rcu: Avoid spurious RCU CPU stall warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55
56 #include "rcutree.h"
57 #include <trace/events/rcu.h>
58
59 #include "rcu.h"
60
61 /* Data structures. */
62
63 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64
65 #define RCU_STATE_INITIALIZER(sname, cr) { \
66 .level = { &sname##_state.node[0] }, \
67 .call = cr, \
68 .fqs_state = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
76 .name = #sname, \
77 }
78
79 struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
81 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82
83 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
84 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85
86 static struct rcu_state *rcu_state;
87 LIST_HEAD(rcu_struct_flavors);
88
89 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91 module_param(rcu_fanout_leaf, int, 0);
92 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99 };
100 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
102 /*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
111 int rcu_scheduler_active __read_mostly;
112 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
114 /*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126 static int rcu_scheduler_fully_active __read_mostly;
127
128 #ifdef CONFIG_RCU_BOOST
129
130 /*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
135 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
136 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
138 DEFINE_PER_CPU(char, rcu_cpu_has_work);
139
140 #endif /* #ifdef CONFIG_RCU_BOOST */
141
142 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
143 static void invoke_rcu_core(void);
144 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
145
146 /*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155 unsigned long rcutorture_testseq;
156 unsigned long rcutorture_vernum;
157
158 /*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163 static int rcu_gp_in_progress(struct rcu_state *rsp)
164 {
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166 }
167
168 /*
169 * Note a quiescent state. Because we do not need to know
170 * how many quiescent states passed, just if there was at least
171 * one since the start of the grace period, this just sets a flag.
172 * The caller must have disabled preemption.
173 */
174 void rcu_sched_qs(int cpu)
175 {
176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
177
178 rdp->passed_quiesce_gpnum = rdp->gpnum;
179 barrier();
180 if (rdp->passed_quiesce == 0)
181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182 rdp->passed_quiesce = 1;
183 }
184
185 void rcu_bh_qs(int cpu)
186 {
187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188
189 rdp->passed_quiesce_gpnum = rdp->gpnum;
190 barrier();
191 if (rdp->passed_quiesce == 0)
192 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
193 rdp->passed_quiesce = 1;
194 }
195
196 /*
197 * Note a context switch. This is a quiescent state for RCU-sched,
198 * and requires special handling for preemptible RCU.
199 * The caller must have disabled preemption.
200 */
201 void rcu_note_context_switch(int cpu)
202 {
203 trace_rcu_utilization("Start context switch");
204 rcu_sched_qs(cpu);
205 rcu_preempt_note_context_switch(cpu);
206 trace_rcu_utilization("End context switch");
207 }
208 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
209
210 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
211 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
212 .dynticks = ATOMIC_INIT(1),
213 };
214
215 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216 static int qhimark = 10000; /* If this many pending, ignore blimit. */
217 static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
219 module_param(blimit, int, 0);
220 module_param(qhimark, int, 0);
221 module_param(qlowmark, int, 0);
222
223 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
226 module_param(rcu_cpu_stall_suppress, int, 0644);
227 module_param(rcu_cpu_stall_timeout, int, 0644);
228
229 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
230 static int rcu_pending(int cpu);
231
232 /*
233 * Return the number of RCU-sched batches processed thus far for debug & stats.
234 */
235 long rcu_batches_completed_sched(void)
236 {
237 return rcu_sched_state.completed;
238 }
239 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
240
241 /*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244 long rcu_batches_completed_bh(void)
245 {
246 return rcu_bh_state.completed;
247 }
248 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
250 /*
251 * Force a quiescent state for RCU BH.
252 */
253 void rcu_bh_force_quiescent_state(void)
254 {
255 force_quiescent_state(&rcu_bh_state, 0);
256 }
257 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
259 /*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266 void rcutorture_record_test_transition(void)
267 {
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270 }
271 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273 /*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278 void rcutorture_record_progress(unsigned long vernum)
279 {
280 rcutorture_vernum++;
281 }
282 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
284 /*
285 * Force a quiescent state for RCU-sched.
286 */
287 void rcu_sched_force_quiescent_state(void)
288 {
289 force_quiescent_state(&rcu_sched_state, 0);
290 }
291 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
293 /*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296 static int
297 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298 {
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
300 }
301
302 /*
303 * Does the current CPU require a yet-as-unscheduled grace period?
304 */
305 static int
306 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
307 {
308 return *rdp->nxttail[RCU_DONE_TAIL +
309 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
310 !rcu_gp_in_progress(rsp);
311 }
312
313 /*
314 * Return the root node of the specified rcu_state structure.
315 */
316 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
317 {
318 return &rsp->node[0];
319 }
320
321 /*
322 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
323 *
324 * If the new value of the ->dynticks_nesting counter now is zero,
325 * we really have entered idle, and must do the appropriate accounting.
326 * The caller must have disabled interrupts.
327 */
328 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
329 {
330 trace_rcu_dyntick("Start", oldval, 0);
331 if (!is_idle_task(current)) {
332 struct task_struct *idle = idle_task(smp_processor_id());
333
334 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
335 ftrace_dump(DUMP_ORIG);
336 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
337 current->pid, current->comm,
338 idle->pid, idle->comm); /* must be idle task! */
339 }
340 rcu_prepare_for_idle(smp_processor_id());
341 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
342 smp_mb__before_atomic_inc(); /* See above. */
343 atomic_inc(&rdtp->dynticks);
344 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
345 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
346
347 /*
348 * The idle task is not permitted to enter the idle loop while
349 * in an RCU read-side critical section.
350 */
351 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
352 "Illegal idle entry in RCU read-side critical section.");
353 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
354 "Illegal idle entry in RCU-bh read-side critical section.");
355 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
356 "Illegal idle entry in RCU-sched read-side critical section.");
357 }
358
359 /**
360 * rcu_idle_enter - inform RCU that current CPU is entering idle
361 *
362 * Enter idle mode, in other words, -leave- the mode in which RCU
363 * read-side critical sections can occur. (Though RCU read-side
364 * critical sections can occur in irq handlers in idle, a possibility
365 * handled by irq_enter() and irq_exit().)
366 *
367 * We crowbar the ->dynticks_nesting field to zero to allow for
368 * the possibility of usermode upcalls having messed up our count
369 * of interrupt nesting level during the prior busy period.
370 */
371 void rcu_idle_enter(void)
372 {
373 unsigned long flags;
374 long long oldval;
375 struct rcu_dynticks *rdtp;
376
377 local_irq_save(flags);
378 rdtp = &__get_cpu_var(rcu_dynticks);
379 oldval = rdtp->dynticks_nesting;
380 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
381 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
382 rdtp->dynticks_nesting = 0;
383 else
384 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
385 rcu_idle_enter_common(rdtp, oldval);
386 local_irq_restore(flags);
387 }
388 EXPORT_SYMBOL_GPL(rcu_idle_enter);
389
390 /**
391 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
392 *
393 * Exit from an interrupt handler, which might possibly result in entering
394 * idle mode, in other words, leaving the mode in which read-side critical
395 * sections can occur.
396 *
397 * This code assumes that the idle loop never does anything that might
398 * result in unbalanced calls to irq_enter() and irq_exit(). If your
399 * architecture violates this assumption, RCU will give you what you
400 * deserve, good and hard. But very infrequently and irreproducibly.
401 *
402 * Use things like work queues to work around this limitation.
403 *
404 * You have been warned.
405 */
406 void rcu_irq_exit(void)
407 {
408 unsigned long flags;
409 long long oldval;
410 struct rcu_dynticks *rdtp;
411
412 local_irq_save(flags);
413 rdtp = &__get_cpu_var(rcu_dynticks);
414 oldval = rdtp->dynticks_nesting;
415 rdtp->dynticks_nesting--;
416 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
417 if (rdtp->dynticks_nesting)
418 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
419 else
420 rcu_idle_enter_common(rdtp, oldval);
421 local_irq_restore(flags);
422 }
423
424 /*
425 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
426 *
427 * If the new value of the ->dynticks_nesting counter was previously zero,
428 * we really have exited idle, and must do the appropriate accounting.
429 * The caller must have disabled interrupts.
430 */
431 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
432 {
433 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
434 atomic_inc(&rdtp->dynticks);
435 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
436 smp_mb__after_atomic_inc(); /* See above. */
437 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
438 rcu_cleanup_after_idle(smp_processor_id());
439 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
440 if (!is_idle_task(current)) {
441 struct task_struct *idle = idle_task(smp_processor_id());
442
443 trace_rcu_dyntick("Error on exit: not idle task",
444 oldval, rdtp->dynticks_nesting);
445 ftrace_dump(DUMP_ORIG);
446 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
447 current->pid, current->comm,
448 idle->pid, idle->comm); /* must be idle task! */
449 }
450 }
451
452 /**
453 * rcu_idle_exit - inform RCU that current CPU is leaving idle
454 *
455 * Exit idle mode, in other words, -enter- the mode in which RCU
456 * read-side critical sections can occur.
457 *
458 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
459 * allow for the possibility of usermode upcalls messing up our count
460 * of interrupt nesting level during the busy period that is just
461 * now starting.
462 */
463 void rcu_idle_exit(void)
464 {
465 unsigned long flags;
466 struct rcu_dynticks *rdtp;
467 long long oldval;
468
469 local_irq_save(flags);
470 rdtp = &__get_cpu_var(rcu_dynticks);
471 oldval = rdtp->dynticks_nesting;
472 WARN_ON_ONCE(oldval < 0);
473 if (oldval & DYNTICK_TASK_NEST_MASK)
474 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
475 else
476 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
477 rcu_idle_exit_common(rdtp, oldval);
478 local_irq_restore(flags);
479 }
480 EXPORT_SYMBOL_GPL(rcu_idle_exit);
481
482 /**
483 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
484 *
485 * Enter an interrupt handler, which might possibly result in exiting
486 * idle mode, in other words, entering the mode in which read-side critical
487 * sections can occur.
488 *
489 * Note that the Linux kernel is fully capable of entering an interrupt
490 * handler that it never exits, for example when doing upcalls to
491 * user mode! This code assumes that the idle loop never does upcalls to
492 * user mode. If your architecture does do upcalls from the idle loop (or
493 * does anything else that results in unbalanced calls to the irq_enter()
494 * and irq_exit() functions), RCU will give you what you deserve, good
495 * and hard. But very infrequently and irreproducibly.
496 *
497 * Use things like work queues to work around this limitation.
498 *
499 * You have been warned.
500 */
501 void rcu_irq_enter(void)
502 {
503 unsigned long flags;
504 struct rcu_dynticks *rdtp;
505 long long oldval;
506
507 local_irq_save(flags);
508 rdtp = &__get_cpu_var(rcu_dynticks);
509 oldval = rdtp->dynticks_nesting;
510 rdtp->dynticks_nesting++;
511 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
512 if (oldval)
513 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
514 else
515 rcu_idle_exit_common(rdtp, oldval);
516 local_irq_restore(flags);
517 }
518
519 /**
520 * rcu_nmi_enter - inform RCU of entry to NMI context
521 *
522 * If the CPU was idle with dynamic ticks active, and there is no
523 * irq handler running, this updates rdtp->dynticks_nmi to let the
524 * RCU grace-period handling know that the CPU is active.
525 */
526 void rcu_nmi_enter(void)
527 {
528 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
529
530 if (rdtp->dynticks_nmi_nesting == 0 &&
531 (atomic_read(&rdtp->dynticks) & 0x1))
532 return;
533 rdtp->dynticks_nmi_nesting++;
534 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
535 atomic_inc(&rdtp->dynticks);
536 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
537 smp_mb__after_atomic_inc(); /* See above. */
538 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
539 }
540
541 /**
542 * rcu_nmi_exit - inform RCU of exit from NMI context
543 *
544 * If the CPU was idle with dynamic ticks active, and there is no
545 * irq handler running, this updates rdtp->dynticks_nmi to let the
546 * RCU grace-period handling know that the CPU is no longer active.
547 */
548 void rcu_nmi_exit(void)
549 {
550 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
551
552 if (rdtp->dynticks_nmi_nesting == 0 ||
553 --rdtp->dynticks_nmi_nesting != 0)
554 return;
555 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
556 smp_mb__before_atomic_inc(); /* See above. */
557 atomic_inc(&rdtp->dynticks);
558 smp_mb__after_atomic_inc(); /* Force delay to next write. */
559 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
560 }
561
562 /**
563 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
564 *
565 * If the current CPU is in its idle loop and is neither in an interrupt
566 * or NMI handler, return true.
567 */
568 int rcu_is_cpu_idle(void)
569 {
570 int ret;
571
572 preempt_disable();
573 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
574 preempt_enable();
575 return ret;
576 }
577 EXPORT_SYMBOL(rcu_is_cpu_idle);
578
579 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
580
581 /*
582 * Is the current CPU online? Disable preemption to avoid false positives
583 * that could otherwise happen due to the current CPU number being sampled,
584 * this task being preempted, its old CPU being taken offline, resuming
585 * on some other CPU, then determining that its old CPU is now offline.
586 * It is OK to use RCU on an offline processor during initial boot, hence
587 * the check for rcu_scheduler_fully_active. Note also that it is OK
588 * for a CPU coming online to use RCU for one jiffy prior to marking itself
589 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
590 * offline to continue to use RCU for one jiffy after marking itself
591 * offline in the cpu_online_mask. This leniency is necessary given the
592 * non-atomic nature of the online and offline processing, for example,
593 * the fact that a CPU enters the scheduler after completing the CPU_DYING
594 * notifiers.
595 *
596 * This is also why RCU internally marks CPUs online during the
597 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
598 *
599 * Disable checking if in an NMI handler because we cannot safely report
600 * errors from NMI handlers anyway.
601 */
602 bool rcu_lockdep_current_cpu_online(void)
603 {
604 struct rcu_data *rdp;
605 struct rcu_node *rnp;
606 bool ret;
607
608 if (in_nmi())
609 return 1;
610 preempt_disable();
611 rdp = &__get_cpu_var(rcu_sched_data);
612 rnp = rdp->mynode;
613 ret = (rdp->grpmask & rnp->qsmaskinit) ||
614 !rcu_scheduler_fully_active;
615 preempt_enable();
616 return ret;
617 }
618 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
619
620 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
621
622 /**
623 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
624 *
625 * If the current CPU is idle or running at a first-level (not nested)
626 * interrupt from idle, return true. The caller must have at least
627 * disabled preemption.
628 */
629 int rcu_is_cpu_rrupt_from_idle(void)
630 {
631 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
632 }
633
634 /*
635 * Snapshot the specified CPU's dynticks counter so that we can later
636 * credit them with an implicit quiescent state. Return 1 if this CPU
637 * is in dynticks idle mode, which is an extended quiescent state.
638 */
639 static int dyntick_save_progress_counter(struct rcu_data *rdp)
640 {
641 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
642 return (rdp->dynticks_snap & 0x1) == 0;
643 }
644
645 /*
646 * Return true if the specified CPU has passed through a quiescent
647 * state by virtue of being in or having passed through an dynticks
648 * idle state since the last call to dyntick_save_progress_counter()
649 * for this same CPU, or by virtue of having been offline.
650 */
651 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
652 {
653 unsigned int curr;
654 unsigned int snap;
655
656 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
657 snap = (unsigned int)rdp->dynticks_snap;
658
659 /*
660 * If the CPU passed through or entered a dynticks idle phase with
661 * no active irq/NMI handlers, then we can safely pretend that the CPU
662 * already acknowledged the request to pass through a quiescent
663 * state. Either way, that CPU cannot possibly be in an RCU
664 * read-side critical section that started before the beginning
665 * of the current RCU grace period.
666 */
667 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
668 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
669 rdp->dynticks_fqs++;
670 return 1;
671 }
672
673 /*
674 * Check for the CPU being offline, but only if the grace period
675 * is old enough. We don't need to worry about the CPU changing
676 * state: If we see it offline even once, it has been through a
677 * quiescent state.
678 *
679 * The reason for insisting that the grace period be at least
680 * one jiffy old is that CPUs that are not quite online and that
681 * have just gone offline can still execute RCU read-side critical
682 * sections.
683 */
684 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
685 return 0; /* Grace period is not old enough. */
686 barrier();
687 if (cpu_is_offline(rdp->cpu)) {
688 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
689 rdp->offline_fqs++;
690 return 1;
691 }
692 return 0;
693 }
694
695 static int jiffies_till_stall_check(void)
696 {
697 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
698
699 /*
700 * Limit check must be consistent with the Kconfig limits
701 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
702 */
703 if (till_stall_check < 3) {
704 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
705 till_stall_check = 3;
706 } else if (till_stall_check > 300) {
707 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
708 till_stall_check = 300;
709 }
710 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
711 }
712
713 static void record_gp_stall_check_time(struct rcu_state *rsp)
714 {
715 rsp->gp_start = jiffies;
716 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
717 }
718
719 static void print_other_cpu_stall(struct rcu_state *rsp)
720 {
721 int cpu;
722 long delta;
723 unsigned long flags;
724 int ndetected = 0;
725 struct rcu_node *rnp = rcu_get_root(rsp);
726
727 /* Only let one CPU complain about others per time interval. */
728
729 raw_spin_lock_irqsave(&rnp->lock, flags);
730 delta = jiffies - rsp->jiffies_stall;
731 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
732 raw_spin_unlock_irqrestore(&rnp->lock, flags);
733 return;
734 }
735 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
736 raw_spin_unlock_irqrestore(&rnp->lock, flags);
737
738 /*
739 * OK, time to rat on our buddy...
740 * See Documentation/RCU/stallwarn.txt for info on how to debug
741 * RCU CPU stall warnings.
742 */
743 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
744 rsp->name);
745 print_cpu_stall_info_begin();
746 rcu_for_each_leaf_node(rsp, rnp) {
747 raw_spin_lock_irqsave(&rnp->lock, flags);
748 ndetected += rcu_print_task_stall(rnp);
749 if (rnp->qsmask != 0) {
750 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
751 if (rnp->qsmask & (1UL << cpu)) {
752 print_cpu_stall_info(rsp,
753 rnp->grplo + cpu);
754 ndetected++;
755 }
756 }
757 raw_spin_unlock_irqrestore(&rnp->lock, flags);
758 }
759
760 /*
761 * Now rat on any tasks that got kicked up to the root rcu_node
762 * due to CPU offlining.
763 */
764 rnp = rcu_get_root(rsp);
765 raw_spin_lock_irqsave(&rnp->lock, flags);
766 ndetected += rcu_print_task_stall(rnp);
767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
768
769 print_cpu_stall_info_end();
770 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
771 smp_processor_id(), (long)(jiffies - rsp->gp_start));
772 if (ndetected == 0)
773 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
774 else if (!trigger_all_cpu_backtrace())
775 dump_stack();
776
777 /* If so configured, complain about tasks blocking the grace period. */
778
779 rcu_print_detail_task_stall(rsp);
780
781 force_quiescent_state(rsp, 0); /* Kick them all. */
782 }
783
784 static void print_cpu_stall(struct rcu_state *rsp)
785 {
786 unsigned long flags;
787 struct rcu_node *rnp = rcu_get_root(rsp);
788
789 /*
790 * OK, time to rat on ourselves...
791 * See Documentation/RCU/stallwarn.txt for info on how to debug
792 * RCU CPU stall warnings.
793 */
794 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
795 print_cpu_stall_info_begin();
796 print_cpu_stall_info(rsp, smp_processor_id());
797 print_cpu_stall_info_end();
798 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
799 if (!trigger_all_cpu_backtrace())
800 dump_stack();
801
802 raw_spin_lock_irqsave(&rnp->lock, flags);
803 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
804 rsp->jiffies_stall = jiffies +
805 3 * jiffies_till_stall_check() + 3;
806 raw_spin_unlock_irqrestore(&rnp->lock, flags);
807
808 set_need_resched(); /* kick ourselves to get things going. */
809 }
810
811 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
812 {
813 unsigned long j;
814 unsigned long js;
815 struct rcu_node *rnp;
816
817 if (rcu_cpu_stall_suppress)
818 return;
819 j = ACCESS_ONCE(jiffies);
820 js = ACCESS_ONCE(rsp->jiffies_stall);
821 rnp = rdp->mynode;
822 if (rcu_gp_in_progress(rsp) &&
823 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
824
825 /* We haven't checked in, so go dump stack. */
826 print_cpu_stall(rsp);
827
828 } else if (rcu_gp_in_progress(rsp) &&
829 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
830
831 /* They had a few time units to dump stack, so complain. */
832 print_other_cpu_stall(rsp);
833 }
834 }
835
836 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
837 {
838 rcu_cpu_stall_suppress = 1;
839 return NOTIFY_DONE;
840 }
841
842 /**
843 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
844 *
845 * Set the stall-warning timeout way off into the future, thus preventing
846 * any RCU CPU stall-warning messages from appearing in the current set of
847 * RCU grace periods.
848 *
849 * The caller must disable hard irqs.
850 */
851 void rcu_cpu_stall_reset(void)
852 {
853 struct rcu_state *rsp;
854
855 for_each_rcu_flavor(rsp)
856 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
857 }
858
859 static struct notifier_block rcu_panic_block = {
860 .notifier_call = rcu_panic,
861 };
862
863 static void __init check_cpu_stall_init(void)
864 {
865 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
866 }
867
868 /*
869 * Update CPU-local rcu_data state to record the newly noticed grace period.
870 * This is used both when we started the grace period and when we notice
871 * that someone else started the grace period. The caller must hold the
872 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
873 * and must have irqs disabled.
874 */
875 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
876 {
877 if (rdp->gpnum != rnp->gpnum) {
878 /*
879 * If the current grace period is waiting for this CPU,
880 * set up to detect a quiescent state, otherwise don't
881 * go looking for one.
882 */
883 rdp->gpnum = rnp->gpnum;
884 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
885 if (rnp->qsmask & rdp->grpmask) {
886 rdp->qs_pending = 1;
887 rdp->passed_quiesce = 0;
888 } else {
889 rdp->qs_pending = 0;
890 }
891 zero_cpu_stall_ticks(rdp);
892 }
893 }
894
895 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
896 {
897 unsigned long flags;
898 struct rcu_node *rnp;
899
900 local_irq_save(flags);
901 rnp = rdp->mynode;
902 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
903 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
904 local_irq_restore(flags);
905 return;
906 }
907 __note_new_gpnum(rsp, rnp, rdp);
908 raw_spin_unlock_irqrestore(&rnp->lock, flags);
909 }
910
911 /*
912 * Did someone else start a new RCU grace period start since we last
913 * checked? Update local state appropriately if so. Must be called
914 * on the CPU corresponding to rdp.
915 */
916 static int
917 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
918 {
919 unsigned long flags;
920 int ret = 0;
921
922 local_irq_save(flags);
923 if (rdp->gpnum != rsp->gpnum) {
924 note_new_gpnum(rsp, rdp);
925 ret = 1;
926 }
927 local_irq_restore(flags);
928 return ret;
929 }
930
931 /*
932 * Initialize the specified rcu_data structure's callback list to empty.
933 */
934 static void init_callback_list(struct rcu_data *rdp)
935 {
936 int i;
937
938 rdp->nxtlist = NULL;
939 for (i = 0; i < RCU_NEXT_SIZE; i++)
940 rdp->nxttail[i] = &rdp->nxtlist;
941 }
942
943 /*
944 * Advance this CPU's callbacks, but only if the current grace period
945 * has ended. This may be called only from the CPU to whom the rdp
946 * belongs. In addition, the corresponding leaf rcu_node structure's
947 * ->lock must be held by the caller, with irqs disabled.
948 */
949 static void
950 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
951 {
952 /* Did another grace period end? */
953 if (rdp->completed != rnp->completed) {
954
955 /* Advance callbacks. No harm if list empty. */
956 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
957 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
958 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
959
960 /* Remember that we saw this grace-period completion. */
961 rdp->completed = rnp->completed;
962 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
963
964 /*
965 * If we were in an extended quiescent state, we may have
966 * missed some grace periods that others CPUs handled on
967 * our behalf. Catch up with this state to avoid noting
968 * spurious new grace periods. If another grace period
969 * has started, then rnp->gpnum will have advanced, so
970 * we will detect this later on.
971 */
972 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
973 rdp->gpnum = rdp->completed;
974
975 /*
976 * If RCU does not need a quiescent state from this CPU,
977 * then make sure that this CPU doesn't go looking for one.
978 */
979 if ((rnp->qsmask & rdp->grpmask) == 0)
980 rdp->qs_pending = 0;
981 }
982 }
983
984 /*
985 * Advance this CPU's callbacks, but only if the current grace period
986 * has ended. This may be called only from the CPU to whom the rdp
987 * belongs.
988 */
989 static void
990 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
991 {
992 unsigned long flags;
993 struct rcu_node *rnp;
994
995 local_irq_save(flags);
996 rnp = rdp->mynode;
997 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
998 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
999 local_irq_restore(flags);
1000 return;
1001 }
1002 __rcu_process_gp_end(rsp, rnp, rdp);
1003 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1004 }
1005
1006 /*
1007 * Do per-CPU grace-period initialization for running CPU. The caller
1008 * must hold the lock of the leaf rcu_node structure corresponding to
1009 * this CPU.
1010 */
1011 static void
1012 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1013 {
1014 /* Prior grace period ended, so advance callbacks for current CPU. */
1015 __rcu_process_gp_end(rsp, rnp, rdp);
1016
1017 /*
1018 * Because this CPU just now started the new grace period, we know
1019 * that all of its callbacks will be covered by this upcoming grace
1020 * period, even the ones that were registered arbitrarily recently.
1021 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1022 *
1023 * Other CPUs cannot be sure exactly when the grace period started.
1024 * Therefore, their recently registered callbacks must pass through
1025 * an additional RCU_NEXT_READY stage, so that they will be handled
1026 * by the next RCU grace period.
1027 */
1028 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1029 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1030
1031 /* Set state so that this CPU will detect the next quiescent state. */
1032 __note_new_gpnum(rsp, rnp, rdp);
1033 }
1034
1035 /*
1036 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1037 * in preparation for detecting the next grace period. The caller must hold
1038 * the root node's ->lock, which is released before return. Hard irqs must
1039 * be disabled.
1040 *
1041 * Note that it is legal for a dying CPU (which is marked as offline) to
1042 * invoke this function. This can happen when the dying CPU reports its
1043 * quiescent state.
1044 */
1045 static void
1046 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1047 __releases(rcu_get_root(rsp)->lock)
1048 {
1049 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1050 struct rcu_node *rnp = rcu_get_root(rsp);
1051
1052 if (!rcu_scheduler_fully_active ||
1053 !cpu_needs_another_gp(rsp, rdp)) {
1054 /*
1055 * Either the scheduler hasn't yet spawned the first
1056 * non-idle task or this CPU does not need another
1057 * grace period. Either way, don't start a new grace
1058 * period.
1059 */
1060 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1061 return;
1062 }
1063
1064 if (rsp->fqs_active) {
1065 /*
1066 * This CPU needs a grace period, but force_quiescent_state()
1067 * is running. Tell it to start one on this CPU's behalf.
1068 */
1069 rsp->fqs_need_gp = 1;
1070 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1071 return;
1072 }
1073
1074 /* Advance to a new grace period and initialize state. */
1075 rsp->gpnum++;
1076 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1077 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1078 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1079 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1080 record_gp_stall_check_time(rsp);
1081 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1082
1083 /* Exclude any concurrent CPU-hotplug operations. */
1084 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1085
1086 /*
1087 * Set the quiescent-state-needed bits in all the rcu_node
1088 * structures for all currently online CPUs in breadth-first
1089 * order, starting from the root rcu_node structure. This
1090 * operation relies on the layout of the hierarchy within the
1091 * rsp->node[] array. Note that other CPUs will access only
1092 * the leaves of the hierarchy, which still indicate that no
1093 * grace period is in progress, at least until the corresponding
1094 * leaf node has been initialized. In addition, we have excluded
1095 * CPU-hotplug operations.
1096 *
1097 * Note that the grace period cannot complete until we finish
1098 * the initialization process, as there will be at least one
1099 * qsmask bit set in the root node until that time, namely the
1100 * one corresponding to this CPU, due to the fact that we have
1101 * irqs disabled.
1102 */
1103 rcu_for_each_node_breadth_first(rsp, rnp) {
1104 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1105 rcu_preempt_check_blocked_tasks(rnp);
1106 rnp->qsmask = rnp->qsmaskinit;
1107 rnp->gpnum = rsp->gpnum;
1108 rnp->completed = rsp->completed;
1109 if (rnp == rdp->mynode)
1110 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1111 rcu_preempt_boost_start_gp(rnp);
1112 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1113 rnp->level, rnp->grplo,
1114 rnp->grphi, rnp->qsmask);
1115 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1116 }
1117
1118 rnp = rcu_get_root(rsp);
1119 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1120 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1121 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1122 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1123 }
1124
1125 /*
1126 * Report a full set of quiescent states to the specified rcu_state
1127 * data structure. This involves cleaning up after the prior grace
1128 * period and letting rcu_start_gp() start up the next grace period
1129 * if one is needed. Note that the caller must hold rnp->lock, as
1130 * required by rcu_start_gp(), which will release it.
1131 */
1132 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1133 __releases(rcu_get_root(rsp)->lock)
1134 {
1135 unsigned long gp_duration;
1136 struct rcu_node *rnp = rcu_get_root(rsp);
1137 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1138
1139 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1140
1141 /*
1142 * Ensure that all grace-period and pre-grace-period activity
1143 * is seen before the assignment to rsp->completed.
1144 */
1145 smp_mb(); /* See above block comment. */
1146 gp_duration = jiffies - rsp->gp_start;
1147 if (gp_duration > rsp->gp_max)
1148 rsp->gp_max = gp_duration;
1149
1150 /*
1151 * We know the grace period is complete, but to everyone else
1152 * it appears to still be ongoing. But it is also the case
1153 * that to everyone else it looks like there is nothing that
1154 * they can do to advance the grace period. It is therefore
1155 * safe for us to drop the lock in order to mark the grace
1156 * period as completed in all of the rcu_node structures.
1157 *
1158 * But if this CPU needs another grace period, it will take
1159 * care of this while initializing the next grace period.
1160 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1161 * because the callbacks have not yet been advanced: Those
1162 * callbacks are waiting on the grace period that just now
1163 * completed.
1164 */
1165 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1166 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1167
1168 /*
1169 * Propagate new ->completed value to rcu_node structures
1170 * so that other CPUs don't have to wait until the start
1171 * of the next grace period to process their callbacks.
1172 */
1173 rcu_for_each_node_breadth_first(rsp, rnp) {
1174 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1175 rnp->completed = rsp->gpnum;
1176 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1177 }
1178 rnp = rcu_get_root(rsp);
1179 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1180 }
1181
1182 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1183 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1184 rsp->fqs_state = RCU_GP_IDLE;
1185 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1186 }
1187
1188 /*
1189 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1190 * Allows quiescent states for a group of CPUs to be reported at one go
1191 * to the specified rcu_node structure, though all the CPUs in the group
1192 * must be represented by the same rcu_node structure (which need not be
1193 * a leaf rcu_node structure, though it often will be). That structure's
1194 * lock must be held upon entry, and it is released before return.
1195 */
1196 static void
1197 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1198 struct rcu_node *rnp, unsigned long flags)
1199 __releases(rnp->lock)
1200 {
1201 struct rcu_node *rnp_c;
1202
1203 /* Walk up the rcu_node hierarchy. */
1204 for (;;) {
1205 if (!(rnp->qsmask & mask)) {
1206
1207 /* Our bit has already been cleared, so done. */
1208 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1209 return;
1210 }
1211 rnp->qsmask &= ~mask;
1212 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1213 mask, rnp->qsmask, rnp->level,
1214 rnp->grplo, rnp->grphi,
1215 !!rnp->gp_tasks);
1216 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1217
1218 /* Other bits still set at this level, so done. */
1219 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1220 return;
1221 }
1222 mask = rnp->grpmask;
1223 if (rnp->parent == NULL) {
1224
1225 /* No more levels. Exit loop holding root lock. */
1226
1227 break;
1228 }
1229 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1230 rnp_c = rnp;
1231 rnp = rnp->parent;
1232 raw_spin_lock_irqsave(&rnp->lock, flags);
1233 WARN_ON_ONCE(rnp_c->qsmask);
1234 }
1235
1236 /*
1237 * Get here if we are the last CPU to pass through a quiescent
1238 * state for this grace period. Invoke rcu_report_qs_rsp()
1239 * to clean up and start the next grace period if one is needed.
1240 */
1241 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1242 }
1243
1244 /*
1245 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1246 * structure. This must be either called from the specified CPU, or
1247 * called when the specified CPU is known to be offline (and when it is
1248 * also known that no other CPU is concurrently trying to help the offline
1249 * CPU). The lastcomp argument is used to make sure we are still in the
1250 * grace period of interest. We don't want to end the current grace period
1251 * based on quiescent states detected in an earlier grace period!
1252 */
1253 static void
1254 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1255 {
1256 unsigned long flags;
1257 unsigned long mask;
1258 struct rcu_node *rnp;
1259
1260 rnp = rdp->mynode;
1261 raw_spin_lock_irqsave(&rnp->lock, flags);
1262 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1263
1264 /*
1265 * The grace period in which this quiescent state was
1266 * recorded has ended, so don't report it upwards.
1267 * We will instead need a new quiescent state that lies
1268 * within the current grace period.
1269 */
1270 rdp->passed_quiesce = 0; /* need qs for new gp. */
1271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1272 return;
1273 }
1274 mask = rdp->grpmask;
1275 if ((rnp->qsmask & mask) == 0) {
1276 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1277 } else {
1278 rdp->qs_pending = 0;
1279
1280 /*
1281 * This GP can't end until cpu checks in, so all of our
1282 * callbacks can be processed during the next GP.
1283 */
1284 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1285
1286 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1287 }
1288 }
1289
1290 /*
1291 * Check to see if there is a new grace period of which this CPU
1292 * is not yet aware, and if so, set up local rcu_data state for it.
1293 * Otherwise, see if this CPU has just passed through its first
1294 * quiescent state for this grace period, and record that fact if so.
1295 */
1296 static void
1297 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1298 {
1299 /* If there is now a new grace period, record and return. */
1300 if (check_for_new_grace_period(rsp, rdp))
1301 return;
1302
1303 /*
1304 * Does this CPU still need to do its part for current grace period?
1305 * If no, return and let the other CPUs do their part as well.
1306 */
1307 if (!rdp->qs_pending)
1308 return;
1309
1310 /*
1311 * Was there a quiescent state since the beginning of the grace
1312 * period? If no, then exit and wait for the next call.
1313 */
1314 if (!rdp->passed_quiesce)
1315 return;
1316
1317 /*
1318 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1319 * judge of that).
1320 */
1321 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1322 }
1323
1324 #ifdef CONFIG_HOTPLUG_CPU
1325
1326 /*
1327 * Send the specified CPU's RCU callbacks to the orphanage. The
1328 * specified CPU must be offline, and the caller must hold the
1329 * ->onofflock.
1330 */
1331 static void
1332 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1333 struct rcu_node *rnp, struct rcu_data *rdp)
1334 {
1335 /*
1336 * Orphan the callbacks. First adjust the counts. This is safe
1337 * because ->onofflock excludes _rcu_barrier()'s adoption of
1338 * the callbacks, thus no memory barrier is required.
1339 */
1340 if (rdp->nxtlist != NULL) {
1341 rsp->qlen_lazy += rdp->qlen_lazy;
1342 rsp->qlen += rdp->qlen;
1343 rdp->n_cbs_orphaned += rdp->qlen;
1344 rdp->qlen_lazy = 0;
1345 ACCESS_ONCE(rdp->qlen) = 0;
1346 }
1347
1348 /*
1349 * Next, move those callbacks still needing a grace period to
1350 * the orphanage, where some other CPU will pick them up.
1351 * Some of the callbacks might have gone partway through a grace
1352 * period, but that is too bad. They get to start over because we
1353 * cannot assume that grace periods are synchronized across CPUs.
1354 * We don't bother updating the ->nxttail[] array yet, instead
1355 * we just reset the whole thing later on.
1356 */
1357 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1358 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1359 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1360 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1361 }
1362
1363 /*
1364 * Then move the ready-to-invoke callbacks to the orphanage,
1365 * where some other CPU will pick them up. These will not be
1366 * required to pass though another grace period: They are done.
1367 */
1368 if (rdp->nxtlist != NULL) {
1369 *rsp->orphan_donetail = rdp->nxtlist;
1370 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1371 }
1372
1373 /* Finally, initialize the rcu_data structure's list to empty. */
1374 init_callback_list(rdp);
1375 }
1376
1377 /*
1378 * Adopt the RCU callbacks from the specified rcu_state structure's
1379 * orphanage. The caller must hold the ->onofflock.
1380 */
1381 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1382 {
1383 int i;
1384 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1385
1386 /*
1387 * If there is an rcu_barrier() operation in progress, then
1388 * only the task doing that operation is permitted to adopt
1389 * callbacks. To do otherwise breaks rcu_barrier() and friends
1390 * by causing them to fail to wait for the callbacks in the
1391 * orphanage.
1392 */
1393 if (rsp->rcu_barrier_in_progress &&
1394 rsp->rcu_barrier_in_progress != current)
1395 return;
1396
1397 /* Do the accounting first. */
1398 rdp->qlen_lazy += rsp->qlen_lazy;
1399 rdp->qlen += rsp->qlen;
1400 rdp->n_cbs_adopted += rsp->qlen;
1401 if (rsp->qlen_lazy != rsp->qlen)
1402 rcu_idle_count_callbacks_posted();
1403 rsp->qlen_lazy = 0;
1404 rsp->qlen = 0;
1405
1406 /*
1407 * We do not need a memory barrier here because the only way we
1408 * can get here if there is an rcu_barrier() in flight is if
1409 * we are the task doing the rcu_barrier().
1410 */
1411
1412 /* First adopt the ready-to-invoke callbacks. */
1413 if (rsp->orphan_donelist != NULL) {
1414 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1415 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1416 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1417 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1418 rdp->nxttail[i] = rsp->orphan_donetail;
1419 rsp->orphan_donelist = NULL;
1420 rsp->orphan_donetail = &rsp->orphan_donelist;
1421 }
1422
1423 /* And then adopt the callbacks that still need a grace period. */
1424 if (rsp->orphan_nxtlist != NULL) {
1425 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1426 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1427 rsp->orphan_nxtlist = NULL;
1428 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1429 }
1430 }
1431
1432 /*
1433 * Trace the fact that this CPU is going offline.
1434 */
1435 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1436 {
1437 RCU_TRACE(unsigned long mask);
1438 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1439 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1440
1441 RCU_TRACE(mask = rdp->grpmask);
1442 trace_rcu_grace_period(rsp->name,
1443 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1444 "cpuofl");
1445 }
1446
1447 /*
1448 * The CPU has been completely removed, and some other CPU is reporting
1449 * this fact from process context. Do the remainder of the cleanup,
1450 * including orphaning the outgoing CPU's RCU callbacks, and also
1451 * adopting them, if there is no _rcu_barrier() instance running.
1452 * There can only be one CPU hotplug operation at a time, so no other
1453 * CPU can be attempting to update rcu_cpu_kthread_task.
1454 */
1455 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1456 {
1457 unsigned long flags;
1458 unsigned long mask;
1459 int need_report = 0;
1460 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1461 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1462
1463 /* Adjust any no-longer-needed kthreads. */
1464 rcu_stop_cpu_kthread(cpu);
1465 rcu_node_kthread_setaffinity(rnp, -1);
1466
1467 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1468
1469 /* Exclude any attempts to start a new grace period. */
1470 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1471
1472 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1473 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1474 rcu_adopt_orphan_cbs(rsp);
1475
1476 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1477 mask = rdp->grpmask; /* rnp->grplo is constant. */
1478 do {
1479 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1480 rnp->qsmaskinit &= ~mask;
1481 if (rnp->qsmaskinit != 0) {
1482 if (rnp != rdp->mynode)
1483 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1484 break;
1485 }
1486 if (rnp == rdp->mynode)
1487 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1488 else
1489 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1490 mask = rnp->grpmask;
1491 rnp = rnp->parent;
1492 } while (rnp != NULL);
1493
1494 /*
1495 * We still hold the leaf rcu_node structure lock here, and
1496 * irqs are still disabled. The reason for this subterfuge is
1497 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1498 * held leads to deadlock.
1499 */
1500 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1501 rnp = rdp->mynode;
1502 if (need_report & RCU_OFL_TASKS_NORM_GP)
1503 rcu_report_unblock_qs_rnp(rnp, flags);
1504 else
1505 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1506 if (need_report & RCU_OFL_TASKS_EXP_GP)
1507 rcu_report_exp_rnp(rsp, rnp, true);
1508 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1509 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1510 cpu, rdp->qlen, rdp->nxtlist);
1511 }
1512
1513 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1514
1515 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1516 {
1517 }
1518
1519 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1520 {
1521 }
1522
1523 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1524 {
1525 }
1526
1527 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1528
1529 /*
1530 * Invoke any RCU callbacks that have made it to the end of their grace
1531 * period. Thottle as specified by rdp->blimit.
1532 */
1533 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1534 {
1535 unsigned long flags;
1536 struct rcu_head *next, *list, **tail;
1537 int bl, count, count_lazy, i;
1538
1539 /* If no callbacks are ready, just return.*/
1540 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1541 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1542 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1543 need_resched(), is_idle_task(current),
1544 rcu_is_callbacks_kthread());
1545 return;
1546 }
1547
1548 /*
1549 * Extract the list of ready callbacks, disabling to prevent
1550 * races with call_rcu() from interrupt handlers.
1551 */
1552 local_irq_save(flags);
1553 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1554 bl = rdp->blimit;
1555 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1556 list = rdp->nxtlist;
1557 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1558 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1559 tail = rdp->nxttail[RCU_DONE_TAIL];
1560 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1561 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1562 rdp->nxttail[i] = &rdp->nxtlist;
1563 local_irq_restore(flags);
1564
1565 /* Invoke callbacks. */
1566 count = count_lazy = 0;
1567 while (list) {
1568 next = list->next;
1569 prefetch(next);
1570 debug_rcu_head_unqueue(list);
1571 if (__rcu_reclaim(rsp->name, list))
1572 count_lazy++;
1573 list = next;
1574 /* Stop only if limit reached and CPU has something to do. */
1575 if (++count >= bl &&
1576 (need_resched() ||
1577 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1578 break;
1579 }
1580
1581 local_irq_save(flags);
1582 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1583 is_idle_task(current),
1584 rcu_is_callbacks_kthread());
1585
1586 /* Update count, and requeue any remaining callbacks. */
1587 if (list != NULL) {
1588 *tail = rdp->nxtlist;
1589 rdp->nxtlist = list;
1590 for (i = 0; i < RCU_NEXT_SIZE; i++)
1591 if (&rdp->nxtlist == rdp->nxttail[i])
1592 rdp->nxttail[i] = tail;
1593 else
1594 break;
1595 }
1596 smp_mb(); /* List handling before counting for rcu_barrier(). */
1597 rdp->qlen_lazy -= count_lazy;
1598 ACCESS_ONCE(rdp->qlen) -= count;
1599 rdp->n_cbs_invoked += count;
1600
1601 /* Reinstate batch limit if we have worked down the excess. */
1602 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1603 rdp->blimit = blimit;
1604
1605 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1606 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1607 rdp->qlen_last_fqs_check = 0;
1608 rdp->n_force_qs_snap = rsp->n_force_qs;
1609 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1610 rdp->qlen_last_fqs_check = rdp->qlen;
1611 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1612
1613 local_irq_restore(flags);
1614
1615 /* Re-invoke RCU core processing if there are callbacks remaining. */
1616 if (cpu_has_callbacks_ready_to_invoke(rdp))
1617 invoke_rcu_core();
1618 }
1619
1620 /*
1621 * Check to see if this CPU is in a non-context-switch quiescent state
1622 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1623 * Also schedule RCU core processing.
1624 *
1625 * This function must be called from hardirq context. It is normally
1626 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1627 * false, there is no point in invoking rcu_check_callbacks().
1628 */
1629 void rcu_check_callbacks(int cpu, int user)
1630 {
1631 trace_rcu_utilization("Start scheduler-tick");
1632 increment_cpu_stall_ticks();
1633 if (user || rcu_is_cpu_rrupt_from_idle()) {
1634
1635 /*
1636 * Get here if this CPU took its interrupt from user
1637 * mode or from the idle loop, and if this is not a
1638 * nested interrupt. In this case, the CPU is in
1639 * a quiescent state, so note it.
1640 *
1641 * No memory barrier is required here because both
1642 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1643 * variables that other CPUs neither access nor modify,
1644 * at least not while the corresponding CPU is online.
1645 */
1646
1647 rcu_sched_qs(cpu);
1648 rcu_bh_qs(cpu);
1649
1650 } else if (!in_softirq()) {
1651
1652 /*
1653 * Get here if this CPU did not take its interrupt from
1654 * softirq, in other words, if it is not interrupting
1655 * a rcu_bh read-side critical section. This is an _bh
1656 * critical section, so note it.
1657 */
1658
1659 rcu_bh_qs(cpu);
1660 }
1661 rcu_preempt_check_callbacks(cpu);
1662 if (rcu_pending(cpu))
1663 invoke_rcu_core();
1664 trace_rcu_utilization("End scheduler-tick");
1665 }
1666
1667 /*
1668 * Scan the leaf rcu_node structures, processing dyntick state for any that
1669 * have not yet encountered a quiescent state, using the function specified.
1670 * Also initiate boosting for any threads blocked on the root rcu_node.
1671 *
1672 * The caller must have suppressed start of new grace periods.
1673 */
1674 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1675 {
1676 unsigned long bit;
1677 int cpu;
1678 unsigned long flags;
1679 unsigned long mask;
1680 struct rcu_node *rnp;
1681
1682 rcu_for_each_leaf_node(rsp, rnp) {
1683 mask = 0;
1684 raw_spin_lock_irqsave(&rnp->lock, flags);
1685 if (!rcu_gp_in_progress(rsp)) {
1686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1687 return;
1688 }
1689 if (rnp->qsmask == 0) {
1690 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1691 continue;
1692 }
1693 cpu = rnp->grplo;
1694 bit = 1;
1695 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1696 if ((rnp->qsmask & bit) != 0 &&
1697 f(per_cpu_ptr(rsp->rda, cpu)))
1698 mask |= bit;
1699 }
1700 if (mask != 0) {
1701
1702 /* rcu_report_qs_rnp() releases rnp->lock. */
1703 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1704 continue;
1705 }
1706 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1707 }
1708 rnp = rcu_get_root(rsp);
1709 if (rnp->qsmask == 0) {
1710 raw_spin_lock_irqsave(&rnp->lock, flags);
1711 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1712 }
1713 }
1714
1715 /*
1716 * Force quiescent states on reluctant CPUs, and also detect which
1717 * CPUs are in dyntick-idle mode.
1718 */
1719 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1720 {
1721 unsigned long flags;
1722 struct rcu_node *rnp = rcu_get_root(rsp);
1723
1724 trace_rcu_utilization("Start fqs");
1725 if (!rcu_gp_in_progress(rsp)) {
1726 trace_rcu_utilization("End fqs");
1727 return; /* No grace period in progress, nothing to force. */
1728 }
1729 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1730 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1731 trace_rcu_utilization("End fqs");
1732 return; /* Someone else is already on the job. */
1733 }
1734 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1735 goto unlock_fqs_ret; /* no emergency and done recently. */
1736 rsp->n_force_qs++;
1737 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1738 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1739 if(!rcu_gp_in_progress(rsp)) {
1740 rsp->n_force_qs_ngp++;
1741 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1742 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1743 }
1744 rsp->fqs_active = 1;
1745 switch (rsp->fqs_state) {
1746 case RCU_GP_IDLE:
1747 case RCU_GP_INIT:
1748
1749 break; /* grace period idle or initializing, ignore. */
1750
1751 case RCU_SAVE_DYNTICK:
1752
1753 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1754
1755 /* Record dyntick-idle state. */
1756 force_qs_rnp(rsp, dyntick_save_progress_counter);
1757 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1758 if (rcu_gp_in_progress(rsp))
1759 rsp->fqs_state = RCU_FORCE_QS;
1760 break;
1761
1762 case RCU_FORCE_QS:
1763
1764 /* Check dyntick-idle state, send IPI to laggarts. */
1765 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1766 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1767
1768 /* Leave state in case more forcing is required. */
1769
1770 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1771 break;
1772 }
1773 rsp->fqs_active = 0;
1774 if (rsp->fqs_need_gp) {
1775 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1776 rsp->fqs_need_gp = 0;
1777 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1778 trace_rcu_utilization("End fqs");
1779 return;
1780 }
1781 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1782 unlock_fqs_ret:
1783 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1784 trace_rcu_utilization("End fqs");
1785 }
1786
1787 /*
1788 * This does the RCU core processing work for the specified rcu_state
1789 * and rcu_data structures. This may be called only from the CPU to
1790 * whom the rdp belongs.
1791 */
1792 static void
1793 __rcu_process_callbacks(struct rcu_state *rsp)
1794 {
1795 unsigned long flags;
1796 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1797
1798 WARN_ON_ONCE(rdp->beenonline == 0);
1799
1800 /*
1801 * If an RCU GP has gone long enough, go check for dyntick
1802 * idle CPUs and, if needed, send resched IPIs.
1803 */
1804 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1805 force_quiescent_state(rsp, 1);
1806
1807 /*
1808 * Advance callbacks in response to end of earlier grace
1809 * period that some other CPU ended.
1810 */
1811 rcu_process_gp_end(rsp, rdp);
1812
1813 /* Update RCU state based on any recent quiescent states. */
1814 rcu_check_quiescent_state(rsp, rdp);
1815
1816 /* Does this CPU require a not-yet-started grace period? */
1817 if (cpu_needs_another_gp(rsp, rdp)) {
1818 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1819 rcu_start_gp(rsp, flags); /* releases above lock */
1820 }
1821
1822 /* If there are callbacks ready, invoke them. */
1823 if (cpu_has_callbacks_ready_to_invoke(rdp))
1824 invoke_rcu_callbacks(rsp, rdp);
1825 }
1826
1827 /*
1828 * Do RCU core processing for the current CPU.
1829 */
1830 static void rcu_process_callbacks(struct softirq_action *unused)
1831 {
1832 struct rcu_state *rsp;
1833
1834 trace_rcu_utilization("Start RCU core");
1835 for_each_rcu_flavor(rsp)
1836 __rcu_process_callbacks(rsp);
1837 trace_rcu_utilization("End RCU core");
1838 }
1839
1840 /*
1841 * Schedule RCU callback invocation. If the specified type of RCU
1842 * does not support RCU priority boosting, just do a direct call,
1843 * otherwise wake up the per-CPU kernel kthread. Note that because we
1844 * are running on the current CPU with interrupts disabled, the
1845 * rcu_cpu_kthread_task cannot disappear out from under us.
1846 */
1847 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1848 {
1849 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1850 return;
1851 if (likely(!rsp->boost)) {
1852 rcu_do_batch(rsp, rdp);
1853 return;
1854 }
1855 invoke_rcu_callbacks_kthread();
1856 }
1857
1858 static void invoke_rcu_core(void)
1859 {
1860 raise_softirq(RCU_SOFTIRQ);
1861 }
1862
1863 /*
1864 * Handle any core-RCU processing required by a call_rcu() invocation.
1865 */
1866 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1867 struct rcu_head *head, unsigned long flags)
1868 {
1869 /*
1870 * If called from an extended quiescent state, invoke the RCU
1871 * core in order to force a re-evaluation of RCU's idleness.
1872 */
1873 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1874 invoke_rcu_core();
1875
1876 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1877 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1878 return;
1879
1880 /*
1881 * Force the grace period if too many callbacks or too long waiting.
1882 * Enforce hysteresis, and don't invoke force_quiescent_state()
1883 * if some other CPU has recently done so. Also, don't bother
1884 * invoking force_quiescent_state() if the newly enqueued callback
1885 * is the only one waiting for a grace period to complete.
1886 */
1887 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1888
1889 /* Are we ignoring a completed grace period? */
1890 rcu_process_gp_end(rsp, rdp);
1891 check_for_new_grace_period(rsp, rdp);
1892
1893 /* Start a new grace period if one not already started. */
1894 if (!rcu_gp_in_progress(rsp)) {
1895 unsigned long nestflag;
1896 struct rcu_node *rnp_root = rcu_get_root(rsp);
1897
1898 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1899 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1900 } else {
1901 /* Give the grace period a kick. */
1902 rdp->blimit = LONG_MAX;
1903 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1904 *rdp->nxttail[RCU_DONE_TAIL] != head)
1905 force_quiescent_state(rsp, 0);
1906 rdp->n_force_qs_snap = rsp->n_force_qs;
1907 rdp->qlen_last_fqs_check = rdp->qlen;
1908 }
1909 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1910 force_quiescent_state(rsp, 1);
1911 }
1912
1913 static void
1914 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1915 struct rcu_state *rsp, bool lazy)
1916 {
1917 unsigned long flags;
1918 struct rcu_data *rdp;
1919
1920 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1921 debug_rcu_head_queue(head);
1922 head->func = func;
1923 head->next = NULL;
1924
1925 smp_mb(); /* Ensure RCU update seen before callback registry. */
1926
1927 /*
1928 * Opportunistically note grace-period endings and beginnings.
1929 * Note that we might see a beginning right after we see an
1930 * end, but never vice versa, since this CPU has to pass through
1931 * a quiescent state betweentimes.
1932 */
1933 local_irq_save(flags);
1934 rdp = this_cpu_ptr(rsp->rda);
1935
1936 /* Add the callback to our list. */
1937 ACCESS_ONCE(rdp->qlen)++;
1938 if (lazy)
1939 rdp->qlen_lazy++;
1940 else
1941 rcu_idle_count_callbacks_posted();
1942 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1943 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1944 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1945
1946 if (__is_kfree_rcu_offset((unsigned long)func))
1947 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1948 rdp->qlen_lazy, rdp->qlen);
1949 else
1950 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1951
1952 /* Go handle any RCU core processing required. */
1953 __call_rcu_core(rsp, rdp, head, flags);
1954 local_irq_restore(flags);
1955 }
1956
1957 /*
1958 * Queue an RCU-sched callback for invocation after a grace period.
1959 */
1960 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1961 {
1962 __call_rcu(head, func, &rcu_sched_state, 0);
1963 }
1964 EXPORT_SYMBOL_GPL(call_rcu_sched);
1965
1966 /*
1967 * Queue an RCU callback for invocation after a quicker grace period.
1968 */
1969 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1970 {
1971 __call_rcu(head, func, &rcu_bh_state, 0);
1972 }
1973 EXPORT_SYMBOL_GPL(call_rcu_bh);
1974
1975 /*
1976 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1977 * any blocking grace-period wait automatically implies a grace period
1978 * if there is only one CPU online at any point time during execution
1979 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1980 * occasionally incorrectly indicate that there are multiple CPUs online
1981 * when there was in fact only one the whole time, as this just adds
1982 * some overhead: RCU still operates correctly.
1983 */
1984 static inline int rcu_blocking_is_gp(void)
1985 {
1986 int ret;
1987
1988 might_sleep(); /* Check for RCU read-side critical section. */
1989 preempt_disable();
1990 ret = num_online_cpus() <= 1;
1991 preempt_enable();
1992 return ret;
1993 }
1994
1995 /**
1996 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1997 *
1998 * Control will return to the caller some time after a full rcu-sched
1999 * grace period has elapsed, in other words after all currently executing
2000 * rcu-sched read-side critical sections have completed. These read-side
2001 * critical sections are delimited by rcu_read_lock_sched() and
2002 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2003 * local_irq_disable(), and so on may be used in place of
2004 * rcu_read_lock_sched().
2005 *
2006 * This means that all preempt_disable code sequences, including NMI and
2007 * hardware-interrupt handlers, in progress on entry will have completed
2008 * before this primitive returns. However, this does not guarantee that
2009 * softirq handlers will have completed, since in some kernels, these
2010 * handlers can run in process context, and can block.
2011 *
2012 * This primitive provides the guarantees made by the (now removed)
2013 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2014 * guarantees that rcu_read_lock() sections will have completed.
2015 * In "classic RCU", these two guarantees happen to be one and
2016 * the same, but can differ in realtime RCU implementations.
2017 */
2018 void synchronize_sched(void)
2019 {
2020 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2021 !lock_is_held(&rcu_lock_map) &&
2022 !lock_is_held(&rcu_sched_lock_map),
2023 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2024 if (rcu_blocking_is_gp())
2025 return;
2026 wait_rcu_gp(call_rcu_sched);
2027 }
2028 EXPORT_SYMBOL_GPL(synchronize_sched);
2029
2030 /**
2031 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2032 *
2033 * Control will return to the caller some time after a full rcu_bh grace
2034 * period has elapsed, in other words after all currently executing rcu_bh
2035 * read-side critical sections have completed. RCU read-side critical
2036 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2037 * and may be nested.
2038 */
2039 void synchronize_rcu_bh(void)
2040 {
2041 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2042 !lock_is_held(&rcu_lock_map) &&
2043 !lock_is_held(&rcu_sched_lock_map),
2044 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2045 if (rcu_blocking_is_gp())
2046 return;
2047 wait_rcu_gp(call_rcu_bh);
2048 }
2049 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2050
2051 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2052 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2053
2054 static int synchronize_sched_expedited_cpu_stop(void *data)
2055 {
2056 /*
2057 * There must be a full memory barrier on each affected CPU
2058 * between the time that try_stop_cpus() is called and the
2059 * time that it returns.
2060 *
2061 * In the current initial implementation of cpu_stop, the
2062 * above condition is already met when the control reaches
2063 * this point and the following smp_mb() is not strictly
2064 * necessary. Do smp_mb() anyway for documentation and
2065 * robustness against future implementation changes.
2066 */
2067 smp_mb(); /* See above comment block. */
2068 return 0;
2069 }
2070
2071 /**
2072 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2073 *
2074 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2075 * approach to force the grace period to end quickly. This consumes
2076 * significant time on all CPUs and is unfriendly to real-time workloads,
2077 * so is thus not recommended for any sort of common-case code. In fact,
2078 * if you are using synchronize_sched_expedited() in a loop, please
2079 * restructure your code to batch your updates, and then use a single
2080 * synchronize_sched() instead.
2081 *
2082 * Note that it is illegal to call this function while holding any lock
2083 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2084 * to call this function from a CPU-hotplug notifier. Failing to observe
2085 * these restriction will result in deadlock.
2086 *
2087 * This implementation can be thought of as an application of ticket
2088 * locking to RCU, with sync_sched_expedited_started and
2089 * sync_sched_expedited_done taking on the roles of the halves
2090 * of the ticket-lock word. Each task atomically increments
2091 * sync_sched_expedited_started upon entry, snapshotting the old value,
2092 * then attempts to stop all the CPUs. If this succeeds, then each
2093 * CPU will have executed a context switch, resulting in an RCU-sched
2094 * grace period. We are then done, so we use atomic_cmpxchg() to
2095 * update sync_sched_expedited_done to match our snapshot -- but
2096 * only if someone else has not already advanced past our snapshot.
2097 *
2098 * On the other hand, if try_stop_cpus() fails, we check the value
2099 * of sync_sched_expedited_done. If it has advanced past our
2100 * initial snapshot, then someone else must have forced a grace period
2101 * some time after we took our snapshot. In this case, our work is
2102 * done for us, and we can simply return. Otherwise, we try again,
2103 * but keep our initial snapshot for purposes of checking for someone
2104 * doing our work for us.
2105 *
2106 * If we fail too many times in a row, we fall back to synchronize_sched().
2107 */
2108 void synchronize_sched_expedited(void)
2109 {
2110 int firstsnap, s, snap, trycount = 0;
2111
2112 /* Note that atomic_inc_return() implies full memory barrier. */
2113 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2114 get_online_cpus();
2115 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2116
2117 /*
2118 * Each pass through the following loop attempts to force a
2119 * context switch on each CPU.
2120 */
2121 while (try_stop_cpus(cpu_online_mask,
2122 synchronize_sched_expedited_cpu_stop,
2123 NULL) == -EAGAIN) {
2124 put_online_cpus();
2125
2126 /* No joy, try again later. Or just synchronize_sched(). */
2127 if (trycount++ < 10) {
2128 udelay(trycount * num_online_cpus());
2129 } else {
2130 synchronize_sched();
2131 return;
2132 }
2133
2134 /* Check to see if someone else did our work for us. */
2135 s = atomic_read(&sync_sched_expedited_done);
2136 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2137 smp_mb(); /* ensure test happens before caller kfree */
2138 return;
2139 }
2140
2141 /*
2142 * Refetching sync_sched_expedited_started allows later
2143 * callers to piggyback on our grace period. We subtract
2144 * 1 to get the same token that the last incrementer got.
2145 * We retry after they started, so our grace period works
2146 * for them, and they started after our first try, so their
2147 * grace period works for us.
2148 */
2149 get_online_cpus();
2150 snap = atomic_read(&sync_sched_expedited_started);
2151 smp_mb(); /* ensure read is before try_stop_cpus(). */
2152 }
2153
2154 /*
2155 * Everyone up to our most recent fetch is covered by our grace
2156 * period. Update the counter, but only if our work is still
2157 * relevant -- which it won't be if someone who started later
2158 * than we did beat us to the punch.
2159 */
2160 do {
2161 s = atomic_read(&sync_sched_expedited_done);
2162 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2163 smp_mb(); /* ensure test happens before caller kfree */
2164 break;
2165 }
2166 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2167
2168 put_online_cpus();
2169 }
2170 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2171
2172 /*
2173 * Check to see if there is any immediate RCU-related work to be done
2174 * by the current CPU, for the specified type of RCU, returning 1 if so.
2175 * The checks are in order of increasing expense: checks that can be
2176 * carried out against CPU-local state are performed first. However,
2177 * we must check for CPU stalls first, else we might not get a chance.
2178 */
2179 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2180 {
2181 struct rcu_node *rnp = rdp->mynode;
2182
2183 rdp->n_rcu_pending++;
2184
2185 /* Check for CPU stalls, if enabled. */
2186 check_cpu_stall(rsp, rdp);
2187
2188 /* Is the RCU core waiting for a quiescent state from this CPU? */
2189 if (rcu_scheduler_fully_active &&
2190 rdp->qs_pending && !rdp->passed_quiesce) {
2191
2192 /*
2193 * If force_quiescent_state() coming soon and this CPU
2194 * needs a quiescent state, and this is either RCU-sched
2195 * or RCU-bh, force a local reschedule.
2196 */
2197 rdp->n_rp_qs_pending++;
2198 if (!rdp->preemptible &&
2199 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2200 jiffies))
2201 set_need_resched();
2202 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2203 rdp->n_rp_report_qs++;
2204 return 1;
2205 }
2206
2207 /* Does this CPU have callbacks ready to invoke? */
2208 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2209 rdp->n_rp_cb_ready++;
2210 return 1;
2211 }
2212
2213 /* Has RCU gone idle with this CPU needing another grace period? */
2214 if (cpu_needs_another_gp(rsp, rdp)) {
2215 rdp->n_rp_cpu_needs_gp++;
2216 return 1;
2217 }
2218
2219 /* Has another RCU grace period completed? */
2220 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2221 rdp->n_rp_gp_completed++;
2222 return 1;
2223 }
2224
2225 /* Has a new RCU grace period started? */
2226 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2227 rdp->n_rp_gp_started++;
2228 return 1;
2229 }
2230
2231 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2232 if (rcu_gp_in_progress(rsp) &&
2233 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2234 rdp->n_rp_need_fqs++;
2235 return 1;
2236 }
2237
2238 /* nothing to do */
2239 rdp->n_rp_need_nothing++;
2240 return 0;
2241 }
2242
2243 /*
2244 * Check to see if there is any immediate RCU-related work to be done
2245 * by the current CPU, returning 1 if so. This function is part of the
2246 * RCU implementation; it is -not- an exported member of the RCU API.
2247 */
2248 static int rcu_pending(int cpu)
2249 {
2250 struct rcu_state *rsp;
2251
2252 for_each_rcu_flavor(rsp)
2253 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2254 return 1;
2255 return 0;
2256 }
2257
2258 /*
2259 * Check to see if any future RCU-related work will need to be done
2260 * by the current CPU, even if none need be done immediately, returning
2261 * 1 if so.
2262 */
2263 static int rcu_cpu_has_callbacks(int cpu)
2264 {
2265 struct rcu_state *rsp;
2266
2267 /* RCU callbacks either ready or pending? */
2268 for_each_rcu_flavor(rsp)
2269 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2270 return 1;
2271 return 0;
2272 }
2273
2274 /*
2275 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2276 * the compiler is expected to optimize this away.
2277 */
2278 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2279 int cpu, unsigned long done)
2280 {
2281 trace_rcu_barrier(rsp->name, s, cpu,
2282 atomic_read(&rsp->barrier_cpu_count), done);
2283 }
2284
2285 /*
2286 * RCU callback function for _rcu_barrier(). If we are last, wake
2287 * up the task executing _rcu_barrier().
2288 */
2289 static void rcu_barrier_callback(struct rcu_head *rhp)
2290 {
2291 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2292 struct rcu_state *rsp = rdp->rsp;
2293
2294 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2295 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2296 complete(&rsp->barrier_completion);
2297 } else {
2298 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2299 }
2300 }
2301
2302 /*
2303 * Called with preemption disabled, and from cross-cpu IRQ context.
2304 */
2305 static void rcu_barrier_func(void *type)
2306 {
2307 struct rcu_state *rsp = type;
2308 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2309
2310 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2311 atomic_inc(&rsp->barrier_cpu_count);
2312 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2313 }
2314
2315 /*
2316 * Orchestrate the specified type of RCU barrier, waiting for all
2317 * RCU callbacks of the specified type to complete.
2318 */
2319 static void _rcu_barrier(struct rcu_state *rsp)
2320 {
2321 int cpu;
2322 unsigned long flags;
2323 struct rcu_data *rdp;
2324 struct rcu_data rd;
2325 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2326 unsigned long snap_done;
2327
2328 init_rcu_head_on_stack(&rd.barrier_head);
2329 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2330
2331 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2332 mutex_lock(&rsp->barrier_mutex);
2333
2334 /*
2335 * Ensure that all prior references, including to ->n_barrier_done,
2336 * are ordered before the _rcu_barrier() machinery.
2337 */
2338 smp_mb(); /* See above block comment. */
2339
2340 /*
2341 * Recheck ->n_barrier_done to see if others did our work for us.
2342 * This means checking ->n_barrier_done for an even-to-odd-to-even
2343 * transition. The "if" expression below therefore rounds the old
2344 * value up to the next even number and adds two before comparing.
2345 */
2346 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2347 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2348 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2349 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2350 smp_mb(); /* caller's subsequent code after above check. */
2351 mutex_unlock(&rsp->barrier_mutex);
2352 return;
2353 }
2354
2355 /*
2356 * Increment ->n_barrier_done to avoid duplicate work. Use
2357 * ACCESS_ONCE() to prevent the compiler from speculating
2358 * the increment to precede the early-exit check.
2359 */
2360 ACCESS_ONCE(rsp->n_barrier_done)++;
2361 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2362 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2363 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2364
2365 /*
2366 * Initialize the count to one rather than to zero in order to
2367 * avoid a too-soon return to zero in case of a short grace period
2368 * (or preemption of this task). Also flag this task as doing
2369 * an rcu_barrier(). This will prevent anyone else from adopting
2370 * orphaned callbacks, which could cause otherwise failure if a
2371 * CPU went offline and quickly came back online. To see this,
2372 * consider the following sequence of events:
2373 *
2374 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2375 * 2. CPU 1 goes offline, orphaning its callbacks.
2376 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2377 * 4. CPU 1 comes back online.
2378 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2379 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2380 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2381 */
2382 init_completion(&rsp->barrier_completion);
2383 atomic_set(&rsp->barrier_cpu_count, 1);
2384 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2385 rsp->rcu_barrier_in_progress = current;
2386 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2387
2388 /*
2389 * Force every CPU with callbacks to register a new callback
2390 * that will tell us when all the preceding callbacks have
2391 * been invoked. If an offline CPU has callbacks, wait for
2392 * it to either come back online or to finish orphaning those
2393 * callbacks.
2394 */
2395 for_each_possible_cpu(cpu) {
2396 preempt_disable();
2397 rdp = per_cpu_ptr(rsp->rda, cpu);
2398 if (cpu_is_offline(cpu)) {
2399 _rcu_barrier_trace(rsp, "Offline", cpu,
2400 rsp->n_barrier_done);
2401 preempt_enable();
2402 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2403 schedule_timeout_interruptible(1);
2404 } else if (ACCESS_ONCE(rdp->qlen)) {
2405 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2406 rsp->n_barrier_done);
2407 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2408 preempt_enable();
2409 } else {
2410 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2411 rsp->n_barrier_done);
2412 preempt_enable();
2413 }
2414 }
2415
2416 /*
2417 * Now that all online CPUs have rcu_barrier_callback() callbacks
2418 * posted, we can adopt all of the orphaned callbacks and place
2419 * an rcu_barrier_callback() callback after them. When that is done,
2420 * we are guaranteed to have an rcu_barrier_callback() callback
2421 * following every callback that could possibly have been
2422 * registered before _rcu_barrier() was called.
2423 */
2424 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2425 rcu_adopt_orphan_cbs(rsp);
2426 rsp->rcu_barrier_in_progress = NULL;
2427 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2428 atomic_inc(&rsp->barrier_cpu_count);
2429 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2430 rd.rsp = rsp;
2431 rsp->call(&rd.barrier_head, rcu_barrier_callback);
2432
2433 /*
2434 * Now that we have an rcu_barrier_callback() callback on each
2435 * CPU, and thus each counted, remove the initial count.
2436 */
2437 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2438 complete(&rsp->barrier_completion);
2439
2440 /* Increment ->n_barrier_done to prevent duplicate work. */
2441 smp_mb(); /* Keep increment after above mechanism. */
2442 ACCESS_ONCE(rsp->n_barrier_done)++;
2443 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2444 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2445 smp_mb(); /* Keep increment before caller's subsequent code. */
2446
2447 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2448 wait_for_completion(&rsp->barrier_completion);
2449
2450 /* Other rcu_barrier() invocations can now safely proceed. */
2451 mutex_unlock(&rsp->barrier_mutex);
2452
2453 destroy_rcu_head_on_stack(&rd.barrier_head);
2454 }
2455
2456 /**
2457 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2458 */
2459 void rcu_barrier_bh(void)
2460 {
2461 _rcu_barrier(&rcu_bh_state);
2462 }
2463 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2464
2465 /**
2466 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2467 */
2468 void rcu_barrier_sched(void)
2469 {
2470 _rcu_barrier(&rcu_sched_state);
2471 }
2472 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2473
2474 /*
2475 * Do boot-time initialization of a CPU's per-CPU RCU data.
2476 */
2477 static void __init
2478 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2479 {
2480 unsigned long flags;
2481 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2482 struct rcu_node *rnp = rcu_get_root(rsp);
2483
2484 /* Set up local state, ensuring consistent view of global state. */
2485 raw_spin_lock_irqsave(&rnp->lock, flags);
2486 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2487 init_callback_list(rdp);
2488 rdp->qlen_lazy = 0;
2489 ACCESS_ONCE(rdp->qlen) = 0;
2490 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2491 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2492 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2493 rdp->cpu = cpu;
2494 rdp->rsp = rsp;
2495 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2496 }
2497
2498 /*
2499 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2500 * offline event can be happening at a given time. Note also that we
2501 * can accept some slop in the rsp->completed access due to the fact
2502 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2503 */
2504 static void __cpuinit
2505 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2506 {
2507 unsigned long flags;
2508 unsigned long mask;
2509 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2510 struct rcu_node *rnp = rcu_get_root(rsp);
2511
2512 /* Set up local state, ensuring consistent view of global state. */
2513 raw_spin_lock_irqsave(&rnp->lock, flags);
2514 rdp->beenonline = 1; /* We have now been online. */
2515 rdp->preemptible = preemptible;
2516 rdp->qlen_last_fqs_check = 0;
2517 rdp->n_force_qs_snap = rsp->n_force_qs;
2518 rdp->blimit = blimit;
2519 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2520 atomic_set(&rdp->dynticks->dynticks,
2521 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2522 rcu_prepare_for_idle_init(cpu);
2523 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2524
2525 /*
2526 * A new grace period might start here. If so, we won't be part
2527 * of it, but that is OK, as we are currently in a quiescent state.
2528 */
2529
2530 /* Exclude any attempts to start a new GP on large systems. */
2531 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2532
2533 /* Add CPU to rcu_node bitmasks. */
2534 rnp = rdp->mynode;
2535 mask = rdp->grpmask;
2536 do {
2537 /* Exclude any attempts to start a new GP on small systems. */
2538 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2539 rnp->qsmaskinit |= mask;
2540 mask = rnp->grpmask;
2541 if (rnp == rdp->mynode) {
2542 /*
2543 * If there is a grace period in progress, we will
2544 * set up to wait for it next time we run the
2545 * RCU core code.
2546 */
2547 rdp->gpnum = rnp->completed;
2548 rdp->completed = rnp->completed;
2549 rdp->passed_quiesce = 0;
2550 rdp->qs_pending = 0;
2551 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2552 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2553 }
2554 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2555 rnp = rnp->parent;
2556 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2557
2558 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2559 }
2560
2561 static void __cpuinit rcu_prepare_cpu(int cpu)
2562 {
2563 struct rcu_state *rsp;
2564
2565 for_each_rcu_flavor(rsp)
2566 rcu_init_percpu_data(cpu, rsp,
2567 strcmp(rsp->name, "rcu_preempt") == 0);
2568 }
2569
2570 /*
2571 * Handle CPU online/offline notification events.
2572 */
2573 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2574 unsigned long action, void *hcpu)
2575 {
2576 long cpu = (long)hcpu;
2577 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2578 struct rcu_node *rnp = rdp->mynode;
2579 struct rcu_state *rsp;
2580
2581 trace_rcu_utilization("Start CPU hotplug");
2582 switch (action) {
2583 case CPU_UP_PREPARE:
2584 case CPU_UP_PREPARE_FROZEN:
2585 rcu_prepare_cpu(cpu);
2586 rcu_prepare_kthreads(cpu);
2587 break;
2588 case CPU_ONLINE:
2589 case CPU_DOWN_FAILED:
2590 rcu_node_kthread_setaffinity(rnp, -1);
2591 rcu_cpu_kthread_setrt(cpu, 1);
2592 break;
2593 case CPU_DOWN_PREPARE:
2594 rcu_node_kthread_setaffinity(rnp, cpu);
2595 rcu_cpu_kthread_setrt(cpu, 0);
2596 break;
2597 case CPU_DYING:
2598 case CPU_DYING_FROZEN:
2599 /*
2600 * The whole machine is "stopped" except this CPU, so we can
2601 * touch any data without introducing corruption. We send the
2602 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2603 */
2604 for_each_rcu_flavor(rsp)
2605 rcu_cleanup_dying_cpu(rsp);
2606 rcu_cleanup_after_idle(cpu);
2607 break;
2608 case CPU_DEAD:
2609 case CPU_DEAD_FROZEN:
2610 case CPU_UP_CANCELED:
2611 case CPU_UP_CANCELED_FROZEN:
2612 for_each_rcu_flavor(rsp)
2613 rcu_cleanup_dead_cpu(cpu, rsp);
2614 break;
2615 default:
2616 break;
2617 }
2618 trace_rcu_utilization("End CPU hotplug");
2619 return NOTIFY_OK;
2620 }
2621
2622 /*
2623 * This function is invoked towards the end of the scheduler's initialization
2624 * process. Before this is called, the idle task might contain
2625 * RCU read-side critical sections (during which time, this idle
2626 * task is booting the system). After this function is called, the
2627 * idle tasks are prohibited from containing RCU read-side critical
2628 * sections. This function also enables RCU lockdep checking.
2629 */
2630 void rcu_scheduler_starting(void)
2631 {
2632 WARN_ON(num_online_cpus() != 1);
2633 WARN_ON(nr_context_switches() > 0);
2634 rcu_scheduler_active = 1;
2635 }
2636
2637 /*
2638 * Compute the per-level fanout, either using the exact fanout specified
2639 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2640 */
2641 #ifdef CONFIG_RCU_FANOUT_EXACT
2642 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2643 {
2644 int i;
2645
2646 for (i = rcu_num_lvls - 1; i > 0; i--)
2647 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2648 rsp->levelspread[0] = rcu_fanout_leaf;
2649 }
2650 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2651 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2652 {
2653 int ccur;
2654 int cprv;
2655 int i;
2656
2657 cprv = NR_CPUS;
2658 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2659 ccur = rsp->levelcnt[i];
2660 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2661 cprv = ccur;
2662 }
2663 }
2664 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2665
2666 /*
2667 * Helper function for rcu_init() that initializes one rcu_state structure.
2668 */
2669 static void __init rcu_init_one(struct rcu_state *rsp,
2670 struct rcu_data __percpu *rda)
2671 {
2672 static char *buf[] = { "rcu_node_level_0",
2673 "rcu_node_level_1",
2674 "rcu_node_level_2",
2675 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2676 int cpustride = 1;
2677 int i;
2678 int j;
2679 struct rcu_node *rnp;
2680
2681 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2682
2683 /* Initialize the level-tracking arrays. */
2684
2685 for (i = 0; i < rcu_num_lvls; i++)
2686 rsp->levelcnt[i] = num_rcu_lvl[i];
2687 for (i = 1; i < rcu_num_lvls; i++)
2688 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2689 rcu_init_levelspread(rsp);
2690
2691 /* Initialize the elements themselves, starting from the leaves. */
2692
2693 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2694 cpustride *= rsp->levelspread[i];
2695 rnp = rsp->level[i];
2696 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2697 raw_spin_lock_init(&rnp->lock);
2698 lockdep_set_class_and_name(&rnp->lock,
2699 &rcu_node_class[i], buf[i]);
2700 rnp->gpnum = 0;
2701 rnp->qsmask = 0;
2702 rnp->qsmaskinit = 0;
2703 rnp->grplo = j * cpustride;
2704 rnp->grphi = (j + 1) * cpustride - 1;
2705 if (rnp->grphi >= NR_CPUS)
2706 rnp->grphi = NR_CPUS - 1;
2707 if (i == 0) {
2708 rnp->grpnum = 0;
2709 rnp->grpmask = 0;
2710 rnp->parent = NULL;
2711 } else {
2712 rnp->grpnum = j % rsp->levelspread[i - 1];
2713 rnp->grpmask = 1UL << rnp->grpnum;
2714 rnp->parent = rsp->level[i - 1] +
2715 j / rsp->levelspread[i - 1];
2716 }
2717 rnp->level = i;
2718 INIT_LIST_HEAD(&rnp->blkd_tasks);
2719 }
2720 }
2721
2722 rsp->rda = rda;
2723 rnp = rsp->level[rcu_num_lvls - 1];
2724 for_each_possible_cpu(i) {
2725 while (i > rnp->grphi)
2726 rnp++;
2727 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2728 rcu_boot_init_percpu_data(i, rsp);
2729 }
2730 list_add(&rsp->flavors, &rcu_struct_flavors);
2731 }
2732
2733 /*
2734 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2735 * replace the definitions in rcutree.h because those are needed to size
2736 * the ->node array in the rcu_state structure.
2737 */
2738 static void __init rcu_init_geometry(void)
2739 {
2740 int i;
2741 int j;
2742 int n = nr_cpu_ids;
2743 int rcu_capacity[MAX_RCU_LVLS + 1];
2744
2745 /* If the compile-time values are accurate, just leave. */
2746 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2747 return;
2748
2749 /*
2750 * Compute number of nodes that can be handled an rcu_node tree
2751 * with the given number of levels. Setting rcu_capacity[0] makes
2752 * some of the arithmetic easier.
2753 */
2754 rcu_capacity[0] = 1;
2755 rcu_capacity[1] = rcu_fanout_leaf;
2756 for (i = 2; i <= MAX_RCU_LVLS; i++)
2757 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2758
2759 /*
2760 * The boot-time rcu_fanout_leaf parameter is only permitted
2761 * to increase the leaf-level fanout, not decrease it. Of course,
2762 * the leaf-level fanout cannot exceed the number of bits in
2763 * the rcu_node masks. Finally, the tree must be able to accommodate
2764 * the configured number of CPUs. Complain and fall back to the
2765 * compile-time values if these limits are exceeded.
2766 */
2767 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2768 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2769 n > rcu_capacity[MAX_RCU_LVLS]) {
2770 WARN_ON(1);
2771 return;
2772 }
2773
2774 /* Calculate the number of rcu_nodes at each level of the tree. */
2775 for (i = 1; i <= MAX_RCU_LVLS; i++)
2776 if (n <= rcu_capacity[i]) {
2777 for (j = 0; j <= i; j++)
2778 num_rcu_lvl[j] =
2779 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2780 rcu_num_lvls = i;
2781 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2782 num_rcu_lvl[j] = 0;
2783 break;
2784 }
2785
2786 /* Calculate the total number of rcu_node structures. */
2787 rcu_num_nodes = 0;
2788 for (i = 0; i <= MAX_RCU_LVLS; i++)
2789 rcu_num_nodes += num_rcu_lvl[i];
2790 rcu_num_nodes -= n;
2791 }
2792
2793 void __init rcu_init(void)
2794 {
2795 int cpu;
2796
2797 rcu_bootup_announce();
2798 rcu_init_geometry();
2799 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2800 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2801 __rcu_init_preempt();
2802 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2803
2804 /*
2805 * We don't need protection against CPU-hotplug here because
2806 * this is called early in boot, before either interrupts
2807 * or the scheduler are operational.
2808 */
2809 cpu_notifier(rcu_cpu_notify, 0);
2810 for_each_online_cpu(cpu)
2811 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2812 check_cpu_stall_init();
2813 }
2814
2815 #include "rcutree_plugin.h"