Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / profile.c
1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
7 *
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14 */
15
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30
31 struct profile_hit {
32 u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT 3
35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
38
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54
55 int profile_setup(char *str)
56 {
57 static char schedstr[] = "schedule";
58 static char sleepstr[] = "sleep";
59 static char kvmstr[] = "kvm";
60 int par;
61
62 if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 prof_on = SLEEP_PROFILING;
65 if (str[strlen(sleepstr)] == ',')
66 str += strlen(sleepstr) + 1;
67 if (get_option(&str, &par))
68 prof_shift = par;
69 printk(KERN_INFO
70 "kernel sleep profiling enabled (shift: %ld)\n",
71 prof_shift);
72 #else
73 printk(KERN_WARNING
74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 } else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 prof_on = SCHED_PROFILING;
78 if (str[strlen(schedstr)] == ',')
79 str += strlen(schedstr) + 1;
80 if (get_option(&str, &par))
81 prof_shift = par;
82 printk(KERN_INFO
83 "kernel schedule profiling enabled (shift: %ld)\n",
84 prof_shift);
85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 prof_on = KVM_PROFILING;
87 if (str[strlen(kvmstr)] == ',')
88 str += strlen(kvmstr) + 1;
89 if (get_option(&str, &par))
90 prof_shift = par;
91 printk(KERN_INFO
92 "kernel KVM profiling enabled (shift: %ld)\n",
93 prof_shift);
94 } else if (get_option(&str, &par)) {
95 prof_shift = par;
96 prof_on = CPU_PROFILING;
97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 prof_shift);
99 }
100 return 1;
101 }
102 __setup("profile=", profile_setup);
103
104
105 int __ref profile_init(void)
106 {
107 int buffer_bytes;
108 if (!prof_on)
109 return 0;
110
111 /* only text is profiled */
112 prof_len = (_etext - _stext) >> prof_shift;
113 buffer_bytes = prof_len*sizeof(atomic_t);
114 if (!slab_is_available()) {
115 prof_buffer = alloc_bootmem(buffer_bytes);
116 alloc_bootmem_cpumask_var(&prof_cpu_mask);
117 return 0;
118 }
119
120 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
121 return -ENOMEM;
122
123 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL);
124 if (prof_buffer)
125 return 0;
126
127 prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO);
128 if (prof_buffer)
129 return 0;
130
131 prof_buffer = vmalloc(buffer_bytes);
132 if (prof_buffer)
133 return 0;
134
135 free_cpumask_var(prof_cpu_mask);
136 return -ENOMEM;
137 }
138
139 /* Profile event notifications */
140
141 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
142 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
143 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
144
145 void profile_task_exit(struct task_struct *task)
146 {
147 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
148 }
149
150 int profile_handoff_task(struct task_struct *task)
151 {
152 int ret;
153 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
154 return (ret == NOTIFY_OK) ? 1 : 0;
155 }
156
157 void profile_munmap(unsigned long addr)
158 {
159 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
160 }
161
162 int task_handoff_register(struct notifier_block *n)
163 {
164 return atomic_notifier_chain_register(&task_free_notifier, n);
165 }
166 EXPORT_SYMBOL_GPL(task_handoff_register);
167
168 int task_handoff_unregister(struct notifier_block *n)
169 {
170 return atomic_notifier_chain_unregister(&task_free_notifier, n);
171 }
172 EXPORT_SYMBOL_GPL(task_handoff_unregister);
173
174 int profile_event_register(enum profile_type type, struct notifier_block *n)
175 {
176 int err = -EINVAL;
177
178 switch (type) {
179 case PROFILE_TASK_EXIT:
180 err = blocking_notifier_chain_register(
181 &task_exit_notifier, n);
182 break;
183 case PROFILE_MUNMAP:
184 err = blocking_notifier_chain_register(
185 &munmap_notifier, n);
186 break;
187 }
188
189 return err;
190 }
191 EXPORT_SYMBOL_GPL(profile_event_register);
192
193 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
194 {
195 int err = -EINVAL;
196
197 switch (type) {
198 case PROFILE_TASK_EXIT:
199 err = blocking_notifier_chain_unregister(
200 &task_exit_notifier, n);
201 break;
202 case PROFILE_MUNMAP:
203 err = blocking_notifier_chain_unregister(
204 &munmap_notifier, n);
205 break;
206 }
207
208 return err;
209 }
210 EXPORT_SYMBOL_GPL(profile_event_unregister);
211
212 int register_timer_hook(int (*hook)(struct pt_regs *))
213 {
214 if (timer_hook)
215 return -EBUSY;
216 timer_hook = hook;
217 return 0;
218 }
219 EXPORT_SYMBOL_GPL(register_timer_hook);
220
221 void unregister_timer_hook(int (*hook)(struct pt_regs *))
222 {
223 WARN_ON(hook != timer_hook);
224 timer_hook = NULL;
225 /* make sure all CPUs see the NULL hook */
226 synchronize_sched(); /* Allow ongoing interrupts to complete. */
227 }
228 EXPORT_SYMBOL_GPL(unregister_timer_hook);
229
230
231 #ifdef CONFIG_SMP
232 /*
233 * Each cpu has a pair of open-addressed hashtables for pending
234 * profile hits. read_profile() IPI's all cpus to request them
235 * to flip buffers and flushes their contents to prof_buffer itself.
236 * Flip requests are serialized by the profile_flip_mutex. The sole
237 * use of having a second hashtable is for avoiding cacheline
238 * contention that would otherwise happen during flushes of pending
239 * profile hits required for the accuracy of reported profile hits
240 * and so resurrect the interrupt livelock issue.
241 *
242 * The open-addressed hashtables are indexed by profile buffer slot
243 * and hold the number of pending hits to that profile buffer slot on
244 * a cpu in an entry. When the hashtable overflows, all pending hits
245 * are accounted to their corresponding profile buffer slots with
246 * atomic_add() and the hashtable emptied. As numerous pending hits
247 * may be accounted to a profile buffer slot in a hashtable entry,
248 * this amortizes a number of atomic profile buffer increments likely
249 * to be far larger than the number of entries in the hashtable,
250 * particularly given that the number of distinct profile buffer
251 * positions to which hits are accounted during short intervals (e.g.
252 * several seconds) is usually very small. Exclusion from buffer
253 * flipping is provided by interrupt disablement (note that for
254 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
255 * process context).
256 * The hash function is meant to be lightweight as opposed to strong,
257 * and was vaguely inspired by ppc64 firmware-supported inverted
258 * pagetable hash functions, but uses a full hashtable full of finite
259 * collision chains, not just pairs of them.
260 *
261 * -- wli
262 */
263 static void __profile_flip_buffers(void *unused)
264 {
265 int cpu = smp_processor_id();
266
267 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
268 }
269
270 static void profile_flip_buffers(void)
271 {
272 int i, j, cpu;
273
274 mutex_lock(&profile_flip_mutex);
275 j = per_cpu(cpu_profile_flip, get_cpu());
276 put_cpu();
277 on_each_cpu(__profile_flip_buffers, NULL, 1);
278 for_each_online_cpu(cpu) {
279 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
280 for (i = 0; i < NR_PROFILE_HIT; ++i) {
281 if (!hits[i].hits) {
282 if (hits[i].pc)
283 hits[i].pc = 0;
284 continue;
285 }
286 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
287 hits[i].hits = hits[i].pc = 0;
288 }
289 }
290 mutex_unlock(&profile_flip_mutex);
291 }
292
293 static void profile_discard_flip_buffers(void)
294 {
295 int i, cpu;
296
297 mutex_lock(&profile_flip_mutex);
298 i = per_cpu(cpu_profile_flip, get_cpu());
299 put_cpu();
300 on_each_cpu(__profile_flip_buffers, NULL, 1);
301 for_each_online_cpu(cpu) {
302 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
303 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
304 }
305 mutex_unlock(&profile_flip_mutex);
306 }
307
308 void profile_hits(int type, void *__pc, unsigned int nr_hits)
309 {
310 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
311 int i, j, cpu;
312 struct profile_hit *hits;
313
314 if (prof_on != type || !prof_buffer)
315 return;
316 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
317 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
318 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
319 cpu = get_cpu();
320 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
321 if (!hits) {
322 put_cpu();
323 return;
324 }
325 /*
326 * We buffer the global profiler buffer into a per-CPU
327 * queue and thus reduce the number of global (and possibly
328 * NUMA-alien) accesses. The write-queue is self-coalescing:
329 */
330 local_irq_save(flags);
331 do {
332 for (j = 0; j < PROFILE_GRPSZ; ++j) {
333 if (hits[i + j].pc == pc) {
334 hits[i + j].hits += nr_hits;
335 goto out;
336 } else if (!hits[i + j].hits) {
337 hits[i + j].pc = pc;
338 hits[i + j].hits = nr_hits;
339 goto out;
340 }
341 }
342 i = (i + secondary) & (NR_PROFILE_HIT - 1);
343 } while (i != primary);
344
345 /*
346 * Add the current hit(s) and flush the write-queue out
347 * to the global buffer:
348 */
349 atomic_add(nr_hits, &prof_buffer[pc]);
350 for (i = 0; i < NR_PROFILE_HIT; ++i) {
351 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
352 hits[i].pc = hits[i].hits = 0;
353 }
354 out:
355 local_irq_restore(flags);
356 put_cpu();
357 }
358
359 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
360 unsigned long action, void *__cpu)
361 {
362 int node, cpu = (unsigned long)__cpu;
363 struct page *page;
364
365 switch (action) {
366 case CPU_UP_PREPARE:
367 case CPU_UP_PREPARE_FROZEN:
368 node = cpu_to_node(cpu);
369 per_cpu(cpu_profile_flip, cpu) = 0;
370 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
371 page = alloc_pages_node(node,
372 GFP_KERNEL | __GFP_ZERO,
373 0);
374 if (!page)
375 return NOTIFY_BAD;
376 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
377 }
378 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
379 page = alloc_pages_node(node,
380 GFP_KERNEL | __GFP_ZERO,
381 0);
382 if (!page)
383 goto out_free;
384 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
385 }
386 break;
387 out_free:
388 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
389 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
390 __free_page(page);
391 return NOTIFY_BAD;
392 case CPU_ONLINE:
393 case CPU_ONLINE_FROZEN:
394 if (prof_cpu_mask != NULL)
395 cpumask_set_cpu(cpu, prof_cpu_mask);
396 break;
397 case CPU_UP_CANCELED:
398 case CPU_UP_CANCELED_FROZEN:
399 case CPU_DEAD:
400 case CPU_DEAD_FROZEN:
401 if (prof_cpu_mask != NULL)
402 cpumask_clear_cpu(cpu, prof_cpu_mask);
403 if (per_cpu(cpu_profile_hits, cpu)[0]) {
404 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
405 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
406 __free_page(page);
407 }
408 if (per_cpu(cpu_profile_hits, cpu)[1]) {
409 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
410 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
411 __free_page(page);
412 }
413 break;
414 }
415 return NOTIFY_OK;
416 }
417 #else /* !CONFIG_SMP */
418 #define profile_flip_buffers() do { } while (0)
419 #define profile_discard_flip_buffers() do { } while (0)
420 #define profile_cpu_callback NULL
421
422 void profile_hits(int type, void *__pc, unsigned int nr_hits)
423 {
424 unsigned long pc;
425
426 if (prof_on != type || !prof_buffer)
427 return;
428 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
429 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
430 }
431 #endif /* !CONFIG_SMP */
432 EXPORT_SYMBOL_GPL(profile_hits);
433
434 void profile_tick(int type)
435 {
436 struct pt_regs *regs = get_irq_regs();
437
438 if (type == CPU_PROFILING && timer_hook)
439 timer_hook(regs);
440 if (!user_mode(regs) && prof_cpu_mask != NULL &&
441 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
442 profile_hit(type, (void *)profile_pc(regs));
443 }
444
445 #ifdef CONFIG_PROC_FS
446 #include <linux/proc_fs.h>
447 #include <asm/uaccess.h>
448
449 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
450 int count, int *eof, void *data)
451 {
452 int len = cpumask_scnprintf(page, count, data);
453 if (count - len < 2)
454 return -EINVAL;
455 len += sprintf(page + len, "\n");
456 return len;
457 }
458
459 static int prof_cpu_mask_write_proc(struct file *file,
460 const char __user *buffer, unsigned long count, void *data)
461 {
462 struct cpumask *mask = data;
463 unsigned long full_count = count, err;
464 cpumask_var_t new_value;
465
466 if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
467 return -ENOMEM;
468
469 err = cpumask_parse_user(buffer, count, new_value);
470 if (!err) {
471 cpumask_copy(mask, new_value);
472 err = full_count;
473 }
474 free_cpumask_var(new_value);
475 return err;
476 }
477
478 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
479 {
480 struct proc_dir_entry *entry;
481
482 /* create /proc/irq/prof_cpu_mask */
483 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
484 if (!entry)
485 return;
486 entry->data = prof_cpu_mask;
487 entry->read_proc = prof_cpu_mask_read_proc;
488 entry->write_proc = prof_cpu_mask_write_proc;
489 }
490
491 /*
492 * This function accesses profiling information. The returned data is
493 * binary: the sampling step and the actual contents of the profile
494 * buffer. Use of the program readprofile is recommended in order to
495 * get meaningful info out of these data.
496 */
497 static ssize_t
498 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
499 {
500 unsigned long p = *ppos;
501 ssize_t read;
502 char *pnt;
503 unsigned int sample_step = 1 << prof_shift;
504
505 profile_flip_buffers();
506 if (p >= (prof_len+1)*sizeof(unsigned int))
507 return 0;
508 if (count > (prof_len+1)*sizeof(unsigned int) - p)
509 count = (prof_len+1)*sizeof(unsigned int) - p;
510 read = 0;
511
512 while (p < sizeof(unsigned int) && count > 0) {
513 if (put_user(*((char *)(&sample_step)+p), buf))
514 return -EFAULT;
515 buf++; p++; count--; read++;
516 }
517 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
518 if (copy_to_user(buf, (void *)pnt, count))
519 return -EFAULT;
520 read += count;
521 *ppos += read;
522 return read;
523 }
524
525 /*
526 * Writing to /proc/profile resets the counters
527 *
528 * Writing a 'profiling multiplier' value into it also re-sets the profiling
529 * interrupt frequency, on architectures that support this.
530 */
531 static ssize_t write_profile(struct file *file, const char __user *buf,
532 size_t count, loff_t *ppos)
533 {
534 #ifdef CONFIG_SMP
535 extern int setup_profiling_timer(unsigned int multiplier);
536
537 if (count == sizeof(int)) {
538 unsigned int multiplier;
539
540 if (copy_from_user(&multiplier, buf, sizeof(int)))
541 return -EFAULT;
542
543 if (setup_profiling_timer(multiplier))
544 return -EINVAL;
545 }
546 #endif
547 profile_discard_flip_buffers();
548 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
549 return count;
550 }
551
552 static const struct file_operations proc_profile_operations = {
553 .read = read_profile,
554 .write = write_profile,
555 };
556
557 #ifdef CONFIG_SMP
558 static void profile_nop(void *unused)
559 {
560 }
561
562 static int create_hash_tables(void)
563 {
564 int cpu;
565
566 for_each_online_cpu(cpu) {
567 int node = cpu_to_node(cpu);
568 struct page *page;
569
570 page = alloc_pages_node(node,
571 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
572 0);
573 if (!page)
574 goto out_cleanup;
575 per_cpu(cpu_profile_hits, cpu)[1]
576 = (struct profile_hit *)page_address(page);
577 page = alloc_pages_node(node,
578 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
579 0);
580 if (!page)
581 goto out_cleanup;
582 per_cpu(cpu_profile_hits, cpu)[0]
583 = (struct profile_hit *)page_address(page);
584 }
585 return 0;
586 out_cleanup:
587 prof_on = 0;
588 smp_mb();
589 on_each_cpu(profile_nop, NULL, 1);
590 for_each_online_cpu(cpu) {
591 struct page *page;
592
593 if (per_cpu(cpu_profile_hits, cpu)[0]) {
594 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
595 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
596 __free_page(page);
597 }
598 if (per_cpu(cpu_profile_hits, cpu)[1]) {
599 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
600 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
601 __free_page(page);
602 }
603 }
604 return -1;
605 }
606 #else
607 #define create_hash_tables() ({ 0; })
608 #endif
609
610 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
611 {
612 struct proc_dir_entry *entry;
613
614 if (!prof_on)
615 return 0;
616 if (create_hash_tables())
617 return -ENOMEM;
618 entry = proc_create("profile", S_IWUSR | S_IRUGO,
619 NULL, &proc_profile_operations);
620 if (!entry)
621 return 0;
622 entry->size = (1+prof_len) * sizeof(atomic_t);
623 hotcpu_notifier(profile_cpu_callback, 0);
624 return 0;
625 }
626 module_init(create_proc_profile);
627 #endif /* CONFIG_PROC_FS */