Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46
47 #include <asm/uaccess.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/printk.h>
51
52 /* printk's without a loglevel use this.. */
53 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
54
55 /* We show everything that is MORE important than this.. */
56 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
57 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
58
59 int console_printk[4] = {
60 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
61 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
62 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
63 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 /*
89 * This is used for debugging the mess that is the VT code by
90 * keeping track if we have the console semaphore held. It's
91 * definitely not the perfect debug tool (we don't know if _WE_
92 * hold it are racing, but it helps tracking those weird code
93 * path in the console code where we end up in places I want
94 * locked without the console sempahore held
95 */
96 static int console_locked, console_suspended;
97
98 /*
99 * If exclusive_console is non-NULL then only this console is to be printed to.
100 */
101 static struct console *exclusive_console;
102
103 /*
104 * Array of consoles built from command line options (console=)
105 */
106 struct console_cmdline
107 {
108 char name[8]; /* Name of the driver */
109 int index; /* Minor dev. to use */
110 char *options; /* Options for the driver */
111 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
112 char *brl_options; /* Options for braille driver */
113 #endif
114 };
115
116 #define MAX_CMDLINECONSOLES 8
117
118 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
119 static int selected_console = -1;
120 static int preferred_console = -1;
121 int console_set_on_cmdline;
122 EXPORT_SYMBOL(console_set_on_cmdline);
123
124 /* Flag: console code may call schedule() */
125 static int console_may_schedule;
126
127 /*
128 * The printk log buffer consists of a chain of concatenated variable
129 * length records. Every record starts with a record header, containing
130 * the overall length of the record.
131 *
132 * The heads to the first and last entry in the buffer, as well as the
133 * sequence numbers of these both entries are maintained when messages
134 * are stored..
135 *
136 * If the heads indicate available messages, the length in the header
137 * tells the start next message. A length == 0 for the next message
138 * indicates a wrap-around to the beginning of the buffer.
139 *
140 * Every record carries the monotonic timestamp in microseconds, as well as
141 * the standard userspace syslog level and syslog facility. The usual
142 * kernel messages use LOG_KERN; userspace-injected messages always carry
143 * a matching syslog facility, by default LOG_USER. The origin of every
144 * message can be reliably determined that way.
145 *
146 * The human readable log message directly follows the message header. The
147 * length of the message text is stored in the header, the stored message
148 * is not terminated.
149 *
150 * Optionally, a message can carry a dictionary of properties (key/value pairs),
151 * to provide userspace with a machine-readable message context.
152 *
153 * Examples for well-defined, commonly used property names are:
154 * DEVICE=b12:8 device identifier
155 * b12:8 block dev_t
156 * c127:3 char dev_t
157 * n8 netdev ifindex
158 * +sound:card0 subsystem:devname
159 * SUBSYSTEM=pci driver-core subsystem name
160 *
161 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
162 * follows directly after a '=' character. Every property is terminated by
163 * a '\0' character. The last property is not terminated.
164 *
165 * Example of a message structure:
166 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
167 * 0008 34 00 record is 52 bytes long
168 * 000a 0b 00 text is 11 bytes long
169 * 000c 1f 00 dictionary is 23 bytes long
170 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
171 * 0010 69 74 27 73 20 61 20 6c "it's a l"
172 * 69 6e 65 "ine"
173 * 001b 44 45 56 49 43 "DEVIC"
174 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
175 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
176 * 67 "g"
177 * 0032 00 00 00 padding to next message header
178 *
179 * The 'struct log' buffer header must never be directly exported to
180 * userspace, it is a kernel-private implementation detail that might
181 * need to be changed in the future, when the requirements change.
182 *
183 * /dev/kmsg exports the structured data in the following line format:
184 * "level,sequnum,timestamp;<message text>\n"
185 *
186 * The optional key/value pairs are attached as continuation lines starting
187 * with a space character and terminated by a newline. All possible
188 * non-prinatable characters are escaped in the "\xff" notation.
189 *
190 * Users of the export format should ignore possible additional values
191 * separated by ',', and find the message after the ';' character.
192 */
193
194 enum log_flags {
195 LOG_NOCONS = 1, /* already flushed, do not print to console */
196 LOG_NEWLINE = 2, /* text ended with a newline */
197 LOG_PREFIX = 4, /* text started with a prefix */
198 LOG_CONT = 8, /* text is a fragment of a continuation line */
199 };
200
201 struct log {
202 u64 ts_nsec; /* timestamp in nanoseconds */
203 u16 len; /* length of entire record */
204 u16 text_len; /* length of text buffer */
205 u16 dict_len; /* length of dictionary buffer */
206 u8 facility; /* syslog facility */
207 u8 flags:5; /* internal record flags */
208 u8 level:3; /* syslog level */
209 };
210
211 /*
212 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
213 * used in interesting ways to provide interlocking in console_unlock();
214 */
215 static DEFINE_RAW_SPINLOCK(logbuf_lock);
216
217 #ifdef CONFIG_PRINTK
218 DECLARE_WAIT_QUEUE_HEAD(log_wait);
219 /* the next printk record to read by syslog(READ) or /proc/kmsg */
220 static u64 syslog_seq;
221 static u32 syslog_idx;
222 static enum log_flags syslog_prev;
223 static size_t syslog_partial;
224
225 /* index and sequence number of the first record stored in the buffer */
226 static u64 log_first_seq;
227 static u32 log_first_idx;
228
229 /* index and sequence number of the next record to store in the buffer */
230 static u64 log_next_seq;
231 static u32 log_next_idx;
232
233 /* the next printk record to write to the console */
234 static u64 console_seq;
235 static u32 console_idx;
236 static enum log_flags console_prev;
237
238 /* the next printk record to read after the last 'clear' command */
239 static u64 clear_seq;
240 static u32 clear_idx;
241
242 #define PREFIX_MAX 32
243 #define LOG_LINE_MAX 1024 - PREFIX_MAX
244
245 /* record buffer */
246 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
247 #define LOG_ALIGN 4
248 #else
249 #define LOG_ALIGN __alignof__(struct log)
250 #endif
251 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
252 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
253 static char *log_buf = __log_buf;
254 static u32 log_buf_len = __LOG_BUF_LEN;
255
256 /* cpu currently holding logbuf_lock */
257 static volatile unsigned int logbuf_cpu = UINT_MAX;
258
259 /* human readable text of the record */
260 static char *log_text(const struct log *msg)
261 {
262 return (char *)msg + sizeof(struct log);
263 }
264
265 /* optional key/value pair dictionary attached to the record */
266 static char *log_dict(const struct log *msg)
267 {
268 return (char *)msg + sizeof(struct log) + msg->text_len;
269 }
270
271 /* get record by index; idx must point to valid msg */
272 static struct log *log_from_idx(u32 idx)
273 {
274 struct log *msg = (struct log *)(log_buf + idx);
275
276 /*
277 * A length == 0 record is the end of buffer marker. Wrap around and
278 * read the message at the start of the buffer.
279 */
280 if (!msg->len)
281 return (struct log *)log_buf;
282 return msg;
283 }
284
285 /* get next record; idx must point to valid msg */
286 static u32 log_next(u32 idx)
287 {
288 struct log *msg = (struct log *)(log_buf + idx);
289
290 /* length == 0 indicates the end of the buffer; wrap */
291 /*
292 * A length == 0 record is the end of buffer marker. Wrap around and
293 * read the message at the start of the buffer as *this* one, and
294 * return the one after that.
295 */
296 if (!msg->len) {
297 msg = (struct log *)log_buf;
298 return msg->len;
299 }
300 return idx + msg->len;
301 }
302
303 /* insert record into the buffer, discard old ones, update heads */
304 static void log_store(int facility, int level,
305 enum log_flags flags, u64 ts_nsec,
306 const char *dict, u16 dict_len,
307 const char *text, u16 text_len)
308 {
309 struct log *msg;
310 u32 size, pad_len;
311
312 /* number of '\0' padding bytes to next message */
313 size = sizeof(struct log) + text_len + dict_len;
314 pad_len = (-size) & (LOG_ALIGN - 1);
315 size += pad_len;
316
317 while (log_first_seq < log_next_seq) {
318 u32 free;
319
320 if (log_next_idx > log_first_idx)
321 free = max(log_buf_len - log_next_idx, log_first_idx);
322 else
323 free = log_first_idx - log_next_idx;
324
325 if (free > size + sizeof(struct log))
326 break;
327
328 /* drop old messages until we have enough contiuous space */
329 log_first_idx = log_next(log_first_idx);
330 log_first_seq++;
331 }
332
333 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
334 /*
335 * This message + an additional empty header does not fit
336 * at the end of the buffer. Add an empty header with len == 0
337 * to signify a wrap around.
338 */
339 memset(log_buf + log_next_idx, 0, sizeof(struct log));
340 log_next_idx = 0;
341 }
342
343 /* fill message */
344 msg = (struct log *)(log_buf + log_next_idx);
345 memcpy(log_text(msg), text, text_len);
346 msg->text_len = text_len;
347 memcpy(log_dict(msg), dict, dict_len);
348 msg->dict_len = dict_len;
349 msg->facility = facility;
350 msg->level = level & 7;
351 msg->flags = flags & 0x1f;
352 if (ts_nsec > 0)
353 msg->ts_nsec = ts_nsec;
354 else
355 msg->ts_nsec = local_clock();
356 memset(log_dict(msg) + dict_len, 0, pad_len);
357 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
358
359 /* insert message */
360 log_next_idx += msg->len;
361 log_next_seq++;
362 }
363
364 /* /dev/kmsg - userspace message inject/listen interface */
365 struct devkmsg_user {
366 u64 seq;
367 u32 idx;
368 enum log_flags prev;
369 struct mutex lock;
370 char buf[8192];
371 };
372
373 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
374 unsigned long count, loff_t pos)
375 {
376 char *buf, *line;
377 int i;
378 int level = default_message_loglevel;
379 int facility = 1; /* LOG_USER */
380 size_t len = iov_length(iv, count);
381 ssize_t ret = len;
382
383 if (len > LOG_LINE_MAX)
384 return -EINVAL;
385 buf = kmalloc(len+1, GFP_KERNEL);
386 if (buf == NULL)
387 return -ENOMEM;
388
389 line = buf;
390 for (i = 0; i < count; i++) {
391 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
392 ret = -EFAULT;
393 goto out;
394 }
395 line += iv[i].iov_len;
396 }
397
398 /*
399 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
400 * the decimal value represents 32bit, the lower 3 bit are the log
401 * level, the rest are the log facility.
402 *
403 * If no prefix or no userspace facility is specified, we
404 * enforce LOG_USER, to be able to reliably distinguish
405 * kernel-generated messages from userspace-injected ones.
406 */
407 line = buf;
408 if (line[0] == '<') {
409 char *endp = NULL;
410
411 i = simple_strtoul(line+1, &endp, 10);
412 if (endp && endp[0] == '>') {
413 level = i & 7;
414 if (i >> 3)
415 facility = i >> 3;
416 endp++;
417 len -= endp - line;
418 line = endp;
419 }
420 }
421 line[len] = '\0';
422
423 printk_emit(facility, level, NULL, 0, "%s", line);
424 out:
425 kfree(buf);
426 return ret;
427 }
428
429 static ssize_t devkmsg_read(struct file *file, char __user *buf,
430 size_t count, loff_t *ppos)
431 {
432 struct devkmsg_user *user = file->private_data;
433 struct log *msg;
434 u64 ts_usec;
435 size_t i;
436 char cont = '-';
437 size_t len;
438 ssize_t ret;
439
440 if (!user)
441 return -EBADF;
442
443 ret = mutex_lock_interruptible(&user->lock);
444 if (ret)
445 return ret;
446 raw_spin_lock_irq(&logbuf_lock);
447 while (user->seq == log_next_seq) {
448 if (file->f_flags & O_NONBLOCK) {
449 ret = -EAGAIN;
450 raw_spin_unlock_irq(&logbuf_lock);
451 goto out;
452 }
453
454 raw_spin_unlock_irq(&logbuf_lock);
455 ret = wait_event_interruptible(log_wait,
456 user->seq != log_next_seq);
457 if (ret)
458 goto out;
459 raw_spin_lock_irq(&logbuf_lock);
460 }
461
462 if (user->seq < log_first_seq) {
463 /* our last seen message is gone, return error and reset */
464 user->idx = log_first_idx;
465 user->seq = log_first_seq;
466 ret = -EPIPE;
467 raw_spin_unlock_irq(&logbuf_lock);
468 goto out;
469 }
470
471 msg = log_from_idx(user->idx);
472 ts_usec = msg->ts_nsec;
473 do_div(ts_usec, 1000);
474
475 /*
476 * If we couldn't merge continuation line fragments during the print,
477 * export the stored flags to allow an optional external merge of the
478 * records. Merging the records isn't always neccessarily correct, like
479 * when we hit a race during printing. In most cases though, it produces
480 * better readable output. 'c' in the record flags mark the first
481 * fragment of a line, '+' the following.
482 */
483 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
484 cont = 'c';
485 else if ((msg->flags & LOG_CONT) ||
486 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
487 cont = '+';
488
489 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
490 (msg->facility << 3) | msg->level,
491 user->seq, ts_usec, cont);
492 user->prev = msg->flags;
493
494 /* escape non-printable characters */
495 for (i = 0; i < msg->text_len; i++) {
496 unsigned char c = log_text(msg)[i];
497
498 if (c < ' ' || c >= 127 || c == '\\')
499 len += sprintf(user->buf + len, "\\x%02x", c);
500 else
501 user->buf[len++] = c;
502 }
503 user->buf[len++] = '\n';
504
505 if (msg->dict_len) {
506 bool line = true;
507
508 for (i = 0; i < msg->dict_len; i++) {
509 unsigned char c = log_dict(msg)[i];
510
511 if (line) {
512 user->buf[len++] = ' ';
513 line = false;
514 }
515
516 if (c == '\0') {
517 user->buf[len++] = '\n';
518 line = true;
519 continue;
520 }
521
522 if (c < ' ' || c >= 127 || c == '\\') {
523 len += sprintf(user->buf + len, "\\x%02x", c);
524 continue;
525 }
526
527 user->buf[len++] = c;
528 }
529 user->buf[len++] = '\n';
530 }
531
532 user->idx = log_next(user->idx);
533 user->seq++;
534 raw_spin_unlock_irq(&logbuf_lock);
535
536 if (len > count) {
537 ret = -EINVAL;
538 goto out;
539 }
540
541 if (copy_to_user(buf, user->buf, len)) {
542 ret = -EFAULT;
543 goto out;
544 }
545 ret = len;
546 out:
547 mutex_unlock(&user->lock);
548 return ret;
549 }
550
551 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
552 {
553 struct devkmsg_user *user = file->private_data;
554 loff_t ret = 0;
555
556 if (!user)
557 return -EBADF;
558 if (offset)
559 return -ESPIPE;
560
561 raw_spin_lock_irq(&logbuf_lock);
562 switch (whence) {
563 case SEEK_SET:
564 /* the first record */
565 user->idx = log_first_idx;
566 user->seq = log_first_seq;
567 break;
568 case SEEK_DATA:
569 /*
570 * The first record after the last SYSLOG_ACTION_CLEAR,
571 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
572 * changes no global state, and does not clear anything.
573 */
574 user->idx = clear_idx;
575 user->seq = clear_seq;
576 break;
577 case SEEK_END:
578 /* after the last record */
579 user->idx = log_next_idx;
580 user->seq = log_next_seq;
581 break;
582 default:
583 ret = -EINVAL;
584 }
585 raw_spin_unlock_irq(&logbuf_lock);
586 return ret;
587 }
588
589 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
590 {
591 struct devkmsg_user *user = file->private_data;
592 int ret = 0;
593
594 if (!user)
595 return POLLERR|POLLNVAL;
596
597 poll_wait(file, &log_wait, wait);
598
599 raw_spin_lock_irq(&logbuf_lock);
600 if (user->seq < log_next_seq) {
601 /* return error when data has vanished underneath us */
602 if (user->seq < log_first_seq)
603 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
604 else
605 ret = POLLIN|POLLRDNORM;
606 }
607 raw_spin_unlock_irq(&logbuf_lock);
608
609 return ret;
610 }
611
612 static int devkmsg_open(struct inode *inode, struct file *file)
613 {
614 struct devkmsg_user *user;
615 int err;
616
617 /* write-only does not need any file context */
618 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
619 return 0;
620
621 err = security_syslog(SYSLOG_ACTION_READ_ALL);
622 if (err)
623 return err;
624
625 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
626 if (!user)
627 return -ENOMEM;
628
629 mutex_init(&user->lock);
630
631 raw_spin_lock_irq(&logbuf_lock);
632 user->idx = log_first_idx;
633 user->seq = log_first_seq;
634 raw_spin_unlock_irq(&logbuf_lock);
635
636 file->private_data = user;
637 return 0;
638 }
639
640 static int devkmsg_release(struct inode *inode, struct file *file)
641 {
642 struct devkmsg_user *user = file->private_data;
643
644 if (!user)
645 return 0;
646
647 mutex_destroy(&user->lock);
648 kfree(user);
649 return 0;
650 }
651
652 const struct file_operations kmsg_fops = {
653 .open = devkmsg_open,
654 .read = devkmsg_read,
655 .aio_write = devkmsg_writev,
656 .llseek = devkmsg_llseek,
657 .poll = devkmsg_poll,
658 .release = devkmsg_release,
659 };
660
661 #ifdef CONFIG_KEXEC
662 /*
663 * This appends the listed symbols to /proc/vmcoreinfo
664 *
665 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
666 * obtain access to symbols that are otherwise very difficult to locate. These
667 * symbols are specifically used so that utilities can access and extract the
668 * dmesg log from a vmcore file after a crash.
669 */
670 void log_buf_kexec_setup(void)
671 {
672 VMCOREINFO_SYMBOL(log_buf);
673 VMCOREINFO_SYMBOL(log_buf_len);
674 VMCOREINFO_SYMBOL(log_first_idx);
675 VMCOREINFO_SYMBOL(log_next_idx);
676 /*
677 * Export struct log size and field offsets. User space tools can
678 * parse it and detect any changes to structure down the line.
679 */
680 VMCOREINFO_STRUCT_SIZE(log);
681 VMCOREINFO_OFFSET(log, ts_nsec);
682 VMCOREINFO_OFFSET(log, len);
683 VMCOREINFO_OFFSET(log, text_len);
684 VMCOREINFO_OFFSET(log, dict_len);
685 }
686 #endif
687
688 /* requested log_buf_len from kernel cmdline */
689 static unsigned long __initdata new_log_buf_len;
690
691 /* save requested log_buf_len since it's too early to process it */
692 static int __init log_buf_len_setup(char *str)
693 {
694 unsigned size = memparse(str, &str);
695
696 if (size)
697 size = roundup_pow_of_two(size);
698 if (size > log_buf_len)
699 new_log_buf_len = size;
700
701 return 0;
702 }
703 early_param("log_buf_len", log_buf_len_setup);
704
705 void __init setup_log_buf(int early)
706 {
707 unsigned long flags;
708 char *new_log_buf;
709 int free;
710
711 if (!new_log_buf_len)
712 return;
713
714 if (early) {
715 unsigned long mem;
716
717 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
718 if (!mem)
719 return;
720 new_log_buf = __va(mem);
721 } else {
722 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
723 }
724
725 if (unlikely(!new_log_buf)) {
726 pr_err("log_buf_len: %ld bytes not available\n",
727 new_log_buf_len);
728 return;
729 }
730
731 raw_spin_lock_irqsave(&logbuf_lock, flags);
732 log_buf_len = new_log_buf_len;
733 log_buf = new_log_buf;
734 new_log_buf_len = 0;
735 free = __LOG_BUF_LEN - log_next_idx;
736 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
737 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
738
739 pr_info("log_buf_len: %d\n", log_buf_len);
740 pr_info("early log buf free: %d(%d%%)\n",
741 free, (free * 100) / __LOG_BUF_LEN);
742 }
743
744 static bool __read_mostly ignore_loglevel;
745
746 static int __init ignore_loglevel_setup(char *str)
747 {
748 ignore_loglevel = 1;
749 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
750
751 return 0;
752 }
753
754 early_param("ignore_loglevel", ignore_loglevel_setup);
755 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
756 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
757 "print all kernel messages to the console.");
758
759 #ifdef CONFIG_BOOT_PRINTK_DELAY
760
761 static int boot_delay; /* msecs delay after each printk during bootup */
762 static unsigned long long loops_per_msec; /* based on boot_delay */
763
764 static int __init boot_delay_setup(char *str)
765 {
766 unsigned long lpj;
767
768 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
769 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
770
771 get_option(&str, &boot_delay);
772 if (boot_delay > 10 * 1000)
773 boot_delay = 0;
774
775 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
776 "HZ: %d, loops_per_msec: %llu\n",
777 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
778 return 1;
779 }
780 __setup("boot_delay=", boot_delay_setup);
781
782 static void boot_delay_msec(int level)
783 {
784 unsigned long long k;
785 unsigned long timeout;
786
787 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
788 || (level >= console_loglevel && !ignore_loglevel)) {
789 return;
790 }
791
792 k = (unsigned long long)loops_per_msec * boot_delay;
793
794 timeout = jiffies + msecs_to_jiffies(boot_delay);
795 while (k) {
796 k--;
797 cpu_relax();
798 /*
799 * use (volatile) jiffies to prevent
800 * compiler reduction; loop termination via jiffies
801 * is secondary and may or may not happen.
802 */
803 if (time_after(jiffies, timeout))
804 break;
805 touch_nmi_watchdog();
806 }
807 }
808 #else
809 static inline void boot_delay_msec(int level)
810 {
811 }
812 #endif
813
814 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
815 int dmesg_restrict = 1;
816 #else
817 int dmesg_restrict;
818 #endif
819
820 static int syslog_action_restricted(int type)
821 {
822 if (dmesg_restrict)
823 return 1;
824 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
825 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
826 }
827
828 static int check_syslog_permissions(int type, bool from_file)
829 {
830 /*
831 * If this is from /proc/kmsg and we've already opened it, then we've
832 * already done the capabilities checks at open time.
833 */
834 if (from_file && type != SYSLOG_ACTION_OPEN)
835 return 0;
836
837 if (syslog_action_restricted(type)) {
838 if (capable(CAP_SYSLOG))
839 return 0;
840 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
841 if (capable(CAP_SYS_ADMIN)) {
842 printk_once(KERN_WARNING "%s (%d): "
843 "Attempt to access syslog with CAP_SYS_ADMIN "
844 "but no CAP_SYSLOG (deprecated).\n",
845 current->comm, task_pid_nr(current));
846 return 0;
847 }
848 return -EPERM;
849 }
850 return 0;
851 }
852
853 #if defined(CONFIG_PRINTK_TIME)
854 static bool printk_time = 1;
855 #else
856 static bool printk_time;
857 #endif
858 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
859
860 static size_t print_time(u64 ts, char *buf)
861 {
862 unsigned long rem_nsec;
863
864 if (!printk_time)
865 return 0;
866
867 rem_nsec = do_div(ts, 1000000000);
868
869 if (!buf)
870 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
871
872 return sprintf(buf, "[%5lu.%06lu] ",
873 (unsigned long)ts, rem_nsec / 1000);
874 }
875
876 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
877 {
878 size_t len = 0;
879 unsigned int prefix = (msg->facility << 3) | msg->level;
880
881 if (syslog) {
882 if (buf) {
883 len += sprintf(buf, "<%u>", prefix);
884 } else {
885 len += 3;
886 if (prefix > 999)
887 len += 3;
888 else if (prefix > 99)
889 len += 2;
890 else if (prefix > 9)
891 len++;
892 }
893 }
894
895 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
896 return len;
897 }
898
899 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
900 bool syslog, char *buf, size_t size)
901 {
902 const char *text = log_text(msg);
903 size_t text_size = msg->text_len;
904 bool prefix = true;
905 bool newline = true;
906 size_t len = 0;
907
908 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
909 prefix = false;
910
911 if (msg->flags & LOG_CONT) {
912 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
913 prefix = false;
914
915 if (!(msg->flags & LOG_NEWLINE))
916 newline = false;
917 }
918
919 do {
920 const char *next = memchr(text, '\n', text_size);
921 size_t text_len;
922
923 if (next) {
924 text_len = next - text;
925 next++;
926 text_size -= next - text;
927 } else {
928 text_len = text_size;
929 }
930
931 if (buf) {
932 if (print_prefix(msg, syslog, NULL) +
933 text_len + 1 >= size - len)
934 break;
935
936 if (prefix)
937 len += print_prefix(msg, syslog, buf + len);
938 memcpy(buf + len, text, text_len);
939 len += text_len;
940 if (next || newline)
941 buf[len++] = '\n';
942 } else {
943 /* SYSLOG_ACTION_* buffer size only calculation */
944 if (prefix)
945 len += print_prefix(msg, syslog, NULL);
946 len += text_len;
947 if (next || newline)
948 len++;
949 }
950
951 prefix = true;
952 text = next;
953 } while (text);
954
955 return len;
956 }
957
958 static int syslog_print(char __user *buf, int size)
959 {
960 char *text;
961 struct log *msg;
962 int len = 0;
963
964 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
965 if (!text)
966 return -ENOMEM;
967
968 while (size > 0) {
969 size_t n;
970 size_t skip;
971
972 raw_spin_lock_irq(&logbuf_lock);
973 if (syslog_seq < log_first_seq) {
974 /* messages are gone, move to first one */
975 syslog_seq = log_first_seq;
976 syslog_idx = log_first_idx;
977 syslog_prev = 0;
978 syslog_partial = 0;
979 }
980 if (syslog_seq == log_next_seq) {
981 raw_spin_unlock_irq(&logbuf_lock);
982 break;
983 }
984
985 skip = syslog_partial;
986 msg = log_from_idx(syslog_idx);
987 n = msg_print_text(msg, syslog_prev, true, text,
988 LOG_LINE_MAX + PREFIX_MAX);
989 if (n - syslog_partial <= size) {
990 /* message fits into buffer, move forward */
991 syslog_idx = log_next(syslog_idx);
992 syslog_seq++;
993 syslog_prev = msg->flags;
994 n -= syslog_partial;
995 syslog_partial = 0;
996 } else if (!len){
997 /* partial read(), remember position */
998 n = size;
999 syslog_partial += n;
1000 } else
1001 n = 0;
1002 raw_spin_unlock_irq(&logbuf_lock);
1003
1004 if (!n)
1005 break;
1006
1007 if (copy_to_user(buf, text + skip, n)) {
1008 if (!len)
1009 len = -EFAULT;
1010 break;
1011 }
1012
1013 len += n;
1014 size -= n;
1015 buf += n;
1016 }
1017
1018 kfree(text);
1019 return len;
1020 }
1021
1022 static int syslog_print_all(char __user *buf, int size, bool clear)
1023 {
1024 char *text;
1025 int len = 0;
1026
1027 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1028 if (!text)
1029 return -ENOMEM;
1030
1031 raw_spin_lock_irq(&logbuf_lock);
1032 if (buf) {
1033 u64 next_seq;
1034 u64 seq;
1035 u32 idx;
1036 enum log_flags prev;
1037
1038 if (clear_seq < log_first_seq) {
1039 /* messages are gone, move to first available one */
1040 clear_seq = log_first_seq;
1041 clear_idx = log_first_idx;
1042 }
1043
1044 /*
1045 * Find first record that fits, including all following records,
1046 * into the user-provided buffer for this dump.
1047 */
1048 seq = clear_seq;
1049 idx = clear_idx;
1050 prev = 0;
1051 while (seq < log_next_seq) {
1052 struct log *msg = log_from_idx(idx);
1053
1054 len += msg_print_text(msg, prev, true, NULL, 0);
1055 prev = msg->flags;
1056 idx = log_next(idx);
1057 seq++;
1058 }
1059
1060 /* move first record forward until length fits into the buffer */
1061 seq = clear_seq;
1062 idx = clear_idx;
1063 prev = 0;
1064 while (len > size && seq < log_next_seq) {
1065 struct log *msg = log_from_idx(idx);
1066
1067 len -= msg_print_text(msg, prev, true, NULL, 0);
1068 prev = msg->flags;
1069 idx = log_next(idx);
1070 seq++;
1071 }
1072
1073 /* last message fitting into this dump */
1074 next_seq = log_next_seq;
1075
1076 len = 0;
1077 prev = 0;
1078 while (len >= 0 && seq < next_seq) {
1079 struct log *msg = log_from_idx(idx);
1080 int textlen;
1081
1082 textlen = msg_print_text(msg, prev, true, text,
1083 LOG_LINE_MAX + PREFIX_MAX);
1084 if (textlen < 0) {
1085 len = textlen;
1086 break;
1087 }
1088 idx = log_next(idx);
1089 seq++;
1090 prev = msg->flags;
1091
1092 raw_spin_unlock_irq(&logbuf_lock);
1093 if (copy_to_user(buf + len, text, textlen))
1094 len = -EFAULT;
1095 else
1096 len += textlen;
1097 raw_spin_lock_irq(&logbuf_lock);
1098
1099 if (seq < log_first_seq) {
1100 /* messages are gone, move to next one */
1101 seq = log_first_seq;
1102 idx = log_first_idx;
1103 prev = 0;
1104 }
1105 }
1106 }
1107
1108 if (clear) {
1109 clear_seq = log_next_seq;
1110 clear_idx = log_next_idx;
1111 }
1112 raw_spin_unlock_irq(&logbuf_lock);
1113
1114 kfree(text);
1115 return len;
1116 }
1117
1118 int do_syslog(int type, char __user *buf, int len, bool from_file)
1119 {
1120 bool clear = false;
1121 static int saved_console_loglevel = -1;
1122 int error;
1123
1124 error = check_syslog_permissions(type, from_file);
1125 if (error)
1126 goto out;
1127
1128 error = security_syslog(type);
1129 if (error)
1130 return error;
1131
1132 switch (type) {
1133 case SYSLOG_ACTION_CLOSE: /* Close log */
1134 break;
1135 case SYSLOG_ACTION_OPEN: /* Open log */
1136 break;
1137 case SYSLOG_ACTION_READ: /* Read from log */
1138 error = -EINVAL;
1139 if (!buf || len < 0)
1140 goto out;
1141 error = 0;
1142 if (!len)
1143 goto out;
1144 if (!access_ok(VERIFY_WRITE, buf, len)) {
1145 error = -EFAULT;
1146 goto out;
1147 }
1148 error = wait_event_interruptible(log_wait,
1149 syslog_seq != log_next_seq);
1150 if (error)
1151 goto out;
1152 error = syslog_print(buf, len);
1153 break;
1154 /* Read/clear last kernel messages */
1155 case SYSLOG_ACTION_READ_CLEAR:
1156 clear = true;
1157 /* FALL THRU */
1158 /* Read last kernel messages */
1159 case SYSLOG_ACTION_READ_ALL:
1160 error = -EINVAL;
1161 if (!buf || len < 0)
1162 goto out;
1163 error = 0;
1164 if (!len)
1165 goto out;
1166 if (!access_ok(VERIFY_WRITE, buf, len)) {
1167 error = -EFAULT;
1168 goto out;
1169 }
1170 error = syslog_print_all(buf, len, clear);
1171 break;
1172 /* Clear ring buffer */
1173 case SYSLOG_ACTION_CLEAR:
1174 syslog_print_all(NULL, 0, true);
1175 break;
1176 /* Disable logging to console */
1177 case SYSLOG_ACTION_CONSOLE_OFF:
1178 if (saved_console_loglevel == -1)
1179 saved_console_loglevel = console_loglevel;
1180 console_loglevel = minimum_console_loglevel;
1181 break;
1182 /* Enable logging to console */
1183 case SYSLOG_ACTION_CONSOLE_ON:
1184 if (saved_console_loglevel != -1) {
1185 console_loglevel = saved_console_loglevel;
1186 saved_console_loglevel = -1;
1187 }
1188 break;
1189 /* Set level of messages printed to console */
1190 case SYSLOG_ACTION_CONSOLE_LEVEL:
1191 error = -EINVAL;
1192 if (len < 1 || len > 8)
1193 goto out;
1194 if (len < minimum_console_loglevel)
1195 len = minimum_console_loglevel;
1196 console_loglevel = len;
1197 /* Implicitly re-enable logging to console */
1198 saved_console_loglevel = -1;
1199 error = 0;
1200 break;
1201 /* Number of chars in the log buffer */
1202 case SYSLOG_ACTION_SIZE_UNREAD:
1203 raw_spin_lock_irq(&logbuf_lock);
1204 if (syslog_seq < log_first_seq) {
1205 /* messages are gone, move to first one */
1206 syslog_seq = log_first_seq;
1207 syslog_idx = log_first_idx;
1208 syslog_prev = 0;
1209 syslog_partial = 0;
1210 }
1211 if (from_file) {
1212 /*
1213 * Short-cut for poll(/"proc/kmsg") which simply checks
1214 * for pending data, not the size; return the count of
1215 * records, not the length.
1216 */
1217 error = log_next_idx - syslog_idx;
1218 } else {
1219 u64 seq = syslog_seq;
1220 u32 idx = syslog_idx;
1221 enum log_flags prev = syslog_prev;
1222
1223 error = 0;
1224 while (seq < log_next_seq) {
1225 struct log *msg = log_from_idx(idx);
1226
1227 error += msg_print_text(msg, prev, true, NULL, 0);
1228 idx = log_next(idx);
1229 seq++;
1230 prev = msg->flags;
1231 }
1232 error -= syslog_partial;
1233 }
1234 raw_spin_unlock_irq(&logbuf_lock);
1235 break;
1236 /* Size of the log buffer */
1237 case SYSLOG_ACTION_SIZE_BUFFER:
1238 error = log_buf_len;
1239 break;
1240 default:
1241 error = -EINVAL;
1242 break;
1243 }
1244 out:
1245 return error;
1246 }
1247
1248 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1249 {
1250 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1251 }
1252
1253 /*
1254 * Call the console drivers, asking them to write out
1255 * log_buf[start] to log_buf[end - 1].
1256 * The console_lock must be held.
1257 */
1258 static void call_console_drivers(int level, const char *text, size_t len)
1259 {
1260 struct console *con;
1261
1262 trace_console(text, len);
1263
1264 if (level >= console_loglevel && !ignore_loglevel)
1265 return;
1266 if (!console_drivers)
1267 return;
1268
1269 for_each_console(con) {
1270 if (exclusive_console && con != exclusive_console)
1271 continue;
1272 if (!(con->flags & CON_ENABLED))
1273 continue;
1274 if (!con->write)
1275 continue;
1276 if (!cpu_online(smp_processor_id()) &&
1277 !(con->flags & CON_ANYTIME))
1278 continue;
1279 con->write(con, text, len);
1280 }
1281 }
1282
1283 /*
1284 * Zap console related locks when oopsing. Only zap at most once
1285 * every 10 seconds, to leave time for slow consoles to print a
1286 * full oops.
1287 */
1288 static void zap_locks(void)
1289 {
1290 static unsigned long oops_timestamp;
1291
1292 if (time_after_eq(jiffies, oops_timestamp) &&
1293 !time_after(jiffies, oops_timestamp + 30 * HZ))
1294 return;
1295
1296 oops_timestamp = jiffies;
1297
1298 debug_locks_off();
1299 /* If a crash is occurring, make sure we can't deadlock */
1300 raw_spin_lock_init(&logbuf_lock);
1301 /* And make sure that we print immediately */
1302 sema_init(&console_sem, 1);
1303 }
1304
1305 /* Check if we have any console registered that can be called early in boot. */
1306 static int have_callable_console(void)
1307 {
1308 struct console *con;
1309
1310 for_each_console(con)
1311 if (con->flags & CON_ANYTIME)
1312 return 1;
1313
1314 return 0;
1315 }
1316
1317 /*
1318 * Can we actually use the console at this time on this cpu?
1319 *
1320 * Console drivers may assume that per-cpu resources have
1321 * been allocated. So unless they're explicitly marked as
1322 * being able to cope (CON_ANYTIME) don't call them until
1323 * this CPU is officially up.
1324 */
1325 static inline int can_use_console(unsigned int cpu)
1326 {
1327 return cpu_online(cpu) || have_callable_console();
1328 }
1329
1330 /*
1331 * Try to get console ownership to actually show the kernel
1332 * messages from a 'printk'. Return true (and with the
1333 * console_lock held, and 'console_locked' set) if it
1334 * is successful, false otherwise.
1335 *
1336 * This gets called with the 'logbuf_lock' spinlock held and
1337 * interrupts disabled. It should return with 'lockbuf_lock'
1338 * released but interrupts still disabled.
1339 */
1340 static int console_trylock_for_printk(unsigned int cpu)
1341 __releases(&logbuf_lock)
1342 {
1343 int retval = 0, wake = 0;
1344
1345 if (console_trylock()) {
1346 retval = 1;
1347
1348 /*
1349 * If we can't use the console, we need to release
1350 * the console semaphore by hand to avoid flushing
1351 * the buffer. We need to hold the console semaphore
1352 * in order to do this test safely.
1353 */
1354 if (!can_use_console(cpu)) {
1355 console_locked = 0;
1356 wake = 1;
1357 retval = 0;
1358 }
1359 }
1360 logbuf_cpu = UINT_MAX;
1361 if (wake)
1362 up(&console_sem);
1363 raw_spin_unlock(&logbuf_lock);
1364 return retval;
1365 }
1366
1367 int printk_delay_msec __read_mostly;
1368
1369 static inline void printk_delay(void)
1370 {
1371 if (unlikely(printk_delay_msec)) {
1372 int m = printk_delay_msec;
1373
1374 while (m--) {
1375 mdelay(1);
1376 touch_nmi_watchdog();
1377 }
1378 }
1379 }
1380
1381 /*
1382 * Continuation lines are buffered, and not committed to the record buffer
1383 * until the line is complete, or a race forces it. The line fragments
1384 * though, are printed immediately to the consoles to ensure everything has
1385 * reached the console in case of a kernel crash.
1386 */
1387 static struct cont {
1388 char buf[LOG_LINE_MAX];
1389 size_t len; /* length == 0 means unused buffer */
1390 size_t cons; /* bytes written to console */
1391 struct task_struct *owner; /* task of first print*/
1392 u64 ts_nsec; /* time of first print */
1393 u8 level; /* log level of first message */
1394 u8 facility; /* log level of first message */
1395 enum log_flags flags; /* prefix, newline flags */
1396 bool flushed:1; /* buffer sealed and committed */
1397 } cont;
1398
1399 static void cont_flush(enum log_flags flags)
1400 {
1401 if (cont.flushed)
1402 return;
1403 if (cont.len == 0)
1404 return;
1405
1406 if (cont.cons) {
1407 /*
1408 * If a fragment of this line was directly flushed to the
1409 * console; wait for the console to pick up the rest of the
1410 * line. LOG_NOCONS suppresses a duplicated output.
1411 */
1412 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1413 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1414 cont.flags = flags;
1415 cont.flushed = true;
1416 } else {
1417 /*
1418 * If no fragment of this line ever reached the console,
1419 * just submit it to the store and free the buffer.
1420 */
1421 log_store(cont.facility, cont.level, flags, 0,
1422 NULL, 0, cont.buf, cont.len);
1423 cont.len = 0;
1424 }
1425 }
1426
1427 static bool cont_add(int facility, int level, const char *text, size_t len)
1428 {
1429 if (cont.len && cont.flushed)
1430 return false;
1431
1432 if (cont.len + len > sizeof(cont.buf)) {
1433 /* the line gets too long, split it up in separate records */
1434 cont_flush(LOG_CONT);
1435 return false;
1436 }
1437
1438 if (!cont.len) {
1439 cont.facility = facility;
1440 cont.level = level;
1441 cont.owner = current;
1442 cont.ts_nsec = local_clock();
1443 cont.flags = 0;
1444 cont.cons = 0;
1445 cont.flushed = false;
1446 }
1447
1448 memcpy(cont.buf + cont.len, text, len);
1449 cont.len += len;
1450
1451 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1452 cont_flush(LOG_CONT);
1453
1454 return true;
1455 }
1456
1457 static size_t cont_print_text(char *text, size_t size)
1458 {
1459 size_t textlen = 0;
1460 size_t len;
1461
1462 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1463 textlen += print_time(cont.ts_nsec, text);
1464 size -= textlen;
1465 }
1466
1467 len = cont.len - cont.cons;
1468 if (len > 0) {
1469 if (len+1 > size)
1470 len = size-1;
1471 memcpy(text + textlen, cont.buf + cont.cons, len);
1472 textlen += len;
1473 cont.cons = cont.len;
1474 }
1475
1476 if (cont.flushed) {
1477 if (cont.flags & LOG_NEWLINE)
1478 text[textlen++] = '\n';
1479 /* got everything, release buffer */
1480 cont.len = 0;
1481 }
1482 return textlen;
1483 }
1484
1485 asmlinkage int vprintk_emit(int facility, int level,
1486 const char *dict, size_t dictlen,
1487 const char *fmt, va_list args)
1488 {
1489 static int recursion_bug;
1490 static char textbuf[LOG_LINE_MAX];
1491 char *text = textbuf;
1492 size_t text_len;
1493 enum log_flags lflags = 0;
1494 unsigned long flags;
1495 int this_cpu;
1496 int printed_len = 0;
1497
1498 boot_delay_msec(level);
1499 printk_delay();
1500
1501 /* This stops the holder of console_sem just where we want him */
1502 local_irq_save(flags);
1503 this_cpu = smp_processor_id();
1504
1505 /*
1506 * Ouch, printk recursed into itself!
1507 */
1508 if (unlikely(logbuf_cpu == this_cpu)) {
1509 /*
1510 * If a crash is occurring during printk() on this CPU,
1511 * then try to get the crash message out but make sure
1512 * we can't deadlock. Otherwise just return to avoid the
1513 * recursion and return - but flag the recursion so that
1514 * it can be printed at the next appropriate moment:
1515 */
1516 if (!oops_in_progress && !lockdep_recursing(current)) {
1517 recursion_bug = 1;
1518 goto out_restore_irqs;
1519 }
1520 zap_locks();
1521 }
1522
1523 lockdep_off();
1524 raw_spin_lock(&logbuf_lock);
1525 logbuf_cpu = this_cpu;
1526
1527 if (recursion_bug) {
1528 static const char recursion_msg[] =
1529 "BUG: recent printk recursion!";
1530
1531 recursion_bug = 0;
1532 printed_len += strlen(recursion_msg);
1533 /* emit KERN_CRIT message */
1534 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1535 NULL, 0, recursion_msg, printed_len);
1536 }
1537
1538 /*
1539 * The printf needs to come first; we need the syslog
1540 * prefix which might be passed-in as a parameter.
1541 */
1542 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1543
1544 /* mark and strip a trailing newline */
1545 if (text_len && text[text_len-1] == '\n') {
1546 text_len--;
1547 lflags |= LOG_NEWLINE;
1548 }
1549
1550 /* strip kernel syslog prefix and extract log level or control flags */
1551 if (facility == 0) {
1552 int kern_level = printk_get_level(text);
1553
1554 if (kern_level) {
1555 const char *end_of_header = printk_skip_level(text);
1556 switch (kern_level) {
1557 case '0' ... '7':
1558 if (level == -1)
1559 level = kern_level - '0';
1560 case 'd': /* KERN_DEFAULT */
1561 lflags |= LOG_PREFIX;
1562 case 'c': /* KERN_CONT */
1563 break;
1564 }
1565 text_len -= end_of_header - text;
1566 text = (char *)end_of_header;
1567 }
1568 }
1569
1570 if (level == -1)
1571 level = default_message_loglevel;
1572
1573 if (dict)
1574 lflags |= LOG_PREFIX|LOG_NEWLINE;
1575
1576 if (!(lflags & LOG_NEWLINE)) {
1577 /*
1578 * Flush the conflicting buffer. An earlier newline was missing,
1579 * or another task also prints continuation lines.
1580 */
1581 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1582 cont_flush(LOG_NEWLINE);
1583
1584 /* buffer line if possible, otherwise store it right away */
1585 if (!cont_add(facility, level, text, text_len))
1586 log_store(facility, level, lflags | LOG_CONT, 0,
1587 dict, dictlen, text, text_len);
1588 } else {
1589 bool stored = false;
1590
1591 /*
1592 * If an earlier newline was missing and it was the same task,
1593 * either merge it with the current buffer and flush, or if
1594 * there was a race with interrupts (prefix == true) then just
1595 * flush it out and store this line separately.
1596 */
1597 if (cont.len && cont.owner == current) {
1598 if (!(lflags & LOG_PREFIX))
1599 stored = cont_add(facility, level, text, text_len);
1600 cont_flush(LOG_NEWLINE);
1601 }
1602
1603 if (!stored)
1604 log_store(facility, level, lflags, 0,
1605 dict, dictlen, text, text_len);
1606 }
1607 printed_len += text_len;
1608
1609 /*
1610 * Try to acquire and then immediately release the console semaphore.
1611 * The release will print out buffers and wake up /dev/kmsg and syslog()
1612 * users.
1613 *
1614 * The console_trylock_for_printk() function will release 'logbuf_lock'
1615 * regardless of whether it actually gets the console semaphore or not.
1616 */
1617 if (console_trylock_for_printk(this_cpu))
1618 console_unlock();
1619
1620 lockdep_on();
1621 out_restore_irqs:
1622 local_irq_restore(flags);
1623
1624 return printed_len;
1625 }
1626 EXPORT_SYMBOL(vprintk_emit);
1627
1628 asmlinkage int vprintk(const char *fmt, va_list args)
1629 {
1630 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1631 }
1632 EXPORT_SYMBOL(vprintk);
1633
1634 asmlinkage int printk_emit(int facility, int level,
1635 const char *dict, size_t dictlen,
1636 const char *fmt, ...)
1637 {
1638 va_list args;
1639 int r;
1640
1641 va_start(args, fmt);
1642 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1643 va_end(args);
1644
1645 return r;
1646 }
1647 EXPORT_SYMBOL(printk_emit);
1648
1649 /**
1650 * printk - print a kernel message
1651 * @fmt: format string
1652 *
1653 * This is printk(). It can be called from any context. We want it to work.
1654 *
1655 * We try to grab the console_lock. If we succeed, it's easy - we log the
1656 * output and call the console drivers. If we fail to get the semaphore, we
1657 * place the output into the log buffer and return. The current holder of
1658 * the console_sem will notice the new output in console_unlock(); and will
1659 * send it to the consoles before releasing the lock.
1660 *
1661 * One effect of this deferred printing is that code which calls printk() and
1662 * then changes console_loglevel may break. This is because console_loglevel
1663 * is inspected when the actual printing occurs.
1664 *
1665 * See also:
1666 * printf(3)
1667 *
1668 * See the vsnprintf() documentation for format string extensions over C99.
1669 */
1670 asmlinkage int printk(const char *fmt, ...)
1671 {
1672 va_list args;
1673 int r;
1674
1675 #ifdef CONFIG_KGDB_KDB
1676 if (unlikely(kdb_trap_printk)) {
1677 va_start(args, fmt);
1678 r = vkdb_printf(fmt, args);
1679 va_end(args);
1680 return r;
1681 }
1682 #endif
1683 va_start(args, fmt);
1684 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1685 va_end(args);
1686
1687 return r;
1688 }
1689 EXPORT_SYMBOL(printk);
1690
1691 #else /* CONFIG_PRINTK */
1692
1693 #define LOG_LINE_MAX 0
1694 #define PREFIX_MAX 0
1695 #define LOG_LINE_MAX 0
1696 static u64 syslog_seq;
1697 static u32 syslog_idx;
1698 static u64 console_seq;
1699 static u32 console_idx;
1700 static enum log_flags syslog_prev;
1701 static u64 log_first_seq;
1702 static u32 log_first_idx;
1703 static u64 log_next_seq;
1704 static enum log_flags console_prev;
1705 static struct cont {
1706 size_t len;
1707 size_t cons;
1708 u8 level;
1709 bool flushed:1;
1710 } cont;
1711 static struct log *log_from_idx(u32 idx) { return NULL; }
1712 static u32 log_next(u32 idx) { return 0; }
1713 static void call_console_drivers(int level, const char *text, size_t len) {}
1714 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1715 bool syslog, char *buf, size_t size) { return 0; }
1716 static size_t cont_print_text(char *text, size_t size) { return 0; }
1717
1718 #endif /* CONFIG_PRINTK */
1719
1720 #ifdef CONFIG_EARLY_PRINTK
1721 struct console *early_console;
1722
1723 void early_vprintk(const char *fmt, va_list ap)
1724 {
1725 if (early_console) {
1726 char buf[512];
1727 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1728
1729 early_console->write(early_console, buf, n);
1730 }
1731 }
1732
1733 asmlinkage void early_printk(const char *fmt, ...)
1734 {
1735 va_list ap;
1736
1737 va_start(ap, fmt);
1738 early_vprintk(fmt, ap);
1739 va_end(ap);
1740 }
1741 #endif
1742
1743 static int __add_preferred_console(char *name, int idx, char *options,
1744 char *brl_options)
1745 {
1746 struct console_cmdline *c;
1747 int i;
1748
1749 /*
1750 * See if this tty is not yet registered, and
1751 * if we have a slot free.
1752 */
1753 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1754 if (strcmp(console_cmdline[i].name, name) == 0 &&
1755 console_cmdline[i].index == idx) {
1756 if (!brl_options)
1757 selected_console = i;
1758 return 0;
1759 }
1760 if (i == MAX_CMDLINECONSOLES)
1761 return -E2BIG;
1762 if (!brl_options)
1763 selected_console = i;
1764 c = &console_cmdline[i];
1765 strlcpy(c->name, name, sizeof(c->name));
1766 c->options = options;
1767 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1768 c->brl_options = brl_options;
1769 #endif
1770 c->index = idx;
1771 return 0;
1772 }
1773 /*
1774 * Set up a list of consoles. Called from init/main.c
1775 */
1776 static int __init console_setup(char *str)
1777 {
1778 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1779 char *s, *options, *brl_options = NULL;
1780 int idx;
1781
1782 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1783 if (!memcmp(str, "brl,", 4)) {
1784 brl_options = "";
1785 str += 4;
1786 } else if (!memcmp(str, "brl=", 4)) {
1787 brl_options = str + 4;
1788 str = strchr(brl_options, ',');
1789 if (!str) {
1790 printk(KERN_ERR "need port name after brl=\n");
1791 return 1;
1792 }
1793 *(str++) = 0;
1794 }
1795 #endif
1796
1797 /*
1798 * Decode str into name, index, options.
1799 */
1800 if (str[0] >= '0' && str[0] <= '9') {
1801 strcpy(buf, "ttyS");
1802 strncpy(buf + 4, str, sizeof(buf) - 5);
1803 } else {
1804 strncpy(buf, str, sizeof(buf) - 1);
1805 }
1806 buf[sizeof(buf) - 1] = 0;
1807 if ((options = strchr(str, ',')) != NULL)
1808 *(options++) = 0;
1809 #ifdef __sparc__
1810 if (!strcmp(str, "ttya"))
1811 strcpy(buf, "ttyS0");
1812 if (!strcmp(str, "ttyb"))
1813 strcpy(buf, "ttyS1");
1814 #endif
1815 for (s = buf; *s; s++)
1816 if ((*s >= '0' && *s <= '9') || *s == ',')
1817 break;
1818 idx = simple_strtoul(s, NULL, 10);
1819 *s = 0;
1820
1821 __add_preferred_console(buf, idx, options, brl_options);
1822 console_set_on_cmdline = 1;
1823 return 1;
1824 }
1825 __setup("console=", console_setup);
1826
1827 /**
1828 * add_preferred_console - add a device to the list of preferred consoles.
1829 * @name: device name
1830 * @idx: device index
1831 * @options: options for this console
1832 *
1833 * The last preferred console added will be used for kernel messages
1834 * and stdin/out/err for init. Normally this is used by console_setup
1835 * above to handle user-supplied console arguments; however it can also
1836 * be used by arch-specific code either to override the user or more
1837 * commonly to provide a default console (ie from PROM variables) when
1838 * the user has not supplied one.
1839 */
1840 int add_preferred_console(char *name, int idx, char *options)
1841 {
1842 return __add_preferred_console(name, idx, options, NULL);
1843 }
1844
1845 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1846 {
1847 struct console_cmdline *c;
1848 int i;
1849
1850 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1851 if (strcmp(console_cmdline[i].name, name) == 0 &&
1852 console_cmdline[i].index == idx) {
1853 c = &console_cmdline[i];
1854 strlcpy(c->name, name_new, sizeof(c->name));
1855 c->name[sizeof(c->name) - 1] = 0;
1856 c->options = options;
1857 c->index = idx_new;
1858 return i;
1859 }
1860 /* not found */
1861 return -1;
1862 }
1863
1864 bool console_suspend_enabled = 1;
1865 EXPORT_SYMBOL(console_suspend_enabled);
1866
1867 static int __init console_suspend_disable(char *str)
1868 {
1869 console_suspend_enabled = 0;
1870 return 1;
1871 }
1872 __setup("no_console_suspend", console_suspend_disable);
1873 module_param_named(console_suspend, console_suspend_enabled,
1874 bool, S_IRUGO | S_IWUSR);
1875 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1876 " and hibernate operations");
1877
1878 /**
1879 * suspend_console - suspend the console subsystem
1880 *
1881 * This disables printk() while we go into suspend states
1882 */
1883 void suspend_console(void)
1884 {
1885 if (!console_suspend_enabled)
1886 return;
1887 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1888 console_lock();
1889 console_suspended = 1;
1890 up(&console_sem);
1891 }
1892
1893 void resume_console(void)
1894 {
1895 if (!console_suspend_enabled)
1896 return;
1897 down(&console_sem);
1898 console_suspended = 0;
1899 console_unlock();
1900 }
1901
1902 /**
1903 * console_cpu_notify - print deferred console messages after CPU hotplug
1904 * @self: notifier struct
1905 * @action: CPU hotplug event
1906 * @hcpu: unused
1907 *
1908 * If printk() is called from a CPU that is not online yet, the messages
1909 * will be spooled but will not show up on the console. This function is
1910 * called when a new CPU comes online (or fails to come up), and ensures
1911 * that any such output gets printed.
1912 */
1913 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1914 unsigned long action, void *hcpu)
1915 {
1916 switch (action) {
1917 case CPU_ONLINE:
1918 case CPU_DEAD:
1919 case CPU_DOWN_FAILED:
1920 case CPU_UP_CANCELED:
1921 console_lock();
1922 console_unlock();
1923 }
1924 return NOTIFY_OK;
1925 }
1926
1927 /**
1928 * console_lock - lock the console system for exclusive use.
1929 *
1930 * Acquires a lock which guarantees that the caller has
1931 * exclusive access to the console system and the console_drivers list.
1932 *
1933 * Can sleep, returns nothing.
1934 */
1935 void console_lock(void)
1936 {
1937 might_sleep();
1938
1939 down(&console_sem);
1940 if (console_suspended)
1941 return;
1942 console_locked = 1;
1943 console_may_schedule = 1;
1944 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1945 }
1946 EXPORT_SYMBOL(console_lock);
1947
1948 /**
1949 * console_trylock - try to lock the console system for exclusive use.
1950 *
1951 * Tried to acquire a lock which guarantees that the caller has
1952 * exclusive access to the console system and the console_drivers list.
1953 *
1954 * returns 1 on success, and 0 on failure to acquire the lock.
1955 */
1956 int console_trylock(void)
1957 {
1958 if (down_trylock(&console_sem))
1959 return 0;
1960 if (console_suspended) {
1961 up(&console_sem);
1962 return 0;
1963 }
1964 console_locked = 1;
1965 console_may_schedule = 0;
1966 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1967 return 1;
1968 }
1969 EXPORT_SYMBOL(console_trylock);
1970
1971 int is_console_locked(void)
1972 {
1973 return console_locked;
1974 }
1975
1976 static void console_cont_flush(char *text, size_t size)
1977 {
1978 unsigned long flags;
1979 size_t len;
1980
1981 raw_spin_lock_irqsave(&logbuf_lock, flags);
1982
1983 if (!cont.len)
1984 goto out;
1985
1986 /*
1987 * We still queue earlier records, likely because the console was
1988 * busy. The earlier ones need to be printed before this one, we
1989 * did not flush any fragment so far, so just let it queue up.
1990 */
1991 if (console_seq < log_next_seq && !cont.cons)
1992 goto out;
1993
1994 len = cont_print_text(text, size);
1995 raw_spin_unlock(&logbuf_lock);
1996 stop_critical_timings();
1997 call_console_drivers(cont.level, text, len);
1998 start_critical_timings();
1999 local_irq_restore(flags);
2000 return;
2001 out:
2002 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2003 }
2004
2005 /**
2006 * console_unlock - unlock the console system
2007 *
2008 * Releases the console_lock which the caller holds on the console system
2009 * and the console driver list.
2010 *
2011 * While the console_lock was held, console output may have been buffered
2012 * by printk(). If this is the case, console_unlock(); emits
2013 * the output prior to releasing the lock.
2014 *
2015 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2016 *
2017 * console_unlock(); may be called from any context.
2018 */
2019 void console_unlock(void)
2020 {
2021 static char text[LOG_LINE_MAX + PREFIX_MAX];
2022 static u64 seen_seq;
2023 unsigned long flags;
2024 bool wake_klogd = false;
2025 bool retry;
2026
2027 if (console_suspended) {
2028 up(&console_sem);
2029 return;
2030 }
2031
2032 console_may_schedule = 0;
2033
2034 /* flush buffered message fragment immediately to console */
2035 console_cont_flush(text, sizeof(text));
2036 again:
2037 for (;;) {
2038 struct log *msg;
2039 size_t len;
2040 int level;
2041
2042 raw_spin_lock_irqsave(&logbuf_lock, flags);
2043 if (seen_seq != log_next_seq) {
2044 wake_klogd = true;
2045 seen_seq = log_next_seq;
2046 }
2047
2048 if (console_seq < log_first_seq) {
2049 /* messages are gone, move to first one */
2050 console_seq = log_first_seq;
2051 console_idx = log_first_idx;
2052 console_prev = 0;
2053 }
2054 skip:
2055 if (console_seq == log_next_seq)
2056 break;
2057
2058 msg = log_from_idx(console_idx);
2059 if (msg->flags & LOG_NOCONS) {
2060 /*
2061 * Skip record we have buffered and already printed
2062 * directly to the console when we received it.
2063 */
2064 console_idx = log_next(console_idx);
2065 console_seq++;
2066 /*
2067 * We will get here again when we register a new
2068 * CON_PRINTBUFFER console. Clear the flag so we
2069 * will properly dump everything later.
2070 */
2071 msg->flags &= ~LOG_NOCONS;
2072 console_prev = msg->flags;
2073 goto skip;
2074 }
2075
2076 level = msg->level;
2077 len = msg_print_text(msg, console_prev, false,
2078 text, sizeof(text));
2079 console_idx = log_next(console_idx);
2080 console_seq++;
2081 console_prev = msg->flags;
2082 raw_spin_unlock(&logbuf_lock);
2083
2084 stop_critical_timings(); /* don't trace print latency */
2085 call_console_drivers(level, text, len);
2086 start_critical_timings();
2087 local_irq_restore(flags);
2088 }
2089 console_locked = 0;
2090 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2091
2092 /* Release the exclusive_console once it is used */
2093 if (unlikely(exclusive_console))
2094 exclusive_console = NULL;
2095
2096 raw_spin_unlock(&logbuf_lock);
2097
2098 up(&console_sem);
2099
2100 /*
2101 * Someone could have filled up the buffer again, so re-check if there's
2102 * something to flush. In case we cannot trylock the console_sem again,
2103 * there's a new owner and the console_unlock() from them will do the
2104 * flush, no worries.
2105 */
2106 raw_spin_lock(&logbuf_lock);
2107 retry = console_seq != log_next_seq;
2108 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2109
2110 if (retry && console_trylock())
2111 goto again;
2112
2113 if (wake_klogd)
2114 wake_up_klogd();
2115 }
2116 EXPORT_SYMBOL(console_unlock);
2117
2118 /**
2119 * console_conditional_schedule - yield the CPU if required
2120 *
2121 * If the console code is currently allowed to sleep, and
2122 * if this CPU should yield the CPU to another task, do
2123 * so here.
2124 *
2125 * Must be called within console_lock();.
2126 */
2127 void __sched console_conditional_schedule(void)
2128 {
2129 if (console_may_schedule)
2130 cond_resched();
2131 }
2132 EXPORT_SYMBOL(console_conditional_schedule);
2133
2134 void console_unblank(void)
2135 {
2136 struct console *c;
2137
2138 /*
2139 * console_unblank can no longer be called in interrupt context unless
2140 * oops_in_progress is set to 1..
2141 */
2142 if (oops_in_progress) {
2143 if (down_trylock(&console_sem) != 0)
2144 return;
2145 } else
2146 console_lock();
2147
2148 console_locked = 1;
2149 console_may_schedule = 0;
2150 for_each_console(c)
2151 if ((c->flags & CON_ENABLED) && c->unblank)
2152 c->unblank();
2153 console_unlock();
2154 }
2155
2156 /*
2157 * Return the console tty driver structure and its associated index
2158 */
2159 struct tty_driver *console_device(int *index)
2160 {
2161 struct console *c;
2162 struct tty_driver *driver = NULL;
2163
2164 console_lock();
2165 for_each_console(c) {
2166 if (!c->device)
2167 continue;
2168 driver = c->device(c, index);
2169 if (driver)
2170 break;
2171 }
2172 console_unlock();
2173 return driver;
2174 }
2175
2176 /*
2177 * Prevent further output on the passed console device so that (for example)
2178 * serial drivers can disable console output before suspending a port, and can
2179 * re-enable output afterwards.
2180 */
2181 void console_stop(struct console *console)
2182 {
2183 console_lock();
2184 console->flags &= ~CON_ENABLED;
2185 console_unlock();
2186 }
2187 EXPORT_SYMBOL(console_stop);
2188
2189 void console_start(struct console *console)
2190 {
2191 console_lock();
2192 console->flags |= CON_ENABLED;
2193 console_unlock();
2194 }
2195 EXPORT_SYMBOL(console_start);
2196
2197 static int __read_mostly keep_bootcon;
2198
2199 static int __init keep_bootcon_setup(char *str)
2200 {
2201 keep_bootcon = 1;
2202 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2203
2204 return 0;
2205 }
2206
2207 early_param("keep_bootcon", keep_bootcon_setup);
2208
2209 /*
2210 * The console driver calls this routine during kernel initialization
2211 * to register the console printing procedure with printk() and to
2212 * print any messages that were printed by the kernel before the
2213 * console driver was initialized.
2214 *
2215 * This can happen pretty early during the boot process (because of
2216 * early_printk) - sometimes before setup_arch() completes - be careful
2217 * of what kernel features are used - they may not be initialised yet.
2218 *
2219 * There are two types of consoles - bootconsoles (early_printk) and
2220 * "real" consoles (everything which is not a bootconsole) which are
2221 * handled differently.
2222 * - Any number of bootconsoles can be registered at any time.
2223 * - As soon as a "real" console is registered, all bootconsoles
2224 * will be unregistered automatically.
2225 * - Once a "real" console is registered, any attempt to register a
2226 * bootconsoles will be rejected
2227 */
2228 void register_console(struct console *newcon)
2229 {
2230 int i;
2231 unsigned long flags;
2232 struct console *bcon = NULL;
2233
2234 /*
2235 * before we register a new CON_BOOT console, make sure we don't
2236 * already have a valid console
2237 */
2238 if (console_drivers && newcon->flags & CON_BOOT) {
2239 /* find the last or real console */
2240 for_each_console(bcon) {
2241 if (!(bcon->flags & CON_BOOT)) {
2242 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2243 newcon->name, newcon->index);
2244 return;
2245 }
2246 }
2247 }
2248
2249 if (console_drivers && console_drivers->flags & CON_BOOT)
2250 bcon = console_drivers;
2251
2252 if (preferred_console < 0 || bcon || !console_drivers)
2253 preferred_console = selected_console;
2254
2255 if (newcon->early_setup)
2256 newcon->early_setup();
2257
2258 /*
2259 * See if we want to use this console driver. If we
2260 * didn't select a console we take the first one
2261 * that registers here.
2262 */
2263 if (preferred_console < 0) {
2264 if (newcon->index < 0)
2265 newcon->index = 0;
2266 if (newcon->setup == NULL ||
2267 newcon->setup(newcon, NULL) == 0) {
2268 newcon->flags |= CON_ENABLED;
2269 if (newcon->device) {
2270 newcon->flags |= CON_CONSDEV;
2271 preferred_console = 0;
2272 }
2273 }
2274 }
2275
2276 /*
2277 * See if this console matches one we selected on
2278 * the command line.
2279 */
2280 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2281 i++) {
2282 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2283 continue;
2284 if (newcon->index >= 0 &&
2285 newcon->index != console_cmdline[i].index)
2286 continue;
2287 if (newcon->index < 0)
2288 newcon->index = console_cmdline[i].index;
2289 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2290 if (console_cmdline[i].brl_options) {
2291 newcon->flags |= CON_BRL;
2292 braille_register_console(newcon,
2293 console_cmdline[i].index,
2294 console_cmdline[i].options,
2295 console_cmdline[i].brl_options);
2296 return;
2297 }
2298 #endif
2299 if (newcon->setup &&
2300 newcon->setup(newcon, console_cmdline[i].options) != 0)
2301 break;
2302 newcon->flags |= CON_ENABLED;
2303 newcon->index = console_cmdline[i].index;
2304 if (i == selected_console) {
2305 newcon->flags |= CON_CONSDEV;
2306 preferred_console = selected_console;
2307 }
2308 break;
2309 }
2310
2311 if (!(newcon->flags & CON_ENABLED))
2312 return;
2313
2314 /*
2315 * If we have a bootconsole, and are switching to a real console,
2316 * don't print everything out again, since when the boot console, and
2317 * the real console are the same physical device, it's annoying to
2318 * see the beginning boot messages twice
2319 */
2320 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2321 newcon->flags &= ~CON_PRINTBUFFER;
2322
2323 /*
2324 * Put this console in the list - keep the
2325 * preferred driver at the head of the list.
2326 */
2327 console_lock();
2328 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2329 newcon->next = console_drivers;
2330 console_drivers = newcon;
2331 if (newcon->next)
2332 newcon->next->flags &= ~CON_CONSDEV;
2333 } else {
2334 newcon->next = console_drivers->next;
2335 console_drivers->next = newcon;
2336 }
2337 if (newcon->flags & CON_PRINTBUFFER) {
2338 /*
2339 * console_unlock(); will print out the buffered messages
2340 * for us.
2341 */
2342 raw_spin_lock_irqsave(&logbuf_lock, flags);
2343 console_seq = syslog_seq;
2344 console_idx = syslog_idx;
2345 console_prev = syslog_prev;
2346 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2347 /*
2348 * We're about to replay the log buffer. Only do this to the
2349 * just-registered console to avoid excessive message spam to
2350 * the already-registered consoles.
2351 */
2352 exclusive_console = newcon;
2353 }
2354 console_unlock();
2355 console_sysfs_notify();
2356
2357 /*
2358 * By unregistering the bootconsoles after we enable the real console
2359 * we get the "console xxx enabled" message on all the consoles -
2360 * boot consoles, real consoles, etc - this is to ensure that end
2361 * users know there might be something in the kernel's log buffer that
2362 * went to the bootconsole (that they do not see on the real console)
2363 */
2364 if (bcon &&
2365 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2366 !keep_bootcon) {
2367 /* we need to iterate through twice, to make sure we print
2368 * everything out, before we unregister the console(s)
2369 */
2370 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2371 newcon->name, newcon->index);
2372 for_each_console(bcon)
2373 if (bcon->flags & CON_BOOT)
2374 unregister_console(bcon);
2375 } else {
2376 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2377 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2378 newcon->name, newcon->index);
2379 }
2380 }
2381 EXPORT_SYMBOL(register_console);
2382
2383 int unregister_console(struct console *console)
2384 {
2385 struct console *a, *b;
2386 int res = 1;
2387
2388 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2389 if (console->flags & CON_BRL)
2390 return braille_unregister_console(console);
2391 #endif
2392
2393 console_lock();
2394 if (console_drivers == console) {
2395 console_drivers=console->next;
2396 res = 0;
2397 } else if (console_drivers) {
2398 for (a=console_drivers->next, b=console_drivers ;
2399 a; b=a, a=b->next) {
2400 if (a == console) {
2401 b->next = a->next;
2402 res = 0;
2403 break;
2404 }
2405 }
2406 }
2407
2408 /*
2409 * If this isn't the last console and it has CON_CONSDEV set, we
2410 * need to set it on the next preferred console.
2411 */
2412 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2413 console_drivers->flags |= CON_CONSDEV;
2414
2415 console_unlock();
2416 console_sysfs_notify();
2417 return res;
2418 }
2419 EXPORT_SYMBOL(unregister_console);
2420
2421 static int __init printk_late_init(void)
2422 {
2423 struct console *con;
2424
2425 for_each_console(con) {
2426 if (!keep_bootcon && con->flags & CON_BOOT) {
2427 printk(KERN_INFO "turn off boot console %s%d\n",
2428 con->name, con->index);
2429 unregister_console(con);
2430 }
2431 }
2432 hotcpu_notifier(console_cpu_notify, 0);
2433 return 0;
2434 }
2435 late_initcall(printk_late_init);
2436
2437 #if defined CONFIG_PRINTK
2438 /*
2439 * Delayed printk version, for scheduler-internal messages:
2440 */
2441 #define PRINTK_BUF_SIZE 512
2442
2443 #define PRINTK_PENDING_WAKEUP 0x01
2444 #define PRINTK_PENDING_SCHED 0x02
2445
2446 static DEFINE_PER_CPU(int, printk_pending);
2447 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2448
2449 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2450 {
2451 int pending = __this_cpu_xchg(printk_pending, 0);
2452
2453 if (pending & PRINTK_PENDING_SCHED) {
2454 char *buf = __get_cpu_var(printk_sched_buf);
2455 printk(KERN_WARNING "[sched_delayed] %s", buf);
2456 }
2457
2458 if (pending & PRINTK_PENDING_WAKEUP)
2459 wake_up_interruptible(&log_wait);
2460 }
2461
2462 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2463 .func = wake_up_klogd_work_func,
2464 .flags = IRQ_WORK_LAZY,
2465 };
2466
2467 void wake_up_klogd(void)
2468 {
2469 preempt_disable();
2470 if (waitqueue_active(&log_wait)) {
2471 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2472 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2473 }
2474 preempt_enable();
2475 }
2476
2477 int printk_sched(const char *fmt, ...)
2478 {
2479 unsigned long flags;
2480 va_list args;
2481 char *buf;
2482 int r;
2483
2484 local_irq_save(flags);
2485 buf = __get_cpu_var(printk_sched_buf);
2486
2487 va_start(args, fmt);
2488 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2489 va_end(args);
2490
2491 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2492 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2493 local_irq_restore(flags);
2494
2495 return r;
2496 }
2497
2498 /*
2499 * printk rate limiting, lifted from the networking subsystem.
2500 *
2501 * This enforces a rate limit: not more than 10 kernel messages
2502 * every 5s to make a denial-of-service attack impossible.
2503 */
2504 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2505
2506 int __printk_ratelimit(const char *func)
2507 {
2508 return ___ratelimit(&printk_ratelimit_state, func);
2509 }
2510 EXPORT_SYMBOL(__printk_ratelimit);
2511
2512 /**
2513 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2514 * @caller_jiffies: pointer to caller's state
2515 * @interval_msecs: minimum interval between prints
2516 *
2517 * printk_timed_ratelimit() returns true if more than @interval_msecs
2518 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2519 * returned true.
2520 */
2521 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2522 unsigned int interval_msecs)
2523 {
2524 if (*caller_jiffies == 0
2525 || !time_in_range(jiffies, *caller_jiffies,
2526 *caller_jiffies
2527 + msecs_to_jiffies(interval_msecs))) {
2528 *caller_jiffies = jiffies;
2529 return true;
2530 }
2531 return false;
2532 }
2533 EXPORT_SYMBOL(printk_timed_ratelimit);
2534
2535 static DEFINE_SPINLOCK(dump_list_lock);
2536 static LIST_HEAD(dump_list);
2537
2538 /**
2539 * kmsg_dump_register - register a kernel log dumper.
2540 * @dumper: pointer to the kmsg_dumper structure
2541 *
2542 * Adds a kernel log dumper to the system. The dump callback in the
2543 * structure will be called when the kernel oopses or panics and must be
2544 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2545 */
2546 int kmsg_dump_register(struct kmsg_dumper *dumper)
2547 {
2548 unsigned long flags;
2549 int err = -EBUSY;
2550
2551 /* The dump callback needs to be set */
2552 if (!dumper->dump)
2553 return -EINVAL;
2554
2555 spin_lock_irqsave(&dump_list_lock, flags);
2556 /* Don't allow registering multiple times */
2557 if (!dumper->registered) {
2558 dumper->registered = 1;
2559 list_add_tail_rcu(&dumper->list, &dump_list);
2560 err = 0;
2561 }
2562 spin_unlock_irqrestore(&dump_list_lock, flags);
2563
2564 return err;
2565 }
2566 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2567
2568 /**
2569 * kmsg_dump_unregister - unregister a kmsg dumper.
2570 * @dumper: pointer to the kmsg_dumper structure
2571 *
2572 * Removes a dump device from the system. Returns zero on success and
2573 * %-EINVAL otherwise.
2574 */
2575 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2576 {
2577 unsigned long flags;
2578 int err = -EINVAL;
2579
2580 spin_lock_irqsave(&dump_list_lock, flags);
2581 if (dumper->registered) {
2582 dumper->registered = 0;
2583 list_del_rcu(&dumper->list);
2584 err = 0;
2585 }
2586 spin_unlock_irqrestore(&dump_list_lock, flags);
2587 synchronize_rcu();
2588
2589 return err;
2590 }
2591 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2592
2593 static bool always_kmsg_dump;
2594 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2595
2596 /**
2597 * kmsg_dump - dump kernel log to kernel message dumpers.
2598 * @reason: the reason (oops, panic etc) for dumping
2599 *
2600 * Call each of the registered dumper's dump() callback, which can
2601 * retrieve the kmsg records with kmsg_dump_get_line() or
2602 * kmsg_dump_get_buffer().
2603 */
2604 void kmsg_dump(enum kmsg_dump_reason reason)
2605 {
2606 struct kmsg_dumper *dumper;
2607 unsigned long flags;
2608
2609 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2610 return;
2611
2612 rcu_read_lock();
2613 list_for_each_entry_rcu(dumper, &dump_list, list) {
2614 if (dumper->max_reason && reason > dumper->max_reason)
2615 continue;
2616
2617 /* initialize iterator with data about the stored records */
2618 dumper->active = true;
2619
2620 raw_spin_lock_irqsave(&logbuf_lock, flags);
2621 dumper->cur_seq = clear_seq;
2622 dumper->cur_idx = clear_idx;
2623 dumper->next_seq = log_next_seq;
2624 dumper->next_idx = log_next_idx;
2625 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2626
2627 /* invoke dumper which will iterate over records */
2628 dumper->dump(dumper, reason);
2629
2630 /* reset iterator */
2631 dumper->active = false;
2632 }
2633 rcu_read_unlock();
2634 }
2635
2636 /**
2637 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2638 * @dumper: registered kmsg dumper
2639 * @syslog: include the "<4>" prefixes
2640 * @line: buffer to copy the line to
2641 * @size: maximum size of the buffer
2642 * @len: length of line placed into buffer
2643 *
2644 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2645 * record, and copy one record into the provided buffer.
2646 *
2647 * Consecutive calls will return the next available record moving
2648 * towards the end of the buffer with the youngest messages.
2649 *
2650 * A return value of FALSE indicates that there are no more records to
2651 * read.
2652 *
2653 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2654 */
2655 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2656 char *line, size_t size, size_t *len)
2657 {
2658 struct log *msg;
2659 size_t l = 0;
2660 bool ret = false;
2661
2662 if (!dumper->active)
2663 goto out;
2664
2665 if (dumper->cur_seq < log_first_seq) {
2666 /* messages are gone, move to first available one */
2667 dumper->cur_seq = log_first_seq;
2668 dumper->cur_idx = log_first_idx;
2669 }
2670
2671 /* last entry */
2672 if (dumper->cur_seq >= log_next_seq)
2673 goto out;
2674
2675 msg = log_from_idx(dumper->cur_idx);
2676 l = msg_print_text(msg, 0, syslog, line, size);
2677
2678 dumper->cur_idx = log_next(dumper->cur_idx);
2679 dumper->cur_seq++;
2680 ret = true;
2681 out:
2682 if (len)
2683 *len = l;
2684 return ret;
2685 }
2686
2687 /**
2688 * kmsg_dump_get_line - retrieve one kmsg log line
2689 * @dumper: registered kmsg dumper
2690 * @syslog: include the "<4>" prefixes
2691 * @line: buffer to copy the line to
2692 * @size: maximum size of the buffer
2693 * @len: length of line placed into buffer
2694 *
2695 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2696 * record, and copy one record into the provided buffer.
2697 *
2698 * Consecutive calls will return the next available record moving
2699 * towards the end of the buffer with the youngest messages.
2700 *
2701 * A return value of FALSE indicates that there are no more records to
2702 * read.
2703 */
2704 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2705 char *line, size_t size, size_t *len)
2706 {
2707 unsigned long flags;
2708 bool ret;
2709
2710 raw_spin_lock_irqsave(&logbuf_lock, flags);
2711 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2712 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2713
2714 return ret;
2715 }
2716 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2717
2718 /**
2719 * kmsg_dump_get_buffer - copy kmsg log lines
2720 * @dumper: registered kmsg dumper
2721 * @syslog: include the "<4>" prefixes
2722 * @buf: buffer to copy the line to
2723 * @size: maximum size of the buffer
2724 * @len: length of line placed into buffer
2725 *
2726 * Start at the end of the kmsg buffer and fill the provided buffer
2727 * with as many of the the *youngest* kmsg records that fit into it.
2728 * If the buffer is large enough, all available kmsg records will be
2729 * copied with a single call.
2730 *
2731 * Consecutive calls will fill the buffer with the next block of
2732 * available older records, not including the earlier retrieved ones.
2733 *
2734 * A return value of FALSE indicates that there are no more records to
2735 * read.
2736 */
2737 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2738 char *buf, size_t size, size_t *len)
2739 {
2740 unsigned long flags;
2741 u64 seq;
2742 u32 idx;
2743 u64 next_seq;
2744 u32 next_idx;
2745 enum log_flags prev;
2746 size_t l = 0;
2747 bool ret = false;
2748
2749 if (!dumper->active)
2750 goto out;
2751
2752 raw_spin_lock_irqsave(&logbuf_lock, flags);
2753 if (dumper->cur_seq < log_first_seq) {
2754 /* messages are gone, move to first available one */
2755 dumper->cur_seq = log_first_seq;
2756 dumper->cur_idx = log_first_idx;
2757 }
2758
2759 /* last entry */
2760 if (dumper->cur_seq >= dumper->next_seq) {
2761 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2762 goto out;
2763 }
2764
2765 /* calculate length of entire buffer */
2766 seq = dumper->cur_seq;
2767 idx = dumper->cur_idx;
2768 prev = 0;
2769 while (seq < dumper->next_seq) {
2770 struct log *msg = log_from_idx(idx);
2771
2772 l += msg_print_text(msg, prev, true, NULL, 0);
2773 idx = log_next(idx);
2774 seq++;
2775 prev = msg->flags;
2776 }
2777
2778 /* move first record forward until length fits into the buffer */
2779 seq = dumper->cur_seq;
2780 idx = dumper->cur_idx;
2781 prev = 0;
2782 while (l > size && seq < dumper->next_seq) {
2783 struct log *msg = log_from_idx(idx);
2784
2785 l -= msg_print_text(msg, prev, true, NULL, 0);
2786 idx = log_next(idx);
2787 seq++;
2788 prev = msg->flags;
2789 }
2790
2791 /* last message in next interation */
2792 next_seq = seq;
2793 next_idx = idx;
2794
2795 l = 0;
2796 prev = 0;
2797 while (seq < dumper->next_seq) {
2798 struct log *msg = log_from_idx(idx);
2799
2800 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2801 idx = log_next(idx);
2802 seq++;
2803 prev = msg->flags;
2804 }
2805
2806 dumper->next_seq = next_seq;
2807 dumper->next_idx = next_idx;
2808 ret = true;
2809 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2810 out:
2811 if (len)
2812 *len = l;
2813 return ret;
2814 }
2815 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2816
2817 /**
2818 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2819 * @dumper: registered kmsg dumper
2820 *
2821 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2822 * kmsg_dump_get_buffer() can be called again and used multiple
2823 * times within the same dumper.dump() callback.
2824 *
2825 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2826 */
2827 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2828 {
2829 dumper->cur_seq = clear_seq;
2830 dumper->cur_idx = clear_idx;
2831 dumper->next_seq = log_next_seq;
2832 dumper->next_idx = log_next_idx;
2833 }
2834
2835 /**
2836 * kmsg_dump_rewind - reset the interator
2837 * @dumper: registered kmsg dumper
2838 *
2839 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2840 * kmsg_dump_get_buffer() can be called again and used multiple
2841 * times within the same dumper.dump() callback.
2842 */
2843 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2844 {
2845 unsigned long flags;
2846
2847 raw_spin_lock_irqsave(&logbuf_lock, flags);
2848 kmsg_dump_rewind_nolock(dumper);
2849 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2850 }
2851 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2852 #endif