rcu: permit discontiguous cpu_possible_mask CPU numbering
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50
51 #include "rcutree.h"
52
53 /* Data structures. */
54
55 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
56
57 #define RCU_STATE_INITIALIZER(structname) { \
58 .level = { &structname.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &structname.orphan_cbs_list, \
72 .orphan_qlen = 0, \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
77 }
78
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84
85 int rcu_scheduler_active __read_mostly;
86 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
87
88 /*
89 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
90 * permit this function to be invoked without holding the root rcu_node
91 * structure's ->lock, but of course results can be subject to change.
92 */
93 static int rcu_gp_in_progress(struct rcu_state *rsp)
94 {
95 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
96 }
97
98 /*
99 * Note a quiescent state. Because we do not need to know
100 * how many quiescent states passed, just if there was at least
101 * one since the start of the grace period, this just sets a flag.
102 */
103 void rcu_sched_qs(int cpu)
104 {
105 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
106
107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 barrier();
109 rdp->passed_quiesc = 1;
110 }
111
112 void rcu_bh_qs(int cpu)
113 {
114 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
115
116 rdp->passed_quiesc_completed = rdp->gpnum - 1;
117 barrier();
118 rdp->passed_quiesc = 1;
119 }
120
121 /*
122 * Note a context switch. This is a quiescent state for RCU-sched,
123 * and requires special handling for preemptible RCU.
124 */
125 void rcu_note_context_switch(int cpu)
126 {
127 rcu_sched_qs(cpu);
128 rcu_preempt_note_context_switch(cpu);
129 }
130
131 #ifdef CONFIG_NO_HZ
132 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
133 .dynticks_nesting = 1,
134 .dynticks = 1,
135 };
136 #endif /* #ifdef CONFIG_NO_HZ */
137
138 static int blimit = 10; /* Maximum callbacks per softirq. */
139 static int qhimark = 10000; /* If this many pending, ignore blimit. */
140 static int qlowmark = 100; /* Once only this many pending, use blimit. */
141
142 module_param(blimit, int, 0);
143 module_param(qhimark, int, 0);
144 module_param(qlowmark, int, 0);
145
146 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
147 static int rcu_pending(int cpu);
148
149 /*
150 * Return the number of RCU-sched batches processed thus far for debug & stats.
151 */
152 long rcu_batches_completed_sched(void)
153 {
154 return rcu_sched_state.completed;
155 }
156 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
157
158 /*
159 * Return the number of RCU BH batches processed thus far for debug & stats.
160 */
161 long rcu_batches_completed_bh(void)
162 {
163 return rcu_bh_state.completed;
164 }
165 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
166
167 /*
168 * Force a quiescent state for RCU BH.
169 */
170 void rcu_bh_force_quiescent_state(void)
171 {
172 force_quiescent_state(&rcu_bh_state, 0);
173 }
174 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
175
176 /*
177 * Force a quiescent state for RCU-sched.
178 */
179 void rcu_sched_force_quiescent_state(void)
180 {
181 force_quiescent_state(&rcu_sched_state, 0);
182 }
183 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
184
185 /*
186 * Does the CPU have callbacks ready to be invoked?
187 */
188 static int
189 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
190 {
191 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
192 }
193
194 /*
195 * Does the current CPU require a yet-as-unscheduled grace period?
196 */
197 static int
198 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
199 {
200 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
201 }
202
203 /*
204 * Return the root node of the specified rcu_state structure.
205 */
206 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
207 {
208 return &rsp->node[0];
209 }
210
211 #ifdef CONFIG_SMP
212
213 /*
214 * If the specified CPU is offline, tell the caller that it is in
215 * a quiescent state. Otherwise, whack it with a reschedule IPI.
216 * Grace periods can end up waiting on an offline CPU when that
217 * CPU is in the process of coming online -- it will be added to the
218 * rcu_node bitmasks before it actually makes it online. The same thing
219 * can happen while a CPU is in the process of coming online. Because this
220 * race is quite rare, we check for it after detecting that the grace
221 * period has been delayed rather than checking each and every CPU
222 * each and every time we start a new grace period.
223 */
224 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
225 {
226 /*
227 * If the CPU is offline, it is in a quiescent state. We can
228 * trust its state not to change because interrupts are disabled.
229 */
230 if (cpu_is_offline(rdp->cpu)) {
231 rdp->offline_fqs++;
232 return 1;
233 }
234
235 /* If preemptable RCU, no point in sending reschedule IPI. */
236 if (rdp->preemptable)
237 return 0;
238
239 /* The CPU is online, so send it a reschedule IPI. */
240 if (rdp->cpu != smp_processor_id())
241 smp_send_reschedule(rdp->cpu);
242 else
243 set_need_resched();
244 rdp->resched_ipi++;
245 return 0;
246 }
247
248 #endif /* #ifdef CONFIG_SMP */
249
250 #ifdef CONFIG_NO_HZ
251
252 /**
253 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
254 *
255 * Enter nohz mode, in other words, -leave- the mode in which RCU
256 * read-side critical sections can occur. (Though RCU read-side
257 * critical sections can occur in irq handlers in nohz mode, a possibility
258 * handled by rcu_irq_enter() and rcu_irq_exit()).
259 */
260 void rcu_enter_nohz(void)
261 {
262 unsigned long flags;
263 struct rcu_dynticks *rdtp;
264
265 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
266 local_irq_save(flags);
267 rdtp = &__get_cpu_var(rcu_dynticks);
268 rdtp->dynticks++;
269 rdtp->dynticks_nesting--;
270 WARN_ON_ONCE(rdtp->dynticks & 0x1);
271 local_irq_restore(flags);
272 }
273
274 /*
275 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
276 *
277 * Exit nohz mode, in other words, -enter- the mode in which RCU
278 * read-side critical sections normally occur.
279 */
280 void rcu_exit_nohz(void)
281 {
282 unsigned long flags;
283 struct rcu_dynticks *rdtp;
284
285 local_irq_save(flags);
286 rdtp = &__get_cpu_var(rcu_dynticks);
287 rdtp->dynticks++;
288 rdtp->dynticks_nesting++;
289 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
290 local_irq_restore(flags);
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
292 }
293
294 /**
295 * rcu_nmi_enter - inform RCU of entry to NMI context
296 *
297 * If the CPU was idle with dynamic ticks active, and there is no
298 * irq handler running, this updates rdtp->dynticks_nmi to let the
299 * RCU grace-period handling know that the CPU is active.
300 */
301 void rcu_nmi_enter(void)
302 {
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (rdtp->dynticks & 0x1)
306 return;
307 rdtp->dynticks_nmi++;
308 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
309 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
310 }
311
312 /**
313 * rcu_nmi_exit - inform RCU of exit from NMI context
314 *
315 * If the CPU was idle with dynamic ticks active, and there is no
316 * irq handler running, this updates rdtp->dynticks_nmi to let the
317 * RCU grace-period handling know that the CPU is no longer active.
318 */
319 void rcu_nmi_exit(void)
320 {
321 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
322
323 if (rdtp->dynticks & 0x1)
324 return;
325 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
326 rdtp->dynticks_nmi++;
327 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
328 }
329
330 /**
331 * rcu_irq_enter - inform RCU of entry to hard irq context
332 *
333 * If the CPU was idle with dynamic ticks active, this updates the
334 * rdtp->dynticks to let the RCU handling know that the CPU is active.
335 */
336 void rcu_irq_enter(void)
337 {
338 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
339
340 if (rdtp->dynticks_nesting++)
341 return;
342 rdtp->dynticks++;
343 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
344 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
345 }
346
347 /**
348 * rcu_irq_exit - inform RCU of exit from hard irq context
349 *
350 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
351 * to put let the RCU handling be aware that the CPU is going back to idle
352 * with no ticks.
353 */
354 void rcu_irq_exit(void)
355 {
356 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
357
358 if (--rdtp->dynticks_nesting)
359 return;
360 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
361 rdtp->dynticks++;
362 WARN_ON_ONCE(rdtp->dynticks & 0x1);
363
364 /* If the interrupt queued a callback, get out of dyntick mode. */
365 if (__get_cpu_var(rcu_sched_data).nxtlist ||
366 __get_cpu_var(rcu_bh_data).nxtlist)
367 set_need_resched();
368 }
369
370 #ifdef CONFIG_SMP
371
372 /*
373 * Snapshot the specified CPU's dynticks counter so that we can later
374 * credit them with an implicit quiescent state. Return 1 if this CPU
375 * is in dynticks idle mode, which is an extended quiescent state.
376 */
377 static int dyntick_save_progress_counter(struct rcu_data *rdp)
378 {
379 int ret;
380 int snap;
381 int snap_nmi;
382
383 snap = rdp->dynticks->dynticks;
384 snap_nmi = rdp->dynticks->dynticks_nmi;
385 smp_mb(); /* Order sampling of snap with end of grace period. */
386 rdp->dynticks_snap = snap;
387 rdp->dynticks_nmi_snap = snap_nmi;
388 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
389 if (ret)
390 rdp->dynticks_fqs++;
391 return ret;
392 }
393
394 /*
395 * Return true if the specified CPU has passed through a quiescent
396 * state by virtue of being in or having passed through an dynticks
397 * idle state since the last call to dyntick_save_progress_counter()
398 * for this same CPU.
399 */
400 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
401 {
402 long curr;
403 long curr_nmi;
404 long snap;
405 long snap_nmi;
406
407 curr = rdp->dynticks->dynticks;
408 snap = rdp->dynticks_snap;
409 curr_nmi = rdp->dynticks->dynticks_nmi;
410 snap_nmi = rdp->dynticks_nmi_snap;
411 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
412
413 /*
414 * If the CPU passed through or entered a dynticks idle phase with
415 * no active irq/NMI handlers, then we can safely pretend that the CPU
416 * already acknowledged the request to pass through a quiescent
417 * state. Either way, that CPU cannot possibly be in an RCU
418 * read-side critical section that started before the beginning
419 * of the current RCU grace period.
420 */
421 if ((curr != snap || (curr & 0x1) == 0) &&
422 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
423 rdp->dynticks_fqs++;
424 return 1;
425 }
426
427 /* Go check for the CPU being offline. */
428 return rcu_implicit_offline_qs(rdp);
429 }
430
431 #endif /* #ifdef CONFIG_SMP */
432
433 #else /* #ifdef CONFIG_NO_HZ */
434
435 #ifdef CONFIG_SMP
436
437 static int dyntick_save_progress_counter(struct rcu_data *rdp)
438 {
439 return 0;
440 }
441
442 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
443 {
444 return rcu_implicit_offline_qs(rdp);
445 }
446
447 #endif /* #ifdef CONFIG_SMP */
448
449 #endif /* #else #ifdef CONFIG_NO_HZ */
450
451 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
452
453 int rcu_cpu_stall_panicking __read_mostly;
454
455 static void record_gp_stall_check_time(struct rcu_state *rsp)
456 {
457 rsp->gp_start = jiffies;
458 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
459 }
460
461 static void print_other_cpu_stall(struct rcu_state *rsp)
462 {
463 int cpu;
464 long delta;
465 unsigned long flags;
466 struct rcu_node *rnp = rcu_get_root(rsp);
467
468 /* Only let one CPU complain about others per time interval. */
469
470 raw_spin_lock_irqsave(&rnp->lock, flags);
471 delta = jiffies - rsp->jiffies_stall;
472 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
473 raw_spin_unlock_irqrestore(&rnp->lock, flags);
474 return;
475 }
476 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
477
478 /*
479 * Now rat on any tasks that got kicked up to the root rcu_node
480 * due to CPU offlining.
481 */
482 rcu_print_task_stall(rnp);
483 raw_spin_unlock_irqrestore(&rnp->lock, flags);
484
485 /* OK, time to rat on our buddy... */
486
487 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
488 rsp->name);
489 rcu_for_each_leaf_node(rsp, rnp) {
490 raw_spin_lock_irqsave(&rnp->lock, flags);
491 rcu_print_task_stall(rnp);
492 raw_spin_unlock_irqrestore(&rnp->lock, flags);
493 if (rnp->qsmask == 0)
494 continue;
495 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
496 if (rnp->qsmask & (1UL << cpu))
497 printk(" %d", rnp->grplo + cpu);
498 }
499 printk("} (detected by %d, t=%ld jiffies)\n",
500 smp_processor_id(), (long)(jiffies - rsp->gp_start));
501 trigger_all_cpu_backtrace();
502
503 /* If so configured, complain about tasks blocking the grace period. */
504
505 rcu_print_detail_task_stall(rsp);
506
507 force_quiescent_state(rsp, 0); /* Kick them all. */
508 }
509
510 static void print_cpu_stall(struct rcu_state *rsp)
511 {
512 unsigned long flags;
513 struct rcu_node *rnp = rcu_get_root(rsp);
514
515 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
516 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
517 trigger_all_cpu_backtrace();
518
519 raw_spin_lock_irqsave(&rnp->lock, flags);
520 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
521 rsp->jiffies_stall =
522 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
523 raw_spin_unlock_irqrestore(&rnp->lock, flags);
524
525 set_need_resched(); /* kick ourselves to get things going. */
526 }
527
528 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
529 {
530 long delta;
531 struct rcu_node *rnp;
532
533 if (rcu_cpu_stall_panicking)
534 return;
535 delta = jiffies - rsp->jiffies_stall;
536 rnp = rdp->mynode;
537 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
538
539 /* We haven't checked in, so go dump stack. */
540 print_cpu_stall(rsp);
541
542 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
543
544 /* They had two time units to dump stack, so complain. */
545 print_other_cpu_stall(rsp);
546 }
547 }
548
549 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
550 {
551 rcu_cpu_stall_panicking = 1;
552 return NOTIFY_DONE;
553 }
554
555 static struct notifier_block rcu_panic_block = {
556 .notifier_call = rcu_panic,
557 };
558
559 static void __init check_cpu_stall_init(void)
560 {
561 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
562 }
563
564 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
565
566 static void record_gp_stall_check_time(struct rcu_state *rsp)
567 {
568 }
569
570 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
571 {
572 }
573
574 static void __init check_cpu_stall_init(void)
575 {
576 }
577
578 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
579
580 /*
581 * Update CPU-local rcu_data state to record the newly noticed grace period.
582 * This is used both when we started the grace period and when we notice
583 * that someone else started the grace period. The caller must hold the
584 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
585 * and must have irqs disabled.
586 */
587 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
588 {
589 if (rdp->gpnum != rnp->gpnum) {
590 rdp->qs_pending = 1;
591 rdp->passed_quiesc = 0;
592 rdp->gpnum = rnp->gpnum;
593 }
594 }
595
596 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
597 {
598 unsigned long flags;
599 struct rcu_node *rnp;
600
601 local_irq_save(flags);
602 rnp = rdp->mynode;
603 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
604 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
605 local_irq_restore(flags);
606 return;
607 }
608 __note_new_gpnum(rsp, rnp, rdp);
609 raw_spin_unlock_irqrestore(&rnp->lock, flags);
610 }
611
612 /*
613 * Did someone else start a new RCU grace period start since we last
614 * checked? Update local state appropriately if so. Must be called
615 * on the CPU corresponding to rdp.
616 */
617 static int
618 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
619 {
620 unsigned long flags;
621 int ret = 0;
622
623 local_irq_save(flags);
624 if (rdp->gpnum != rsp->gpnum) {
625 note_new_gpnum(rsp, rdp);
626 ret = 1;
627 }
628 local_irq_restore(flags);
629 return ret;
630 }
631
632 /*
633 * Advance this CPU's callbacks, but only if the current grace period
634 * has ended. This may be called only from the CPU to whom the rdp
635 * belongs. In addition, the corresponding leaf rcu_node structure's
636 * ->lock must be held by the caller, with irqs disabled.
637 */
638 static void
639 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
640 {
641 /* Did another grace period end? */
642 if (rdp->completed != rnp->completed) {
643
644 /* Advance callbacks. No harm if list empty. */
645 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
646 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
647 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
648
649 /* Remember that we saw this grace-period completion. */
650 rdp->completed = rnp->completed;
651 }
652 }
653
654 /*
655 * Advance this CPU's callbacks, but only if the current grace period
656 * has ended. This may be called only from the CPU to whom the rdp
657 * belongs.
658 */
659 static void
660 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
661 {
662 unsigned long flags;
663 struct rcu_node *rnp;
664
665 local_irq_save(flags);
666 rnp = rdp->mynode;
667 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
668 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
669 local_irq_restore(flags);
670 return;
671 }
672 __rcu_process_gp_end(rsp, rnp, rdp);
673 raw_spin_unlock_irqrestore(&rnp->lock, flags);
674 }
675
676 /*
677 * Do per-CPU grace-period initialization for running CPU. The caller
678 * must hold the lock of the leaf rcu_node structure corresponding to
679 * this CPU.
680 */
681 static void
682 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
683 {
684 /* Prior grace period ended, so advance callbacks for current CPU. */
685 __rcu_process_gp_end(rsp, rnp, rdp);
686
687 /*
688 * Because this CPU just now started the new grace period, we know
689 * that all of its callbacks will be covered by this upcoming grace
690 * period, even the ones that were registered arbitrarily recently.
691 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
692 *
693 * Other CPUs cannot be sure exactly when the grace period started.
694 * Therefore, their recently registered callbacks must pass through
695 * an additional RCU_NEXT_READY stage, so that they will be handled
696 * by the next RCU grace period.
697 */
698 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
699 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
700
701 /* Set state so that this CPU will detect the next quiescent state. */
702 __note_new_gpnum(rsp, rnp, rdp);
703 }
704
705 /*
706 * Start a new RCU grace period if warranted, re-initializing the hierarchy
707 * in preparation for detecting the next grace period. The caller must hold
708 * the root node's ->lock, which is released before return. Hard irqs must
709 * be disabled.
710 */
711 static void
712 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
713 __releases(rcu_get_root(rsp)->lock)
714 {
715 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
716 struct rcu_node *rnp = rcu_get_root(rsp);
717
718 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
719 if (cpu_needs_another_gp(rsp, rdp))
720 rsp->fqs_need_gp = 1;
721 if (rnp->completed == rsp->completed) {
722 raw_spin_unlock_irqrestore(&rnp->lock, flags);
723 return;
724 }
725 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
726
727 /*
728 * Propagate new ->completed value to rcu_node structures
729 * so that other CPUs don't have to wait until the start
730 * of the next grace period to process their callbacks.
731 */
732 rcu_for_each_node_breadth_first(rsp, rnp) {
733 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
734 rnp->completed = rsp->completed;
735 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
736 }
737 local_irq_restore(flags);
738 return;
739 }
740
741 /* Advance to a new grace period and initialize state. */
742 rsp->gpnum++;
743 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
744 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
745 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
746 record_gp_stall_check_time(rsp);
747
748 /* Special-case the common single-level case. */
749 if (NUM_RCU_NODES == 1) {
750 rcu_preempt_check_blocked_tasks(rnp);
751 rnp->qsmask = rnp->qsmaskinit;
752 rnp->gpnum = rsp->gpnum;
753 rnp->completed = rsp->completed;
754 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
755 rcu_start_gp_per_cpu(rsp, rnp, rdp);
756 raw_spin_unlock_irqrestore(&rnp->lock, flags);
757 return;
758 }
759
760 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
761
762
763 /* Exclude any concurrent CPU-hotplug operations. */
764 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
765
766 /*
767 * Set the quiescent-state-needed bits in all the rcu_node
768 * structures for all currently online CPUs in breadth-first
769 * order, starting from the root rcu_node structure. This
770 * operation relies on the layout of the hierarchy within the
771 * rsp->node[] array. Note that other CPUs will access only
772 * the leaves of the hierarchy, which still indicate that no
773 * grace period is in progress, at least until the corresponding
774 * leaf node has been initialized. In addition, we have excluded
775 * CPU-hotplug operations.
776 *
777 * Note that the grace period cannot complete until we finish
778 * the initialization process, as there will be at least one
779 * qsmask bit set in the root node until that time, namely the
780 * one corresponding to this CPU, due to the fact that we have
781 * irqs disabled.
782 */
783 rcu_for_each_node_breadth_first(rsp, rnp) {
784 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
785 rcu_preempt_check_blocked_tasks(rnp);
786 rnp->qsmask = rnp->qsmaskinit;
787 rnp->gpnum = rsp->gpnum;
788 rnp->completed = rsp->completed;
789 if (rnp == rdp->mynode)
790 rcu_start_gp_per_cpu(rsp, rnp, rdp);
791 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
792 }
793
794 rnp = rcu_get_root(rsp);
795 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
796 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
797 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
798 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
799 }
800
801 /*
802 * Report a full set of quiescent states to the specified rcu_state
803 * data structure. This involves cleaning up after the prior grace
804 * period and letting rcu_start_gp() start up the next grace period
805 * if one is needed. Note that the caller must hold rnp->lock, as
806 * required by rcu_start_gp(), which will release it.
807 */
808 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
809 __releases(rcu_get_root(rsp)->lock)
810 {
811 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
812 rsp->completed = rsp->gpnum;
813 rsp->signaled = RCU_GP_IDLE;
814 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
815 }
816
817 /*
818 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
819 * Allows quiescent states for a group of CPUs to be reported at one go
820 * to the specified rcu_node structure, though all the CPUs in the group
821 * must be represented by the same rcu_node structure (which need not be
822 * a leaf rcu_node structure, though it often will be). That structure's
823 * lock must be held upon entry, and it is released before return.
824 */
825 static void
826 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
827 struct rcu_node *rnp, unsigned long flags)
828 __releases(rnp->lock)
829 {
830 struct rcu_node *rnp_c;
831
832 /* Walk up the rcu_node hierarchy. */
833 for (;;) {
834 if (!(rnp->qsmask & mask)) {
835
836 /* Our bit has already been cleared, so done. */
837 raw_spin_unlock_irqrestore(&rnp->lock, flags);
838 return;
839 }
840 rnp->qsmask &= ~mask;
841 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
842
843 /* Other bits still set at this level, so done. */
844 raw_spin_unlock_irqrestore(&rnp->lock, flags);
845 return;
846 }
847 mask = rnp->grpmask;
848 if (rnp->parent == NULL) {
849
850 /* No more levels. Exit loop holding root lock. */
851
852 break;
853 }
854 raw_spin_unlock_irqrestore(&rnp->lock, flags);
855 rnp_c = rnp;
856 rnp = rnp->parent;
857 raw_spin_lock_irqsave(&rnp->lock, flags);
858 WARN_ON_ONCE(rnp_c->qsmask);
859 }
860
861 /*
862 * Get here if we are the last CPU to pass through a quiescent
863 * state for this grace period. Invoke rcu_report_qs_rsp()
864 * to clean up and start the next grace period if one is needed.
865 */
866 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
867 }
868
869 /*
870 * Record a quiescent state for the specified CPU to that CPU's rcu_data
871 * structure. This must be either called from the specified CPU, or
872 * called when the specified CPU is known to be offline (and when it is
873 * also known that no other CPU is concurrently trying to help the offline
874 * CPU). The lastcomp argument is used to make sure we are still in the
875 * grace period of interest. We don't want to end the current grace period
876 * based on quiescent states detected in an earlier grace period!
877 */
878 static void
879 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
880 {
881 unsigned long flags;
882 unsigned long mask;
883 struct rcu_node *rnp;
884
885 rnp = rdp->mynode;
886 raw_spin_lock_irqsave(&rnp->lock, flags);
887 if (lastcomp != rnp->completed) {
888
889 /*
890 * Someone beat us to it for this grace period, so leave.
891 * The race with GP start is resolved by the fact that we
892 * hold the leaf rcu_node lock, so that the per-CPU bits
893 * cannot yet be initialized -- so we would simply find our
894 * CPU's bit already cleared in rcu_report_qs_rnp() if this
895 * race occurred.
896 */
897 rdp->passed_quiesc = 0; /* try again later! */
898 raw_spin_unlock_irqrestore(&rnp->lock, flags);
899 return;
900 }
901 mask = rdp->grpmask;
902 if ((rnp->qsmask & mask) == 0) {
903 raw_spin_unlock_irqrestore(&rnp->lock, flags);
904 } else {
905 rdp->qs_pending = 0;
906
907 /*
908 * This GP can't end until cpu checks in, so all of our
909 * callbacks can be processed during the next GP.
910 */
911 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
912
913 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
914 }
915 }
916
917 /*
918 * Check to see if there is a new grace period of which this CPU
919 * is not yet aware, and if so, set up local rcu_data state for it.
920 * Otherwise, see if this CPU has just passed through its first
921 * quiescent state for this grace period, and record that fact if so.
922 */
923 static void
924 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
925 {
926 /* If there is now a new grace period, record and return. */
927 if (check_for_new_grace_period(rsp, rdp))
928 return;
929
930 /*
931 * Does this CPU still need to do its part for current grace period?
932 * If no, return and let the other CPUs do their part as well.
933 */
934 if (!rdp->qs_pending)
935 return;
936
937 /*
938 * Was there a quiescent state since the beginning of the grace
939 * period? If no, then exit and wait for the next call.
940 */
941 if (!rdp->passed_quiesc)
942 return;
943
944 /*
945 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
946 * judge of that).
947 */
948 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
949 }
950
951 #ifdef CONFIG_HOTPLUG_CPU
952
953 /*
954 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
955 * specified flavor of RCU. The callbacks will be adopted by the next
956 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
957 * comes first. Because this is invoked from the CPU_DYING notifier,
958 * irqs are already disabled.
959 */
960 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
961 {
962 int i;
963 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
964
965 if (rdp->nxtlist == NULL)
966 return; /* irqs disabled, so comparison is stable. */
967 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
968 *rsp->orphan_cbs_tail = rdp->nxtlist;
969 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
970 rdp->nxtlist = NULL;
971 for (i = 0; i < RCU_NEXT_SIZE; i++)
972 rdp->nxttail[i] = &rdp->nxtlist;
973 rsp->orphan_qlen += rdp->qlen;
974 rdp->qlen = 0;
975 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
976 }
977
978 /*
979 * Adopt previously orphaned RCU callbacks.
980 */
981 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
982 {
983 unsigned long flags;
984 struct rcu_data *rdp;
985
986 raw_spin_lock_irqsave(&rsp->onofflock, flags);
987 rdp = rsp->rda[smp_processor_id()];
988 if (rsp->orphan_cbs_list == NULL) {
989 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
990 return;
991 }
992 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
993 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
994 rdp->qlen += rsp->orphan_qlen;
995 rsp->orphan_cbs_list = NULL;
996 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
997 rsp->orphan_qlen = 0;
998 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
999 }
1000
1001 /*
1002 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1003 * and move all callbacks from the outgoing CPU to the current one.
1004 */
1005 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1006 {
1007 unsigned long flags;
1008 unsigned long mask;
1009 int need_report = 0;
1010 struct rcu_data *rdp = rsp->rda[cpu];
1011 struct rcu_node *rnp;
1012
1013 /* Exclude any attempts to start a new grace period. */
1014 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1015
1016 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1017 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1018 mask = rdp->grpmask; /* rnp->grplo is constant. */
1019 do {
1020 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1021 rnp->qsmaskinit &= ~mask;
1022 if (rnp->qsmaskinit != 0) {
1023 if (rnp != rdp->mynode)
1024 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1025 break;
1026 }
1027 if (rnp == rdp->mynode)
1028 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1029 else
1030 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1031 mask = rnp->grpmask;
1032 rnp = rnp->parent;
1033 } while (rnp != NULL);
1034
1035 /*
1036 * We still hold the leaf rcu_node structure lock here, and
1037 * irqs are still disabled. The reason for this subterfuge is
1038 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1039 * held leads to deadlock.
1040 */
1041 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1042 rnp = rdp->mynode;
1043 if (need_report & RCU_OFL_TASKS_NORM_GP)
1044 rcu_report_unblock_qs_rnp(rnp, flags);
1045 else
1046 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1047 if (need_report & RCU_OFL_TASKS_EXP_GP)
1048 rcu_report_exp_rnp(rsp, rnp);
1049
1050 rcu_adopt_orphan_cbs(rsp);
1051 }
1052
1053 /*
1054 * Remove the specified CPU from the RCU hierarchy and move any pending
1055 * callbacks that it might have to the current CPU. This code assumes
1056 * that at least one CPU in the system will remain running at all times.
1057 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1058 */
1059 static void rcu_offline_cpu(int cpu)
1060 {
1061 __rcu_offline_cpu(cpu, &rcu_sched_state);
1062 __rcu_offline_cpu(cpu, &rcu_bh_state);
1063 rcu_preempt_offline_cpu(cpu);
1064 }
1065
1066 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1067
1068 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1069 {
1070 }
1071
1072 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1073 {
1074 }
1075
1076 static void rcu_offline_cpu(int cpu)
1077 {
1078 }
1079
1080 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1081
1082 /*
1083 * Invoke any RCU callbacks that have made it to the end of their grace
1084 * period. Thottle as specified by rdp->blimit.
1085 */
1086 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1087 {
1088 unsigned long flags;
1089 struct rcu_head *next, *list, **tail;
1090 int count;
1091
1092 /* If no callbacks are ready, just return.*/
1093 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1094 return;
1095
1096 /*
1097 * Extract the list of ready callbacks, disabling to prevent
1098 * races with call_rcu() from interrupt handlers.
1099 */
1100 local_irq_save(flags);
1101 list = rdp->nxtlist;
1102 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1103 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1104 tail = rdp->nxttail[RCU_DONE_TAIL];
1105 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1106 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1107 rdp->nxttail[count] = &rdp->nxtlist;
1108 local_irq_restore(flags);
1109
1110 /* Invoke callbacks. */
1111 count = 0;
1112 while (list) {
1113 next = list->next;
1114 prefetch(next);
1115 list->func(list);
1116 list = next;
1117 if (++count >= rdp->blimit)
1118 break;
1119 }
1120
1121 local_irq_save(flags);
1122
1123 /* Update count, and requeue any remaining callbacks. */
1124 rdp->qlen -= count;
1125 if (list != NULL) {
1126 *tail = rdp->nxtlist;
1127 rdp->nxtlist = list;
1128 for (count = 0; count < RCU_NEXT_SIZE; count++)
1129 if (&rdp->nxtlist == rdp->nxttail[count])
1130 rdp->nxttail[count] = tail;
1131 else
1132 break;
1133 }
1134
1135 /* Reinstate batch limit if we have worked down the excess. */
1136 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1137 rdp->blimit = blimit;
1138
1139 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1140 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1141 rdp->qlen_last_fqs_check = 0;
1142 rdp->n_force_qs_snap = rsp->n_force_qs;
1143 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1144 rdp->qlen_last_fqs_check = rdp->qlen;
1145
1146 local_irq_restore(flags);
1147
1148 /* Re-raise the RCU softirq if there are callbacks remaining. */
1149 if (cpu_has_callbacks_ready_to_invoke(rdp))
1150 raise_softirq(RCU_SOFTIRQ);
1151 }
1152
1153 /*
1154 * Check to see if this CPU is in a non-context-switch quiescent state
1155 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1156 * Also schedule the RCU softirq handler.
1157 *
1158 * This function must be called with hardirqs disabled. It is normally
1159 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1160 * false, there is no point in invoking rcu_check_callbacks().
1161 */
1162 void rcu_check_callbacks(int cpu, int user)
1163 {
1164 if (!rcu_pending(cpu))
1165 return; /* if nothing for RCU to do. */
1166 if (user ||
1167 (idle_cpu(cpu) && rcu_scheduler_active &&
1168 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1169
1170 /*
1171 * Get here if this CPU took its interrupt from user
1172 * mode or from the idle loop, and if this is not a
1173 * nested interrupt. In this case, the CPU is in
1174 * a quiescent state, so note it.
1175 *
1176 * No memory barrier is required here because both
1177 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1178 * variables that other CPUs neither access nor modify,
1179 * at least not while the corresponding CPU is online.
1180 */
1181
1182 rcu_sched_qs(cpu);
1183 rcu_bh_qs(cpu);
1184
1185 } else if (!in_softirq()) {
1186
1187 /*
1188 * Get here if this CPU did not take its interrupt from
1189 * softirq, in other words, if it is not interrupting
1190 * a rcu_bh read-side critical section. This is an _bh
1191 * critical section, so note it.
1192 */
1193
1194 rcu_bh_qs(cpu);
1195 }
1196 rcu_preempt_check_callbacks(cpu);
1197 raise_softirq(RCU_SOFTIRQ);
1198 }
1199
1200 #ifdef CONFIG_SMP
1201
1202 /*
1203 * Scan the leaf rcu_node structures, processing dyntick state for any that
1204 * have not yet encountered a quiescent state, using the function specified.
1205 * The caller must have suppressed start of new grace periods.
1206 */
1207 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1208 {
1209 unsigned long bit;
1210 int cpu;
1211 unsigned long flags;
1212 unsigned long mask;
1213 struct rcu_node *rnp;
1214
1215 rcu_for_each_leaf_node(rsp, rnp) {
1216 mask = 0;
1217 raw_spin_lock_irqsave(&rnp->lock, flags);
1218 if (!rcu_gp_in_progress(rsp)) {
1219 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1220 return;
1221 }
1222 if (rnp->qsmask == 0) {
1223 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1224 continue;
1225 }
1226 cpu = rnp->grplo;
1227 bit = 1;
1228 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1229 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1230 mask |= bit;
1231 }
1232 if (mask != 0) {
1233
1234 /* rcu_report_qs_rnp() releases rnp->lock. */
1235 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1236 continue;
1237 }
1238 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1239 }
1240 }
1241
1242 /*
1243 * Force quiescent states on reluctant CPUs, and also detect which
1244 * CPUs are in dyntick-idle mode.
1245 */
1246 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1247 {
1248 unsigned long flags;
1249 struct rcu_node *rnp = rcu_get_root(rsp);
1250
1251 if (!rcu_gp_in_progress(rsp))
1252 return; /* No grace period in progress, nothing to force. */
1253 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1254 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1255 return; /* Someone else is already on the job. */
1256 }
1257 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1258 goto unlock_fqs_ret; /* no emergency and done recently. */
1259 rsp->n_force_qs++;
1260 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1261 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1262 if(!rcu_gp_in_progress(rsp)) {
1263 rsp->n_force_qs_ngp++;
1264 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1265 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1266 }
1267 rsp->fqs_active = 1;
1268 switch (rsp->signaled) {
1269 case RCU_GP_IDLE:
1270 case RCU_GP_INIT:
1271
1272 break; /* grace period idle or initializing, ignore. */
1273
1274 case RCU_SAVE_DYNTICK:
1275 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1276 break; /* So gcc recognizes the dead code. */
1277
1278 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1279
1280 /* Record dyntick-idle state. */
1281 force_qs_rnp(rsp, dyntick_save_progress_counter);
1282 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1283 if (rcu_gp_in_progress(rsp))
1284 rsp->signaled = RCU_FORCE_QS;
1285 break;
1286
1287 case RCU_FORCE_QS:
1288
1289 /* Check dyntick-idle state, send IPI to laggarts. */
1290 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1291 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1292
1293 /* Leave state in case more forcing is required. */
1294
1295 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1296 break;
1297 }
1298 rsp->fqs_active = 0;
1299 if (rsp->fqs_need_gp) {
1300 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1301 rsp->fqs_need_gp = 0;
1302 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1303 return;
1304 }
1305 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1306 unlock_fqs_ret:
1307 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1308 }
1309
1310 #else /* #ifdef CONFIG_SMP */
1311
1312 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1313 {
1314 set_need_resched();
1315 }
1316
1317 #endif /* #else #ifdef CONFIG_SMP */
1318
1319 /*
1320 * This does the RCU processing work from softirq context for the
1321 * specified rcu_state and rcu_data structures. This may be called
1322 * only from the CPU to whom the rdp belongs.
1323 */
1324 static void
1325 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1326 {
1327 unsigned long flags;
1328
1329 WARN_ON_ONCE(rdp->beenonline == 0);
1330
1331 /*
1332 * If an RCU GP has gone long enough, go check for dyntick
1333 * idle CPUs and, if needed, send resched IPIs.
1334 */
1335 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1336 force_quiescent_state(rsp, 1);
1337
1338 /*
1339 * Advance callbacks in response to end of earlier grace
1340 * period that some other CPU ended.
1341 */
1342 rcu_process_gp_end(rsp, rdp);
1343
1344 /* Update RCU state based on any recent quiescent states. */
1345 rcu_check_quiescent_state(rsp, rdp);
1346
1347 /* Does this CPU require a not-yet-started grace period? */
1348 if (cpu_needs_another_gp(rsp, rdp)) {
1349 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1350 rcu_start_gp(rsp, flags); /* releases above lock */
1351 }
1352
1353 /* If there are callbacks ready, invoke them. */
1354 rcu_do_batch(rsp, rdp);
1355 }
1356
1357 /*
1358 * Do softirq processing for the current CPU.
1359 */
1360 static void rcu_process_callbacks(struct softirq_action *unused)
1361 {
1362 /*
1363 * Memory references from any prior RCU read-side critical sections
1364 * executed by the interrupted code must be seen before any RCU
1365 * grace-period manipulations below.
1366 */
1367 smp_mb(); /* See above block comment. */
1368
1369 __rcu_process_callbacks(&rcu_sched_state,
1370 &__get_cpu_var(rcu_sched_data));
1371 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1372 rcu_preempt_process_callbacks();
1373
1374 /*
1375 * Memory references from any later RCU read-side critical sections
1376 * executed by the interrupted code must be seen after any RCU
1377 * grace-period manipulations above.
1378 */
1379 smp_mb(); /* See above block comment. */
1380
1381 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1382 rcu_needs_cpu_flush();
1383 }
1384
1385 static void
1386 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1387 struct rcu_state *rsp)
1388 {
1389 unsigned long flags;
1390 struct rcu_data *rdp;
1391
1392 head->func = func;
1393 head->next = NULL;
1394
1395 smp_mb(); /* Ensure RCU update seen before callback registry. */
1396
1397 /*
1398 * Opportunistically note grace-period endings and beginnings.
1399 * Note that we might see a beginning right after we see an
1400 * end, but never vice versa, since this CPU has to pass through
1401 * a quiescent state betweentimes.
1402 */
1403 local_irq_save(flags);
1404 rdp = rsp->rda[smp_processor_id()];
1405 rcu_process_gp_end(rsp, rdp);
1406 check_for_new_grace_period(rsp, rdp);
1407
1408 /* Add the callback to our list. */
1409 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1410 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1411
1412 /* Start a new grace period if one not already started. */
1413 if (!rcu_gp_in_progress(rsp)) {
1414 unsigned long nestflag;
1415 struct rcu_node *rnp_root = rcu_get_root(rsp);
1416
1417 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1418 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1419 }
1420
1421 /*
1422 * Force the grace period if too many callbacks or too long waiting.
1423 * Enforce hysteresis, and don't invoke force_quiescent_state()
1424 * if some other CPU has recently done so. Also, don't bother
1425 * invoking force_quiescent_state() if the newly enqueued callback
1426 * is the only one waiting for a grace period to complete.
1427 */
1428 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1429 rdp->blimit = LONG_MAX;
1430 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1431 *rdp->nxttail[RCU_DONE_TAIL] != head)
1432 force_quiescent_state(rsp, 0);
1433 rdp->n_force_qs_snap = rsp->n_force_qs;
1434 rdp->qlen_last_fqs_check = rdp->qlen;
1435 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1436 force_quiescent_state(rsp, 1);
1437 local_irq_restore(flags);
1438 }
1439
1440 /*
1441 * Queue an RCU-sched callback for invocation after a grace period.
1442 */
1443 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1444 {
1445 __call_rcu(head, func, &rcu_sched_state);
1446 }
1447 EXPORT_SYMBOL_GPL(call_rcu_sched);
1448
1449 /*
1450 * Queue an RCU for invocation after a quicker grace period.
1451 */
1452 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1453 {
1454 __call_rcu(head, func, &rcu_bh_state);
1455 }
1456 EXPORT_SYMBOL_GPL(call_rcu_bh);
1457
1458 /**
1459 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1460 *
1461 * Control will return to the caller some time after a full rcu-sched
1462 * grace period has elapsed, in other words after all currently executing
1463 * rcu-sched read-side critical sections have completed. These read-side
1464 * critical sections are delimited by rcu_read_lock_sched() and
1465 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1466 * local_irq_disable(), and so on may be used in place of
1467 * rcu_read_lock_sched().
1468 *
1469 * This means that all preempt_disable code sequences, including NMI and
1470 * hardware-interrupt handlers, in progress on entry will have completed
1471 * before this primitive returns. However, this does not guarantee that
1472 * softirq handlers will have completed, since in some kernels, these
1473 * handlers can run in process context, and can block.
1474 *
1475 * This primitive provides the guarantees made by the (now removed)
1476 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1477 * guarantees that rcu_read_lock() sections will have completed.
1478 * In "classic RCU", these two guarantees happen to be one and
1479 * the same, but can differ in realtime RCU implementations.
1480 */
1481 void synchronize_sched(void)
1482 {
1483 struct rcu_synchronize rcu;
1484
1485 if (rcu_blocking_is_gp())
1486 return;
1487
1488 init_completion(&rcu.completion);
1489 /* Will wake me after RCU finished. */
1490 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1491 /* Wait for it. */
1492 wait_for_completion(&rcu.completion);
1493 }
1494 EXPORT_SYMBOL_GPL(synchronize_sched);
1495
1496 /**
1497 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1498 *
1499 * Control will return to the caller some time after a full rcu_bh grace
1500 * period has elapsed, in other words after all currently executing rcu_bh
1501 * read-side critical sections have completed. RCU read-side critical
1502 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1503 * and may be nested.
1504 */
1505 void synchronize_rcu_bh(void)
1506 {
1507 struct rcu_synchronize rcu;
1508
1509 if (rcu_blocking_is_gp())
1510 return;
1511
1512 init_completion(&rcu.completion);
1513 /* Will wake me after RCU finished. */
1514 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1515 /* Wait for it. */
1516 wait_for_completion(&rcu.completion);
1517 }
1518 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1519
1520 /*
1521 * Check to see if there is any immediate RCU-related work to be done
1522 * by the current CPU, for the specified type of RCU, returning 1 if so.
1523 * The checks are in order of increasing expense: checks that can be
1524 * carried out against CPU-local state are performed first. However,
1525 * we must check for CPU stalls first, else we might not get a chance.
1526 */
1527 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1528 {
1529 struct rcu_node *rnp = rdp->mynode;
1530
1531 rdp->n_rcu_pending++;
1532
1533 /* Check for CPU stalls, if enabled. */
1534 check_cpu_stall(rsp, rdp);
1535
1536 /* Is the RCU core waiting for a quiescent state from this CPU? */
1537 if (rdp->qs_pending) {
1538
1539 /*
1540 * If force_quiescent_state() coming soon and this CPU
1541 * needs a quiescent state, and this is either RCU-sched
1542 * or RCU-bh, force a local reschedule.
1543 */
1544 if (!rdp->preemptable &&
1545 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1546 jiffies))
1547 set_need_resched();
1548 rdp->n_rp_qs_pending++;
1549 return 1;
1550 }
1551
1552 /* Does this CPU have callbacks ready to invoke? */
1553 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1554 rdp->n_rp_cb_ready++;
1555 return 1;
1556 }
1557
1558 /* Has RCU gone idle with this CPU needing another grace period? */
1559 if (cpu_needs_another_gp(rsp, rdp)) {
1560 rdp->n_rp_cpu_needs_gp++;
1561 return 1;
1562 }
1563
1564 /* Has another RCU grace period completed? */
1565 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1566 rdp->n_rp_gp_completed++;
1567 return 1;
1568 }
1569
1570 /* Has a new RCU grace period started? */
1571 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1572 rdp->n_rp_gp_started++;
1573 return 1;
1574 }
1575
1576 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1577 if (rcu_gp_in_progress(rsp) &&
1578 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1579 rdp->n_rp_need_fqs++;
1580 return 1;
1581 }
1582
1583 /* nothing to do */
1584 rdp->n_rp_need_nothing++;
1585 return 0;
1586 }
1587
1588 /*
1589 * Check to see if there is any immediate RCU-related work to be done
1590 * by the current CPU, returning 1 if so. This function is part of the
1591 * RCU implementation; it is -not- an exported member of the RCU API.
1592 */
1593 static int rcu_pending(int cpu)
1594 {
1595 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1596 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1597 rcu_preempt_pending(cpu);
1598 }
1599
1600 /*
1601 * Check to see if any future RCU-related work will need to be done
1602 * by the current CPU, even if none need be done immediately, returning
1603 * 1 if so.
1604 */
1605 static int rcu_needs_cpu_quick_check(int cpu)
1606 {
1607 /* RCU callbacks either ready or pending? */
1608 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1609 per_cpu(rcu_bh_data, cpu).nxtlist ||
1610 rcu_preempt_needs_cpu(cpu);
1611 }
1612
1613 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1614 static atomic_t rcu_barrier_cpu_count;
1615 static DEFINE_MUTEX(rcu_barrier_mutex);
1616 static struct completion rcu_barrier_completion;
1617
1618 static void rcu_barrier_callback(struct rcu_head *notused)
1619 {
1620 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1621 complete(&rcu_barrier_completion);
1622 }
1623
1624 /*
1625 * Called with preemption disabled, and from cross-cpu IRQ context.
1626 */
1627 static void rcu_barrier_func(void *type)
1628 {
1629 int cpu = smp_processor_id();
1630 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1631 void (*call_rcu_func)(struct rcu_head *head,
1632 void (*func)(struct rcu_head *head));
1633
1634 atomic_inc(&rcu_barrier_cpu_count);
1635 call_rcu_func = type;
1636 call_rcu_func(head, rcu_barrier_callback);
1637 }
1638
1639 /*
1640 * Orchestrate the specified type of RCU barrier, waiting for all
1641 * RCU callbacks of the specified type to complete.
1642 */
1643 static void _rcu_barrier(struct rcu_state *rsp,
1644 void (*call_rcu_func)(struct rcu_head *head,
1645 void (*func)(struct rcu_head *head)))
1646 {
1647 BUG_ON(in_interrupt());
1648 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1649 mutex_lock(&rcu_barrier_mutex);
1650 init_completion(&rcu_barrier_completion);
1651 /*
1652 * Initialize rcu_barrier_cpu_count to 1, then invoke
1653 * rcu_barrier_func() on each CPU, so that each CPU also has
1654 * incremented rcu_barrier_cpu_count. Only then is it safe to
1655 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1656 * might complete its grace period before all of the other CPUs
1657 * did their increment, causing this function to return too
1658 * early.
1659 */
1660 atomic_set(&rcu_barrier_cpu_count, 1);
1661 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1662 rcu_adopt_orphan_cbs(rsp);
1663 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1664 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1665 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1666 complete(&rcu_barrier_completion);
1667 wait_for_completion(&rcu_barrier_completion);
1668 mutex_unlock(&rcu_barrier_mutex);
1669 }
1670
1671 /**
1672 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1673 */
1674 void rcu_barrier_bh(void)
1675 {
1676 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1677 }
1678 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1679
1680 /**
1681 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1682 */
1683 void rcu_barrier_sched(void)
1684 {
1685 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1686 }
1687 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1688
1689 /*
1690 * Do boot-time initialization of a CPU's per-CPU RCU data.
1691 */
1692 static void __init
1693 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1694 {
1695 unsigned long flags;
1696 int i;
1697 struct rcu_data *rdp = rsp->rda[cpu];
1698 struct rcu_node *rnp = rcu_get_root(rsp);
1699
1700 /* Set up local state, ensuring consistent view of global state. */
1701 raw_spin_lock_irqsave(&rnp->lock, flags);
1702 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1703 rdp->nxtlist = NULL;
1704 for (i = 0; i < RCU_NEXT_SIZE; i++)
1705 rdp->nxttail[i] = &rdp->nxtlist;
1706 rdp->qlen = 0;
1707 #ifdef CONFIG_NO_HZ
1708 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1709 #endif /* #ifdef CONFIG_NO_HZ */
1710 rdp->cpu = cpu;
1711 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1712 }
1713
1714 /*
1715 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1716 * offline event can be happening at a given time. Note also that we
1717 * can accept some slop in the rsp->completed access due to the fact
1718 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1719 */
1720 static void __cpuinit
1721 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1722 {
1723 unsigned long flags;
1724 unsigned long mask;
1725 struct rcu_data *rdp = rsp->rda[cpu];
1726 struct rcu_node *rnp = rcu_get_root(rsp);
1727
1728 /* Set up local state, ensuring consistent view of global state. */
1729 raw_spin_lock_irqsave(&rnp->lock, flags);
1730 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1731 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1732 rdp->beenonline = 1; /* We have now been online. */
1733 rdp->preemptable = preemptable;
1734 rdp->qlen_last_fqs_check = 0;
1735 rdp->n_force_qs_snap = rsp->n_force_qs;
1736 rdp->blimit = blimit;
1737 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1738
1739 /*
1740 * A new grace period might start here. If so, we won't be part
1741 * of it, but that is OK, as we are currently in a quiescent state.
1742 */
1743
1744 /* Exclude any attempts to start a new GP on large systems. */
1745 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1746
1747 /* Add CPU to rcu_node bitmasks. */
1748 rnp = rdp->mynode;
1749 mask = rdp->grpmask;
1750 do {
1751 /* Exclude any attempts to start a new GP on small systems. */
1752 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1753 rnp->qsmaskinit |= mask;
1754 mask = rnp->grpmask;
1755 if (rnp == rdp->mynode) {
1756 rdp->gpnum = rnp->completed; /* if GP in progress... */
1757 rdp->completed = rnp->completed;
1758 rdp->passed_quiesc_completed = rnp->completed - 1;
1759 }
1760 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1761 rnp = rnp->parent;
1762 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1763
1764 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1765 }
1766
1767 static void __cpuinit rcu_online_cpu(int cpu)
1768 {
1769 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1770 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1771 rcu_preempt_init_percpu_data(cpu);
1772 }
1773
1774 /*
1775 * Handle CPU online/offline notification events.
1776 */
1777 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1778 unsigned long action, void *hcpu)
1779 {
1780 long cpu = (long)hcpu;
1781
1782 switch (action) {
1783 case CPU_UP_PREPARE:
1784 case CPU_UP_PREPARE_FROZEN:
1785 rcu_online_cpu(cpu);
1786 break;
1787 case CPU_DYING:
1788 case CPU_DYING_FROZEN:
1789 /*
1790 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1791 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1792 * returns, all online cpus have queued rcu_barrier_func().
1793 * The dying CPU clears its cpu_online_mask bit and
1794 * moves all of its RCU callbacks to ->orphan_cbs_list
1795 * in the context of stop_machine(), so subsequent calls
1796 * to _rcu_barrier() will adopt these callbacks and only
1797 * then queue rcu_barrier_func() on all remaining CPUs.
1798 */
1799 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1800 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1801 rcu_preempt_send_cbs_to_orphanage();
1802 break;
1803 case CPU_DEAD:
1804 case CPU_DEAD_FROZEN:
1805 case CPU_UP_CANCELED:
1806 case CPU_UP_CANCELED_FROZEN:
1807 rcu_offline_cpu(cpu);
1808 break;
1809 default:
1810 break;
1811 }
1812 return NOTIFY_OK;
1813 }
1814
1815 /*
1816 * This function is invoked towards the end of the scheduler's initialization
1817 * process. Before this is called, the idle task might contain
1818 * RCU read-side critical sections (during which time, this idle
1819 * task is booting the system). After this function is called, the
1820 * idle tasks are prohibited from containing RCU read-side critical
1821 * sections. This function also enables RCU lockdep checking.
1822 */
1823 void rcu_scheduler_starting(void)
1824 {
1825 WARN_ON(num_online_cpus() != 1);
1826 WARN_ON(nr_context_switches() > 0);
1827 rcu_scheduler_active = 1;
1828 }
1829
1830 /*
1831 * Compute the per-level fanout, either using the exact fanout specified
1832 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1833 */
1834 #ifdef CONFIG_RCU_FANOUT_EXACT
1835 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1836 {
1837 int i;
1838
1839 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1840 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1841 }
1842 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1843 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1844 {
1845 int ccur;
1846 int cprv;
1847 int i;
1848
1849 cprv = NR_CPUS;
1850 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1851 ccur = rsp->levelcnt[i];
1852 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1853 cprv = ccur;
1854 }
1855 }
1856 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1857
1858 /*
1859 * Helper function for rcu_init() that initializes one rcu_state structure.
1860 */
1861 static void __init rcu_init_one(struct rcu_state *rsp)
1862 {
1863 static char *buf[] = { "rcu_node_level_0",
1864 "rcu_node_level_1",
1865 "rcu_node_level_2",
1866 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1867 int cpustride = 1;
1868 int i;
1869 int j;
1870 struct rcu_node *rnp;
1871
1872 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1873
1874 /* Initialize the level-tracking arrays. */
1875
1876 for (i = 1; i < NUM_RCU_LVLS; i++)
1877 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1878 rcu_init_levelspread(rsp);
1879
1880 /* Initialize the elements themselves, starting from the leaves. */
1881
1882 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1883 cpustride *= rsp->levelspread[i];
1884 rnp = rsp->level[i];
1885 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1886 raw_spin_lock_init(&rnp->lock);
1887 lockdep_set_class_and_name(&rnp->lock,
1888 &rcu_node_class[i], buf[i]);
1889 rnp->gpnum = 0;
1890 rnp->qsmask = 0;
1891 rnp->qsmaskinit = 0;
1892 rnp->grplo = j * cpustride;
1893 rnp->grphi = (j + 1) * cpustride - 1;
1894 if (rnp->grphi >= NR_CPUS)
1895 rnp->grphi = NR_CPUS - 1;
1896 if (i == 0) {
1897 rnp->grpnum = 0;
1898 rnp->grpmask = 0;
1899 rnp->parent = NULL;
1900 } else {
1901 rnp->grpnum = j % rsp->levelspread[i - 1];
1902 rnp->grpmask = 1UL << rnp->grpnum;
1903 rnp->parent = rsp->level[i - 1] +
1904 j / rsp->levelspread[i - 1];
1905 }
1906 rnp->level = i;
1907 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1908 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1909 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1910 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1911 }
1912 }
1913
1914 rnp = rsp->level[NUM_RCU_LVLS - 1];
1915 for_each_possible_cpu(i) {
1916 while (i > rnp->grphi)
1917 rnp++;
1918 rsp->rda[i]->mynode = rnp;
1919 rcu_boot_init_percpu_data(i, rsp);
1920 }
1921 }
1922
1923 /*
1924 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1925 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1926 * structure.
1927 */
1928 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1929 do { \
1930 int i; \
1931 \
1932 for_each_possible_cpu(i) { \
1933 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1934 } \
1935 rcu_init_one(rsp); \
1936 } while (0)
1937
1938 void __init rcu_init(void)
1939 {
1940 int cpu;
1941
1942 rcu_bootup_announce();
1943 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1944 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1945 __rcu_init_preempt();
1946 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1947
1948 /*
1949 * We don't need protection against CPU-hotplug here because
1950 * this is called early in boot, before either interrupts
1951 * or the scheduler are operational.
1952 */
1953 cpu_notifier(rcu_cpu_notify, 0);
1954 for_each_online_cpu(cpu)
1955 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1956 check_cpu_stall_init();
1957 }
1958
1959 #include "rcutree_plugin.h"