staging: zram: show correct disksize
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 }
80
81 struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89 LIST_HEAD(rcu_struct_flavors);
90
91 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93 module_param(rcu_fanout_leaf, int, 0444);
94 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101 };
102 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
104 /*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimized synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
113 int rcu_scheduler_active __read_mostly;
114 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
116 /*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128 static int rcu_scheduler_fully_active __read_mostly;
129
130 #ifdef CONFIG_RCU_BOOST
131
132 /*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142
143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147 /*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158
159 /*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168
169 /*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175 void rcu_sched_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191 }
192
193 /*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198 void rcu_note_context_switch(int cpu)
199 {
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210 };
211
212 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
213 static long qhimark = 10000; /* If this many pending, ignore blimit. */
214 static long qlowmark = 100; /* Once only this many pending, use blimit. */
215
216 module_param(blimit, long, 0444);
217 module_param(qhimark, long, 0444);
218 module_param(qlowmark, long, 0444);
219
220 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
221 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
222
223 module_param(rcu_cpu_stall_suppress, int, 0644);
224 module_param(rcu_cpu_stall_timeout, int, 0644);
225
226 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
227 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
228
229 module_param(jiffies_till_first_fqs, ulong, 0644);
230 module_param(jiffies_till_next_fqs, ulong, 0644);
231
232 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
233 static void force_quiescent_state(struct rcu_state *rsp);
234 static int rcu_pending(int cpu);
235
236 /*
237 * Return the number of RCU-sched batches processed thus far for debug & stats.
238 */
239 long rcu_batches_completed_sched(void)
240 {
241 return rcu_sched_state.completed;
242 }
243 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
244
245 /*
246 * Return the number of RCU BH batches processed thus far for debug & stats.
247 */
248 long rcu_batches_completed_bh(void)
249 {
250 return rcu_bh_state.completed;
251 }
252 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
253
254 /*
255 * Force a quiescent state for RCU BH.
256 */
257 void rcu_bh_force_quiescent_state(void)
258 {
259 force_quiescent_state(&rcu_bh_state);
260 }
261 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
262
263 /*
264 * Record the number of times rcutorture tests have been initiated and
265 * terminated. This information allows the debugfs tracing stats to be
266 * correlated to the rcutorture messages, even when the rcutorture module
267 * is being repeatedly loaded and unloaded. In other words, we cannot
268 * store this state in rcutorture itself.
269 */
270 void rcutorture_record_test_transition(void)
271 {
272 rcutorture_testseq++;
273 rcutorture_vernum = 0;
274 }
275 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
276
277 /*
278 * Record the number of writer passes through the current rcutorture test.
279 * This is also used to correlate debugfs tracing stats with the rcutorture
280 * messages.
281 */
282 void rcutorture_record_progress(unsigned long vernum)
283 {
284 rcutorture_vernum++;
285 }
286 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
287
288 /*
289 * Force a quiescent state for RCU-sched.
290 */
291 void rcu_sched_force_quiescent_state(void)
292 {
293 force_quiescent_state(&rcu_sched_state);
294 }
295 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
296
297 /*
298 * Does the CPU have callbacks ready to be invoked?
299 */
300 static int
301 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
302 {
303 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
304 rdp->nxttail[RCU_DONE_TAIL] != NULL;
305 }
306
307 /*
308 * Does the current CPU require a yet-as-unscheduled grace period?
309 */
310 static int
311 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
312 {
313 struct rcu_head **ntp;
314
315 ntp = rdp->nxttail[RCU_DONE_TAIL +
316 (ACCESS_ONCE(rsp->completed) != rdp->completed)];
317 return rdp->nxttail[RCU_DONE_TAIL] && ntp && *ntp &&
318 !rcu_gp_in_progress(rsp);
319 }
320
321 /*
322 * Return the root node of the specified rcu_state structure.
323 */
324 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
325 {
326 return &rsp->node[0];
327 }
328
329 /*
330 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
331 *
332 * If the new value of the ->dynticks_nesting counter now is zero,
333 * we really have entered idle, and must do the appropriate accounting.
334 * The caller must have disabled interrupts.
335 */
336 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
337 bool user)
338 {
339 trace_rcu_dyntick("Start", oldval, 0);
340 if (!user && !is_idle_task(current)) {
341 struct task_struct *idle = idle_task(smp_processor_id());
342
343 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
344 ftrace_dump(DUMP_ORIG);
345 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
346 current->pid, current->comm,
347 idle->pid, idle->comm); /* must be idle task! */
348 }
349 rcu_prepare_for_idle(smp_processor_id());
350 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
351 smp_mb__before_atomic_inc(); /* See above. */
352 atomic_inc(&rdtp->dynticks);
353 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
354 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
355
356 /*
357 * It is illegal to enter an extended quiescent state while
358 * in an RCU read-side critical section.
359 */
360 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
361 "Illegal idle entry in RCU read-side critical section.");
362 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
363 "Illegal idle entry in RCU-bh read-side critical section.");
364 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
365 "Illegal idle entry in RCU-sched read-side critical section.");
366 }
367
368 /*
369 * Enter an RCU extended quiescent state, which can be either the
370 * idle loop or adaptive-tickless usermode execution.
371 */
372 static void rcu_eqs_enter(bool user)
373 {
374 long long oldval;
375 struct rcu_dynticks *rdtp;
376
377 rdtp = &__get_cpu_var(rcu_dynticks);
378 oldval = rdtp->dynticks_nesting;
379 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
380 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
381 rdtp->dynticks_nesting = 0;
382 else
383 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
384 rcu_eqs_enter_common(rdtp, oldval, user);
385 }
386
387 /**
388 * rcu_idle_enter - inform RCU that current CPU is entering idle
389 *
390 * Enter idle mode, in other words, -leave- the mode in which RCU
391 * read-side critical sections can occur. (Though RCU read-side
392 * critical sections can occur in irq handlers in idle, a possibility
393 * handled by irq_enter() and irq_exit().)
394 *
395 * We crowbar the ->dynticks_nesting field to zero to allow for
396 * the possibility of usermode upcalls having messed up our count
397 * of interrupt nesting level during the prior busy period.
398 */
399 void rcu_idle_enter(void)
400 {
401 unsigned long flags;
402
403 local_irq_save(flags);
404 rcu_eqs_enter(false);
405 local_irq_restore(flags);
406 }
407 EXPORT_SYMBOL_GPL(rcu_idle_enter);
408
409 #ifdef CONFIG_RCU_USER_QS
410 /**
411 * rcu_user_enter - inform RCU that we are resuming userspace.
412 *
413 * Enter RCU idle mode right before resuming userspace. No use of RCU
414 * is permitted between this call and rcu_user_exit(). This way the
415 * CPU doesn't need to maintain the tick for RCU maintenance purposes
416 * when the CPU runs in userspace.
417 */
418 void rcu_user_enter(void)
419 {
420 rcu_eqs_enter(1);
421 }
422
423 /**
424 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
425 * after the current irq returns.
426 *
427 * This is similar to rcu_user_enter() but in the context of a non-nesting
428 * irq. After this call, RCU enters into idle mode when the interrupt
429 * returns.
430 */
431 void rcu_user_enter_after_irq(void)
432 {
433 unsigned long flags;
434 struct rcu_dynticks *rdtp;
435
436 local_irq_save(flags);
437 rdtp = &__get_cpu_var(rcu_dynticks);
438 /* Ensure this irq is interrupting a non-idle RCU state. */
439 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
440 rdtp->dynticks_nesting = 1;
441 local_irq_restore(flags);
442 }
443 #endif /* CONFIG_RCU_USER_QS */
444
445 /**
446 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
447 *
448 * Exit from an interrupt handler, which might possibly result in entering
449 * idle mode, in other words, leaving the mode in which read-side critical
450 * sections can occur.
451 *
452 * This code assumes that the idle loop never does anything that might
453 * result in unbalanced calls to irq_enter() and irq_exit(). If your
454 * architecture violates this assumption, RCU will give you what you
455 * deserve, good and hard. But very infrequently and irreproducibly.
456 *
457 * Use things like work queues to work around this limitation.
458 *
459 * You have been warned.
460 */
461 void rcu_irq_exit(void)
462 {
463 unsigned long flags;
464 long long oldval;
465 struct rcu_dynticks *rdtp;
466
467 local_irq_save(flags);
468 rdtp = &__get_cpu_var(rcu_dynticks);
469 oldval = rdtp->dynticks_nesting;
470 rdtp->dynticks_nesting--;
471 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
472 if (rdtp->dynticks_nesting)
473 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
474 else
475 rcu_eqs_enter_common(rdtp, oldval, true);
476 local_irq_restore(flags);
477 }
478
479 /*
480 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
481 *
482 * If the new value of the ->dynticks_nesting counter was previously zero,
483 * we really have exited idle, and must do the appropriate accounting.
484 * The caller must have disabled interrupts.
485 */
486 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
487 int user)
488 {
489 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
490 atomic_inc(&rdtp->dynticks);
491 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
492 smp_mb__after_atomic_inc(); /* See above. */
493 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
494 rcu_cleanup_after_idle(smp_processor_id());
495 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
496 if (!user && !is_idle_task(current)) {
497 struct task_struct *idle = idle_task(smp_processor_id());
498
499 trace_rcu_dyntick("Error on exit: not idle task",
500 oldval, rdtp->dynticks_nesting);
501 ftrace_dump(DUMP_ORIG);
502 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
503 current->pid, current->comm,
504 idle->pid, idle->comm); /* must be idle task! */
505 }
506 }
507
508 /*
509 * Exit an RCU extended quiescent state, which can be either the
510 * idle loop or adaptive-tickless usermode execution.
511 */
512 static void rcu_eqs_exit(bool user)
513 {
514 struct rcu_dynticks *rdtp;
515 long long oldval;
516
517 rdtp = &__get_cpu_var(rcu_dynticks);
518 oldval = rdtp->dynticks_nesting;
519 WARN_ON_ONCE(oldval < 0);
520 if (oldval & DYNTICK_TASK_NEST_MASK)
521 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
522 else
523 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
524 rcu_eqs_exit_common(rdtp, oldval, user);
525 }
526
527 /**
528 * rcu_idle_exit - inform RCU that current CPU is leaving idle
529 *
530 * Exit idle mode, in other words, -enter- the mode in which RCU
531 * read-side critical sections can occur.
532 *
533 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
534 * allow for the possibility of usermode upcalls messing up our count
535 * of interrupt nesting level during the busy period that is just
536 * now starting.
537 */
538 void rcu_idle_exit(void)
539 {
540 unsigned long flags;
541
542 local_irq_save(flags);
543 rcu_eqs_exit(false);
544 local_irq_restore(flags);
545 }
546 EXPORT_SYMBOL_GPL(rcu_idle_exit);
547
548 #ifdef CONFIG_RCU_USER_QS
549 /**
550 * rcu_user_exit - inform RCU that we are exiting userspace.
551 *
552 * Exit RCU idle mode while entering the kernel because it can
553 * run a RCU read side critical section anytime.
554 */
555 void rcu_user_exit(void)
556 {
557 rcu_eqs_exit(1);
558 }
559
560 /**
561 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
562 * idle mode after the current non-nesting irq returns.
563 *
564 * This is similar to rcu_user_exit() but in the context of an irq.
565 * This is called when the irq has interrupted a userspace RCU idle mode
566 * context. When the current non-nesting interrupt returns after this call,
567 * the CPU won't restore the RCU idle mode.
568 */
569 void rcu_user_exit_after_irq(void)
570 {
571 unsigned long flags;
572 struct rcu_dynticks *rdtp;
573
574 local_irq_save(flags);
575 rdtp = &__get_cpu_var(rcu_dynticks);
576 /* Ensure we are interrupting an RCU idle mode. */
577 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
578 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
579 local_irq_restore(flags);
580 }
581 #endif /* CONFIG_RCU_USER_QS */
582
583 /**
584 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
585 *
586 * Enter an interrupt handler, which might possibly result in exiting
587 * idle mode, in other words, entering the mode in which read-side critical
588 * sections can occur.
589 *
590 * Note that the Linux kernel is fully capable of entering an interrupt
591 * handler that it never exits, for example when doing upcalls to
592 * user mode! This code assumes that the idle loop never does upcalls to
593 * user mode. If your architecture does do upcalls from the idle loop (or
594 * does anything else that results in unbalanced calls to the irq_enter()
595 * and irq_exit() functions), RCU will give you what you deserve, good
596 * and hard. But very infrequently and irreproducibly.
597 *
598 * Use things like work queues to work around this limitation.
599 *
600 * You have been warned.
601 */
602 void rcu_irq_enter(void)
603 {
604 unsigned long flags;
605 struct rcu_dynticks *rdtp;
606 long long oldval;
607
608 local_irq_save(flags);
609 rdtp = &__get_cpu_var(rcu_dynticks);
610 oldval = rdtp->dynticks_nesting;
611 rdtp->dynticks_nesting++;
612 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
613 if (oldval)
614 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
615 else
616 rcu_eqs_exit_common(rdtp, oldval, true);
617 local_irq_restore(flags);
618 }
619
620 /**
621 * rcu_nmi_enter - inform RCU of entry to NMI context
622 *
623 * If the CPU was idle with dynamic ticks active, and there is no
624 * irq handler running, this updates rdtp->dynticks_nmi to let the
625 * RCU grace-period handling know that the CPU is active.
626 */
627 void rcu_nmi_enter(void)
628 {
629 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
630
631 if (rdtp->dynticks_nmi_nesting == 0 &&
632 (atomic_read(&rdtp->dynticks) & 0x1))
633 return;
634 rdtp->dynticks_nmi_nesting++;
635 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
636 atomic_inc(&rdtp->dynticks);
637 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
638 smp_mb__after_atomic_inc(); /* See above. */
639 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
640 }
641
642 /**
643 * rcu_nmi_exit - inform RCU of exit from NMI context
644 *
645 * If the CPU was idle with dynamic ticks active, and there is no
646 * irq handler running, this updates rdtp->dynticks_nmi to let the
647 * RCU grace-period handling know that the CPU is no longer active.
648 */
649 void rcu_nmi_exit(void)
650 {
651 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
652
653 if (rdtp->dynticks_nmi_nesting == 0 ||
654 --rdtp->dynticks_nmi_nesting != 0)
655 return;
656 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
657 smp_mb__before_atomic_inc(); /* See above. */
658 atomic_inc(&rdtp->dynticks);
659 smp_mb__after_atomic_inc(); /* Force delay to next write. */
660 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
661 }
662
663 /**
664 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
665 *
666 * If the current CPU is in its idle loop and is neither in an interrupt
667 * or NMI handler, return true.
668 */
669 int rcu_is_cpu_idle(void)
670 {
671 int ret;
672
673 preempt_disable();
674 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
675 preempt_enable();
676 return ret;
677 }
678 EXPORT_SYMBOL(rcu_is_cpu_idle);
679
680 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
681
682 /*
683 * Is the current CPU online? Disable preemption to avoid false positives
684 * that could otherwise happen due to the current CPU number being sampled,
685 * this task being preempted, its old CPU being taken offline, resuming
686 * on some other CPU, then determining that its old CPU is now offline.
687 * It is OK to use RCU on an offline processor during initial boot, hence
688 * the check for rcu_scheduler_fully_active. Note also that it is OK
689 * for a CPU coming online to use RCU for one jiffy prior to marking itself
690 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
691 * offline to continue to use RCU for one jiffy after marking itself
692 * offline in the cpu_online_mask. This leniency is necessary given the
693 * non-atomic nature of the online and offline processing, for example,
694 * the fact that a CPU enters the scheduler after completing the CPU_DYING
695 * notifiers.
696 *
697 * This is also why RCU internally marks CPUs online during the
698 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
699 *
700 * Disable checking if in an NMI handler because we cannot safely report
701 * errors from NMI handlers anyway.
702 */
703 bool rcu_lockdep_current_cpu_online(void)
704 {
705 struct rcu_data *rdp;
706 struct rcu_node *rnp;
707 bool ret;
708
709 if (in_nmi())
710 return 1;
711 preempt_disable();
712 rdp = &__get_cpu_var(rcu_sched_data);
713 rnp = rdp->mynode;
714 ret = (rdp->grpmask & rnp->qsmaskinit) ||
715 !rcu_scheduler_fully_active;
716 preempt_enable();
717 return ret;
718 }
719 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
720
721 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
722
723 /**
724 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
725 *
726 * If the current CPU is idle or running at a first-level (not nested)
727 * interrupt from idle, return true. The caller must have at least
728 * disabled preemption.
729 */
730 int rcu_is_cpu_rrupt_from_idle(void)
731 {
732 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
733 }
734
735 /*
736 * Snapshot the specified CPU's dynticks counter so that we can later
737 * credit them with an implicit quiescent state. Return 1 if this CPU
738 * is in dynticks idle mode, which is an extended quiescent state.
739 */
740 static int dyntick_save_progress_counter(struct rcu_data *rdp)
741 {
742 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
743 return (rdp->dynticks_snap & 0x1) == 0;
744 }
745
746 /*
747 * Return true if the specified CPU has passed through a quiescent
748 * state by virtue of being in or having passed through an dynticks
749 * idle state since the last call to dyntick_save_progress_counter()
750 * for this same CPU, or by virtue of having been offline.
751 */
752 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
753 {
754 unsigned int curr;
755 unsigned int snap;
756
757 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
758 snap = (unsigned int)rdp->dynticks_snap;
759
760 /*
761 * If the CPU passed through or entered a dynticks idle phase with
762 * no active irq/NMI handlers, then we can safely pretend that the CPU
763 * already acknowledged the request to pass through a quiescent
764 * state. Either way, that CPU cannot possibly be in an RCU
765 * read-side critical section that started before the beginning
766 * of the current RCU grace period.
767 */
768 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
769 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
770 rdp->dynticks_fqs++;
771 return 1;
772 }
773
774 /*
775 * Check for the CPU being offline, but only if the grace period
776 * is old enough. We don't need to worry about the CPU changing
777 * state: If we see it offline even once, it has been through a
778 * quiescent state.
779 *
780 * The reason for insisting that the grace period be at least
781 * one jiffy old is that CPUs that are not quite online and that
782 * have just gone offline can still execute RCU read-side critical
783 * sections.
784 */
785 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
786 return 0; /* Grace period is not old enough. */
787 barrier();
788 if (cpu_is_offline(rdp->cpu)) {
789 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
790 rdp->offline_fqs++;
791 return 1;
792 }
793 return 0;
794 }
795
796 static int jiffies_till_stall_check(void)
797 {
798 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
799
800 /*
801 * Limit check must be consistent with the Kconfig limits
802 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
803 */
804 if (till_stall_check < 3) {
805 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
806 till_stall_check = 3;
807 } else if (till_stall_check > 300) {
808 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
809 till_stall_check = 300;
810 }
811 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
812 }
813
814 static void record_gp_stall_check_time(struct rcu_state *rsp)
815 {
816 rsp->gp_start = jiffies;
817 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
818 }
819
820 /*
821 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
822 * for architectures that do not implement trigger_all_cpu_backtrace().
823 * The NMI-triggered stack traces are more accurate because they are
824 * printed by the target CPU.
825 */
826 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
827 {
828 int cpu;
829 unsigned long flags;
830 struct rcu_node *rnp;
831
832 rcu_for_each_leaf_node(rsp, rnp) {
833 raw_spin_lock_irqsave(&rnp->lock, flags);
834 if (rnp->qsmask != 0) {
835 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
836 if (rnp->qsmask & (1UL << cpu))
837 dump_cpu_task(rnp->grplo + cpu);
838 }
839 raw_spin_unlock_irqrestore(&rnp->lock, flags);
840 }
841 }
842
843 static void print_other_cpu_stall(struct rcu_state *rsp)
844 {
845 int cpu;
846 long delta;
847 unsigned long flags;
848 int ndetected = 0;
849 struct rcu_node *rnp = rcu_get_root(rsp);
850 long totqlen = 0;
851
852 /* Only let one CPU complain about others per time interval. */
853
854 raw_spin_lock_irqsave(&rnp->lock, flags);
855 delta = jiffies - rsp->jiffies_stall;
856 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
857 raw_spin_unlock_irqrestore(&rnp->lock, flags);
858 return;
859 }
860 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
861 raw_spin_unlock_irqrestore(&rnp->lock, flags);
862
863 /*
864 * OK, time to rat on our buddy...
865 * See Documentation/RCU/stallwarn.txt for info on how to debug
866 * RCU CPU stall warnings.
867 */
868 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
869 rsp->name);
870 print_cpu_stall_info_begin();
871 rcu_for_each_leaf_node(rsp, rnp) {
872 raw_spin_lock_irqsave(&rnp->lock, flags);
873 ndetected += rcu_print_task_stall(rnp);
874 if (rnp->qsmask != 0) {
875 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
876 if (rnp->qsmask & (1UL << cpu)) {
877 print_cpu_stall_info(rsp,
878 rnp->grplo + cpu);
879 ndetected++;
880 }
881 }
882 raw_spin_unlock_irqrestore(&rnp->lock, flags);
883 }
884
885 /*
886 * Now rat on any tasks that got kicked up to the root rcu_node
887 * due to CPU offlining.
888 */
889 rnp = rcu_get_root(rsp);
890 raw_spin_lock_irqsave(&rnp->lock, flags);
891 ndetected += rcu_print_task_stall(rnp);
892 raw_spin_unlock_irqrestore(&rnp->lock, flags);
893
894 print_cpu_stall_info_end();
895 for_each_possible_cpu(cpu)
896 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
897 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
898 smp_processor_id(), (long)(jiffies - rsp->gp_start),
899 rsp->gpnum, rsp->completed, totqlen);
900 if (ndetected == 0)
901 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
902 else if (!trigger_all_cpu_backtrace())
903 rcu_dump_cpu_stacks(rsp);
904
905 /* Complain about tasks blocking the grace period. */
906
907 rcu_print_detail_task_stall(rsp);
908
909 force_quiescent_state(rsp); /* Kick them all. */
910 }
911
912 static void print_cpu_stall(struct rcu_state *rsp)
913 {
914 int cpu;
915 unsigned long flags;
916 struct rcu_node *rnp = rcu_get_root(rsp);
917 long totqlen = 0;
918
919 /*
920 * OK, time to rat on ourselves...
921 * See Documentation/RCU/stallwarn.txt for info on how to debug
922 * RCU CPU stall warnings.
923 */
924 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
925 print_cpu_stall_info_begin();
926 print_cpu_stall_info(rsp, smp_processor_id());
927 print_cpu_stall_info_end();
928 for_each_possible_cpu(cpu)
929 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
930 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
931 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
932 if (!trigger_all_cpu_backtrace())
933 dump_stack();
934
935 raw_spin_lock_irqsave(&rnp->lock, flags);
936 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
937 rsp->jiffies_stall = jiffies +
938 3 * jiffies_till_stall_check() + 3;
939 raw_spin_unlock_irqrestore(&rnp->lock, flags);
940
941 set_need_resched(); /* kick ourselves to get things going. */
942 }
943
944 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
945 {
946 unsigned long j;
947 unsigned long js;
948 struct rcu_node *rnp;
949
950 if (rcu_cpu_stall_suppress)
951 return;
952 j = ACCESS_ONCE(jiffies);
953 js = ACCESS_ONCE(rsp->jiffies_stall);
954 rnp = rdp->mynode;
955 if (rcu_gp_in_progress(rsp) &&
956 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
957
958 /* We haven't checked in, so go dump stack. */
959 print_cpu_stall(rsp);
960
961 } else if (rcu_gp_in_progress(rsp) &&
962 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
963
964 /* They had a few time units to dump stack, so complain. */
965 print_other_cpu_stall(rsp);
966 }
967 }
968
969 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
970 {
971 rcu_cpu_stall_suppress = 1;
972 return NOTIFY_DONE;
973 }
974
975 /**
976 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
977 *
978 * Set the stall-warning timeout way off into the future, thus preventing
979 * any RCU CPU stall-warning messages from appearing in the current set of
980 * RCU grace periods.
981 *
982 * The caller must disable hard irqs.
983 */
984 void rcu_cpu_stall_reset(void)
985 {
986 struct rcu_state *rsp;
987
988 for_each_rcu_flavor(rsp)
989 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
990 }
991
992 static struct notifier_block rcu_panic_block = {
993 .notifier_call = rcu_panic,
994 };
995
996 static void __init check_cpu_stall_init(void)
997 {
998 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
999 }
1000
1001 /*
1002 * Update CPU-local rcu_data state to record the newly noticed grace period.
1003 * This is used both when we started the grace period and when we notice
1004 * that someone else started the grace period. The caller must hold the
1005 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
1006 * and must have irqs disabled.
1007 */
1008 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1009 {
1010 if (rdp->gpnum != rnp->gpnum) {
1011 /*
1012 * If the current grace period is waiting for this CPU,
1013 * set up to detect a quiescent state, otherwise don't
1014 * go looking for one.
1015 */
1016 rdp->gpnum = rnp->gpnum;
1017 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1018 rdp->passed_quiesce = 0;
1019 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1020 zero_cpu_stall_ticks(rdp);
1021 }
1022 }
1023
1024 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1025 {
1026 unsigned long flags;
1027 struct rcu_node *rnp;
1028
1029 local_irq_save(flags);
1030 rnp = rdp->mynode;
1031 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1032 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1033 local_irq_restore(flags);
1034 return;
1035 }
1036 __note_new_gpnum(rsp, rnp, rdp);
1037 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1038 }
1039
1040 /*
1041 * Did someone else start a new RCU grace period start since we last
1042 * checked? Update local state appropriately if so. Must be called
1043 * on the CPU corresponding to rdp.
1044 */
1045 static int
1046 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1047 {
1048 unsigned long flags;
1049 int ret = 0;
1050
1051 local_irq_save(flags);
1052 if (rdp->gpnum != rsp->gpnum) {
1053 note_new_gpnum(rsp, rdp);
1054 ret = 1;
1055 }
1056 local_irq_restore(flags);
1057 return ret;
1058 }
1059
1060 /*
1061 * Initialize the specified rcu_data structure's callback list to empty.
1062 */
1063 static void init_callback_list(struct rcu_data *rdp)
1064 {
1065 int i;
1066
1067 rdp->nxtlist = NULL;
1068 for (i = 0; i < RCU_NEXT_SIZE; i++)
1069 rdp->nxttail[i] = &rdp->nxtlist;
1070 init_nocb_callback_list(rdp);
1071 }
1072
1073 /*
1074 * Advance this CPU's callbacks, but only if the current grace period
1075 * has ended. This may be called only from the CPU to whom the rdp
1076 * belongs. In addition, the corresponding leaf rcu_node structure's
1077 * ->lock must be held by the caller, with irqs disabled.
1078 */
1079 static void
1080 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1081 {
1082 /* Did another grace period end? */
1083 if (rdp->completed != rnp->completed) {
1084
1085 /* Advance callbacks. No harm if list empty. */
1086 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1087 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1088 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1089
1090 /* Remember that we saw this grace-period completion. */
1091 rdp->completed = rnp->completed;
1092 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1093
1094 /*
1095 * If we were in an extended quiescent state, we may have
1096 * missed some grace periods that others CPUs handled on
1097 * our behalf. Catch up with this state to avoid noting
1098 * spurious new grace periods. If another grace period
1099 * has started, then rnp->gpnum will have advanced, so
1100 * we will detect this later on. Of course, any quiescent
1101 * states we found for the old GP are now invalid.
1102 */
1103 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1104 rdp->gpnum = rdp->completed;
1105 rdp->passed_quiesce = 0;
1106 }
1107
1108 /*
1109 * If RCU does not need a quiescent state from this CPU,
1110 * then make sure that this CPU doesn't go looking for one.
1111 */
1112 if ((rnp->qsmask & rdp->grpmask) == 0)
1113 rdp->qs_pending = 0;
1114 }
1115 }
1116
1117 /*
1118 * Advance this CPU's callbacks, but only if the current grace period
1119 * has ended. This may be called only from the CPU to whom the rdp
1120 * belongs.
1121 */
1122 static void
1123 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1124 {
1125 unsigned long flags;
1126 struct rcu_node *rnp;
1127
1128 local_irq_save(flags);
1129 rnp = rdp->mynode;
1130 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1131 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1132 local_irq_restore(flags);
1133 return;
1134 }
1135 __rcu_process_gp_end(rsp, rnp, rdp);
1136 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1137 }
1138
1139 /*
1140 * Do per-CPU grace-period initialization for running CPU. The caller
1141 * must hold the lock of the leaf rcu_node structure corresponding to
1142 * this CPU.
1143 */
1144 static void
1145 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1146 {
1147 /* Prior grace period ended, so advance callbacks for current CPU. */
1148 __rcu_process_gp_end(rsp, rnp, rdp);
1149
1150 /* Set state so that this CPU will detect the next quiescent state. */
1151 __note_new_gpnum(rsp, rnp, rdp);
1152 }
1153
1154 /*
1155 * Initialize a new grace period.
1156 */
1157 static int rcu_gp_init(struct rcu_state *rsp)
1158 {
1159 struct rcu_data *rdp;
1160 struct rcu_node *rnp = rcu_get_root(rsp);
1161
1162 raw_spin_lock_irq(&rnp->lock);
1163 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1164
1165 if (rcu_gp_in_progress(rsp)) {
1166 /* Grace period already in progress, don't start another. */
1167 raw_spin_unlock_irq(&rnp->lock);
1168 return 0;
1169 }
1170
1171 /* Advance to a new grace period and initialize state. */
1172 rsp->gpnum++;
1173 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1174 record_gp_stall_check_time(rsp);
1175 raw_spin_unlock_irq(&rnp->lock);
1176
1177 /* Exclude any concurrent CPU-hotplug operations. */
1178 mutex_lock(&rsp->onoff_mutex);
1179
1180 /*
1181 * Set the quiescent-state-needed bits in all the rcu_node
1182 * structures for all currently online CPUs in breadth-first order,
1183 * starting from the root rcu_node structure, relying on the layout
1184 * of the tree within the rsp->node[] array. Note that other CPUs
1185 * will access only the leaves of the hierarchy, thus seeing that no
1186 * grace period is in progress, at least until the corresponding
1187 * leaf node has been initialized. In addition, we have excluded
1188 * CPU-hotplug operations.
1189 *
1190 * The grace period cannot complete until the initialization
1191 * process finishes, because this kthread handles both.
1192 */
1193 rcu_for_each_node_breadth_first(rsp, rnp) {
1194 raw_spin_lock_irq(&rnp->lock);
1195 rdp = this_cpu_ptr(rsp->rda);
1196 rcu_preempt_check_blocked_tasks(rnp);
1197 rnp->qsmask = rnp->qsmaskinit;
1198 rnp->gpnum = rsp->gpnum;
1199 WARN_ON_ONCE(rnp->completed != rsp->completed);
1200 rnp->completed = rsp->completed;
1201 if (rnp == rdp->mynode)
1202 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1203 rcu_preempt_boost_start_gp(rnp);
1204 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1205 rnp->level, rnp->grplo,
1206 rnp->grphi, rnp->qsmask);
1207 raw_spin_unlock_irq(&rnp->lock);
1208 #ifdef CONFIG_PROVE_RCU_DELAY
1209 if ((random32() % (rcu_num_nodes * 8)) == 0)
1210 schedule_timeout_uninterruptible(2);
1211 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1212 cond_resched();
1213 }
1214
1215 mutex_unlock(&rsp->onoff_mutex);
1216 return 1;
1217 }
1218
1219 /*
1220 * Do one round of quiescent-state forcing.
1221 */
1222 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1223 {
1224 int fqs_state = fqs_state_in;
1225 struct rcu_node *rnp = rcu_get_root(rsp);
1226
1227 rsp->n_force_qs++;
1228 if (fqs_state == RCU_SAVE_DYNTICK) {
1229 /* Collect dyntick-idle snapshots. */
1230 force_qs_rnp(rsp, dyntick_save_progress_counter);
1231 fqs_state = RCU_FORCE_QS;
1232 } else {
1233 /* Handle dyntick-idle and offline CPUs. */
1234 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1235 }
1236 /* Clear flag to prevent immediate re-entry. */
1237 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1238 raw_spin_lock_irq(&rnp->lock);
1239 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1240 raw_spin_unlock_irq(&rnp->lock);
1241 }
1242 return fqs_state;
1243 }
1244
1245 /*
1246 * Clean up after the old grace period.
1247 */
1248 static void rcu_gp_cleanup(struct rcu_state *rsp)
1249 {
1250 unsigned long gp_duration;
1251 struct rcu_data *rdp;
1252 struct rcu_node *rnp = rcu_get_root(rsp);
1253
1254 raw_spin_lock_irq(&rnp->lock);
1255 gp_duration = jiffies - rsp->gp_start;
1256 if (gp_duration > rsp->gp_max)
1257 rsp->gp_max = gp_duration;
1258
1259 /*
1260 * We know the grace period is complete, but to everyone else
1261 * it appears to still be ongoing. But it is also the case
1262 * that to everyone else it looks like there is nothing that
1263 * they can do to advance the grace period. It is therefore
1264 * safe for us to drop the lock in order to mark the grace
1265 * period as completed in all of the rcu_node structures.
1266 */
1267 raw_spin_unlock_irq(&rnp->lock);
1268
1269 /*
1270 * Propagate new ->completed value to rcu_node structures so
1271 * that other CPUs don't have to wait until the start of the next
1272 * grace period to process their callbacks. This also avoids
1273 * some nasty RCU grace-period initialization races by forcing
1274 * the end of the current grace period to be completely recorded in
1275 * all of the rcu_node structures before the beginning of the next
1276 * grace period is recorded in any of the rcu_node structures.
1277 */
1278 rcu_for_each_node_breadth_first(rsp, rnp) {
1279 raw_spin_lock_irq(&rnp->lock);
1280 rnp->completed = rsp->gpnum;
1281 raw_spin_unlock_irq(&rnp->lock);
1282 cond_resched();
1283 }
1284 rnp = rcu_get_root(rsp);
1285 raw_spin_lock_irq(&rnp->lock);
1286
1287 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1288 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1289 rsp->fqs_state = RCU_GP_IDLE;
1290 rdp = this_cpu_ptr(rsp->rda);
1291 if (cpu_needs_another_gp(rsp, rdp))
1292 rsp->gp_flags = 1;
1293 raw_spin_unlock_irq(&rnp->lock);
1294 }
1295
1296 /*
1297 * Body of kthread that handles grace periods.
1298 */
1299 static int __noreturn rcu_gp_kthread(void *arg)
1300 {
1301 int fqs_state;
1302 unsigned long j;
1303 int ret;
1304 struct rcu_state *rsp = arg;
1305 struct rcu_node *rnp = rcu_get_root(rsp);
1306
1307 for (;;) {
1308
1309 /* Handle grace-period start. */
1310 for (;;) {
1311 wait_event_interruptible(rsp->gp_wq,
1312 rsp->gp_flags &
1313 RCU_GP_FLAG_INIT);
1314 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1315 rcu_gp_init(rsp))
1316 break;
1317 cond_resched();
1318 flush_signals(current);
1319 }
1320
1321 /* Handle quiescent-state forcing. */
1322 fqs_state = RCU_SAVE_DYNTICK;
1323 j = jiffies_till_first_fqs;
1324 if (j > HZ) {
1325 j = HZ;
1326 jiffies_till_first_fqs = HZ;
1327 }
1328 for (;;) {
1329 rsp->jiffies_force_qs = jiffies + j;
1330 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1331 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1332 (!ACCESS_ONCE(rnp->qsmask) &&
1333 !rcu_preempt_blocked_readers_cgp(rnp)),
1334 j);
1335 /* If grace period done, leave loop. */
1336 if (!ACCESS_ONCE(rnp->qsmask) &&
1337 !rcu_preempt_blocked_readers_cgp(rnp))
1338 break;
1339 /* If time for quiescent-state forcing, do it. */
1340 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1341 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1342 cond_resched();
1343 } else {
1344 /* Deal with stray signal. */
1345 cond_resched();
1346 flush_signals(current);
1347 }
1348 j = jiffies_till_next_fqs;
1349 if (j > HZ) {
1350 j = HZ;
1351 jiffies_till_next_fqs = HZ;
1352 } else if (j < 1) {
1353 j = 1;
1354 jiffies_till_next_fqs = 1;
1355 }
1356 }
1357
1358 /* Handle grace-period end. */
1359 rcu_gp_cleanup(rsp);
1360 }
1361 }
1362
1363 /*
1364 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1365 * in preparation for detecting the next grace period. The caller must hold
1366 * the root node's ->lock, which is released before return. Hard irqs must
1367 * be disabled.
1368 *
1369 * Note that it is legal for a dying CPU (which is marked as offline) to
1370 * invoke this function. This can happen when the dying CPU reports its
1371 * quiescent state.
1372 */
1373 static void
1374 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1375 __releases(rcu_get_root(rsp)->lock)
1376 {
1377 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1378 struct rcu_node *rnp = rcu_get_root(rsp);
1379
1380 if (!rsp->gp_kthread ||
1381 !cpu_needs_another_gp(rsp, rdp)) {
1382 /*
1383 * Either we have not yet spawned the grace-period
1384 * task, this CPU does not need another grace period,
1385 * or a grace period is already in progress.
1386 * Either way, don't start a new grace period.
1387 */
1388 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1389 return;
1390 }
1391
1392 /*
1393 * Because there is no grace period in progress right now,
1394 * any callbacks we have up to this point will be satisfied
1395 * by the next grace period. So promote all callbacks to be
1396 * handled after the end of the next grace period. If the
1397 * CPU is not yet aware of the end of the previous grace period,
1398 * we need to allow for the callback advancement that will
1399 * occur when it does become aware. Deadlock prevents us from
1400 * making it aware at this point: We cannot acquire a leaf
1401 * rcu_node ->lock while holding the root rcu_node ->lock.
1402 */
1403 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1404 if (rdp->completed == rsp->completed)
1405 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1406
1407 rsp->gp_flags = RCU_GP_FLAG_INIT;
1408 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
1409
1410 /* Ensure that CPU is aware of completion of last grace period. */
1411 rcu_process_gp_end(rsp, rdp);
1412 local_irq_restore(flags);
1413
1414 /* Wake up rcu_gp_kthread() to start the grace period. */
1415 wake_up(&rsp->gp_wq);
1416 }
1417
1418 /*
1419 * Report a full set of quiescent states to the specified rcu_state
1420 * data structure. This involves cleaning up after the prior grace
1421 * period and letting rcu_start_gp() start up the next grace period
1422 * if one is needed. Note that the caller must hold rnp->lock, as
1423 * required by rcu_start_gp(), which will release it.
1424 */
1425 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1426 __releases(rcu_get_root(rsp)->lock)
1427 {
1428 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1429 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1430 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1431 }
1432
1433 /*
1434 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1435 * Allows quiescent states for a group of CPUs to be reported at one go
1436 * to the specified rcu_node structure, though all the CPUs in the group
1437 * must be represented by the same rcu_node structure (which need not be
1438 * a leaf rcu_node structure, though it often will be). That structure's
1439 * lock must be held upon entry, and it is released before return.
1440 */
1441 static void
1442 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1443 struct rcu_node *rnp, unsigned long flags)
1444 __releases(rnp->lock)
1445 {
1446 struct rcu_node *rnp_c;
1447
1448 /* Walk up the rcu_node hierarchy. */
1449 for (;;) {
1450 if (!(rnp->qsmask & mask)) {
1451
1452 /* Our bit has already been cleared, so done. */
1453 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1454 return;
1455 }
1456 rnp->qsmask &= ~mask;
1457 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1458 mask, rnp->qsmask, rnp->level,
1459 rnp->grplo, rnp->grphi,
1460 !!rnp->gp_tasks);
1461 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1462
1463 /* Other bits still set at this level, so done. */
1464 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1465 return;
1466 }
1467 mask = rnp->grpmask;
1468 if (rnp->parent == NULL) {
1469
1470 /* No more levels. Exit loop holding root lock. */
1471
1472 break;
1473 }
1474 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1475 rnp_c = rnp;
1476 rnp = rnp->parent;
1477 raw_spin_lock_irqsave(&rnp->lock, flags);
1478 WARN_ON_ONCE(rnp_c->qsmask);
1479 }
1480
1481 /*
1482 * Get here if we are the last CPU to pass through a quiescent
1483 * state for this grace period. Invoke rcu_report_qs_rsp()
1484 * to clean up and start the next grace period if one is needed.
1485 */
1486 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1487 }
1488
1489 /*
1490 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1491 * structure. This must be either called from the specified CPU, or
1492 * called when the specified CPU is known to be offline (and when it is
1493 * also known that no other CPU is concurrently trying to help the offline
1494 * CPU). The lastcomp argument is used to make sure we are still in the
1495 * grace period of interest. We don't want to end the current grace period
1496 * based on quiescent states detected in an earlier grace period!
1497 */
1498 static void
1499 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1500 {
1501 unsigned long flags;
1502 unsigned long mask;
1503 struct rcu_node *rnp;
1504
1505 rnp = rdp->mynode;
1506 raw_spin_lock_irqsave(&rnp->lock, flags);
1507 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1508 rnp->completed == rnp->gpnum) {
1509
1510 /*
1511 * The grace period in which this quiescent state was
1512 * recorded has ended, so don't report it upwards.
1513 * We will instead need a new quiescent state that lies
1514 * within the current grace period.
1515 */
1516 rdp->passed_quiesce = 0; /* need qs for new gp. */
1517 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1518 return;
1519 }
1520 mask = rdp->grpmask;
1521 if ((rnp->qsmask & mask) == 0) {
1522 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1523 } else {
1524 rdp->qs_pending = 0;
1525
1526 /*
1527 * This GP can't end until cpu checks in, so all of our
1528 * callbacks can be processed during the next GP.
1529 */
1530 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1531
1532 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1533 }
1534 }
1535
1536 /*
1537 * Check to see if there is a new grace period of which this CPU
1538 * is not yet aware, and if so, set up local rcu_data state for it.
1539 * Otherwise, see if this CPU has just passed through its first
1540 * quiescent state for this grace period, and record that fact if so.
1541 */
1542 static void
1543 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1544 {
1545 /* If there is now a new grace period, record and return. */
1546 if (check_for_new_grace_period(rsp, rdp))
1547 return;
1548
1549 /*
1550 * Does this CPU still need to do its part for current grace period?
1551 * If no, return and let the other CPUs do their part as well.
1552 */
1553 if (!rdp->qs_pending)
1554 return;
1555
1556 /*
1557 * Was there a quiescent state since the beginning of the grace
1558 * period? If no, then exit and wait for the next call.
1559 */
1560 if (!rdp->passed_quiesce)
1561 return;
1562
1563 /*
1564 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1565 * judge of that).
1566 */
1567 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1568 }
1569
1570 #ifdef CONFIG_HOTPLUG_CPU
1571
1572 /*
1573 * Send the specified CPU's RCU callbacks to the orphanage. The
1574 * specified CPU must be offline, and the caller must hold the
1575 * ->orphan_lock.
1576 */
1577 static void
1578 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1579 struct rcu_node *rnp, struct rcu_data *rdp)
1580 {
1581 /* No-CBs CPUs do not have orphanable callbacks. */
1582 if (is_nocb_cpu(rdp->cpu))
1583 return;
1584
1585 /*
1586 * Orphan the callbacks. First adjust the counts. This is safe
1587 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1588 * cannot be running now. Thus no memory barrier is required.
1589 */
1590 if (rdp->nxtlist != NULL) {
1591 rsp->qlen_lazy += rdp->qlen_lazy;
1592 rsp->qlen += rdp->qlen;
1593 rdp->n_cbs_orphaned += rdp->qlen;
1594 rdp->qlen_lazy = 0;
1595 ACCESS_ONCE(rdp->qlen) = 0;
1596 }
1597
1598 /*
1599 * Next, move those callbacks still needing a grace period to
1600 * the orphanage, where some other CPU will pick them up.
1601 * Some of the callbacks might have gone partway through a grace
1602 * period, but that is too bad. They get to start over because we
1603 * cannot assume that grace periods are synchronized across CPUs.
1604 * We don't bother updating the ->nxttail[] array yet, instead
1605 * we just reset the whole thing later on.
1606 */
1607 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1608 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1609 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1610 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1611 }
1612
1613 /*
1614 * Then move the ready-to-invoke callbacks to the orphanage,
1615 * where some other CPU will pick them up. These will not be
1616 * required to pass though another grace period: They are done.
1617 */
1618 if (rdp->nxtlist != NULL) {
1619 *rsp->orphan_donetail = rdp->nxtlist;
1620 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1621 }
1622
1623 /* Finally, initialize the rcu_data structure's list to empty. */
1624 init_callback_list(rdp);
1625 }
1626
1627 /*
1628 * Adopt the RCU callbacks from the specified rcu_state structure's
1629 * orphanage. The caller must hold the ->orphan_lock.
1630 */
1631 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1632 {
1633 int i;
1634 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1635
1636 /* No-CBs CPUs are handled specially. */
1637 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1638 return;
1639
1640 /* Do the accounting first. */
1641 rdp->qlen_lazy += rsp->qlen_lazy;
1642 rdp->qlen += rsp->qlen;
1643 rdp->n_cbs_adopted += rsp->qlen;
1644 if (rsp->qlen_lazy != rsp->qlen)
1645 rcu_idle_count_callbacks_posted();
1646 rsp->qlen_lazy = 0;
1647 rsp->qlen = 0;
1648
1649 /*
1650 * We do not need a memory barrier here because the only way we
1651 * can get here if there is an rcu_barrier() in flight is if
1652 * we are the task doing the rcu_barrier().
1653 */
1654
1655 /* First adopt the ready-to-invoke callbacks. */
1656 if (rsp->orphan_donelist != NULL) {
1657 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1658 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1659 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1660 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1661 rdp->nxttail[i] = rsp->orphan_donetail;
1662 rsp->orphan_donelist = NULL;
1663 rsp->orphan_donetail = &rsp->orphan_donelist;
1664 }
1665
1666 /* And then adopt the callbacks that still need a grace period. */
1667 if (rsp->orphan_nxtlist != NULL) {
1668 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1669 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1670 rsp->orphan_nxtlist = NULL;
1671 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1672 }
1673 }
1674
1675 /*
1676 * Trace the fact that this CPU is going offline.
1677 */
1678 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1679 {
1680 RCU_TRACE(unsigned long mask);
1681 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1682 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1683
1684 RCU_TRACE(mask = rdp->grpmask);
1685 trace_rcu_grace_period(rsp->name,
1686 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1687 "cpuofl");
1688 }
1689
1690 /*
1691 * The CPU has been completely removed, and some other CPU is reporting
1692 * this fact from process context. Do the remainder of the cleanup,
1693 * including orphaning the outgoing CPU's RCU callbacks, and also
1694 * adopting them. There can only be one CPU hotplug operation at a time,
1695 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1696 */
1697 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1698 {
1699 unsigned long flags;
1700 unsigned long mask;
1701 int need_report = 0;
1702 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1703 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1704
1705 /* Adjust any no-longer-needed kthreads. */
1706 rcu_boost_kthread_setaffinity(rnp, -1);
1707
1708 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1709
1710 /* Exclude any attempts to start a new grace period. */
1711 mutex_lock(&rsp->onoff_mutex);
1712 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1713
1714 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1715 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1716 rcu_adopt_orphan_cbs(rsp);
1717
1718 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1719 mask = rdp->grpmask; /* rnp->grplo is constant. */
1720 do {
1721 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1722 rnp->qsmaskinit &= ~mask;
1723 if (rnp->qsmaskinit != 0) {
1724 if (rnp != rdp->mynode)
1725 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1726 break;
1727 }
1728 if (rnp == rdp->mynode)
1729 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1730 else
1731 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1732 mask = rnp->grpmask;
1733 rnp = rnp->parent;
1734 } while (rnp != NULL);
1735
1736 /*
1737 * We still hold the leaf rcu_node structure lock here, and
1738 * irqs are still disabled. The reason for this subterfuge is
1739 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1740 * held leads to deadlock.
1741 */
1742 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1743 rnp = rdp->mynode;
1744 if (need_report & RCU_OFL_TASKS_NORM_GP)
1745 rcu_report_unblock_qs_rnp(rnp, flags);
1746 else
1747 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1748 if (need_report & RCU_OFL_TASKS_EXP_GP)
1749 rcu_report_exp_rnp(rsp, rnp, true);
1750 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1751 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1752 cpu, rdp->qlen, rdp->nxtlist);
1753 init_callback_list(rdp);
1754 /* Disallow further callbacks on this CPU. */
1755 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1756 mutex_unlock(&rsp->onoff_mutex);
1757 }
1758
1759 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1760
1761 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1762 {
1763 }
1764
1765 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1766 {
1767 }
1768
1769 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1770
1771 /*
1772 * Invoke any RCU callbacks that have made it to the end of their grace
1773 * period. Thottle as specified by rdp->blimit.
1774 */
1775 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1776 {
1777 unsigned long flags;
1778 struct rcu_head *next, *list, **tail;
1779 long bl, count, count_lazy;
1780 int i;
1781
1782 /* If no callbacks are ready, just return.*/
1783 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1784 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1785 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1786 need_resched(), is_idle_task(current),
1787 rcu_is_callbacks_kthread());
1788 return;
1789 }
1790
1791 /*
1792 * Extract the list of ready callbacks, disabling to prevent
1793 * races with call_rcu() from interrupt handlers.
1794 */
1795 local_irq_save(flags);
1796 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1797 bl = rdp->blimit;
1798 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1799 list = rdp->nxtlist;
1800 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1801 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1802 tail = rdp->nxttail[RCU_DONE_TAIL];
1803 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1804 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1805 rdp->nxttail[i] = &rdp->nxtlist;
1806 local_irq_restore(flags);
1807
1808 /* Invoke callbacks. */
1809 count = count_lazy = 0;
1810 while (list) {
1811 next = list->next;
1812 prefetch(next);
1813 debug_rcu_head_unqueue(list);
1814 if (__rcu_reclaim(rsp->name, list))
1815 count_lazy++;
1816 list = next;
1817 /* Stop only if limit reached and CPU has something to do. */
1818 if (++count >= bl &&
1819 (need_resched() ||
1820 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1821 break;
1822 }
1823
1824 local_irq_save(flags);
1825 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1826 is_idle_task(current),
1827 rcu_is_callbacks_kthread());
1828
1829 /* Update count, and requeue any remaining callbacks. */
1830 if (list != NULL) {
1831 *tail = rdp->nxtlist;
1832 rdp->nxtlist = list;
1833 for (i = 0; i < RCU_NEXT_SIZE; i++)
1834 if (&rdp->nxtlist == rdp->nxttail[i])
1835 rdp->nxttail[i] = tail;
1836 else
1837 break;
1838 }
1839 smp_mb(); /* List handling before counting for rcu_barrier(). */
1840 rdp->qlen_lazy -= count_lazy;
1841 ACCESS_ONCE(rdp->qlen) -= count;
1842 rdp->n_cbs_invoked += count;
1843
1844 /* Reinstate batch limit if we have worked down the excess. */
1845 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1846 rdp->blimit = blimit;
1847
1848 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1849 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1850 rdp->qlen_last_fqs_check = 0;
1851 rdp->n_force_qs_snap = rsp->n_force_qs;
1852 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1853 rdp->qlen_last_fqs_check = rdp->qlen;
1854 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1855
1856 local_irq_restore(flags);
1857
1858 /* Re-invoke RCU core processing if there are callbacks remaining. */
1859 if (cpu_has_callbacks_ready_to_invoke(rdp))
1860 invoke_rcu_core();
1861 }
1862
1863 /*
1864 * Check to see if this CPU is in a non-context-switch quiescent state
1865 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1866 * Also schedule RCU core processing.
1867 *
1868 * This function must be called from hardirq context. It is normally
1869 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1870 * false, there is no point in invoking rcu_check_callbacks().
1871 */
1872 void rcu_check_callbacks(int cpu, int user)
1873 {
1874 trace_rcu_utilization("Start scheduler-tick");
1875 increment_cpu_stall_ticks();
1876 if (user || rcu_is_cpu_rrupt_from_idle()) {
1877
1878 /*
1879 * Get here if this CPU took its interrupt from user
1880 * mode or from the idle loop, and if this is not a
1881 * nested interrupt. In this case, the CPU is in
1882 * a quiescent state, so note it.
1883 *
1884 * No memory barrier is required here because both
1885 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1886 * variables that other CPUs neither access nor modify,
1887 * at least not while the corresponding CPU is online.
1888 */
1889
1890 rcu_sched_qs(cpu);
1891 rcu_bh_qs(cpu);
1892
1893 } else if (!in_softirq()) {
1894
1895 /*
1896 * Get here if this CPU did not take its interrupt from
1897 * softirq, in other words, if it is not interrupting
1898 * a rcu_bh read-side critical section. This is an _bh
1899 * critical section, so note it.
1900 */
1901
1902 rcu_bh_qs(cpu);
1903 }
1904 rcu_preempt_check_callbacks(cpu);
1905 if (rcu_pending(cpu))
1906 invoke_rcu_core();
1907 trace_rcu_utilization("End scheduler-tick");
1908 }
1909
1910 /*
1911 * Scan the leaf rcu_node structures, processing dyntick state for any that
1912 * have not yet encountered a quiescent state, using the function specified.
1913 * Also initiate boosting for any threads blocked on the root rcu_node.
1914 *
1915 * The caller must have suppressed start of new grace periods.
1916 */
1917 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1918 {
1919 unsigned long bit;
1920 int cpu;
1921 unsigned long flags;
1922 unsigned long mask;
1923 struct rcu_node *rnp;
1924
1925 rcu_for_each_leaf_node(rsp, rnp) {
1926 cond_resched();
1927 mask = 0;
1928 raw_spin_lock_irqsave(&rnp->lock, flags);
1929 if (!rcu_gp_in_progress(rsp)) {
1930 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1931 return;
1932 }
1933 if (rnp->qsmask == 0) {
1934 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1935 continue;
1936 }
1937 cpu = rnp->grplo;
1938 bit = 1;
1939 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1940 if ((rnp->qsmask & bit) != 0 &&
1941 f(per_cpu_ptr(rsp->rda, cpu)))
1942 mask |= bit;
1943 }
1944 if (mask != 0) {
1945
1946 /* rcu_report_qs_rnp() releases rnp->lock. */
1947 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1948 continue;
1949 }
1950 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1951 }
1952 rnp = rcu_get_root(rsp);
1953 if (rnp->qsmask == 0) {
1954 raw_spin_lock_irqsave(&rnp->lock, flags);
1955 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1956 }
1957 }
1958
1959 /*
1960 * Force quiescent states on reluctant CPUs, and also detect which
1961 * CPUs are in dyntick-idle mode.
1962 */
1963 static void force_quiescent_state(struct rcu_state *rsp)
1964 {
1965 unsigned long flags;
1966 bool ret;
1967 struct rcu_node *rnp;
1968 struct rcu_node *rnp_old = NULL;
1969
1970 /* Funnel through hierarchy to reduce memory contention. */
1971 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1972 for (; rnp != NULL; rnp = rnp->parent) {
1973 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1974 !raw_spin_trylock(&rnp->fqslock);
1975 if (rnp_old != NULL)
1976 raw_spin_unlock(&rnp_old->fqslock);
1977 if (ret) {
1978 rsp->n_force_qs_lh++;
1979 return;
1980 }
1981 rnp_old = rnp;
1982 }
1983 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1984
1985 /* Reached the root of the rcu_node tree, acquire lock. */
1986 raw_spin_lock_irqsave(&rnp_old->lock, flags);
1987 raw_spin_unlock(&rnp_old->fqslock);
1988 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1989 rsp->n_force_qs_lh++;
1990 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1991 return; /* Someone beat us to it. */
1992 }
1993 rsp->gp_flags |= RCU_GP_FLAG_FQS;
1994 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1995 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1996 }
1997
1998 /*
1999 * This does the RCU core processing work for the specified rcu_state
2000 * and rcu_data structures. This may be called only from the CPU to
2001 * whom the rdp belongs.
2002 */
2003 static void
2004 __rcu_process_callbacks(struct rcu_state *rsp)
2005 {
2006 unsigned long flags;
2007 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2008
2009 WARN_ON_ONCE(rdp->beenonline == 0);
2010
2011 /*
2012 * Advance callbacks in response to end of earlier grace
2013 * period that some other CPU ended.
2014 */
2015 rcu_process_gp_end(rsp, rdp);
2016
2017 /* Update RCU state based on any recent quiescent states. */
2018 rcu_check_quiescent_state(rsp, rdp);
2019
2020 /* Does this CPU require a not-yet-started grace period? */
2021 if (cpu_needs_another_gp(rsp, rdp)) {
2022 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
2023 rcu_start_gp(rsp, flags); /* releases above lock */
2024 }
2025
2026 /* If there are callbacks ready, invoke them. */
2027 if (cpu_has_callbacks_ready_to_invoke(rdp))
2028 invoke_rcu_callbacks(rsp, rdp);
2029 }
2030
2031 /*
2032 * Do RCU core processing for the current CPU.
2033 */
2034 static void rcu_process_callbacks(struct softirq_action *unused)
2035 {
2036 struct rcu_state *rsp;
2037
2038 if (cpu_is_offline(smp_processor_id()))
2039 return;
2040 trace_rcu_utilization("Start RCU core");
2041 for_each_rcu_flavor(rsp)
2042 __rcu_process_callbacks(rsp);
2043 trace_rcu_utilization("End RCU core");
2044 }
2045
2046 /*
2047 * Schedule RCU callback invocation. If the specified type of RCU
2048 * does not support RCU priority boosting, just do a direct call,
2049 * otherwise wake up the per-CPU kernel kthread. Note that because we
2050 * are running on the current CPU with interrupts disabled, the
2051 * rcu_cpu_kthread_task cannot disappear out from under us.
2052 */
2053 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2054 {
2055 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2056 return;
2057 if (likely(!rsp->boost)) {
2058 rcu_do_batch(rsp, rdp);
2059 return;
2060 }
2061 invoke_rcu_callbacks_kthread();
2062 }
2063
2064 static void invoke_rcu_core(void)
2065 {
2066 raise_softirq(RCU_SOFTIRQ);
2067 }
2068
2069 /*
2070 * Handle any core-RCU processing required by a call_rcu() invocation.
2071 */
2072 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2073 struct rcu_head *head, unsigned long flags)
2074 {
2075 /*
2076 * If called from an extended quiescent state, invoke the RCU
2077 * core in order to force a re-evaluation of RCU's idleness.
2078 */
2079 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2080 invoke_rcu_core();
2081
2082 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2083 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2084 return;
2085
2086 /*
2087 * Force the grace period if too many callbacks or too long waiting.
2088 * Enforce hysteresis, and don't invoke force_quiescent_state()
2089 * if some other CPU has recently done so. Also, don't bother
2090 * invoking force_quiescent_state() if the newly enqueued callback
2091 * is the only one waiting for a grace period to complete.
2092 */
2093 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2094
2095 /* Are we ignoring a completed grace period? */
2096 rcu_process_gp_end(rsp, rdp);
2097 check_for_new_grace_period(rsp, rdp);
2098
2099 /* Start a new grace period if one not already started. */
2100 if (!rcu_gp_in_progress(rsp)) {
2101 unsigned long nestflag;
2102 struct rcu_node *rnp_root = rcu_get_root(rsp);
2103
2104 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2105 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2106 } else {
2107 /* Give the grace period a kick. */
2108 rdp->blimit = LONG_MAX;
2109 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2110 *rdp->nxttail[RCU_DONE_TAIL] != head)
2111 force_quiescent_state(rsp);
2112 rdp->n_force_qs_snap = rsp->n_force_qs;
2113 rdp->qlen_last_fqs_check = rdp->qlen;
2114 }
2115 }
2116 }
2117
2118 /*
2119 * Helper function for call_rcu() and friends. The cpu argument will
2120 * normally be -1, indicating "currently running CPU". It may specify
2121 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2122 * is expected to specify a CPU.
2123 */
2124 static void
2125 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2126 struct rcu_state *rsp, int cpu, bool lazy)
2127 {
2128 unsigned long flags;
2129 struct rcu_data *rdp;
2130
2131 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2132 debug_rcu_head_queue(head);
2133 head->func = func;
2134 head->next = NULL;
2135
2136 /*
2137 * Opportunistically note grace-period endings and beginnings.
2138 * Note that we might see a beginning right after we see an
2139 * end, but never vice versa, since this CPU has to pass through
2140 * a quiescent state betweentimes.
2141 */
2142 local_irq_save(flags);
2143 rdp = this_cpu_ptr(rsp->rda);
2144
2145 /* Add the callback to our list. */
2146 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2147 int offline;
2148
2149 if (cpu != -1)
2150 rdp = per_cpu_ptr(rsp->rda, cpu);
2151 offline = !__call_rcu_nocb(rdp, head, lazy);
2152 WARN_ON_ONCE(offline);
2153 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2154 local_irq_restore(flags);
2155 return;
2156 }
2157 ACCESS_ONCE(rdp->qlen)++;
2158 if (lazy)
2159 rdp->qlen_lazy++;
2160 else
2161 rcu_idle_count_callbacks_posted();
2162 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2163 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2164 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2165
2166 if (__is_kfree_rcu_offset((unsigned long)func))
2167 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2168 rdp->qlen_lazy, rdp->qlen);
2169 else
2170 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2171
2172 /* Go handle any RCU core processing required. */
2173 __call_rcu_core(rsp, rdp, head, flags);
2174 local_irq_restore(flags);
2175 }
2176
2177 /*
2178 * Queue an RCU-sched callback for invocation after a grace period.
2179 */
2180 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2181 {
2182 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2183 }
2184 EXPORT_SYMBOL_GPL(call_rcu_sched);
2185
2186 /*
2187 * Queue an RCU callback for invocation after a quicker grace period.
2188 */
2189 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2190 {
2191 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2192 }
2193 EXPORT_SYMBOL_GPL(call_rcu_bh);
2194
2195 /*
2196 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2197 * any blocking grace-period wait automatically implies a grace period
2198 * if there is only one CPU online at any point time during execution
2199 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2200 * occasionally incorrectly indicate that there are multiple CPUs online
2201 * when there was in fact only one the whole time, as this just adds
2202 * some overhead: RCU still operates correctly.
2203 */
2204 static inline int rcu_blocking_is_gp(void)
2205 {
2206 int ret;
2207
2208 might_sleep(); /* Check for RCU read-side critical section. */
2209 preempt_disable();
2210 ret = num_online_cpus() <= 1;
2211 preempt_enable();
2212 return ret;
2213 }
2214
2215 /**
2216 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2217 *
2218 * Control will return to the caller some time after a full rcu-sched
2219 * grace period has elapsed, in other words after all currently executing
2220 * rcu-sched read-side critical sections have completed. These read-side
2221 * critical sections are delimited by rcu_read_lock_sched() and
2222 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2223 * local_irq_disable(), and so on may be used in place of
2224 * rcu_read_lock_sched().
2225 *
2226 * This means that all preempt_disable code sequences, including NMI and
2227 * non-threaded hardware-interrupt handlers, in progress on entry will
2228 * have completed before this primitive returns. However, this does not
2229 * guarantee that softirq handlers will have completed, since in some
2230 * kernels, these handlers can run in process context, and can block.
2231 *
2232 * Note that this guarantee implies further memory-ordering guarantees.
2233 * On systems with more than one CPU, when synchronize_sched() returns,
2234 * each CPU is guaranteed to have executed a full memory barrier since the
2235 * end of its last RCU-sched read-side critical section whose beginning
2236 * preceded the call to synchronize_sched(). In addition, each CPU having
2237 * an RCU read-side critical section that extends beyond the return from
2238 * synchronize_sched() is guaranteed to have executed a full memory barrier
2239 * after the beginning of synchronize_sched() and before the beginning of
2240 * that RCU read-side critical section. Note that these guarantees include
2241 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2242 * that are executing in the kernel.
2243 *
2244 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2245 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2246 * to have executed a full memory barrier during the execution of
2247 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2248 * again only if the system has more than one CPU).
2249 *
2250 * This primitive provides the guarantees made by the (now removed)
2251 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2252 * guarantees that rcu_read_lock() sections will have completed.
2253 * In "classic RCU", these two guarantees happen to be one and
2254 * the same, but can differ in realtime RCU implementations.
2255 */
2256 void synchronize_sched(void)
2257 {
2258 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2259 !lock_is_held(&rcu_lock_map) &&
2260 !lock_is_held(&rcu_sched_lock_map),
2261 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2262 if (rcu_blocking_is_gp())
2263 return;
2264 if (rcu_expedited)
2265 synchronize_sched_expedited();
2266 else
2267 wait_rcu_gp(call_rcu_sched);
2268 }
2269 EXPORT_SYMBOL_GPL(synchronize_sched);
2270
2271 /**
2272 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2273 *
2274 * Control will return to the caller some time after a full rcu_bh grace
2275 * period has elapsed, in other words after all currently executing rcu_bh
2276 * read-side critical sections have completed. RCU read-side critical
2277 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2278 * and may be nested.
2279 *
2280 * See the description of synchronize_sched() for more detailed information
2281 * on memory ordering guarantees.
2282 */
2283 void synchronize_rcu_bh(void)
2284 {
2285 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2286 !lock_is_held(&rcu_lock_map) &&
2287 !lock_is_held(&rcu_sched_lock_map),
2288 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2289 if (rcu_blocking_is_gp())
2290 return;
2291 if (rcu_expedited)
2292 synchronize_rcu_bh_expedited();
2293 else
2294 wait_rcu_gp(call_rcu_bh);
2295 }
2296 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2297
2298 static int synchronize_sched_expedited_cpu_stop(void *data)
2299 {
2300 /*
2301 * There must be a full memory barrier on each affected CPU
2302 * between the time that try_stop_cpus() is called and the
2303 * time that it returns.
2304 *
2305 * In the current initial implementation of cpu_stop, the
2306 * above condition is already met when the control reaches
2307 * this point and the following smp_mb() is not strictly
2308 * necessary. Do smp_mb() anyway for documentation and
2309 * robustness against future implementation changes.
2310 */
2311 smp_mb(); /* See above comment block. */
2312 return 0;
2313 }
2314
2315 /**
2316 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2317 *
2318 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2319 * approach to force the grace period to end quickly. This consumes
2320 * significant time on all CPUs and is unfriendly to real-time workloads,
2321 * so is thus not recommended for any sort of common-case code. In fact,
2322 * if you are using synchronize_sched_expedited() in a loop, please
2323 * restructure your code to batch your updates, and then use a single
2324 * synchronize_sched() instead.
2325 *
2326 * Note that it is illegal to call this function while holding any lock
2327 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2328 * to call this function from a CPU-hotplug notifier. Failing to observe
2329 * these restriction will result in deadlock.
2330 *
2331 * This implementation can be thought of as an application of ticket
2332 * locking to RCU, with sync_sched_expedited_started and
2333 * sync_sched_expedited_done taking on the roles of the halves
2334 * of the ticket-lock word. Each task atomically increments
2335 * sync_sched_expedited_started upon entry, snapshotting the old value,
2336 * then attempts to stop all the CPUs. If this succeeds, then each
2337 * CPU will have executed a context switch, resulting in an RCU-sched
2338 * grace period. We are then done, so we use atomic_cmpxchg() to
2339 * update sync_sched_expedited_done to match our snapshot -- but
2340 * only if someone else has not already advanced past our snapshot.
2341 *
2342 * On the other hand, if try_stop_cpus() fails, we check the value
2343 * of sync_sched_expedited_done. If it has advanced past our
2344 * initial snapshot, then someone else must have forced a grace period
2345 * some time after we took our snapshot. In this case, our work is
2346 * done for us, and we can simply return. Otherwise, we try again,
2347 * but keep our initial snapshot for purposes of checking for someone
2348 * doing our work for us.
2349 *
2350 * If we fail too many times in a row, we fall back to synchronize_sched().
2351 */
2352 void synchronize_sched_expedited(void)
2353 {
2354 long firstsnap, s, snap;
2355 int trycount = 0;
2356 struct rcu_state *rsp = &rcu_sched_state;
2357
2358 /*
2359 * If we are in danger of counter wrap, just do synchronize_sched().
2360 * By allowing sync_sched_expedited_started to advance no more than
2361 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2362 * that more than 3.5 billion CPUs would be required to force a
2363 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2364 * course be required on a 64-bit system.
2365 */
2366 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2367 (ulong)atomic_long_read(&rsp->expedited_done) +
2368 ULONG_MAX / 8)) {
2369 synchronize_sched();
2370 atomic_long_inc(&rsp->expedited_wrap);
2371 return;
2372 }
2373
2374 /*
2375 * Take a ticket. Note that atomic_inc_return() implies a
2376 * full memory barrier.
2377 */
2378 snap = atomic_long_inc_return(&rsp->expedited_start);
2379 firstsnap = snap;
2380 get_online_cpus();
2381 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2382
2383 /*
2384 * Each pass through the following loop attempts to force a
2385 * context switch on each CPU.
2386 */
2387 while (try_stop_cpus(cpu_online_mask,
2388 synchronize_sched_expedited_cpu_stop,
2389 NULL) == -EAGAIN) {
2390 put_online_cpus();
2391 atomic_long_inc(&rsp->expedited_tryfail);
2392
2393 /* Check to see if someone else did our work for us. */
2394 s = atomic_long_read(&rsp->expedited_done);
2395 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2396 /* ensure test happens before caller kfree */
2397 smp_mb__before_atomic_inc(); /* ^^^ */
2398 atomic_long_inc(&rsp->expedited_workdone1);
2399 return;
2400 }
2401
2402 /* No joy, try again later. Or just synchronize_sched(). */
2403 if (trycount++ < 10) {
2404 udelay(trycount * num_online_cpus());
2405 } else {
2406 wait_rcu_gp(call_rcu_sched);
2407 atomic_long_inc(&rsp->expedited_normal);
2408 return;
2409 }
2410
2411 /* Recheck to see if someone else did our work for us. */
2412 s = atomic_long_read(&rsp->expedited_done);
2413 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2414 /* ensure test happens before caller kfree */
2415 smp_mb__before_atomic_inc(); /* ^^^ */
2416 atomic_long_inc(&rsp->expedited_workdone2);
2417 return;
2418 }
2419
2420 /*
2421 * Refetching sync_sched_expedited_started allows later
2422 * callers to piggyback on our grace period. We retry
2423 * after they started, so our grace period works for them,
2424 * and they started after our first try, so their grace
2425 * period works for us.
2426 */
2427 get_online_cpus();
2428 snap = atomic_long_read(&rsp->expedited_start);
2429 smp_mb(); /* ensure read is before try_stop_cpus(). */
2430 }
2431 atomic_long_inc(&rsp->expedited_stoppedcpus);
2432
2433 /*
2434 * Everyone up to our most recent fetch is covered by our grace
2435 * period. Update the counter, but only if our work is still
2436 * relevant -- which it won't be if someone who started later
2437 * than we did already did their update.
2438 */
2439 do {
2440 atomic_long_inc(&rsp->expedited_done_tries);
2441 s = atomic_long_read(&rsp->expedited_done);
2442 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2443 /* ensure test happens before caller kfree */
2444 smp_mb__before_atomic_inc(); /* ^^^ */
2445 atomic_long_inc(&rsp->expedited_done_lost);
2446 break;
2447 }
2448 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2449 atomic_long_inc(&rsp->expedited_done_exit);
2450
2451 put_online_cpus();
2452 }
2453 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2454
2455 /*
2456 * Check to see if there is any immediate RCU-related work to be done
2457 * by the current CPU, for the specified type of RCU, returning 1 if so.
2458 * The checks are in order of increasing expense: checks that can be
2459 * carried out against CPU-local state are performed first. However,
2460 * we must check for CPU stalls first, else we might not get a chance.
2461 */
2462 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2463 {
2464 struct rcu_node *rnp = rdp->mynode;
2465
2466 rdp->n_rcu_pending++;
2467
2468 /* Check for CPU stalls, if enabled. */
2469 check_cpu_stall(rsp, rdp);
2470
2471 /* Is the RCU core waiting for a quiescent state from this CPU? */
2472 if (rcu_scheduler_fully_active &&
2473 rdp->qs_pending && !rdp->passed_quiesce) {
2474 rdp->n_rp_qs_pending++;
2475 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2476 rdp->n_rp_report_qs++;
2477 return 1;
2478 }
2479
2480 /* Does this CPU have callbacks ready to invoke? */
2481 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2482 rdp->n_rp_cb_ready++;
2483 return 1;
2484 }
2485
2486 /* Has RCU gone idle with this CPU needing another grace period? */
2487 if (cpu_needs_another_gp(rsp, rdp)) {
2488 rdp->n_rp_cpu_needs_gp++;
2489 return 1;
2490 }
2491
2492 /* Has another RCU grace period completed? */
2493 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2494 rdp->n_rp_gp_completed++;
2495 return 1;
2496 }
2497
2498 /* Has a new RCU grace period started? */
2499 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2500 rdp->n_rp_gp_started++;
2501 return 1;
2502 }
2503
2504 /* nothing to do */
2505 rdp->n_rp_need_nothing++;
2506 return 0;
2507 }
2508
2509 /*
2510 * Check to see if there is any immediate RCU-related work to be done
2511 * by the current CPU, returning 1 if so. This function is part of the
2512 * RCU implementation; it is -not- an exported member of the RCU API.
2513 */
2514 static int rcu_pending(int cpu)
2515 {
2516 struct rcu_state *rsp;
2517
2518 for_each_rcu_flavor(rsp)
2519 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2520 return 1;
2521 return 0;
2522 }
2523
2524 /*
2525 * Check to see if any future RCU-related work will need to be done
2526 * by the current CPU, even if none need be done immediately, returning
2527 * 1 if so.
2528 */
2529 static int rcu_cpu_has_callbacks(int cpu)
2530 {
2531 struct rcu_state *rsp;
2532
2533 /* RCU callbacks either ready or pending? */
2534 for_each_rcu_flavor(rsp)
2535 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2536 return 1;
2537 return 0;
2538 }
2539
2540 /*
2541 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2542 * the compiler is expected to optimize this away.
2543 */
2544 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2545 int cpu, unsigned long done)
2546 {
2547 trace_rcu_barrier(rsp->name, s, cpu,
2548 atomic_read(&rsp->barrier_cpu_count), done);
2549 }
2550
2551 /*
2552 * RCU callback function for _rcu_barrier(). If we are last, wake
2553 * up the task executing _rcu_barrier().
2554 */
2555 static void rcu_barrier_callback(struct rcu_head *rhp)
2556 {
2557 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2558 struct rcu_state *rsp = rdp->rsp;
2559
2560 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2561 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2562 complete(&rsp->barrier_completion);
2563 } else {
2564 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2565 }
2566 }
2567
2568 /*
2569 * Called with preemption disabled, and from cross-cpu IRQ context.
2570 */
2571 static void rcu_barrier_func(void *type)
2572 {
2573 struct rcu_state *rsp = type;
2574 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2575
2576 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2577 atomic_inc(&rsp->barrier_cpu_count);
2578 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2579 }
2580
2581 /*
2582 * Orchestrate the specified type of RCU barrier, waiting for all
2583 * RCU callbacks of the specified type to complete.
2584 */
2585 static void _rcu_barrier(struct rcu_state *rsp)
2586 {
2587 int cpu;
2588 struct rcu_data *rdp;
2589 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2590 unsigned long snap_done;
2591
2592 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2593
2594 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2595 mutex_lock(&rsp->barrier_mutex);
2596
2597 /*
2598 * Ensure that all prior references, including to ->n_barrier_done,
2599 * are ordered before the _rcu_barrier() machinery.
2600 */
2601 smp_mb(); /* See above block comment. */
2602
2603 /*
2604 * Recheck ->n_barrier_done to see if others did our work for us.
2605 * This means checking ->n_barrier_done for an even-to-odd-to-even
2606 * transition. The "if" expression below therefore rounds the old
2607 * value up to the next even number and adds two before comparing.
2608 */
2609 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2610 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2611 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2612 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2613 smp_mb(); /* caller's subsequent code after above check. */
2614 mutex_unlock(&rsp->barrier_mutex);
2615 return;
2616 }
2617
2618 /*
2619 * Increment ->n_barrier_done to avoid duplicate work. Use
2620 * ACCESS_ONCE() to prevent the compiler from speculating
2621 * the increment to precede the early-exit check.
2622 */
2623 ACCESS_ONCE(rsp->n_barrier_done)++;
2624 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2625 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2626 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2627
2628 /*
2629 * Initialize the count to one rather than to zero in order to
2630 * avoid a too-soon return to zero in case of a short grace period
2631 * (or preemption of this task). Exclude CPU-hotplug operations
2632 * to ensure that no offline CPU has callbacks queued.
2633 */
2634 init_completion(&rsp->barrier_completion);
2635 atomic_set(&rsp->barrier_cpu_count, 1);
2636 get_online_cpus();
2637
2638 /*
2639 * Force each CPU with callbacks to register a new callback.
2640 * When that callback is invoked, we will know that all of the
2641 * corresponding CPU's preceding callbacks have been invoked.
2642 */
2643 for_each_possible_cpu(cpu) {
2644 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2645 continue;
2646 rdp = per_cpu_ptr(rsp->rda, cpu);
2647 if (is_nocb_cpu(cpu)) {
2648 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2649 rsp->n_barrier_done);
2650 atomic_inc(&rsp->barrier_cpu_count);
2651 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2652 rsp, cpu, 0);
2653 } else if (ACCESS_ONCE(rdp->qlen)) {
2654 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2655 rsp->n_barrier_done);
2656 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2657 } else {
2658 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2659 rsp->n_barrier_done);
2660 }
2661 }
2662 put_online_cpus();
2663
2664 /*
2665 * Now that we have an rcu_barrier_callback() callback on each
2666 * CPU, and thus each counted, remove the initial count.
2667 */
2668 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2669 complete(&rsp->barrier_completion);
2670
2671 /* Increment ->n_barrier_done to prevent duplicate work. */
2672 smp_mb(); /* Keep increment after above mechanism. */
2673 ACCESS_ONCE(rsp->n_barrier_done)++;
2674 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2675 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2676 smp_mb(); /* Keep increment before caller's subsequent code. */
2677
2678 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2679 wait_for_completion(&rsp->barrier_completion);
2680
2681 /* Other rcu_barrier() invocations can now safely proceed. */
2682 mutex_unlock(&rsp->barrier_mutex);
2683 }
2684
2685 /**
2686 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2687 */
2688 void rcu_barrier_bh(void)
2689 {
2690 _rcu_barrier(&rcu_bh_state);
2691 }
2692 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2693
2694 /**
2695 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2696 */
2697 void rcu_barrier_sched(void)
2698 {
2699 _rcu_barrier(&rcu_sched_state);
2700 }
2701 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2702
2703 /*
2704 * Do boot-time initialization of a CPU's per-CPU RCU data.
2705 */
2706 static void __init
2707 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2708 {
2709 unsigned long flags;
2710 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2711 struct rcu_node *rnp = rcu_get_root(rsp);
2712
2713 /* Set up local state, ensuring consistent view of global state. */
2714 raw_spin_lock_irqsave(&rnp->lock, flags);
2715 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2716 init_callback_list(rdp);
2717 rdp->qlen_lazy = 0;
2718 ACCESS_ONCE(rdp->qlen) = 0;
2719 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2720 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2721 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2722 #ifdef CONFIG_RCU_USER_QS
2723 WARN_ON_ONCE(rdp->dynticks->in_user);
2724 #endif
2725 rdp->cpu = cpu;
2726 rdp->rsp = rsp;
2727 rcu_boot_init_nocb_percpu_data(rdp);
2728 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2729 }
2730
2731 /*
2732 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2733 * offline event can be happening at a given time. Note also that we
2734 * can accept some slop in the rsp->completed access due to the fact
2735 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2736 */
2737 static void __cpuinit
2738 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2739 {
2740 unsigned long flags;
2741 unsigned long mask;
2742 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2743 struct rcu_node *rnp = rcu_get_root(rsp);
2744
2745 /* Exclude new grace periods. */
2746 mutex_lock(&rsp->onoff_mutex);
2747
2748 /* Set up local state, ensuring consistent view of global state. */
2749 raw_spin_lock_irqsave(&rnp->lock, flags);
2750 rdp->beenonline = 1; /* We have now been online. */
2751 rdp->preemptible = preemptible;
2752 rdp->qlen_last_fqs_check = 0;
2753 rdp->n_force_qs_snap = rsp->n_force_qs;
2754 rdp->blimit = blimit;
2755 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2756 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2757 atomic_set(&rdp->dynticks->dynticks,
2758 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2759 rcu_prepare_for_idle_init(cpu);
2760 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2761
2762 /* Add CPU to rcu_node bitmasks. */
2763 rnp = rdp->mynode;
2764 mask = rdp->grpmask;
2765 do {
2766 /* Exclude any attempts to start a new GP on small systems. */
2767 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2768 rnp->qsmaskinit |= mask;
2769 mask = rnp->grpmask;
2770 if (rnp == rdp->mynode) {
2771 /*
2772 * If there is a grace period in progress, we will
2773 * set up to wait for it next time we run the
2774 * RCU core code.
2775 */
2776 rdp->gpnum = rnp->completed;
2777 rdp->completed = rnp->completed;
2778 rdp->passed_quiesce = 0;
2779 rdp->qs_pending = 0;
2780 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2781 }
2782 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2783 rnp = rnp->parent;
2784 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2785 local_irq_restore(flags);
2786
2787 mutex_unlock(&rsp->onoff_mutex);
2788 }
2789
2790 static void __cpuinit rcu_prepare_cpu(int cpu)
2791 {
2792 struct rcu_state *rsp;
2793
2794 for_each_rcu_flavor(rsp)
2795 rcu_init_percpu_data(cpu, rsp,
2796 strcmp(rsp->name, "rcu_preempt") == 0);
2797 }
2798
2799 /*
2800 * Handle CPU online/offline notification events.
2801 */
2802 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2803 unsigned long action, void *hcpu)
2804 {
2805 long cpu = (long)hcpu;
2806 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2807 struct rcu_node *rnp = rdp->mynode;
2808 struct rcu_state *rsp;
2809 int ret = NOTIFY_OK;
2810
2811 trace_rcu_utilization("Start CPU hotplug");
2812 switch (action) {
2813 case CPU_UP_PREPARE:
2814 case CPU_UP_PREPARE_FROZEN:
2815 rcu_prepare_cpu(cpu);
2816 rcu_prepare_kthreads(cpu);
2817 break;
2818 case CPU_ONLINE:
2819 case CPU_DOWN_FAILED:
2820 rcu_boost_kthread_setaffinity(rnp, -1);
2821 break;
2822 case CPU_DOWN_PREPARE:
2823 if (nocb_cpu_expendable(cpu))
2824 rcu_boost_kthread_setaffinity(rnp, cpu);
2825 else
2826 ret = NOTIFY_BAD;
2827 break;
2828 case CPU_DYING:
2829 case CPU_DYING_FROZEN:
2830 /*
2831 * The whole machine is "stopped" except this CPU, so we can
2832 * touch any data without introducing corruption. We send the
2833 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2834 */
2835 for_each_rcu_flavor(rsp)
2836 rcu_cleanup_dying_cpu(rsp);
2837 rcu_cleanup_after_idle(cpu);
2838 break;
2839 case CPU_DEAD:
2840 case CPU_DEAD_FROZEN:
2841 case CPU_UP_CANCELED:
2842 case CPU_UP_CANCELED_FROZEN:
2843 for_each_rcu_flavor(rsp)
2844 rcu_cleanup_dead_cpu(cpu, rsp);
2845 break;
2846 default:
2847 break;
2848 }
2849 trace_rcu_utilization("End CPU hotplug");
2850 return ret;
2851 }
2852
2853 /*
2854 * Spawn the kthread that handles this RCU flavor's grace periods.
2855 */
2856 static int __init rcu_spawn_gp_kthread(void)
2857 {
2858 unsigned long flags;
2859 struct rcu_node *rnp;
2860 struct rcu_state *rsp;
2861 struct task_struct *t;
2862
2863 for_each_rcu_flavor(rsp) {
2864 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2865 BUG_ON(IS_ERR(t));
2866 rnp = rcu_get_root(rsp);
2867 raw_spin_lock_irqsave(&rnp->lock, flags);
2868 rsp->gp_kthread = t;
2869 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2870 rcu_spawn_nocb_kthreads(rsp);
2871 }
2872 return 0;
2873 }
2874 early_initcall(rcu_spawn_gp_kthread);
2875
2876 /*
2877 * This function is invoked towards the end of the scheduler's initialization
2878 * process. Before this is called, the idle task might contain
2879 * RCU read-side critical sections (during which time, this idle
2880 * task is booting the system). After this function is called, the
2881 * idle tasks are prohibited from containing RCU read-side critical
2882 * sections. This function also enables RCU lockdep checking.
2883 */
2884 void rcu_scheduler_starting(void)
2885 {
2886 WARN_ON(num_online_cpus() != 1);
2887 WARN_ON(nr_context_switches() > 0);
2888 rcu_scheduler_active = 1;
2889 }
2890
2891 /*
2892 * Compute the per-level fanout, either using the exact fanout specified
2893 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2894 */
2895 #ifdef CONFIG_RCU_FANOUT_EXACT
2896 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2897 {
2898 int i;
2899
2900 for (i = rcu_num_lvls - 1; i > 0; i--)
2901 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2902 rsp->levelspread[0] = rcu_fanout_leaf;
2903 }
2904 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2905 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2906 {
2907 int ccur;
2908 int cprv;
2909 int i;
2910
2911 cprv = nr_cpu_ids;
2912 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2913 ccur = rsp->levelcnt[i];
2914 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2915 cprv = ccur;
2916 }
2917 }
2918 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2919
2920 /*
2921 * Helper function for rcu_init() that initializes one rcu_state structure.
2922 */
2923 static void __init rcu_init_one(struct rcu_state *rsp,
2924 struct rcu_data __percpu *rda)
2925 {
2926 static char *buf[] = { "rcu_node_0",
2927 "rcu_node_1",
2928 "rcu_node_2",
2929 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2930 static char *fqs[] = { "rcu_node_fqs_0",
2931 "rcu_node_fqs_1",
2932 "rcu_node_fqs_2",
2933 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2934 int cpustride = 1;
2935 int i;
2936 int j;
2937 struct rcu_node *rnp;
2938
2939 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2940
2941 /* Initialize the level-tracking arrays. */
2942
2943 for (i = 0; i < rcu_num_lvls; i++)
2944 rsp->levelcnt[i] = num_rcu_lvl[i];
2945 for (i = 1; i < rcu_num_lvls; i++)
2946 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2947 rcu_init_levelspread(rsp);
2948
2949 /* Initialize the elements themselves, starting from the leaves. */
2950
2951 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2952 cpustride *= rsp->levelspread[i];
2953 rnp = rsp->level[i];
2954 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2955 raw_spin_lock_init(&rnp->lock);
2956 lockdep_set_class_and_name(&rnp->lock,
2957 &rcu_node_class[i], buf[i]);
2958 raw_spin_lock_init(&rnp->fqslock);
2959 lockdep_set_class_and_name(&rnp->fqslock,
2960 &rcu_fqs_class[i], fqs[i]);
2961 rnp->gpnum = rsp->gpnum;
2962 rnp->completed = rsp->completed;
2963 rnp->qsmask = 0;
2964 rnp->qsmaskinit = 0;
2965 rnp->grplo = j * cpustride;
2966 rnp->grphi = (j + 1) * cpustride - 1;
2967 if (rnp->grphi >= NR_CPUS)
2968 rnp->grphi = NR_CPUS - 1;
2969 if (i == 0) {
2970 rnp->grpnum = 0;
2971 rnp->grpmask = 0;
2972 rnp->parent = NULL;
2973 } else {
2974 rnp->grpnum = j % rsp->levelspread[i - 1];
2975 rnp->grpmask = 1UL << rnp->grpnum;
2976 rnp->parent = rsp->level[i - 1] +
2977 j / rsp->levelspread[i - 1];
2978 }
2979 rnp->level = i;
2980 INIT_LIST_HEAD(&rnp->blkd_tasks);
2981 }
2982 }
2983
2984 rsp->rda = rda;
2985 init_waitqueue_head(&rsp->gp_wq);
2986 rnp = rsp->level[rcu_num_lvls - 1];
2987 for_each_possible_cpu(i) {
2988 while (i > rnp->grphi)
2989 rnp++;
2990 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2991 rcu_boot_init_percpu_data(i, rsp);
2992 }
2993 list_add(&rsp->flavors, &rcu_struct_flavors);
2994 }
2995
2996 /*
2997 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2998 * replace the definitions in rcutree.h because those are needed to size
2999 * the ->node array in the rcu_state structure.
3000 */
3001 static void __init rcu_init_geometry(void)
3002 {
3003 int i;
3004 int j;
3005 int n = nr_cpu_ids;
3006 int rcu_capacity[MAX_RCU_LVLS + 1];
3007
3008 /* If the compile-time values are accurate, just leave. */
3009 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3010 nr_cpu_ids == NR_CPUS)
3011 return;
3012
3013 /*
3014 * Compute number of nodes that can be handled an rcu_node tree
3015 * with the given number of levels. Setting rcu_capacity[0] makes
3016 * some of the arithmetic easier.
3017 */
3018 rcu_capacity[0] = 1;
3019 rcu_capacity[1] = rcu_fanout_leaf;
3020 for (i = 2; i <= MAX_RCU_LVLS; i++)
3021 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3022
3023 /*
3024 * The boot-time rcu_fanout_leaf parameter is only permitted
3025 * to increase the leaf-level fanout, not decrease it. Of course,
3026 * the leaf-level fanout cannot exceed the number of bits in
3027 * the rcu_node masks. Finally, the tree must be able to accommodate
3028 * the configured number of CPUs. Complain and fall back to the
3029 * compile-time values if these limits are exceeded.
3030 */
3031 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3032 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3033 n > rcu_capacity[MAX_RCU_LVLS]) {
3034 WARN_ON(1);
3035 return;
3036 }
3037
3038 /* Calculate the number of rcu_nodes at each level of the tree. */
3039 for (i = 1; i <= MAX_RCU_LVLS; i++)
3040 if (n <= rcu_capacity[i]) {
3041 for (j = 0; j <= i; j++)
3042 num_rcu_lvl[j] =
3043 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3044 rcu_num_lvls = i;
3045 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3046 num_rcu_lvl[j] = 0;
3047 break;
3048 }
3049
3050 /* Calculate the total number of rcu_node structures. */
3051 rcu_num_nodes = 0;
3052 for (i = 0; i <= MAX_RCU_LVLS; i++)
3053 rcu_num_nodes += num_rcu_lvl[i];
3054 rcu_num_nodes -= n;
3055 }
3056
3057 void __init rcu_init(void)
3058 {
3059 int cpu;
3060
3061 rcu_bootup_announce();
3062 rcu_init_geometry();
3063 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3064 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3065 __rcu_init_preempt();
3066 rcu_init_nocb();
3067 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3068
3069 /*
3070 * We don't need protection against CPU-hotplug here because
3071 * this is called early in boot, before either interrupts
3072 * or the scheduler are operational.
3073 */
3074 cpu_notifier(rcu_cpu_notify, 0);
3075 for_each_online_cpu(cpu)
3076 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3077 check_cpu_stall_init();
3078 }
3079
3080 #include "rcutree_plugin.h"