 }
1887 EXPORT_SYMBOL_GPL(call_rcu_sched);
1888
1889 /*
1890 * Queue an RCU for invocation after a quicker grace period.
1891 */
1892 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1893 {
1894 __call_rcu(head, func, &rcu_bh_state);
1895 }
1896 EXPORT_SYMBOL_GPL(call_rcu_bh);
1897
1898 /**
1899 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1900 *
1901 * Control will return to the caller some time after a full rcu-sched
1902 * grace period has elapsed, in other words after all currently executing
1903 * rcu-sched read-side critical sections have completed. These read-side
1904 * critical sections are delimited by rcu_read_lock_sched() and
1905 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1906 * local_irq_disable(), and so on may be used in place of
1907 * rcu_read_lock_sched().
1908 *
1909 * This means that all preempt_disable code sequences, including NMI and
1910 * hardware-interrupt handlers, in progress on entry will have completed
1911 * before this primitive returns. However, this does not guarantee that
1912 * softirq handlers will have completed, since in some kernels, these
1913 * handlers can run in process context, and can block.
1914 *
1915 * This primitive provides the guarantees made by the (now removed)
1916 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1917 * guarantees that rcu_read_lock() sections will have completed.
1918 * In "classic RCU", these two guarantees happen to be one and
1919 * the same, but can differ in realtime RCU implementations.
1920 */
1921 void synchronize_sched(void)
1922 {
1923 struct rcu_synchronize rcu;
1924
1925 if (rcu_blocking_is_gp())
1926 return;
1927
1928 init_rcu_head_on_stack(&rcu.head);
1929 init_completion(&rcu.completion);
1930 /* Will wake me after RCU finished. */
1931 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1932 /* Wait for it. */
1933 wait_for_completion(&rcu.completion);
1934 destroy_rcu_head_on_stack(&rcu.head);
1935 }
1936 EXPORT_SYMBOL_GPL(synchronize_sched);
1937
1938 /**
1939 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1940 *
1941 * Control will return to the caller some time after a full rcu_bh grace
1942 * period has elapsed, in other words after all currently executing rcu_bh
1943 * read-side critical sections have completed. RCU read-side critical
1944 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1945 * and may be nested.
1946 */
1947 void synchronize_rcu_bh(void)
1948 {
1949 struct rcu_synchronize rcu;
1950
1951 if (rcu_blocking_is_gp())
1952 return;
1953
1954 init_rcu_head_on_stack(&rcu.head);
1955 init_completion(&rcu.completion);
1956 /* Will wake me after RCU finished. */
1957 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1958 /* Wait for it. */
1959 wait_for_completion(&rcu.completion);
1960 destroy_rcu_head_on_stack(&rcu.head);
1961 }
1962 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1963
1964 /*
1965 * Check to see if there is any immediate RCU-related work to be done
1966 * by the current CPU, for the specified type of RCU, returning 1 if so.
1967 * The checks are in order of increasing expense: checks that can be
1968 * carried out against CPU-local state are performed first. However,
1969 * we must check for CPU stalls first, else we might not get a chance.
1970 */
1971 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1972 {
1973 struct rcu_node *rnp = rdp->mynode;
1974
1975 rdp->n_rcu_pending++;
1976
1977 /* Check for CPU stalls, if enabled. */
1978 check_cpu_stall(rsp, rdp);
1979
1980 /* Is the RCU core waiting for a quiescent state from this CPU? */
1981 if (rdp->qs_pending && !rdp->passed_quiesc) {
1982
1983 /*
1984 * If force_quiescent_state() coming soon and this CPU
1985 * needs a quiescent state, and this is either RCU-sched
1986 * or RCU-bh, force a local reschedule.
1987 */
1988 rdp->n_rp_qs_pending++;
1989 if (!rdp->preemptible &&
1990 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1991 jiffies))
1992 set_need_resched();
1993 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1994 rdp->n_rp_report_qs++;
1995 return 1;
1996 }
1997
1998 /* Does this CPU have callbacks ready to invoke? */
1999 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2000 rdp->n_rp_cb_ready++;
2001 return 1;
2002 }
2003
2004 /* Has RCU gone idle with this CPU needing another grace period? */
2005 if (cpu_needs_another_gp(rsp, rdp)) {
2006 rdp->n_rp_cpu_needs_gp++;
2007 return 1;
2008 }
2009
2010 /* Has another RCU grace period completed? */
2011 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2012 rdp->n_rp_gp_completed++;
2013 return 1;
2014 }
2015
2016 /* Has a new RCU grace period started? */
2017 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2018 rdp->n_rp_gp_started++;
2019 return 1;
2020 }
2021
2022 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2023 if (rcu_gp_in_progress(rsp) &&
2024 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2025 rdp->n_rp_need_fqs++;
2026 return 1;
2027 }
2028
2029 /* nothing to do */
2030 rdp->n_rp_need_nothing++;
2031 return 0;
2032 }
2033
2034 /*
2035 * Check to see if there is any immediate RCU-related work to be done
2036 * by the current CPU, returning 1 if so. This function is part of the
2037 * RCU implementation; it is -not- an exported member of the RCU API.
2038 */
2039 static int rcu_pending(int cpu)
2040 {
2041 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2042 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2043 rcu_preempt_pending(cpu);
2044 }
2045
2046 /*
2047 * Check to see if any future RCU-related work will need to be done
2048 * by the current CPU, even if none need be done immediately, returning
2049 * 1 if so.
2050 */
2051 static int rcu_needs_cpu_quick_check(int cpu)
2052 {
2053 /* RCU callbacks either ready or pending? */
2054 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2055 per_cpu(rcu_bh_data, cpu).nxtlist ||
2056 rcu_preempt_needs_cpu(cpu);
2057 }
2058
2059 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2060 static atomic_t rcu_barrier_cpu_count;
2061 static DEFINE_MUTEX(rcu_barrier_mutex);
2062 static struct completion rcu_barrier_completion;
2063
2064 static void rcu_barrier_callback(struct rcu_head *notused)
2065 {
2066 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2067 complete(&rcu_barrier_completion);
2068 }
2069
2070 /*
2071 * Called with preemption disabled, and from cross-cpu IRQ context.
2072 */
2073 static void rcu_barrier_func(void *type)
2074 {
2075 int cpu = smp_processor_id();
2076 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2077 void (*call_rcu_func)(struct rcu_head *head,
2078 void (*func)(struct rcu_head *head));
2079
2080 atomic_inc(&rcu_barrier_cpu_count);
2081 call_rcu_func = type;
2082 call_rcu_func(head, rcu_barrier_callback);
2083 }
2084
2085 /*
2086 * Orchestrate the specified type of RCU barrier, waiting for all
2087 * RCU callbacks of the specified type to complete.
2088 */
2089 static void _rcu_barrier(struct rcu_state *rsp,
2090 void (*call_rcu_func)(struct rcu_head *head,
2091 void (*func)(struct rcu_head *head)))
2092 {
2093 BUG_ON(in_interrupt());
2094 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2095 mutex_lock(&rcu_barrier_mutex);
2096 init_completion(&rcu_barrier_completion);
2097 /*
2098 * Initialize rcu_barrier_cpu_count to 1, then invoke
2099 * rcu_barrier_func() on each CPU, so that each CPU also has
2100 * incremented rcu_barrier_cpu_count. Only then is it safe to
2101 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2102 * might complete its grace period before all of the other CPUs
2103 * did their increment, causing this function to return too
2104 * early. Note that on_each_cpu() disables irqs, which prevents
2105 * any CPUs from coming online or going offline until each online
2106 * CPU has queued its RCU-barrier callback.
2107 */
2108 atomic_set(&rcu_barrier_cpu_count, 1);
2109 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2110 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2111 complete(&rcu_barrier_completion);
2112 wait_for_completion(&rcu_barrier_completion);
2113 mutex_unlock(&rcu_barrier_mutex);
2114 }
2115
2116 /**
2117 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2118 */
2119 void rcu_barrier_bh(void)
2120 {
2121 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2122 }
2123 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2124
2125 /**
2126 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2127 */
2128 void rcu_barrier_sched(void)
2129 {
2130 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2131 }
2132 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2133
2134 /*
2135 * Do boot-time initialization of a CPU's per-CPU RCU data.
2136 */
2137 static void __init
2138 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2139 {
2140 unsigned long flags;
2141 int i;
2142 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2143 struct rcu_node *rnp = rcu_get_root(rsp);
2144
2145 /* Set up local state, ensuring consistent view of global state. */
2146 raw_spin_lock_irqsave(&rnp->lock, flags);
2147 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2148 rdp->nxtlist = NULL;
2149 for (i = 0; i < RCU_NEXT_SIZE; i++)
2150 rdp->nxttail[i] = &rdp->nxtlist;
2151 rdp->qlen = 0;
2152 #ifdef CONFIG_NO_HZ
2153 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2154 #endif /* #ifdef CONFIG_NO_HZ */
2155 rdp->cpu = cpu;
2156 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2157 }
2158
2159 /*
2160 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2161 * offline event can be happening at a given time. Note also that we
2162 * can accept some slop in the rsp->completed access due to the fact
2163 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2164 */
2165 static void __cpuinit
2166 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2167 {
2168 unsigned long flags;
2169 unsigned long mask;
2170 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2171 struct rcu_node *rnp = rcu_get_root(rsp);
2172
2173 /* Set up local state, ensuring consistent view of global state. */
2174 raw_spin_lock_irqsave(&rnp->lock, flags);
2175 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2176 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2177 rdp->beenonline = 1; /* We have now been online. */
2178 rdp->preemptible = preemptible;
2179 rdp->qlen_last_fqs_check = 0;
2180 rdp->n_force_qs_snap = rsp->n_force_qs;
2181 rdp->blimit = blimit;
2182 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2183
2184 /*
2185 * A new grace period might start here. If so, we won't be part
2186 * of it, but that is OK, as we are currently in a quiescent state.
2187 */
2188
2189 /* Exclude any attempts to start a new GP on large systems. */
2190 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2191
2192 /* Add CPU to rcu_node bitmasks. */
2193 rnp = rdp->mynode;
2194 mask = rdp->grpmask;
2195 do {
2196 /* Exclude any attempts to start a new GP on small systems. */
2197 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2198 rnp->qsmaskinit |= mask;
2199 mask = rnp->grpmask;
2200 if (rnp == rdp->mynode) {
2201 rdp->gpnum = rnp->completed; /* if GP in progress... */
2202 rdp->completed = rnp->completed;
2203 rdp->passed_quiesc_completed = rnp->completed - 1;
2204 }
2205 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2206 rnp = rnp->parent;
2207 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2208
2209 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2210 }
2211
2212 static void __cpuinit rcu_online_cpu(int cpu)
2213 {
2214 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2215 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2216 rcu_preempt_init_percpu_data(cpu);
2217 }
2218
2219 static void __cpuinit rcu_online_kthreads(int cpu)
2220 {
2221 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2222 struct rcu_node *rnp = rdp->mynode;
2223
2224 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2225 if (rcu_kthreads_spawnable) {
2226 (void)rcu_spawn_one_cpu_kthread(cpu);
2227 if (rnp->node_kthread_task == NULL)
2228 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2229 }
2230 }
2231
2232 /*
2233 * Handle CPU online/offline notification events.
2234 */
2235 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2236 unsigned long action, void *hcpu)
2237 {
2238 long cpu = (long)hcpu;
2239 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2240 struct rcu_node *rnp = rdp->mynode;
2241
2242 switch (action) {
2243 case CPU_UP_PREPARE:
2244 case CPU_UP_PREPARE_FROZEN:
2245 rcu_online_cpu(cpu);
2246 rcu_online_kthreads(cpu);
2247 break;
2248 case CPU_ONLINE:
2249 case CPU_DOWN_FAILED:
2250 rcu_node_kthread_setaffinity(rnp, -1);
2251 rcu_cpu_kthread_setrt(cpu, 1);
2252 break;
2253 case CPU_DOWN_PREPARE:
2254 rcu_node_kthread_setaffinity(rnp, cpu);
2255 rcu_cpu_kthread_setrt(cpu, 0);
2256 break;
2257 case CPU_DYING:
2258 case CPU_DYING_FROZEN:
2259 /*
2260 * The whole machine is "stopped" except this CPU, so we can
2261 * touch any data without introducing corruption. We send the
2262 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2263 */
2264 rcu_send_cbs_to_online(&rcu_bh_state);
2265 rcu_send_cbs_to_online(&rcu_sched_state);
2266 rcu_preempt_send_cbs_to_online();
2267 break;
2268 case CPU_DEAD:
2269 case CPU_DEAD_FROZEN:
2270 case CPU_UP_CANCELED:
2271 case CPU_UP_CANCELED_FROZEN:
2272 rcu_offline_cpu(cpu);
2273 break;
2274 default:
2275 break;
2276 }
2277 return NOTIFY_OK;
2278 }
2279
2280 /*
2281 * This function is invoked towards the end of the scheduler's initialization
2282 * process. Before this is called, the idle task might contain
2283 * RCU read-side critical sections (during which time, this idle
2284 * task is booting the system). After this function is called, the
2285 * idle tasks are prohibited from containing RCU read-side critical
2286 * sections. This function also enables RCU lockdep checking.
2287 */
2288 void rcu_scheduler_starting(void)
2289 {
2290 WARN_ON(num_online_cpus() != 1);
2291 WARN_ON(nr_context_switches() > 0);
2292 rcu_scheduler_active = 1;
2293 }
2294
2295 /*
2296 * Compute the per-level fanout, either using the exact fanout specified
2297 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2298 */
2299 #ifdef CONFIG_RCU_FANOUT_EXACT
2300 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2301 {
2302 int i;
2303
2304 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2305 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2306 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2307 }
2308 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2309 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2310 {
2311 int ccur;
2312 int cprv;
2313 int i;
2314
2315 cprv = NR_CPUS;
2316 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2317 ccur = rsp->levelcnt[i];
2318 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2319 cprv = ccur;
2320 }
2321 }
2322 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2323
2324 /*
2325 * Helper function for rcu_init() that initializes one rcu_state structure.
2326 */
2327 static void __init rcu_init_one(struct rcu_state *rsp,
2328 struct rcu_data __percpu *rda)
2329 {
2330 static char *buf[] = { "rcu_node_level_0",
2331 "rcu_node_level_1",
2332 "rcu_node_level_2",
2333 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2334 int cpustride = 1;
2335 int i;
2336 int j;
2337 struct rcu_node *rnp;
2338
2339 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2340
2341 /* Initialize the level-tracking arrays. */
2342
2343 for (i = 1; i < NUM_RCU_LVLS; i++)
2344 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2345 rcu_init_levelspread(rsp);
2346
2347 /* Initialize the elements themselves, starting from the leaves. */
2348
2349 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2350 cpustride *= rsp->levelspread[i];
2351 rnp = rsp->level[i];
2352 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2353 raw_spin_lock_init(&rnp->lock);
2354 lockdep_set_class_and_name(&rnp->lock,
2355 &rcu_node_class[i], buf[i]);
2356 rnp->gpnum = 0;
2357 rnp->qsmask = 0;
2358 rnp->qsmaskinit = 0;
2359 rnp->grplo = j * cpustride;
2360 rnp->grphi = (j + 1) * cpustride - 1;
2361 if (rnp->grphi >= NR_CPUS)
2362 rnp->grphi = NR_CPUS - 1;
2363 if (i == 0) {
2364 rnp->grpnum = 0;
2365 rnp->grpmask = 0;
2366 rnp->parent = NULL;
2367 } else {
2368 rnp->grpnum = j % rsp->levelspread[i - 1];
2369 rnp->grpmask = 1UL << rnp->grpnum;
2370 rnp->parent = rsp->level[i - 1] +
2371 j / rsp->levelspread[i - 1];
2372 }
2373 rnp->level = i;
2374 INIT_LIST_HEAD(&rnp->blkd_tasks);
2375 }
2376 }
2377
2378 rsp->rda = rda;
2379 rnp = rsp->level[NUM_RCU_LVLS - 1];
2380 for_each_possible_cpu(i) {
2381 while (i > rnp->grphi)
2382 rnp++;
2383 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2384 rcu_boot_init_percpu_data(i, rsp);
2385 }
2386 }
2387
2388 void __init rcu_init(void)
2389 {
2390 int cpu;
2391
2392 rcu_bootup_announce();
2393 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2394 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2395 __rcu_init_preempt();
2396
2397 /*
2398 * We don't need protection against CPU-hotplug here because
2399 * this is called early in boot, before either interrupts
2400 * or the scheduler are operational.
2401 */
2402 cpu_notifier(rcu_cpu_notify, 0);
2403 for_each_online_cpu(cpu)
2404 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2405 check_cpu_stall_init();
2406 }
2407
2408 #include "rcutree_plugin.h"