rcu: Add callback-free CPUs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 }
80
81 struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89 LIST_HEAD(rcu_struct_flavors);
90
91 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93 module_param(rcu_fanout_leaf, int, 0444);
94 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101 };
102 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
104 /*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimized synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
113 int rcu_scheduler_active __read_mostly;
114 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
116 /*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128 static int rcu_scheduler_fully_active __read_mostly;
129
130 #ifdef CONFIG_RCU_BOOST
131
132 /*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142
143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147 /*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158
159 /*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168
169 /*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175 void rcu_sched_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191 }
192
193 /*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198 void rcu_note_context_switch(int cpu)
199 {
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210 #if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
211 .ignore_user_qs = true,
212 #endif
213 };
214
215 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216 static long qhimark = 10000; /* If this many pending, ignore blimit. */
217 static long qlowmark = 100; /* Once only this many pending, use blimit. */
218
219 module_param(blimit, long, 0444);
220 module_param(qhimark, long, 0444);
221 module_param(qlowmark, long, 0444);
222
223 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
226 module_param(rcu_cpu_stall_suppress, int, 0644);
227 module_param(rcu_cpu_stall_timeout, int, 0644);
228
229 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
230 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
231
232 module_param(jiffies_till_first_fqs, ulong, 0644);
233 module_param(jiffies_till_next_fqs, ulong, 0644);
234
235 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
236 static void force_quiescent_state(struct rcu_state *rsp);
237 static int rcu_pending(int cpu);
238
239 /*
240 * Return the number of RCU-sched batches processed thus far for debug & stats.
241 */
242 long rcu_batches_completed_sched(void)
243 {
244 return rcu_sched_state.completed;
245 }
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
247
248 /*
249 * Return the number of RCU BH batches processed thus far for debug & stats.
250 */
251 long rcu_batches_completed_bh(void)
252 {
253 return rcu_bh_state.completed;
254 }
255 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
256
257 /*
258 * Force a quiescent state for RCU BH.
259 */
260 void rcu_bh_force_quiescent_state(void)
261 {
262 force_quiescent_state(&rcu_bh_state);
263 }
264 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
265
266 /*
267 * Record the number of times rcutorture tests have been initiated and
268 * terminated. This information allows the debugfs tracing stats to be
269 * correlated to the rcutorture messages, even when the rcutorture module
270 * is being repeatedly loaded and unloaded. In other words, we cannot
271 * store this state in rcutorture itself.
272 */
273 void rcutorture_record_test_transition(void)
274 {
275 rcutorture_testseq++;
276 rcutorture_vernum = 0;
277 }
278 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
279
280 /*
281 * Record the number of writer passes through the current rcutorture test.
282 * This is also used to correlate debugfs tracing stats with the rcutorture
283 * messages.
284 */
285 void rcutorture_record_progress(unsigned long vernum)
286 {
287 rcutorture_vernum++;
288 }
289 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
290
291 /*
292 * Force a quiescent state for RCU-sched.
293 */
294 void rcu_sched_force_quiescent_state(void)
295 {
296 force_quiescent_state(&rcu_sched_state);
297 }
298 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
299
300 /*
301 * Does the CPU have callbacks ready to be invoked?
302 */
303 static int
304 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
305 {
306 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
307 rdp->nxttail[RCU_DONE_TAIL] != NULL;
308 }
309
310 /*
311 * Does the current CPU require a yet-as-unscheduled grace period?
312 */
313 static int
314 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
315 {
316 struct rcu_head **ntp;
317
318 ntp = rdp->nxttail[RCU_DONE_TAIL +
319 (ACCESS_ONCE(rsp->completed) != rdp->completed)];
320 return rdp->nxttail[RCU_DONE_TAIL] && ntp && *ntp &&
321 !rcu_gp_in_progress(rsp);
322 }
323
324 /*
325 * Return the root node of the specified rcu_state structure.
326 */
327 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
328 {
329 return &rsp->node[0];
330 }
331
332 /*
333 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
334 *
335 * If the new value of the ->dynticks_nesting counter now is zero,
336 * we really have entered idle, and must do the appropriate accounting.
337 * The caller must have disabled interrupts.
338 */
339 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
340 bool user)
341 {
342 trace_rcu_dyntick("Start", oldval, 0);
343 if (!user && !is_idle_task(current)) {
344 struct task_struct *idle = idle_task(smp_processor_id());
345
346 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
347 ftrace_dump(DUMP_ORIG);
348 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
349 current->pid, current->comm,
350 idle->pid, idle->comm); /* must be idle task! */
351 }
352 rcu_prepare_for_idle(smp_processor_id());
353 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
354 smp_mb__before_atomic_inc(); /* See above. */
355 atomic_inc(&rdtp->dynticks);
356 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
357 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
358
359 /*
360 * It is illegal to enter an extended quiescent state while
361 * in an RCU read-side critical section.
362 */
363 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
364 "Illegal idle entry in RCU read-side critical section.");
365 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
366 "Illegal idle entry in RCU-bh read-side critical section.");
367 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
368 "Illegal idle entry in RCU-sched read-side critical section.");
369 }
370
371 /*
372 * Enter an RCU extended quiescent state, which can be either the
373 * idle loop or adaptive-tickless usermode execution.
374 */
375 static void rcu_eqs_enter(bool user)
376 {
377 long long oldval;
378 struct rcu_dynticks *rdtp;
379
380 rdtp = &__get_cpu_var(rcu_dynticks);
381 oldval = rdtp->dynticks_nesting;
382 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
383 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
384 rdtp->dynticks_nesting = 0;
385 else
386 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
387 rcu_eqs_enter_common(rdtp, oldval, user);
388 }
389
390 /**
391 * rcu_idle_enter - inform RCU that current CPU is entering idle
392 *
393 * Enter idle mode, in other words, -leave- the mode in which RCU
394 * read-side critical sections can occur. (Though RCU read-side
395 * critical sections can occur in irq handlers in idle, a possibility
396 * handled by irq_enter() and irq_exit().)
397 *
398 * We crowbar the ->dynticks_nesting field to zero to allow for
399 * the possibility of usermode upcalls having messed up our count
400 * of interrupt nesting level during the prior busy period.
401 */
402 void rcu_idle_enter(void)
403 {
404 unsigned long flags;
405
406 local_irq_save(flags);
407 rcu_eqs_enter(false);
408 local_irq_restore(flags);
409 }
410 EXPORT_SYMBOL_GPL(rcu_idle_enter);
411
412 #ifdef CONFIG_RCU_USER_QS
413 /**
414 * rcu_user_enter - inform RCU that we are resuming userspace.
415 *
416 * Enter RCU idle mode right before resuming userspace. No use of RCU
417 * is permitted between this call and rcu_user_exit(). This way the
418 * CPU doesn't need to maintain the tick for RCU maintenance purposes
419 * when the CPU runs in userspace.
420 */
421 void rcu_user_enter(void)
422 {
423 unsigned long flags;
424 struct rcu_dynticks *rdtp;
425
426 /*
427 * Some contexts may involve an exception occuring in an irq,
428 * leading to that nesting:
429 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
430 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
431 * helpers are enough to protect RCU uses inside the exception. So
432 * just return immediately if we detect we are in an IRQ.
433 */
434 if (in_interrupt())
435 return;
436
437 WARN_ON_ONCE(!current->mm);
438
439 local_irq_save(flags);
440 rdtp = &__get_cpu_var(rcu_dynticks);
441 if (!rdtp->ignore_user_qs && !rdtp->in_user) {
442 rdtp->in_user = true;
443 rcu_eqs_enter(true);
444 }
445 local_irq_restore(flags);
446 }
447
448 /**
449 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
450 * after the current irq returns.
451 *
452 * This is similar to rcu_user_enter() but in the context of a non-nesting
453 * irq. After this call, RCU enters into idle mode when the interrupt
454 * returns.
455 */
456 void rcu_user_enter_after_irq(void)
457 {
458 unsigned long flags;
459 struct rcu_dynticks *rdtp;
460
461 local_irq_save(flags);
462 rdtp = &__get_cpu_var(rcu_dynticks);
463 /* Ensure this irq is interrupting a non-idle RCU state. */
464 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
465 rdtp->dynticks_nesting = 1;
466 local_irq_restore(flags);
467 }
468 #endif /* CONFIG_RCU_USER_QS */
469
470 /**
471 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
472 *
473 * Exit from an interrupt handler, which might possibly result in entering
474 * idle mode, in other words, leaving the mode in which read-side critical
475 * sections can occur.
476 *
477 * This code assumes that the idle loop never does anything that might
478 * result in unbalanced calls to irq_enter() and irq_exit(). If your
479 * architecture violates this assumption, RCU will give you what you
480 * deserve, good and hard. But very infrequently and irreproducibly.
481 *
482 * Use things like work queues to work around this limitation.
483 *
484 * You have been warned.
485 */
486 void rcu_irq_exit(void)
487 {
488 unsigned long flags;
489 long long oldval;
490 struct rcu_dynticks *rdtp;
491
492 local_irq_save(flags);
493 rdtp = &__get_cpu_var(rcu_dynticks);
494 oldval = rdtp->dynticks_nesting;
495 rdtp->dynticks_nesting--;
496 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
497 if (rdtp->dynticks_nesting)
498 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
499 else
500 rcu_eqs_enter_common(rdtp, oldval, true);
501 local_irq_restore(flags);
502 }
503
504 /*
505 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
506 *
507 * If the new value of the ->dynticks_nesting counter was previously zero,
508 * we really have exited idle, and must do the appropriate accounting.
509 * The caller must have disabled interrupts.
510 */
511 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
512 int user)
513 {
514 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
515 atomic_inc(&rdtp->dynticks);
516 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
517 smp_mb__after_atomic_inc(); /* See above. */
518 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
519 rcu_cleanup_after_idle(smp_processor_id());
520 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
521 if (!user && !is_idle_task(current)) {
522 struct task_struct *idle = idle_task(smp_processor_id());
523
524 trace_rcu_dyntick("Error on exit: not idle task",
525 oldval, rdtp->dynticks_nesting);
526 ftrace_dump(DUMP_ORIG);
527 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
528 current->pid, current->comm,
529 idle->pid, idle->comm); /* must be idle task! */
530 }
531 }
532
533 /*
534 * Exit an RCU extended quiescent state, which can be either the
535 * idle loop or adaptive-tickless usermode execution.
536 */
537 static void rcu_eqs_exit(bool user)
538 {
539 struct rcu_dynticks *rdtp;
540 long long oldval;
541
542 rdtp = &__get_cpu_var(rcu_dynticks);
543 oldval = rdtp->dynticks_nesting;
544 WARN_ON_ONCE(oldval < 0);
545 if (oldval & DYNTICK_TASK_NEST_MASK)
546 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
547 else
548 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
549 rcu_eqs_exit_common(rdtp, oldval, user);
550 }
551
552 /**
553 * rcu_idle_exit - inform RCU that current CPU is leaving idle
554 *
555 * Exit idle mode, in other words, -enter- the mode in which RCU
556 * read-side critical sections can occur.
557 *
558 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
559 * allow for the possibility of usermode upcalls messing up our count
560 * of interrupt nesting level during the busy period that is just
561 * now starting.
562 */
563 void rcu_idle_exit(void)
564 {
565 unsigned long flags;
566
567 local_irq_save(flags);
568 rcu_eqs_exit(false);
569 local_irq_restore(flags);
570 }
571 EXPORT_SYMBOL_GPL(rcu_idle_exit);
572
573 #ifdef CONFIG_RCU_USER_QS
574 /**
575 * rcu_user_exit - inform RCU that we are exiting userspace.
576 *
577 * Exit RCU idle mode while entering the kernel because it can
578 * run a RCU read side critical section anytime.
579 */
580 void rcu_user_exit(void)
581 {
582 unsigned long flags;
583 struct rcu_dynticks *rdtp;
584
585 /*
586 * Some contexts may involve an exception occuring in an irq,
587 * leading to that nesting:
588 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
589 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
590 * helpers are enough to protect RCU uses inside the exception. So
591 * just return immediately if we detect we are in an IRQ.
592 */
593 if (in_interrupt())
594 return;
595
596 local_irq_save(flags);
597 rdtp = &__get_cpu_var(rcu_dynticks);
598 if (rdtp->in_user) {
599 rdtp->in_user = false;
600 rcu_eqs_exit(true);
601 }
602 local_irq_restore(flags);
603 }
604
605 /**
606 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
607 * idle mode after the current non-nesting irq returns.
608 *
609 * This is similar to rcu_user_exit() but in the context of an irq.
610 * This is called when the irq has interrupted a userspace RCU idle mode
611 * context. When the current non-nesting interrupt returns after this call,
612 * the CPU won't restore the RCU idle mode.
613 */
614 void rcu_user_exit_after_irq(void)
615 {
616 unsigned long flags;
617 struct rcu_dynticks *rdtp;
618
619 local_irq_save(flags);
620 rdtp = &__get_cpu_var(rcu_dynticks);
621 /* Ensure we are interrupting an RCU idle mode. */
622 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
623 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
624 local_irq_restore(flags);
625 }
626 #endif /* CONFIG_RCU_USER_QS */
627
628 /**
629 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
630 *
631 * Enter an interrupt handler, which might possibly result in exiting
632 * idle mode, in other words, entering the mode in which read-side critical
633 * sections can occur.
634 *
635 * Note that the Linux kernel is fully capable of entering an interrupt
636 * handler that it never exits, for example when doing upcalls to
637 * user mode! This code assumes that the idle loop never does upcalls to
638 * user mode. If your architecture does do upcalls from the idle loop (or
639 * does anything else that results in unbalanced calls to the irq_enter()
640 * and irq_exit() functions), RCU will give you what you deserve, good
641 * and hard. But very infrequently and irreproducibly.
642 *
643 * Use things like work queues to work around this limitation.
644 *
645 * You have been warned.
646 */
647 void rcu_irq_enter(void)
648 {
649 unsigned long flags;
650 struct rcu_dynticks *rdtp;
651 long long oldval;
652
653 local_irq_save(flags);
654 rdtp = &__get_cpu_var(rcu_dynticks);
655 oldval = rdtp->dynticks_nesting;
656 rdtp->dynticks_nesting++;
657 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
658 if (oldval)
659 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
660 else
661 rcu_eqs_exit_common(rdtp, oldval, true);
662 local_irq_restore(flags);
663 }
664
665 /**
666 * rcu_nmi_enter - inform RCU of entry to NMI context
667 *
668 * If the CPU was idle with dynamic ticks active, and there is no
669 * irq handler running, this updates rdtp->dynticks_nmi to let the
670 * RCU grace-period handling know that the CPU is active.
671 */
672 void rcu_nmi_enter(void)
673 {
674 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
675
676 if (rdtp->dynticks_nmi_nesting == 0 &&
677 (atomic_read(&rdtp->dynticks) & 0x1))
678 return;
679 rdtp->dynticks_nmi_nesting++;
680 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
681 atomic_inc(&rdtp->dynticks);
682 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
683 smp_mb__after_atomic_inc(); /* See above. */
684 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
685 }
686
687 /**
688 * rcu_nmi_exit - inform RCU of exit from NMI context
689 *
690 * If the CPU was idle with dynamic ticks active, and there is no
691 * irq handler running, this updates rdtp->dynticks_nmi to let the
692 * RCU grace-period handling know that the CPU is no longer active.
693 */
694 void rcu_nmi_exit(void)
695 {
696 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
697
698 if (rdtp->dynticks_nmi_nesting == 0 ||
699 --rdtp->dynticks_nmi_nesting != 0)
700 return;
701 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
702 smp_mb__before_atomic_inc(); /* See above. */
703 atomic_inc(&rdtp->dynticks);
704 smp_mb__after_atomic_inc(); /* Force delay to next write. */
705 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
706 }
707
708 /**
709 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
710 *
711 * If the current CPU is in its idle loop and is neither in an interrupt
712 * or NMI handler, return true.
713 */
714 int rcu_is_cpu_idle(void)
715 {
716 int ret;
717
718 preempt_disable();
719 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
720 preempt_enable();
721 return ret;
722 }
723 EXPORT_SYMBOL(rcu_is_cpu_idle);
724
725 #ifdef CONFIG_RCU_USER_QS
726 void rcu_user_hooks_switch(struct task_struct *prev,
727 struct task_struct *next)
728 {
729 struct rcu_dynticks *rdtp;
730
731 /* Interrupts are disabled in context switch */
732 rdtp = &__get_cpu_var(rcu_dynticks);
733 if (!rdtp->ignore_user_qs) {
734 clear_tsk_thread_flag(prev, TIF_NOHZ);
735 set_tsk_thread_flag(next, TIF_NOHZ);
736 }
737 }
738 #endif /* #ifdef CONFIG_RCU_USER_QS */
739
740 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
741
742 /*
743 * Is the current CPU online? Disable preemption to avoid false positives
744 * that could otherwise happen due to the current CPU number being sampled,
745 * this task being preempted, its old CPU being taken offline, resuming
746 * on some other CPU, then determining that its old CPU is now offline.
747 * It is OK to use RCU on an offline processor during initial boot, hence
748 * the check for rcu_scheduler_fully_active. Note also that it is OK
749 * for a CPU coming online to use RCU for one jiffy prior to marking itself
750 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
751 * offline to continue to use RCU for one jiffy after marking itself
752 * offline in the cpu_online_mask. This leniency is necessary given the
753 * non-atomic nature of the online and offline processing, for example,
754 * the fact that a CPU enters the scheduler after completing the CPU_DYING
755 * notifiers.
756 *
757 * This is also why RCU internally marks CPUs online during the
758 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
759 *
760 * Disable checking if in an NMI handler because we cannot safely report
761 * errors from NMI handlers anyway.
762 */
763 bool rcu_lockdep_current_cpu_online(void)
764 {
765 struct rcu_data *rdp;
766 struct rcu_node *rnp;
767 bool ret;
768
769 if (in_nmi())
770 return 1;
771 preempt_disable();
772 rdp = &__get_cpu_var(rcu_sched_data);
773 rnp = rdp->mynode;
774 ret = (rdp->grpmask & rnp->qsmaskinit) ||
775 !rcu_scheduler_fully_active;
776 preempt_enable();
777 return ret;
778 }
779 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
780
781 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
782
783 /**
784 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
785 *
786 * If the current CPU is idle or running at a first-level (not nested)
787 * interrupt from idle, return true. The caller must have at least
788 * disabled preemption.
789 */
790 int rcu_is_cpu_rrupt_from_idle(void)
791 {
792 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
793 }
794
795 /*
796 * Snapshot the specified CPU's dynticks counter so that we can later
797 * credit them with an implicit quiescent state. Return 1 if this CPU
798 * is in dynticks idle mode, which is an extended quiescent state.
799 */
800 static int dyntick_save_progress_counter(struct rcu_data *rdp)
801 {
802 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
803 return (rdp->dynticks_snap & 0x1) == 0;
804 }
805
806 /*
807 * Return true if the specified CPU has passed through a quiescent
808 * state by virtue of being in or having passed through an dynticks
809 * idle state since the last call to dyntick_save_progress_counter()
810 * for this same CPU, or by virtue of having been offline.
811 */
812 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
813 {
814 unsigned int curr;
815 unsigned int snap;
816
817 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
818 snap = (unsigned int)rdp->dynticks_snap;
819
820 /*
821 * If the CPU passed through or entered a dynticks idle phase with
822 * no active irq/NMI handlers, then we can safely pretend that the CPU
823 * already acknowledged the request to pass through a quiescent
824 * state. Either way, that CPU cannot possibly be in an RCU
825 * read-side critical section that started before the beginning
826 * of the current RCU grace period.
827 */
828 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
829 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
830 rdp->dynticks_fqs++;
831 return 1;
832 }
833
834 /*
835 * Check for the CPU being offline, but only if the grace period
836 * is old enough. We don't need to worry about the CPU changing
837 * state: If we see it offline even once, it has been through a
838 * quiescent state.
839 *
840 * The reason for insisting that the grace period be at least
841 * one jiffy old is that CPUs that are not quite online and that
842 * have just gone offline can still execute RCU read-side critical
843 * sections.
844 */
845 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
846 return 0; /* Grace period is not old enough. */
847 barrier();
848 if (cpu_is_offline(rdp->cpu)) {
849 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
850 rdp->offline_fqs++;
851 return 1;
852 }
853 return 0;
854 }
855
856 static int jiffies_till_stall_check(void)
857 {
858 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
859
860 /*
861 * Limit check must be consistent with the Kconfig limits
862 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
863 */
864 if (till_stall_check < 3) {
865 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
866 till_stall_check = 3;
867 } else if (till_stall_check > 300) {
868 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
869 till_stall_check = 300;
870 }
871 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
872 }
873
874 static void record_gp_stall_check_time(struct rcu_state *rsp)
875 {
876 rsp->gp_start = jiffies;
877 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
878 }
879
880 /*
881 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
882 * for architectures that do not implement trigger_all_cpu_backtrace().
883 * The NMI-triggered stack traces are more accurate because they are
884 * printed by the target CPU.
885 */
886 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
887 {
888 int cpu;
889 unsigned long flags;
890 struct rcu_node *rnp;
891
892 rcu_for_each_leaf_node(rsp, rnp) {
893 raw_spin_lock_irqsave(&rnp->lock, flags);
894 if (rnp->qsmask != 0) {
895 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
896 if (rnp->qsmask & (1UL << cpu))
897 dump_cpu_task(rnp->grplo + cpu);
898 }
899 raw_spin_unlock_irqrestore(&rnp->lock, flags);
900 }
901 }
902
903 static void print_other_cpu_stall(struct rcu_state *rsp)
904 {
905 int cpu;
906 long delta;
907 unsigned long flags;
908 int ndetected = 0;
909 struct rcu_node *rnp = rcu_get_root(rsp);
910 long totqlen = 0;
911
912 /* Only let one CPU complain about others per time interval. */
913
914 raw_spin_lock_irqsave(&rnp->lock, flags);
915 delta = jiffies - rsp->jiffies_stall;
916 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
917 raw_spin_unlock_irqrestore(&rnp->lock, flags);
918 return;
919 }
920 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
921 raw_spin_unlock_irqrestore(&rnp->lock, flags);
922
923 /*
924 * OK, time to rat on our buddy...
925 * See Documentation/RCU/stallwarn.txt for info on how to debug
926 * RCU CPU stall warnings.
927 */
928 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
929 rsp->name);
930 print_cpu_stall_info_begin();
931 rcu_for_each_leaf_node(rsp, rnp) {
932 raw_spin_lock_irqsave(&rnp->lock, flags);
933 ndetected += rcu_print_task_stall(rnp);
934 if (rnp->qsmask != 0) {
935 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
936 if (rnp->qsmask & (1UL << cpu)) {
937 print_cpu_stall_info(rsp,
938 rnp->grplo + cpu);
939 ndetected++;
940 }
941 }
942 raw_spin_unlock_irqrestore(&rnp->lock, flags);
943 }
944
945 /*
946 * Now rat on any tasks that got kicked up to the root rcu_node
947 * due to CPU offlining.
948 */
949 rnp = rcu_get_root(rsp);
950 raw_spin_lock_irqsave(&rnp->lock, flags);
951 ndetected += rcu_print_task_stall(rnp);
952 raw_spin_unlock_irqrestore(&rnp->lock, flags);
953
954 print_cpu_stall_info_end();
955 for_each_possible_cpu(cpu)
956 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
957 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
958 smp_processor_id(), (long)(jiffies - rsp->gp_start),
959 rsp->gpnum, rsp->completed, totqlen);
960 if (ndetected == 0)
961 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
962 else if (!trigger_all_cpu_backtrace())
963 rcu_dump_cpu_stacks(rsp);
964
965 /* Complain about tasks blocking the grace period. */
966
967 rcu_print_detail_task_stall(rsp);
968
969 force_quiescent_state(rsp); /* Kick them all. */
970 }
971
972 static void print_cpu_stall(struct rcu_state *rsp)
973 {
974 int cpu;
975 unsigned long flags;
976 struct rcu_node *rnp = rcu_get_root(rsp);
977 long totqlen = 0;
978
979 /*
980 * OK, time to rat on ourselves...
981 * See Documentation/RCU/stallwarn.txt for info on how to debug
982 * RCU CPU stall warnings.
983 */
984 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
985 print_cpu_stall_info_begin();
986 print_cpu_stall_info(rsp, smp_processor_id());
987 print_cpu_stall_info_end();
988 for_each_possible_cpu(cpu)
989 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
990 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
991 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
992 if (!trigger_all_cpu_backtrace())
993 dump_stack();
994
995 raw_spin_lock_irqsave(&rnp->lock, flags);
996 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
997 rsp->jiffies_stall = jiffies +
998 3 * jiffies_till_stall_check() + 3;
999 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1000
1001 set_need_resched(); /* kick ourselves to get things going. */
1002 }
1003
1004 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1005 {
1006 unsigned long j;
1007 unsigned long js;
1008 struct rcu_node *rnp;
1009
1010 if (rcu_cpu_stall_suppress)
1011 return;
1012 j = ACCESS_ONCE(jiffies);
1013 js = ACCESS_ONCE(rsp->jiffies_stall);
1014 rnp = rdp->mynode;
1015 if (rcu_gp_in_progress(rsp) &&
1016 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
1017
1018 /* We haven't checked in, so go dump stack. */
1019 print_cpu_stall(rsp);
1020
1021 } else if (rcu_gp_in_progress(rsp) &&
1022 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1023
1024 /* They had a few time units to dump stack, so complain. */
1025 print_other_cpu_stall(rsp);
1026 }
1027 }
1028
1029 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
1030 {
1031 rcu_cpu_stall_suppress = 1;
1032 return NOTIFY_DONE;
1033 }
1034
1035 /**
1036 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1037 *
1038 * Set the stall-warning timeout way off into the future, thus preventing
1039 * any RCU CPU stall-warning messages from appearing in the current set of
1040 * RCU grace periods.
1041 *
1042 * The caller must disable hard irqs.
1043 */
1044 void rcu_cpu_stall_reset(void)
1045 {
1046 struct rcu_state *rsp;
1047
1048 for_each_rcu_flavor(rsp)
1049 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1050 }
1051
1052 static struct notifier_block rcu_panic_block = {
1053 .notifier_call = rcu_panic,
1054 };
1055
1056 static void __init check_cpu_stall_init(void)
1057 {
1058 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
1059 }
1060
1061 /*
1062 * Update CPU-local rcu_data state to record the newly noticed grace period.
1063 * This is used both when we started the grace period and when we notice
1064 * that someone else started the grace period. The caller must hold the
1065 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
1066 * and must have irqs disabled.
1067 */
1068 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1069 {
1070 if (rdp->gpnum != rnp->gpnum) {
1071 /*
1072 * If the current grace period is waiting for this CPU,
1073 * set up to detect a quiescent state, otherwise don't
1074 * go looking for one.
1075 */
1076 rdp->gpnum = rnp->gpnum;
1077 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
1078 rdp->passed_quiesce = 0;
1079 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1080 zero_cpu_stall_ticks(rdp);
1081 }
1082 }
1083
1084 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1085 {
1086 unsigned long flags;
1087 struct rcu_node *rnp;
1088
1089 local_irq_save(flags);
1090 rnp = rdp->mynode;
1091 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1092 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1093 local_irq_restore(flags);
1094 return;
1095 }
1096 __note_new_gpnum(rsp, rnp, rdp);
1097 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1098 }
1099
1100 /*
1101 * Did someone else start a new RCU grace period start since we last
1102 * checked? Update local state appropriately if so. Must be called
1103 * on the CPU corresponding to rdp.
1104 */
1105 static int
1106 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1107 {
1108 unsigned long flags;
1109 int ret = 0;
1110
1111 local_irq_save(flags);
1112 if (rdp->gpnum != rsp->gpnum) {
1113 note_new_gpnum(rsp, rdp);
1114 ret = 1;
1115 }
1116 local_irq_restore(flags);
1117 return ret;
1118 }
1119
1120 /*
1121 * Initialize the specified rcu_data structure's callback list to empty.
1122 */
1123 static void init_callback_list(struct rcu_data *rdp)
1124 {
1125 int i;
1126
1127 rdp->nxtlist = NULL;
1128 for (i = 0; i < RCU_NEXT_SIZE; i++)
1129 rdp->nxttail[i] = &rdp->nxtlist;
1130 init_nocb_callback_list(rdp);
1131 }
1132
1133 /*
1134 * Advance this CPU's callbacks, but only if the current grace period
1135 * has ended. This may be called only from the CPU to whom the rdp
1136 * belongs. In addition, the corresponding leaf rcu_node structure's
1137 * ->lock must be held by the caller, with irqs disabled.
1138 */
1139 static void
1140 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1141 {
1142 /* Did another grace period end? */
1143 if (rdp->completed != rnp->completed) {
1144
1145 /* Advance callbacks. No harm if list empty. */
1146 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1147 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1148 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1149
1150 /* Remember that we saw this grace-period completion. */
1151 rdp->completed = rnp->completed;
1152 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1153
1154 /*
1155 * If we were in an extended quiescent state, we may have
1156 * missed some grace periods that others CPUs handled on
1157 * our behalf. Catch up with this state to avoid noting
1158 * spurious new grace periods. If another grace period
1159 * has started, then rnp->gpnum will have advanced, so
1160 * we will detect this later on. Of course, any quiescent
1161 * states we found for the old GP are now invalid.
1162 */
1163 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1164 rdp->gpnum = rdp->completed;
1165 rdp->passed_quiesce = 0;
1166 }
1167
1168 /*
1169 * If RCU does not need a quiescent state from this CPU,
1170 * then make sure that this CPU doesn't go looking for one.
1171 */
1172 if ((rnp->qsmask & rdp->grpmask) == 0)
1173 rdp->qs_pending = 0;
1174 }
1175 }
1176
1177 /*
1178 * Advance this CPU's callbacks, but only if the current grace period
1179 * has ended. This may be called only from the CPU to whom the rdp
1180 * belongs.
1181 */
1182 static void
1183 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1184 {
1185 unsigned long flags;
1186 struct rcu_node *rnp;
1187
1188 local_irq_save(flags);
1189 rnp = rdp->mynode;
1190 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1191 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1192 local_irq_restore(flags);
1193 return;
1194 }
1195 __rcu_process_gp_end(rsp, rnp, rdp);
1196 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1197 }
1198
1199 /*
1200 * Do per-CPU grace-period initialization for running CPU. The caller
1201 * must hold the lock of the leaf rcu_node structure corresponding to
1202 * this CPU.
1203 */
1204 static void
1205 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1206 {
1207 /* Prior grace period ended, so advance callbacks for current CPU. */
1208 __rcu_process_gp_end(rsp, rnp, rdp);
1209
1210 /* Set state so that this CPU will detect the next quiescent state. */
1211 __note_new_gpnum(rsp, rnp, rdp);
1212 }
1213
1214 /*
1215 * Initialize a new grace period.
1216 */
1217 static int rcu_gp_init(struct rcu_state *rsp)
1218 {
1219 struct rcu_data *rdp;
1220 struct rcu_node *rnp = rcu_get_root(rsp);
1221
1222 raw_spin_lock_irq(&rnp->lock);
1223 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1224
1225 if (rcu_gp_in_progress(rsp)) {
1226 /* Grace period already in progress, don't start another. */
1227 raw_spin_unlock_irq(&rnp->lock);
1228 return 0;
1229 }
1230
1231 /* Advance to a new grace period and initialize state. */
1232 rsp->gpnum++;
1233 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1234 record_gp_stall_check_time(rsp);
1235 raw_spin_unlock_irq(&rnp->lock);
1236
1237 /* Exclude any concurrent CPU-hotplug operations. */
1238 mutex_lock(&rsp->onoff_mutex);
1239
1240 /*
1241 * Set the quiescent-state-needed bits in all the rcu_node
1242 * structures for all currently online CPUs in breadth-first order,
1243 * starting from the root rcu_node structure, relying on the layout
1244 * of the tree within the rsp->node[] array. Note that other CPUs
1245 * will access only the leaves of the hierarchy, thus seeing that no
1246 * grace period is in progress, at least until the corresponding
1247 * leaf node has been initialized. In addition, we have excluded
1248 * CPU-hotplug operations.
1249 *
1250 * The grace period cannot complete until the initialization
1251 * process finishes, because this kthread handles both.
1252 */
1253 rcu_for_each_node_breadth_first(rsp, rnp) {
1254 raw_spin_lock_irq(&rnp->lock);
1255 rdp = this_cpu_ptr(rsp->rda);
1256 rcu_preempt_check_blocked_tasks(rnp);
1257 rnp->qsmask = rnp->qsmaskinit;
1258 rnp->gpnum = rsp->gpnum;
1259 WARN_ON_ONCE(rnp->completed != rsp->completed);
1260 rnp->completed = rsp->completed;
1261 if (rnp == rdp->mynode)
1262 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1263 rcu_preempt_boost_start_gp(rnp);
1264 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1265 rnp->level, rnp->grplo,
1266 rnp->grphi, rnp->qsmask);
1267 raw_spin_unlock_irq(&rnp->lock);
1268 #ifdef CONFIG_PROVE_RCU_DELAY
1269 if ((random32() % (rcu_num_nodes * 8)) == 0)
1270 schedule_timeout_uninterruptible(2);
1271 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1272 cond_resched();
1273 }
1274
1275 mutex_unlock(&rsp->onoff_mutex);
1276 return 1;
1277 }
1278
1279 /*
1280 * Do one round of quiescent-state forcing.
1281 */
1282 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1283 {
1284 int fqs_state = fqs_state_in;
1285 struct rcu_node *rnp = rcu_get_root(rsp);
1286
1287 rsp->n_force_qs++;
1288 if (fqs_state == RCU_SAVE_DYNTICK) {
1289 /* Collect dyntick-idle snapshots. */
1290 force_qs_rnp(rsp, dyntick_save_progress_counter);
1291 fqs_state = RCU_FORCE_QS;
1292 } else {
1293 /* Handle dyntick-idle and offline CPUs. */
1294 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1295 }
1296 /* Clear flag to prevent immediate re-entry. */
1297 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1298 raw_spin_lock_irq(&rnp->lock);
1299 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1300 raw_spin_unlock_irq(&rnp->lock);
1301 }
1302 return fqs_state;
1303 }
1304
1305 /*
1306 * Clean up after the old grace period.
1307 */
1308 static void rcu_gp_cleanup(struct rcu_state *rsp)
1309 {
1310 unsigned long gp_duration;
1311 struct rcu_data *rdp;
1312 struct rcu_node *rnp = rcu_get_root(rsp);
1313
1314 raw_spin_lock_irq(&rnp->lock);
1315 gp_duration = jiffies - rsp->gp_start;
1316 if (gp_duration > rsp->gp_max)
1317 rsp->gp_max = gp_duration;
1318
1319 /*
1320 * We know the grace period is complete, but to everyone else
1321 * it appears to still be ongoing. But it is also the case
1322 * that to everyone else it looks like there is nothing that
1323 * they can do to advance the grace period. It is therefore
1324 * safe for us to drop the lock in order to mark the grace
1325 * period as completed in all of the rcu_node structures.
1326 */
1327 raw_spin_unlock_irq(&rnp->lock);
1328
1329 /*
1330 * Propagate new ->completed value to rcu_node structures so
1331 * that other CPUs don't have to wait until the start of the next
1332 * grace period to process their callbacks. This also avoids
1333 * some nasty RCU grace-period initialization races by forcing
1334 * the end of the current grace period to be completely recorded in
1335 * all of the rcu_node structures before the beginning of the next
1336 * grace period is recorded in any of the rcu_node structures.
1337 */
1338 rcu_for_each_node_breadth_first(rsp, rnp) {
1339 raw_spin_lock_irq(&rnp->lock);
1340 rnp->completed = rsp->gpnum;
1341 raw_spin_unlock_irq(&rnp->lock);
1342 cond_resched();
1343 }
1344 rnp = rcu_get_root(rsp);
1345 raw_spin_lock_irq(&rnp->lock);
1346
1347 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1348 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1349 rsp->fqs_state = RCU_GP_IDLE;
1350 rdp = this_cpu_ptr(rsp->rda);
1351 if (cpu_needs_another_gp(rsp, rdp))
1352 rsp->gp_flags = 1;
1353 raw_spin_unlock_irq(&rnp->lock);
1354 }
1355
1356 /*
1357 * Body of kthread that handles grace periods.
1358 */
1359 static int __noreturn rcu_gp_kthread(void *arg)
1360 {
1361 int fqs_state;
1362 unsigned long j;
1363 int ret;
1364 struct rcu_state *rsp = arg;
1365 struct rcu_node *rnp = rcu_get_root(rsp);
1366
1367 for (;;) {
1368
1369 /* Handle grace-period start. */
1370 for (;;) {
1371 wait_event_interruptible(rsp->gp_wq,
1372 rsp->gp_flags &
1373 RCU_GP_FLAG_INIT);
1374 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1375 rcu_gp_init(rsp))
1376 break;
1377 cond_resched();
1378 flush_signals(current);
1379 }
1380
1381 /* Handle quiescent-state forcing. */
1382 fqs_state = RCU_SAVE_DYNTICK;
1383 j = jiffies_till_first_fqs;
1384 if (j > HZ) {
1385 j = HZ;
1386 jiffies_till_first_fqs = HZ;
1387 }
1388 for (;;) {
1389 rsp->jiffies_force_qs = jiffies + j;
1390 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1391 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1392 (!ACCESS_ONCE(rnp->qsmask) &&
1393 !rcu_preempt_blocked_readers_cgp(rnp)),
1394 j);
1395 /* If grace period done, leave loop. */
1396 if (!ACCESS_ONCE(rnp->qsmask) &&
1397 !rcu_preempt_blocked_readers_cgp(rnp))
1398 break;
1399 /* If time for quiescent-state forcing, do it. */
1400 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1401 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1402 cond_resched();
1403 } else {
1404 /* Deal with stray signal. */
1405 cond_resched();
1406 flush_signals(current);
1407 }
1408 j = jiffies_till_next_fqs;
1409 if (j > HZ) {
1410 j = HZ;
1411 jiffies_till_next_fqs = HZ;
1412 } else if (j < 1) {
1413 j = 1;
1414 jiffies_till_next_fqs = 1;
1415 }
1416 }
1417
1418 /* Handle grace-period end. */
1419 rcu_gp_cleanup(rsp);
1420 }
1421 }
1422
1423 /*
1424 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1425 * in preparation for detecting the next grace period. The caller must hold
1426 * the root node's ->lock, which is released before return. Hard irqs must
1427 * be disabled.
1428 *
1429 * Note that it is legal for a dying CPU (which is marked as offline) to
1430 * invoke this function. This can happen when the dying CPU reports its
1431 * quiescent state.
1432 */
1433 static void
1434 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1435 __releases(rcu_get_root(rsp)->lock)
1436 {
1437 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1438 struct rcu_node *rnp = rcu_get_root(rsp);
1439
1440 if (!rsp->gp_kthread ||
1441 !cpu_needs_another_gp(rsp, rdp)) {
1442 /*
1443 * Either we have not yet spawned the grace-period
1444 * task, this CPU does not need another grace period,
1445 * or a grace period is already in progress.
1446 * Either way, don't start a new grace period.
1447 */
1448 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1449 return;
1450 }
1451
1452 /*
1453 * Because there is no grace period in progress right now,
1454 * any callbacks we have up to this point will be satisfied
1455 * by the next grace period. So promote all callbacks to be
1456 * handled after the end of the next grace period. If the
1457 * CPU is not yet aware of the end of the previous grace period,
1458 * we need to allow for the callback advancement that will
1459 * occur when it does become aware. Deadlock prevents us from
1460 * making it aware at this point: We cannot acquire a leaf
1461 * rcu_node ->lock while holding the root rcu_node ->lock.
1462 */
1463 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1464 if (rdp->completed == rsp->completed)
1465 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1466
1467 rsp->gp_flags = RCU_GP_FLAG_INIT;
1468 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
1469
1470 /* Ensure that CPU is aware of completion of last grace period. */
1471 rcu_process_gp_end(rsp, rdp);
1472 local_irq_restore(flags);
1473
1474 /* Wake up rcu_gp_kthread() to start the grace period. */
1475 wake_up(&rsp->gp_wq);
1476 }
1477
1478 /*
1479 * Report a full set of quiescent states to the specified rcu_state
1480 * data structure. This involves cleaning up after the prior grace
1481 * period and letting rcu_start_gp() start up the next grace period
1482 * if one is needed. Note that the caller must hold rnp->lock, as
1483 * required by rcu_start_gp(), which will release it.
1484 */
1485 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1486 __releases(rcu_get_root(rsp)->lock)
1487 {
1488 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1489 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1490 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1491 }
1492
1493 /*
1494 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1495 * Allows quiescent states for a group of CPUs to be reported at one go
1496 * to the specified rcu_node structure, though all the CPUs in the group
1497 * must be represented by the same rcu_node structure (which need not be
1498 * a leaf rcu_node structure, though it often will be). That structure's
1499 * lock must be held upon entry, and it is released before return.
1500 */
1501 static void
1502 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1503 struct rcu_node *rnp, unsigned long flags)
1504 __releases(rnp->lock)
1505 {
1506 struct rcu_node *rnp_c;
1507
1508 /* Walk up the rcu_node hierarchy. */
1509 for (;;) {
1510 if (!(rnp->qsmask & mask)) {
1511
1512 /* Our bit has already been cleared, so done. */
1513 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1514 return;
1515 }
1516 rnp->qsmask &= ~mask;
1517 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1518 mask, rnp->qsmask, rnp->level,
1519 rnp->grplo, rnp->grphi,
1520 !!rnp->gp_tasks);
1521 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1522
1523 /* Other bits still set at this level, so done. */
1524 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1525 return;
1526 }
1527 mask = rnp->grpmask;
1528 if (rnp->parent == NULL) {
1529
1530 /* No more levels. Exit loop holding root lock. */
1531
1532 break;
1533 }
1534 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1535 rnp_c = rnp;
1536 rnp = rnp->parent;
1537 raw_spin_lock_irqsave(&rnp->lock, flags);
1538 WARN_ON_ONCE(rnp_c->qsmask);
1539 }
1540
1541 /*
1542 * Get here if we are the last CPU to pass through a quiescent
1543 * state for this grace period. Invoke rcu_report_qs_rsp()
1544 * to clean up and start the next grace period if one is needed.
1545 */
1546 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1547 }
1548
1549 /*
1550 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1551 * structure. This must be either called from the specified CPU, or
1552 * called when the specified CPU is known to be offline (and when it is
1553 * also known that no other CPU is concurrently trying to help the offline
1554 * CPU). The lastcomp argument is used to make sure we are still in the
1555 * grace period of interest. We don't want to end the current grace period
1556 * based on quiescent states detected in an earlier grace period!
1557 */
1558 static void
1559 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1560 {
1561 unsigned long flags;
1562 unsigned long mask;
1563 struct rcu_node *rnp;
1564
1565 rnp = rdp->mynode;
1566 raw_spin_lock_irqsave(&rnp->lock, flags);
1567 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1568 rnp->completed == rnp->gpnum) {
1569
1570 /*
1571 * The grace period in which this quiescent state was
1572 * recorded has ended, so don't report it upwards.
1573 * We will instead need a new quiescent state that lies
1574 * within the current grace period.
1575 */
1576 rdp->passed_quiesce = 0; /* need qs for new gp. */
1577 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1578 return;
1579 }
1580 mask = rdp->grpmask;
1581 if ((rnp->qsmask & mask) == 0) {
1582 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1583 } else {
1584 rdp->qs_pending = 0;
1585
1586 /*
1587 * This GP can't end until cpu checks in, so all of our
1588 * callbacks can be processed during the next GP.
1589 */
1590 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1591
1592 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1593 }
1594 }
1595
1596 /*
1597 * Check to see if there is a new grace period of which this CPU
1598 * is not yet aware, and if so, set up local rcu_data state for it.
1599 * Otherwise, see if this CPU has just passed through its first
1600 * quiescent state for this grace period, and record that fact if so.
1601 */
1602 static void
1603 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1604 {
1605 /* If there is now a new grace period, record and return. */
1606 if (check_for_new_grace_period(rsp, rdp))
1607 return;
1608
1609 /*
1610 * Does this CPU still need to do its part for current grace period?
1611 * If no, return and let the other CPUs do their part as well.
1612 */
1613 if (!rdp->qs_pending)
1614 return;
1615
1616 /*
1617 * Was there a quiescent state since the beginning of the grace
1618 * period? If no, then exit and wait for the next call.
1619 */
1620 if (!rdp->passed_quiesce)
1621 return;
1622
1623 /*
1624 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1625 * judge of that).
1626 */
1627 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1628 }
1629
1630 #ifdef CONFIG_HOTPLUG_CPU
1631
1632 /*
1633 * Send the specified CPU's RCU callbacks to the orphanage. The
1634 * specified CPU must be offline, and the caller must hold the
1635 * ->orphan_lock.
1636 */
1637 static void
1638 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1639 struct rcu_node *rnp, struct rcu_data *rdp)
1640 {
1641 /* No-CBs CPUs do not have orphanable callbacks. */
1642 if (is_nocb_cpu(rdp->cpu))
1643 return;
1644
1645 /*
1646 * Orphan the callbacks. First adjust the counts. This is safe
1647 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1648 * cannot be running now. Thus no memory barrier is required.
1649 */
1650 if (rdp->nxtlist != NULL) {
1651 rsp->qlen_lazy += rdp->qlen_lazy;
1652 rsp->qlen += rdp->qlen;
1653 rdp->n_cbs_orphaned += rdp->qlen;
1654 rdp->qlen_lazy = 0;
1655 ACCESS_ONCE(rdp->qlen) = 0;
1656 }
1657
1658 /*
1659 * Next, move those callbacks still needing a grace period to
1660 * the orphanage, where some other CPU will pick them up.
1661 * Some of the callbacks might have gone partway through a grace
1662 * period, but that is too bad. They get to start over because we
1663 * cannot assume that grace periods are synchronized across CPUs.
1664 * We don't bother updating the ->nxttail[] array yet, instead
1665 * we just reset the whole thing later on.
1666 */
1667 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1668 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1669 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1670 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1671 }
1672
1673 /*
1674 * Then move the ready-to-invoke callbacks to the orphanage,
1675 * where some other CPU will pick them up. These will not be
1676 * required to pass though another grace period: They are done.
1677 */
1678 if (rdp->nxtlist != NULL) {
1679 *rsp->orphan_donetail = rdp->nxtlist;
1680 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1681 }
1682
1683 /* Finally, initialize the rcu_data structure's list to empty. */
1684 init_callback_list(rdp);
1685 }
1686
1687 /*
1688 * Adopt the RCU callbacks from the specified rcu_state structure's
1689 * orphanage. The caller must hold the ->orphan_lock.
1690 */
1691 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1692 {
1693 int i;
1694 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1695
1696 /* No-CBs CPUs are handled specially. */
1697 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1698 return;
1699
1700 /* Do the accounting first. */
1701 rdp->qlen_lazy += rsp->qlen_lazy;
1702 rdp->qlen += rsp->qlen;
1703 rdp->n_cbs_adopted += rsp->qlen;
1704 if (rsp->qlen_lazy != rsp->qlen)
1705 rcu_idle_count_callbacks_posted();
1706 rsp->qlen_lazy = 0;
1707 rsp->qlen = 0;
1708
1709 /*
1710 * We do not need a memory barrier here because the only way we
1711 * can get here if there is an rcu_barrier() in flight is if
1712 * we are the task doing the rcu_barrier().
1713 */
1714
1715 /* First adopt the ready-to-invoke callbacks. */
1716 if (rsp->orphan_donelist != NULL) {
1717 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1718 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1719 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1720 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1721 rdp->nxttail[i] = rsp->orphan_donetail;
1722 rsp->orphan_donelist = NULL;
1723 rsp->orphan_donetail = &rsp->orphan_donelist;
1724 }
1725
1726 /* And then adopt the callbacks that still need a grace period. */
1727 if (rsp->orphan_nxtlist != NULL) {
1728 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1729 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1730 rsp->orphan_nxtlist = NULL;
1731 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1732 }
1733 }
1734
1735 /*
1736 * Trace the fact that this CPU is going offline.
1737 */
1738 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1739 {
1740 RCU_TRACE(unsigned long mask);
1741 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1742 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1743
1744 RCU_TRACE(mask = rdp->grpmask);
1745 trace_rcu_grace_period(rsp->name,
1746 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1747 "cpuofl");
1748 }
1749
1750 /*
1751 * The CPU has been completely removed, and some other CPU is reporting
1752 * this fact from process context. Do the remainder of the cleanup,
1753 * including orphaning the outgoing CPU's RCU callbacks, and also
1754 * adopting them. There can only be one CPU hotplug operation at a time,
1755 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1756 */
1757 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1758 {
1759 unsigned long flags;
1760 unsigned long mask;
1761 int need_report = 0;
1762 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1763 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1764
1765 /* Adjust any no-longer-needed kthreads. */
1766 rcu_boost_kthread_setaffinity(rnp, -1);
1767
1768 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1769
1770 /* Exclude any attempts to start a new grace period. */
1771 mutex_lock(&rsp->onoff_mutex);
1772 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1773
1774 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1775 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1776 rcu_adopt_orphan_cbs(rsp);
1777
1778 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1779 mask = rdp->grpmask; /* rnp->grplo is constant. */
1780 do {
1781 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1782 rnp->qsmaskinit &= ~mask;
1783 if (rnp->qsmaskinit != 0) {
1784 if (rnp != rdp->mynode)
1785 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1786 break;
1787 }
1788 if (rnp == rdp->mynode)
1789 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1790 else
1791 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1792 mask = rnp->grpmask;
1793 rnp = rnp->parent;
1794 } while (rnp != NULL);
1795
1796 /*
1797 * We still hold the leaf rcu_node structure lock here, and
1798 * irqs are still disabled. The reason for this subterfuge is
1799 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1800 * held leads to deadlock.
1801 */
1802 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1803 rnp = rdp->mynode;
1804 if (need_report & RCU_OFL_TASKS_NORM_GP)
1805 rcu_report_unblock_qs_rnp(rnp, flags);
1806 else
1807 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1808 if (need_report & RCU_OFL_TASKS_EXP_GP)
1809 rcu_report_exp_rnp(rsp, rnp, true);
1810 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1811 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1812 cpu, rdp->qlen, rdp->nxtlist);
1813 init_callback_list(rdp);
1814 /* Disallow further callbacks on this CPU. */
1815 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1816 mutex_unlock(&rsp->onoff_mutex);
1817 }
1818
1819 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1820
1821 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1822 {
1823 }
1824
1825 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1826 {
1827 }
1828
1829 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1830
1831 /*
1832 * Invoke any RCU callbacks that have made it to the end of their grace
1833 * period. Thottle as specified by rdp->blimit.
1834 */
1835 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1836 {
1837 unsigned long flags;
1838 struct rcu_head *next, *list, **tail;
1839 long bl, count, count_lazy;
1840 int i;
1841
1842 /* If no callbacks are ready, just return.*/
1843 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1844 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1845 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1846 need_resched(), is_idle_task(current),
1847 rcu_is_callbacks_kthread());
1848 return;
1849 }
1850
1851 /*
1852 * Extract the list of ready callbacks, disabling to prevent
1853 * races with call_rcu() from interrupt handlers.
1854 */
1855 local_irq_save(flags);
1856 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1857 bl = rdp->blimit;
1858 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1859 list = rdp->nxtlist;
1860 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1861 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1862 tail = rdp->nxttail[RCU_DONE_TAIL];
1863 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1864 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1865 rdp->nxttail[i] = &rdp->nxtlist;
1866 local_irq_restore(flags);
1867
1868 /* Invoke callbacks. */
1869 count = count_lazy = 0;
1870 while (list) {
1871 next = list->next;
1872 prefetch(next);
1873 debug_rcu_head_unqueue(list);
1874 if (__rcu_reclaim(rsp->name, list))
1875 count_lazy++;
1876 list = next;
1877 /* Stop only if limit reached and CPU has something to do. */
1878 if (++count >= bl &&
1879 (need_resched() ||
1880 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1881 break;
1882 }
1883
1884 local_irq_save(flags);
1885 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1886 is_idle_task(current),
1887 rcu_is_callbacks_kthread());
1888
1889 /* Update count, and requeue any remaining callbacks. */
1890 if (list != NULL) {
1891 *tail = rdp->nxtlist;
1892 rdp->nxtlist = list;
1893 for (i = 0; i < RCU_NEXT_SIZE; i++)
1894 if (&rdp->nxtlist == rdp->nxttail[i])
1895 rdp->nxttail[i] = tail;
1896 else
1897 break;
1898 }
1899 smp_mb(); /* List handling before counting for rcu_barrier(). */
1900 rdp->qlen_lazy -= count_lazy;
1901 ACCESS_ONCE(rdp->qlen) -= count;
1902 rdp->n_cbs_invoked += count;
1903
1904 /* Reinstate batch limit if we have worked down the excess. */
1905 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1906 rdp->blimit = blimit;
1907
1908 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1909 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1910 rdp->qlen_last_fqs_check = 0;
1911 rdp->n_force_qs_snap = rsp->n_force_qs;
1912 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1913 rdp->qlen_last_fqs_check = rdp->qlen;
1914 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1915
1916 local_irq_restore(flags);
1917
1918 /* Re-invoke RCU core processing if there are callbacks remaining. */
1919 if (cpu_has_callbacks_ready_to_invoke(rdp))
1920 invoke_rcu_core();
1921 }
1922
1923 /*
1924 * Check to see if this CPU is in a non-context-switch quiescent state
1925 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1926 * Also schedule RCU core processing.
1927 *
1928 * This function must be called from hardirq context. It is normally
1929 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1930 * false, there is no point in invoking rcu_check_callbacks().
1931 */
1932 void rcu_check_callbacks(int cpu, int user)
1933 {
1934 trace_rcu_utilization("Start scheduler-tick");
1935 increment_cpu_stall_ticks();
1936 if (user || rcu_is_cpu_rrupt_from_idle()) {
1937
1938 /*
1939 * Get here if this CPU took its interrupt from user
1940 * mode or from the idle loop, and if this is not a
1941 * nested interrupt. In this case, the CPU is in
1942 * a quiescent state, so note it.
1943 *
1944 * No memory barrier is required here because both
1945 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1946 * variables that other CPUs neither access nor modify,
1947 * at least not while the corresponding CPU is online.
1948 */
1949
1950 rcu_sched_qs(cpu);
1951 rcu_bh_qs(cpu);
1952
1953 } else if (!in_softirq()) {
1954
1955 /*
1956 * Get here if this CPU did not take its interrupt from
1957 * softirq, in other words, if it is not interrupting
1958 * a rcu_bh read-side critical section. This is an _bh
1959 * critical section, so note it.
1960 */
1961
1962 rcu_bh_qs(cpu);
1963 }
1964 rcu_preempt_check_callbacks(cpu);
1965 if (rcu_pending(cpu))
1966 invoke_rcu_core();
1967 trace_rcu_utilization("End scheduler-tick");
1968 }
1969
1970 /*
1971 * Scan the leaf rcu_node structures, processing dyntick state for any that
1972 * have not yet encountered a quiescent state, using the function specified.
1973 * Also initiate boosting for any threads blocked on the root rcu_node.
1974 *
1975 * The caller must have suppressed start of new grace periods.
1976 */
1977 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1978 {
1979 unsigned long bit;
1980 int cpu;
1981 unsigned long flags;
1982 unsigned long mask;
1983 struct rcu_node *rnp;
1984
1985 rcu_for_each_leaf_node(rsp, rnp) {
1986 cond_resched();
1987 mask = 0;
1988 raw_spin_lock_irqsave(&rnp->lock, flags);
1989 if (!rcu_gp_in_progress(rsp)) {
1990 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1991 return;
1992 }
1993 if (rnp->qsmask == 0) {
1994 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1995 continue;
1996 }
1997 cpu = rnp->grplo;
1998 bit = 1;
1999 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2000 if ((rnp->qsmask & bit) != 0 &&
2001 f(per_cpu_ptr(rsp->rda, cpu)))
2002 mask |= bit;
2003 }
2004 if (mask != 0) {
2005
2006 /* rcu_report_qs_rnp() releases rnp->lock. */
2007 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2008 continue;
2009 }
2010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2011 }
2012 rnp = rcu_get_root(rsp);
2013 if (rnp->qsmask == 0) {
2014 raw_spin_lock_irqsave(&rnp->lock, flags);
2015 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2016 }
2017 }
2018
2019 /*
2020 * Force quiescent states on reluctant CPUs, and also detect which
2021 * CPUs are in dyntick-idle mode.
2022 */
2023 static void force_quiescent_state(struct rcu_state *rsp)
2024 {
2025 unsigned long flags;
2026 bool ret;
2027 struct rcu_node *rnp;
2028 struct rcu_node *rnp_old = NULL;
2029
2030 /* Funnel through hierarchy to reduce memory contention. */
2031 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2032 for (; rnp != NULL; rnp = rnp->parent) {
2033 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2034 !raw_spin_trylock(&rnp->fqslock);
2035 if (rnp_old != NULL)
2036 raw_spin_unlock(&rnp_old->fqslock);
2037 if (ret) {
2038 rsp->n_force_qs_lh++;
2039 return;
2040 }
2041 rnp_old = rnp;
2042 }
2043 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2044
2045 /* Reached the root of the rcu_node tree, acquire lock. */
2046 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2047 raw_spin_unlock(&rnp_old->fqslock);
2048 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2049 rsp->n_force_qs_lh++;
2050 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2051 return; /* Someone beat us to it. */
2052 }
2053 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2054 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2055 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2056 }
2057
2058 /*
2059 * This does the RCU core processing work for the specified rcu_state
2060 * and rcu_data structures. This may be called only from the CPU to
2061 * whom the rdp belongs.
2062 */
2063 static void
2064 __rcu_process_callbacks(struct rcu_state *rsp)
2065 {
2066 unsigned long flags;
2067 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2068
2069 WARN_ON_ONCE(rdp->beenonline == 0);
2070
2071 /*
2072 * Advance callbacks in response to end of earlier grace
2073 * period that some other CPU ended.
2074 */
2075 rcu_process_gp_end(rsp, rdp);
2076
2077 /* Update RCU state based on any recent quiescent states. */
2078 rcu_check_quiescent_state(rsp, rdp);
2079
2080 /* Does this CPU require a not-yet-started grace period? */
2081 if (cpu_needs_another_gp(rsp, rdp)) {
2082 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
2083 rcu_start_gp(rsp, flags); /* releases above lock */
2084 }
2085
2086 /* If there are callbacks ready, invoke them. */
2087 if (cpu_has_callbacks_ready_to_invoke(rdp))
2088 invoke_rcu_callbacks(rsp, rdp);
2089 }
2090
2091 /*
2092 * Do RCU core processing for the current CPU.
2093 */
2094 static void rcu_process_callbacks(struct softirq_action *unused)
2095 {
2096 struct rcu_state *rsp;
2097
2098 if (cpu_is_offline(smp_processor_id()))
2099 return;
2100 trace_rcu_utilization("Start RCU core");
2101 for_each_rcu_flavor(rsp)
2102 __rcu_process_callbacks(rsp);
2103 trace_rcu_utilization("End RCU core");
2104 }
2105
2106 /*
2107 * Schedule RCU callback invocation. If the specified type of RCU
2108 * does not support RCU priority boosting, just do a direct call,
2109 * otherwise wake up the per-CPU kernel kthread. Note that because we
2110 * are running on the current CPU with interrupts disabled, the
2111 * rcu_cpu_kthread_task cannot disappear out from under us.
2112 */
2113 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2114 {
2115 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2116 return;
2117 if (likely(!rsp->boost)) {
2118 rcu_do_batch(rsp, rdp);
2119 return;
2120 }
2121 invoke_rcu_callbacks_kthread();
2122 }
2123
2124 static void invoke_rcu_core(void)
2125 {
2126 raise_softirq(RCU_SOFTIRQ);
2127 }
2128
2129 /*
2130 * Handle any core-RCU processing required by a call_rcu() invocation.
2131 */
2132 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2133 struct rcu_head *head, unsigned long flags)
2134 {
2135 /*
2136 * If called from an extended quiescent state, invoke the RCU
2137 * core in order to force a re-evaluation of RCU's idleness.
2138 */
2139 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2140 invoke_rcu_core();
2141
2142 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2143 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2144 return;
2145
2146 /*
2147 * Force the grace period if too many callbacks or too long waiting.
2148 * Enforce hysteresis, and don't invoke force_quiescent_state()
2149 * if some other CPU has recently done so. Also, don't bother
2150 * invoking force_quiescent_state() if the newly enqueued callback
2151 * is the only one waiting for a grace period to complete.
2152 */
2153 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2154
2155 /* Are we ignoring a completed grace period? */
2156 rcu_process_gp_end(rsp, rdp);
2157 check_for_new_grace_period(rsp, rdp);
2158
2159 /* Start a new grace period if one not already started. */
2160 if (!rcu_gp_in_progress(rsp)) {
2161 unsigned long nestflag;
2162 struct rcu_node *rnp_root = rcu_get_root(rsp);
2163
2164 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2165 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2166 } else {
2167 /* Give the grace period a kick. */
2168 rdp->blimit = LONG_MAX;
2169 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2170 *rdp->nxttail[RCU_DONE_TAIL] != head)
2171 force_quiescent_state(rsp);
2172 rdp->n_force_qs_snap = rsp->n_force_qs;
2173 rdp->qlen_last_fqs_check = rdp->qlen;
2174 }
2175 }
2176 }
2177
2178 /*
2179 * Helper function for call_rcu() and friends. The cpu argument will
2180 * normally be -1, indicating "currently running CPU". It may specify
2181 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2182 * is expected to specify a CPU.
2183 */
2184 static void
2185 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2186 struct rcu_state *rsp, int cpu, bool lazy)
2187 {
2188 unsigned long flags;
2189 struct rcu_data *rdp;
2190
2191 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2192 debug_rcu_head_queue(head);
2193 head->func = func;
2194 head->next = NULL;
2195
2196 /*
2197 * Opportunistically note grace-period endings and beginnings.
2198 * Note that we might see a beginning right after we see an
2199 * end, but never vice versa, since this CPU has to pass through
2200 * a quiescent state betweentimes.
2201 */
2202 local_irq_save(flags);
2203 rdp = this_cpu_ptr(rsp->rda);
2204
2205 /* Add the callback to our list. */
2206 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2207 int offline;
2208
2209 if (cpu != -1)
2210 rdp = per_cpu_ptr(rsp->rda, cpu);
2211 offline = !__call_rcu_nocb(rdp, head, lazy);
2212 WARN_ON_ONCE(offline);
2213 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2214 local_irq_restore(flags);
2215 return;
2216 }
2217 ACCESS_ONCE(rdp->qlen)++;
2218 if (lazy)
2219 rdp->qlen_lazy++;
2220 else
2221 rcu_idle_count_callbacks_posted();
2222 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2223 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2224 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2225
2226 if (__is_kfree_rcu_offset((unsigned long)func))
2227 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2228 rdp->qlen_lazy, rdp->qlen);
2229 else
2230 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2231
2232 /* Go handle any RCU core processing required. */
2233 __call_rcu_core(rsp, rdp, head, flags);
2234 local_irq_restore(flags);
2235 }
2236
2237 /*
2238 * Queue an RCU-sched callback for invocation after a grace period.
2239 */
2240 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2241 {
2242 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2243 }
2244 EXPORT_SYMBOL_GPL(call_rcu_sched);
2245
2246 /*
2247 * Queue an RCU callback for invocation after a quicker grace period.
2248 */
2249 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2250 {
2251 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2252 }
2253 EXPORT_SYMBOL_GPL(call_rcu_bh);
2254
2255 /*
2256 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2257 * any blocking grace-period wait automatically implies a grace period
2258 * if there is only one CPU online at any point time during execution
2259 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2260 * occasionally incorrectly indicate that there are multiple CPUs online
2261 * when there was in fact only one the whole time, as this just adds
2262 * some overhead: RCU still operates correctly.
2263 */
2264 static inline int rcu_blocking_is_gp(void)
2265 {
2266 int ret;
2267
2268 might_sleep(); /* Check for RCU read-side critical section. */
2269 preempt_disable();
2270 ret = num_online_cpus() <= 1;
2271 preempt_enable();
2272 return ret;
2273 }
2274
2275 /**
2276 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2277 *
2278 * Control will return to the caller some time after a full rcu-sched
2279 * grace period has elapsed, in other words after all currently executing
2280 * rcu-sched read-side critical sections have completed. These read-side
2281 * critical sections are delimited by rcu_read_lock_sched() and
2282 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2283 * local_irq_disable(), and so on may be used in place of
2284 * rcu_read_lock_sched().
2285 *
2286 * This means that all preempt_disable code sequences, including NMI and
2287 * non-threaded hardware-interrupt handlers, in progress on entry will
2288 * have completed before this primitive returns. However, this does not
2289 * guarantee that softirq handlers will have completed, since in some
2290 * kernels, these handlers can run in process context, and can block.
2291 *
2292 * Note that this guarantee implies further memory-ordering guarantees.
2293 * On systems with more than one CPU, when synchronize_sched() returns,
2294 * each CPU is guaranteed to have executed a full memory barrier since the
2295 * end of its last RCU-sched read-side critical section whose beginning
2296 * preceded the call to synchronize_sched(). In addition, each CPU having
2297 * an RCU read-side critical section that extends beyond the return from
2298 * synchronize_sched() is guaranteed to have executed a full memory barrier
2299 * after the beginning of synchronize_sched() and before the beginning of
2300 * that RCU read-side critical section. Note that these guarantees include
2301 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2302 * that are executing in the kernel.
2303 *
2304 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2305 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2306 * to have executed a full memory barrier during the execution of
2307 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2308 * again only if the system has more than one CPU).
2309 *
2310 * This primitive provides the guarantees made by the (now removed)
2311 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2312 * guarantees that rcu_read_lock() sections will have completed.
2313 * In "classic RCU", these two guarantees happen to be one and
2314 * the same, but can differ in realtime RCU implementations.
2315 */
2316 void synchronize_sched(void)
2317 {
2318 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2319 !lock_is_held(&rcu_lock_map) &&
2320 !lock_is_held(&rcu_sched_lock_map),
2321 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2322 if (rcu_blocking_is_gp())
2323 return;
2324 if (rcu_expedited)
2325 synchronize_sched_expedited();
2326 else
2327 wait_rcu_gp(call_rcu_sched);
2328 }
2329 EXPORT_SYMBOL_GPL(synchronize_sched);
2330
2331 /**
2332 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2333 *
2334 * Control will return to the caller some time after a full rcu_bh grace
2335 * period has elapsed, in other words after all currently executing rcu_bh
2336 * read-side critical sections have completed. RCU read-side critical
2337 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2338 * and may be nested.
2339 *
2340 * See the description of synchronize_sched() for more detailed information
2341 * on memory ordering guarantees.
2342 */
2343 void synchronize_rcu_bh(void)
2344 {
2345 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2346 !lock_is_held(&rcu_lock_map) &&
2347 !lock_is_held(&rcu_sched_lock_map),
2348 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2349 if (rcu_blocking_is_gp())
2350 return;
2351 if (rcu_expedited)
2352 synchronize_rcu_bh_expedited();
2353 else
2354 wait_rcu_gp(call_rcu_bh);
2355 }
2356 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2357
2358 static int synchronize_sched_expedited_cpu_stop(void *data)
2359 {
2360 /*
2361 * There must be a full memory barrier on each affected CPU
2362 * between the time that try_stop_cpus() is called and the
2363 * time that it returns.
2364 *
2365 * In the current initial implementation of cpu_stop, the
2366 * above condition is already met when the control reaches
2367 * this point and the following smp_mb() is not strictly
2368 * necessary. Do smp_mb() anyway for documentation and
2369 * robustness against future implementation changes.
2370 */
2371 smp_mb(); /* See above comment block. */
2372 return 0;
2373 }
2374
2375 /**
2376 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2377 *
2378 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2379 * approach to force the grace period to end quickly. This consumes
2380 * significant time on all CPUs and is unfriendly to real-time workloads,
2381 * so is thus not recommended for any sort of common-case code. In fact,
2382 * if you are using synchronize_sched_expedited() in a loop, please
2383 * restructure your code to batch your updates, and then use a single
2384 * synchronize_sched() instead.
2385 *
2386 * Note that it is illegal to call this function while holding any lock
2387 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2388 * to call this function from a CPU-hotplug notifier. Failing to observe
2389 * these restriction will result in deadlock.
2390 *
2391 * This implementation can be thought of as an application of ticket
2392 * locking to RCU, with sync_sched_expedited_started and
2393 * sync_sched_expedited_done taking on the roles of the halves
2394 * of the ticket-lock word. Each task atomically increments
2395 * sync_sched_expedited_started upon entry, snapshotting the old value,
2396 * then attempts to stop all the CPUs. If this succeeds, then each
2397 * CPU will have executed a context switch, resulting in an RCU-sched
2398 * grace period. We are then done, so we use atomic_cmpxchg() to
2399 * update sync_sched_expedited_done to match our snapshot -- but
2400 * only if someone else has not already advanced past our snapshot.
2401 *
2402 * On the other hand, if try_stop_cpus() fails, we check the value
2403 * of sync_sched_expedited_done. If it has advanced past our
2404 * initial snapshot, then someone else must have forced a grace period
2405 * some time after we took our snapshot. In this case, our work is
2406 * done for us, and we can simply return. Otherwise, we try again,
2407 * but keep our initial snapshot for purposes of checking for someone
2408 * doing our work for us.
2409 *
2410 * If we fail too many times in a row, we fall back to synchronize_sched().
2411 */
2412 void synchronize_sched_expedited(void)
2413 {
2414 long firstsnap, s, snap;
2415 int trycount = 0;
2416 struct rcu_state *rsp = &rcu_sched_state;
2417
2418 /*
2419 * If we are in danger of counter wrap, just do synchronize_sched().
2420 * By allowing sync_sched_expedited_started to advance no more than
2421 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2422 * that more than 3.5 billion CPUs would be required to force a
2423 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2424 * course be required on a 64-bit system.
2425 */
2426 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2427 (ulong)atomic_long_read(&rsp->expedited_done) +
2428 ULONG_MAX / 8)) {
2429 synchronize_sched();
2430 atomic_long_inc(&rsp->expedited_wrap);
2431 return;
2432 }
2433
2434 /*
2435 * Take a ticket. Note that atomic_inc_return() implies a
2436 * full memory barrier.
2437 */
2438 snap = atomic_long_inc_return(&rsp->expedited_start);
2439 firstsnap = snap;
2440 get_online_cpus();
2441 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2442
2443 /*
2444 * Each pass through the following loop attempts to force a
2445 * context switch on each CPU.
2446 */
2447 while (try_stop_cpus(cpu_online_mask,
2448 synchronize_sched_expedited_cpu_stop,
2449 NULL) == -EAGAIN) {
2450 put_online_cpus();
2451 atomic_long_inc(&rsp->expedited_tryfail);
2452
2453 /* Check to see if someone else did our work for us. */
2454 s = atomic_long_read(&rsp->expedited_done);
2455 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2456 /* ensure test happens before caller kfree */
2457 smp_mb__before_atomic_inc(); /* ^^^ */
2458 atomic_long_inc(&rsp->expedited_workdone1);
2459 return;
2460 }
2461
2462 /* No joy, try again later. Or just synchronize_sched(). */
2463 if (trycount++ < 10) {
2464 udelay(trycount * num_online_cpus());
2465 } else {
2466 wait_rcu_gp(call_rcu_sched);
2467 atomic_long_inc(&rsp->expedited_normal);
2468 return;
2469 }
2470
2471 /* Recheck to see if someone else did our work for us. */
2472 s = atomic_long_read(&rsp->expedited_done);
2473 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2474 /* ensure test happens before caller kfree */
2475 smp_mb__before_atomic_inc(); /* ^^^ */
2476 atomic_long_inc(&rsp->expedited_workdone2);
2477 return;
2478 }
2479
2480 /*
2481 * Refetching sync_sched_expedited_started allows later
2482 * callers to piggyback on our grace period. We retry
2483 * after they started, so our grace period works for them,
2484 * and they started after our first try, so their grace
2485 * period works for us.
2486 */
2487 get_online_cpus();
2488 snap = atomic_long_read(&rsp->expedited_start);
2489 smp_mb(); /* ensure read is before try_stop_cpus(). */
2490 }
2491 atomic_long_inc(&rsp->expedited_stoppedcpus);
2492
2493 /*
2494 * Everyone up to our most recent fetch is covered by our grace
2495 * period. Update the counter, but only if our work is still
2496 * relevant -- which it won't be if someone who started later
2497 * than we did already did their update.
2498 */
2499 do {
2500 atomic_long_inc(&rsp->expedited_done_tries);
2501 s = atomic_long_read(&rsp->expedited_done);
2502 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2503 /* ensure test happens before caller kfree */
2504 smp_mb__before_atomic_inc(); /* ^^^ */
2505 atomic_long_inc(&rsp->expedited_done_lost);
2506 break;
2507 }
2508 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2509 atomic_long_inc(&rsp->expedited_done_exit);
2510
2511 put_online_cpus();
2512 }
2513 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2514
2515 /*
2516 * Check to see if there is any immediate RCU-related work to be done
2517 * by the current CPU, for the specified type of RCU, returning 1 if so.
2518 * The checks are in order of increasing expense: checks that can be
2519 * carried out against CPU-local state are performed first. However,
2520 * we must check for CPU stalls first, else we might not get a chance.
2521 */
2522 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2523 {
2524 struct rcu_node *rnp = rdp->mynode;
2525
2526 rdp->n_rcu_pending++;
2527
2528 /* Check for CPU stalls, if enabled. */
2529 check_cpu_stall(rsp, rdp);
2530
2531 /* Is the RCU core waiting for a quiescent state from this CPU? */
2532 if (rcu_scheduler_fully_active &&
2533 rdp->qs_pending && !rdp->passed_quiesce) {
2534 rdp->n_rp_qs_pending++;
2535 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2536 rdp->n_rp_report_qs++;
2537 return 1;
2538 }
2539
2540 /* Does this CPU have callbacks ready to invoke? */
2541 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2542 rdp->n_rp_cb_ready++;
2543 return 1;
2544 }
2545
2546 /* Has RCU gone idle with this CPU needing another grace period? */
2547 if (cpu_needs_another_gp(rsp, rdp)) {
2548 rdp->n_rp_cpu_needs_gp++;
2549 return 1;
2550 }
2551
2552 /* Has another RCU grace period completed? */
2553 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2554 rdp->n_rp_gp_completed++;
2555 return 1;
2556 }
2557
2558 /* Has a new RCU grace period started? */
2559 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2560 rdp->n_rp_gp_started++;
2561 return 1;
2562 }
2563
2564 /* nothing to do */
2565 rdp->n_rp_need_nothing++;
2566 return 0;
2567 }
2568
2569 /*
2570 * Check to see if there is any immediate RCU-related work to be done
2571 * by the current CPU, returning 1 if so. This function is part of the
2572 * RCU implementation; it is -not- an exported member of the RCU API.
2573 */
2574 static int rcu_pending(int cpu)
2575 {
2576 struct rcu_state *rsp;
2577
2578 for_each_rcu_flavor(rsp)
2579 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2580 return 1;
2581 return 0;
2582 }
2583
2584 /*
2585 * Check to see if any future RCU-related work will need to be done
2586 * by the current CPU, even if none need be done immediately, returning
2587 * 1 if so.
2588 */
2589 static int rcu_cpu_has_callbacks(int cpu)
2590 {
2591 struct rcu_state *rsp;
2592
2593 /* RCU callbacks either ready or pending? */
2594 for_each_rcu_flavor(rsp)
2595 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2596 return 1;
2597 return 0;
2598 }
2599
2600 /*
2601 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2602 * the compiler is expected to optimize this away.
2603 */
2604 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2605 int cpu, unsigned long done)
2606 {
2607 trace_rcu_barrier(rsp->name, s, cpu,
2608 atomic_read(&rsp->barrier_cpu_count), done);
2609 }
2610
2611 /*
2612 * RCU callback function for _rcu_barrier(). If we are last, wake
2613 * up the task executing _rcu_barrier().
2614 */
2615 static void rcu_barrier_callback(struct rcu_head *rhp)
2616 {
2617 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2618 struct rcu_state *rsp = rdp->rsp;
2619
2620 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2621 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2622 complete(&rsp->barrier_completion);
2623 } else {
2624 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2625 }
2626 }
2627
2628 /*
2629 * Called with preemption disabled, and from cross-cpu IRQ context.
2630 */
2631 static void rcu_barrier_func(void *type)
2632 {
2633 struct rcu_state *rsp = type;
2634 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2635
2636 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2637 atomic_inc(&rsp->barrier_cpu_count);
2638 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2639 }
2640
2641 /*
2642 * Orchestrate the specified type of RCU barrier, waiting for all
2643 * RCU callbacks of the specified type to complete.
2644 */
2645 static void _rcu_barrier(struct rcu_state *rsp)
2646 {
2647 int cpu;
2648 struct rcu_data *rdp;
2649 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2650 unsigned long snap_done;
2651
2652 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2653
2654 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2655 mutex_lock(&rsp->barrier_mutex);
2656
2657 /*
2658 * Ensure that all prior references, including to ->n_barrier_done,
2659 * are ordered before the _rcu_barrier() machinery.
2660 */
2661 smp_mb(); /* See above block comment. */
2662
2663 /*
2664 * Recheck ->n_barrier_done to see if others did our work for us.
2665 * This means checking ->n_barrier_done for an even-to-odd-to-even
2666 * transition. The "if" expression below therefore rounds the old
2667 * value up to the next even number and adds two before comparing.
2668 */
2669 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2670 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2671 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2672 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2673 smp_mb(); /* caller's subsequent code after above check. */
2674 mutex_unlock(&rsp->barrier_mutex);
2675 return;
2676 }
2677
2678 /*
2679 * Increment ->n_barrier_done to avoid duplicate work. Use
2680 * ACCESS_ONCE() to prevent the compiler from speculating
2681 * the increment to precede the early-exit check.
2682 */
2683 ACCESS_ONCE(rsp->n_barrier_done)++;
2684 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2685 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2686 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2687
2688 /*
2689 * Initialize the count to one rather than to zero in order to
2690 * avoid a too-soon return to zero in case of a short grace period
2691 * (or preemption of this task). Exclude CPU-hotplug operations
2692 * to ensure that no offline CPU has callbacks queued.
2693 */
2694 init_completion(&rsp->barrier_completion);
2695 atomic_set(&rsp->barrier_cpu_count, 1);
2696 get_online_cpus();
2697
2698 /*
2699 * Force each CPU with callbacks to register a new callback.
2700 * When that callback is invoked, we will know that all of the
2701 * corresponding CPU's preceding callbacks have been invoked.
2702 */
2703 for_each_possible_cpu(cpu) {
2704 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2705 continue;
2706 rdp = per_cpu_ptr(rsp->rda, cpu);
2707 if (is_nocb_cpu(cpu)) {
2708 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2709 rsp->n_barrier_done);
2710 atomic_inc(&rsp->barrier_cpu_count);
2711 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2712 rsp, cpu, 0);
2713 } else if (ACCESS_ONCE(rdp->qlen)) {
2714 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2715 rsp->n_barrier_done);
2716 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2717 } else {
2718 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2719 rsp->n_barrier_done);
2720 }
2721 }
2722 put_online_cpus();
2723
2724 /*
2725 * Now that we have an rcu_barrier_callback() callback on each
2726 * CPU, and thus each counted, remove the initial count.
2727 */
2728 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2729 complete(&rsp->barrier_completion);
2730
2731 /* Increment ->n_barrier_done to prevent duplicate work. */
2732 smp_mb(); /* Keep increment after above mechanism. */
2733 ACCESS_ONCE(rsp->n_barrier_done)++;
2734 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2735 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2736 smp_mb(); /* Keep increment before caller's subsequent code. */
2737
2738 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2739 wait_for_completion(&rsp->barrier_completion);
2740
2741 /* Other rcu_barrier() invocations can now safely proceed. */
2742 mutex_unlock(&rsp->barrier_mutex);
2743 }
2744
2745 /**
2746 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2747 */
2748 void rcu_barrier_bh(void)
2749 {
2750 _rcu_barrier(&rcu_bh_state);
2751 }
2752 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2753
2754 /**
2755 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2756 */
2757 void rcu_barrier_sched(void)
2758 {
2759 _rcu_barrier(&rcu_sched_state);
2760 }
2761 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2762
2763 /*
2764 * Do boot-time initialization of a CPU's per-CPU RCU data.
2765 */
2766 static void __init
2767 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2768 {
2769 unsigned long flags;
2770 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2771 struct rcu_node *rnp = rcu_get_root(rsp);
2772
2773 /* Set up local state, ensuring consistent view of global state. */
2774 raw_spin_lock_irqsave(&rnp->lock, flags);
2775 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2776 init_callback_list(rdp);
2777 rdp->qlen_lazy = 0;
2778 ACCESS_ONCE(rdp->qlen) = 0;
2779 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2780 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2781 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2782 #ifdef CONFIG_RCU_USER_QS
2783 WARN_ON_ONCE(rdp->dynticks->in_user);
2784 #endif
2785 rdp->cpu = cpu;
2786 rdp->rsp = rsp;
2787 rcu_boot_init_nocb_percpu_data(rdp);
2788 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2789 }
2790
2791 /*
2792 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2793 * offline event can be happening at a given time. Note also that we
2794 * can accept some slop in the rsp->completed access due to the fact
2795 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2796 */
2797 static void __cpuinit
2798 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2799 {
2800 unsigned long flags;
2801 unsigned long mask;
2802 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2803 struct rcu_node *rnp = rcu_get_root(rsp);
2804
2805 /* Exclude new grace periods. */
2806 mutex_lock(&rsp->onoff_mutex);
2807
2808 /* Set up local state, ensuring consistent view of global state. */
2809 raw_spin_lock_irqsave(&rnp->lock, flags);
2810 rdp->beenonline = 1; /* We have now been online. */
2811 rdp->preemptible = preemptible;
2812 rdp->qlen_last_fqs_check = 0;
2813 rdp->n_force_qs_snap = rsp->n_force_qs;
2814 rdp->blimit = blimit;
2815 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2816 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2817 atomic_set(&rdp->dynticks->dynticks,
2818 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2819 rcu_prepare_for_idle_init(cpu);
2820 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2821
2822 /* Add CPU to rcu_node bitmasks. */
2823 rnp = rdp->mynode;
2824 mask = rdp->grpmask;
2825 do {
2826 /* Exclude any attempts to start a new GP on small systems. */
2827 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2828 rnp->qsmaskinit |= mask;
2829 mask = rnp->grpmask;
2830 if (rnp == rdp->mynode) {
2831 /*
2832 * If there is a grace period in progress, we will
2833 * set up to wait for it next time we run the
2834 * RCU core code.
2835 */
2836 rdp->gpnum = rnp->completed;
2837 rdp->completed = rnp->completed;
2838 rdp->passed_quiesce = 0;
2839 rdp->qs_pending = 0;
2840 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2841 }
2842 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2843 rnp = rnp->parent;
2844 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2845 local_irq_restore(flags);
2846
2847 mutex_unlock(&rsp->onoff_mutex);
2848 }
2849
2850 static void __cpuinit rcu_prepare_cpu(int cpu)
2851 {
2852 struct rcu_state *rsp;
2853
2854 for_each_rcu_flavor(rsp)
2855 rcu_init_percpu_data(cpu, rsp,
2856 strcmp(rsp->name, "rcu_preempt") == 0);
2857 }
2858
2859 /*
2860 * Handle CPU online/offline notification events.
2861 */
2862 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2863 unsigned long action, void *hcpu)
2864 {
2865 long cpu = (long)hcpu;
2866 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2867 struct rcu_node *rnp = rdp->mynode;
2868 struct rcu_state *rsp;
2869 int ret = NOTIFY_OK;
2870
2871 trace_rcu_utilization("Start CPU hotplug");
2872 switch (action) {
2873 case CPU_UP_PREPARE:
2874 case CPU_UP_PREPARE_FROZEN:
2875 rcu_prepare_cpu(cpu);
2876 rcu_prepare_kthreads(cpu);
2877 break;
2878 case CPU_ONLINE:
2879 case CPU_DOWN_FAILED:
2880 rcu_boost_kthread_setaffinity(rnp, -1);
2881 break;
2882 case CPU_DOWN_PREPARE:
2883 if (nocb_cpu_expendable(cpu))
2884 rcu_boost_kthread_setaffinity(rnp, cpu);
2885 else
2886 ret = NOTIFY_BAD;
2887 break;
2888 case CPU_DYING:
2889 case CPU_DYING_FROZEN:
2890 /*
2891 * The whole machine is "stopped" except this CPU, so we can
2892 * touch any data without introducing corruption. We send the
2893 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2894 */
2895 for_each_rcu_flavor(rsp)
2896 rcu_cleanup_dying_cpu(rsp);
2897 rcu_cleanup_after_idle(cpu);
2898 break;
2899 case CPU_DEAD:
2900 case CPU_DEAD_FROZEN:
2901 case CPU_UP_CANCELED:
2902 case CPU_UP_CANCELED_FROZEN:
2903 for_each_rcu_flavor(rsp)
2904 rcu_cleanup_dead_cpu(cpu, rsp);
2905 break;
2906 default:
2907 break;
2908 }
2909 trace_rcu_utilization("End CPU hotplug");
2910 return ret;
2911 }
2912
2913 /*
2914 * Spawn the kthread that handles this RCU flavor's grace periods.
2915 */
2916 static int __init rcu_spawn_gp_kthread(void)
2917 {
2918 unsigned long flags;
2919 struct rcu_node *rnp;
2920 struct rcu_state *rsp;
2921 struct task_struct *t;
2922
2923 for_each_rcu_flavor(rsp) {
2924 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2925 BUG_ON(IS_ERR(t));
2926 rnp = rcu_get_root(rsp);
2927 raw_spin_lock_irqsave(&rnp->lock, flags);
2928 rsp->gp_kthread = t;
2929 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2930 rcu_spawn_nocb_kthreads(rsp);
2931 }
2932 return 0;
2933 }
2934 early_initcall(rcu_spawn_gp_kthread);
2935
2936 /*
2937 * This function is invoked towards the end of the scheduler's initialization
2938 * process. Before this is called, the idle task might contain
2939 * RCU read-side critical sections (during which time, this idle
2940 * task is booting the system). After this function is called, the
2941 * idle tasks are prohibited from containing RCU read-side critical
2942 * sections. This function also enables RCU lockdep checking.
2943 */
2944 void rcu_scheduler_starting(void)
2945 {
2946 WARN_ON(num_online_cpus() != 1);
2947 WARN_ON(nr_context_switches() > 0);
2948 rcu_scheduler_active = 1;
2949 }
2950
2951 /*
2952 * Compute the per-level fanout, either using the exact fanout specified
2953 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2954 */
2955 #ifdef CONFIG_RCU_FANOUT_EXACT
2956 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2957 {
2958 int i;
2959
2960 for (i = rcu_num_lvls - 1; i > 0; i--)
2961 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2962 rsp->levelspread[0] = rcu_fanout_leaf;
2963 }
2964 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2965 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2966 {
2967 int ccur;
2968 int cprv;
2969 int i;
2970
2971 cprv = nr_cpu_ids;
2972 for (i = rcu_num_lvls - 1; i >= 0; i--) {
2973 ccur = rsp->levelcnt[i];
2974 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2975 cprv = ccur;
2976 }
2977 }
2978 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2979
2980 /*
2981 * Helper function for rcu_init() that initializes one rcu_state structure.
2982 */
2983 static void __init rcu_init_one(struct rcu_state *rsp,
2984 struct rcu_data __percpu *rda)
2985 {
2986 static char *buf[] = { "rcu_node_0",
2987 "rcu_node_1",
2988 "rcu_node_2",
2989 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2990 static char *fqs[] = { "rcu_node_fqs_0",
2991 "rcu_node_fqs_1",
2992 "rcu_node_fqs_2",
2993 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
2994 int cpustride = 1;
2995 int i;
2996 int j;
2997 struct rcu_node *rnp;
2998
2999 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3000
3001 /* Initialize the level-tracking arrays. */
3002
3003 for (i = 0; i < rcu_num_lvls; i++)
3004 rsp->levelcnt[i] = num_rcu_lvl[i];
3005 for (i = 1; i < rcu_num_lvls; i++)
3006 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3007 rcu_init_levelspread(rsp);
3008
3009 /* Initialize the elements themselves, starting from the leaves. */
3010
3011 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3012 cpustride *= rsp->levelspread[i];
3013 rnp = rsp->level[i];
3014 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3015 raw_spin_lock_init(&rnp->lock);
3016 lockdep_set_class_and_name(&rnp->lock,
3017 &rcu_node_class[i], buf[i]);
3018 raw_spin_lock_init(&rnp->fqslock);
3019 lockdep_set_class_and_name(&rnp->fqslock,
3020 &rcu_fqs_class[i], fqs[i]);
3021 rnp->gpnum = rsp->gpnum;
3022 rnp->completed = rsp->completed;
3023 rnp->qsmask = 0;
3024 rnp->qsmaskinit = 0;
3025 rnp->grplo = j * cpustride;
3026 rnp->grphi = (j + 1) * cpustride - 1;
3027 if (rnp->grphi >= NR_CPUS)
3028 rnp->grphi = NR_CPUS - 1;
3029 if (i == 0) {
3030 rnp->grpnum = 0;
3031 rnp->grpmask = 0;
3032 rnp->parent = NULL;
3033 } else {
3034 rnp->grpnum = j % rsp->levelspread[i - 1];
3035 rnp->grpmask = 1UL << rnp->grpnum;
3036 rnp->parent = rsp->level[i - 1] +
3037 j / rsp->levelspread[i - 1];
3038 }
3039 rnp->level = i;
3040 INIT_LIST_HEAD(&rnp->blkd_tasks);
3041 }
3042 }
3043
3044 rsp->rda = rda;
3045 init_waitqueue_head(&rsp->gp_wq);
3046 rnp = rsp->level[rcu_num_lvls - 1];
3047 for_each_possible_cpu(i) {
3048 while (i > rnp->grphi)
3049 rnp++;
3050 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3051 rcu_boot_init_percpu_data(i, rsp);
3052 }
3053 list_add(&rsp->flavors, &rcu_struct_flavors);
3054 }
3055
3056 /*
3057 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3058 * replace the definitions in rcutree.h because those are needed to size
3059 * the ->node array in the rcu_state structure.
3060 */
3061 static void __init rcu_init_geometry(void)
3062 {
3063 int i;
3064 int j;
3065 int n = nr_cpu_ids;
3066 int rcu_capacity[MAX_RCU_LVLS + 1];
3067
3068 /* If the compile-time values are accurate, just leave. */
3069 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3070 nr_cpu_ids == NR_CPUS)
3071 return;
3072
3073 /*
3074 * Compute number of nodes that can be handled an rcu_node tree
3075 * with the given number of levels. Setting rcu_capacity[0] makes
3076 * some of the arithmetic easier.
3077 */
3078 rcu_capacity[0] = 1;
3079 rcu_capacity[1] = rcu_fanout_leaf;
3080 for (i = 2; i <= MAX_RCU_LVLS; i++)
3081 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3082
3083 /*
3084 * The boot-time rcu_fanout_leaf parameter is only permitted
3085 * to increase the leaf-level fanout, not decrease it. Of course,
3086 * the leaf-level fanout cannot exceed the number of bits in
3087 * the rcu_node masks. Finally, the tree must be able to accommodate
3088 * the configured number of CPUs. Complain and fall back to the
3089 * compile-time values if these limits are exceeded.
3090 */
3091 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3092 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3093 n > rcu_capacity[MAX_RCU_LVLS]) {
3094 WARN_ON(1);
3095 return;
3096 }
3097
3098 /* Calculate the number of rcu_nodes at each level of the tree. */
3099 for (i = 1; i <= MAX_RCU_LVLS; i++)
3100 if (n <= rcu_capacity[i]) {
3101 for (j = 0; j <= i; j++)
3102 num_rcu_lvl[j] =
3103 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3104 rcu_num_lvls = i;
3105 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3106 num_rcu_lvl[j] = 0;
3107 break;
3108 }
3109
3110 /* Calculate the total number of rcu_node structures. */
3111 rcu_num_nodes = 0;
3112 for (i = 0; i <= MAX_RCU_LVLS; i++)
3113 rcu_num_nodes += num_rcu_lvl[i];
3114 rcu_num_nodes -= n;
3115 }
3116
3117 void __init rcu_init(void)
3118 {
3119 int cpu;
3120
3121 rcu_bootup_announce();
3122 rcu_init_geometry();
3123 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3124 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3125 __rcu_init_preempt();
3126 rcu_init_nocb();
3127 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3128
3129 /*
3130 * We don't need protection against CPU-hotplug here because
3131 * this is called early in boot, before either interrupts
3132 * or the scheduler are operational.
3133 */
3134 cpu_notifier(rcu_cpu_notify, 0);
3135 for_each_online_cpu(cpu)
3136 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3137 check_cpu_stall_init();
3138 }
3139
3140 #include "rcutree_plugin.h"