Merge remote-tracking branch 'asoc/topic/wm8770' into asoc-next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 /*
91 * This is used for debugging the mess that is the VT code by
92 * keeping track if we have the console semaphore held. It's
93 * definitely not the perfect debug tool (we don't know if _WE_
94 * hold it are racing, but it helps tracking those weird code
95 * path in the console code where we end up in places I want
96 * locked without the console sempahore held
97 */
98 static int console_locked, console_suspended;
99
100 /*
101 * If exclusive_console is non-NULL then only this console is to be printed to.
102 */
103 static struct console *exclusive_console;
104
105 /*
106 * Array of consoles built from command line options (console=)
107 */
108 struct console_cmdline
109 {
110 char name[8]; /* Name of the driver */
111 int index; /* Minor dev. to use */
112 char *options; /* Options for the driver */
113 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
114 char *brl_options; /* Options for braille driver */
115 #endif
116 };
117
118 #define MAX_CMDLINECONSOLES 8
119
120 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
121 static int selected_console = -1;
122 static int preferred_console = -1;
123 int console_set_on_cmdline;
124 EXPORT_SYMBOL(console_set_on_cmdline);
125
126 /* Flag: console code may call schedule() */
127 static int console_may_schedule;
128
129 /*
130 * The printk log buffer consists of a chain of concatenated variable
131 * length records. Every record starts with a record header, containing
132 * the overall length of the record.
133 *
134 * The heads to the first and last entry in the buffer, as well as the
135 * sequence numbers of these both entries are maintained when messages
136 * are stored..
137 *
138 * If the heads indicate available messages, the length in the header
139 * tells the start next message. A length == 0 for the next message
140 * indicates a wrap-around to the beginning of the buffer.
141 *
142 * Every record carries the monotonic timestamp in microseconds, as well as
143 * the standard userspace syslog level and syslog facility. The usual
144 * kernel messages use LOG_KERN; userspace-injected messages always carry
145 * a matching syslog facility, by default LOG_USER. The origin of every
146 * message can be reliably determined that way.
147 *
148 * The human readable log message directly follows the message header. The
149 * length of the message text is stored in the header, the stored message
150 * is not terminated.
151 *
152 * Optionally, a message can carry a dictionary of properties (key/value pairs),
153 * to provide userspace with a machine-readable message context.
154 *
155 * Examples for well-defined, commonly used property names are:
156 * DEVICE=b12:8 device identifier
157 * b12:8 block dev_t
158 * c127:3 char dev_t
159 * n8 netdev ifindex
160 * +sound:card0 subsystem:devname
161 * SUBSYSTEM=pci driver-core subsystem name
162 *
163 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
164 * follows directly after a '=' character. Every property is terminated by
165 * a '\0' character. The last property is not terminated.
166 *
167 * Example of a message structure:
168 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
169 * 0008 34 00 record is 52 bytes long
170 * 000a 0b 00 text is 11 bytes long
171 * 000c 1f 00 dictionary is 23 bytes long
172 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
173 * 0010 69 74 27 73 20 61 20 6c "it's a l"
174 * 69 6e 65 "ine"
175 * 001b 44 45 56 49 43 "DEVIC"
176 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
177 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
178 * 67 "g"
179 * 0032 00 00 00 padding to next message header
180 *
181 * The 'struct log' buffer header must never be directly exported to
182 * userspace, it is a kernel-private implementation detail that might
183 * need to be changed in the future, when the requirements change.
184 *
185 * /dev/kmsg exports the structured data in the following line format:
186 * "level,sequnum,timestamp;<message text>\n"
187 *
188 * The optional key/value pairs are attached as continuation lines starting
189 * with a space character and terminated by a newline. All possible
190 * non-prinatable characters are escaped in the "\xff" notation.
191 *
192 * Users of the export format should ignore possible additional values
193 * separated by ',', and find the message after the ';' character.
194 */
195
196 enum log_flags {
197 LOG_NOCONS = 1, /* already flushed, do not print to console */
198 LOG_NEWLINE = 2, /* text ended with a newline */
199 LOG_PREFIX = 4, /* text started with a prefix */
200 LOG_CONT = 8, /* text is a fragment of a continuation line */
201 };
202
203 struct log {
204 u64 ts_nsec; /* timestamp in nanoseconds */
205 u16 len; /* length of entire record */
206 u16 text_len; /* length of text buffer */
207 u16 dict_len; /* length of dictionary buffer */
208 u8 facility; /* syslog facility */
209 u8 flags:5; /* internal record flags */
210 u8 level:3; /* syslog level */
211 };
212
213 /*
214 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
215 * used in interesting ways to provide interlocking in console_unlock();
216 */
217 static DEFINE_RAW_SPINLOCK(logbuf_lock);
218
219 #ifdef CONFIG_PRINTK
220 /* the next printk record to read by syslog(READ) or /proc/kmsg */
221 static u64 syslog_seq;
222 static u32 syslog_idx;
223 static enum log_flags syslog_prev;
224 static size_t syslog_partial;
225
226 /* index and sequence number of the first record stored in the buffer */
227 static u64 log_first_seq;
228 static u32 log_first_idx;
229
230 /* index and sequence number of the next record to store in the buffer */
231 static u64 log_next_seq;
232 static u32 log_next_idx;
233
234 /* the next printk record to write to the console */
235 static u64 console_seq;
236 static u32 console_idx;
237 static enum log_flags console_prev;
238
239 /* the next printk record to read after the last 'clear' command */
240 static u64 clear_seq;
241 static u32 clear_idx;
242
243 #define PREFIX_MAX 32
244 #define LOG_LINE_MAX 1024 - PREFIX_MAX
245
246 /* record buffer */
247 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
248 #define LOG_ALIGN 4
249 #else
250 #define LOG_ALIGN __alignof__(struct log)
251 #endif
252 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
253 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
254 static char *log_buf = __log_buf;
255 static u32 log_buf_len = __LOG_BUF_LEN;
256
257 /* cpu currently holding logbuf_lock */
258 static volatile unsigned int logbuf_cpu = UINT_MAX;
259
260 /* human readable text of the record */
261 static char *log_text(const struct log *msg)
262 {
263 return (char *)msg + sizeof(struct log);
264 }
265
266 /* optional key/value pair dictionary attached to the record */
267 static char *log_dict(const struct log *msg)
268 {
269 return (char *)msg + sizeof(struct log) + msg->text_len;
270 }
271
272 /* get record by index; idx must point to valid msg */
273 static struct log *log_from_idx(u32 idx)
274 {
275 struct log *msg = (struct log *)(log_buf + idx);
276
277 /*
278 * A length == 0 record is the end of buffer marker. Wrap around and
279 * read the message at the start of the buffer.
280 */
281 if (!msg->len)
282 return (struct log *)log_buf;
283 return msg;
284 }
285
286 /* get next record; idx must point to valid msg */
287 static u32 log_next(u32 idx)
288 {
289 struct log *msg = (struct log *)(log_buf + idx);
290
291 /* length == 0 indicates the end of the buffer; wrap */
292 /*
293 * A length == 0 record is the end of buffer marker. Wrap around and
294 * read the message at the start of the buffer as *this* one, and
295 * return the one after that.
296 */
297 if (!msg->len) {
298 msg = (struct log *)log_buf;
299 return msg->len;
300 }
301 return idx + msg->len;
302 }
303
304 /* insert record into the buffer, discard old ones, update heads */
305 static void log_store(int facility, int level,
306 enum log_flags flags, u64 ts_nsec,
307 const char *dict, u16 dict_len,
308 const char *text, u16 text_len)
309 {
310 struct log *msg;
311 u32 size, pad_len;
312
313 /* number of '\0' padding bytes to next message */
314 size = sizeof(struct log) + text_len + dict_len;
315 pad_len = (-size) & (LOG_ALIGN - 1);
316 size += pad_len;
317
318 while (log_first_seq < log_next_seq) {
319 u32 free;
320
321 if (log_next_idx > log_first_idx)
322 free = max(log_buf_len - log_next_idx, log_first_idx);
323 else
324 free = log_first_idx - log_next_idx;
325
326 if (free > size + sizeof(struct log))
327 break;
328
329 /* drop old messages until we have enough contiuous space */
330 log_first_idx = log_next(log_first_idx);
331 log_first_seq++;
332 }
333
334 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
335 /*
336 * This message + an additional empty header does not fit
337 * at the end of the buffer. Add an empty header with len == 0
338 * to signify a wrap around.
339 */
340 memset(log_buf + log_next_idx, 0, sizeof(struct log));
341 log_next_idx = 0;
342 }
343
344 /* fill message */
345 msg = (struct log *)(log_buf + log_next_idx);
346 memcpy(log_text(msg), text, text_len);
347 msg->text_len = text_len;
348 memcpy(log_dict(msg), dict, dict_len);
349 msg->dict_len = dict_len;
350 msg->facility = facility;
351 msg->level = level & 7;
352 msg->flags = flags & 0x1f;
353 if (ts_nsec > 0)
354 msg->ts_nsec = ts_nsec;
355 else
356 msg->ts_nsec = local_clock();
357 memset(log_dict(msg) + dict_len, 0, pad_len);
358 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
359
360 /* insert message */
361 log_next_idx += msg->len;
362 log_next_seq++;
363 }
364
365 /* /dev/kmsg - userspace message inject/listen interface */
366 struct devkmsg_user {
367 u64 seq;
368 u32 idx;
369 enum log_flags prev;
370 struct mutex lock;
371 char buf[8192];
372 };
373
374 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
375 unsigned long count, loff_t pos)
376 {
377 char *buf, *line;
378 int i;
379 int level = default_message_loglevel;
380 int facility = 1; /* LOG_USER */
381 size_t len = iov_length(iv, count);
382 ssize_t ret = len;
383
384 if (len > LOG_LINE_MAX)
385 return -EINVAL;
386 buf = kmalloc(len+1, GFP_KERNEL);
387 if (buf == NULL)
388 return -ENOMEM;
389
390 line = buf;
391 for (i = 0; i < count; i++) {
392 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
393 ret = -EFAULT;
394 goto out;
395 }
396 line += iv[i].iov_len;
397 }
398
399 /*
400 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
401 * the decimal value represents 32bit, the lower 3 bit are the log
402 * level, the rest are the log facility.
403 *
404 * If no prefix or no userspace facility is specified, we
405 * enforce LOG_USER, to be able to reliably distinguish
406 * kernel-generated messages from userspace-injected ones.
407 */
408 line = buf;
409 if (line[0] == '<') {
410 char *endp = NULL;
411
412 i = simple_strtoul(line+1, &endp, 10);
413 if (endp && endp[0] == '>') {
414 level = i & 7;
415 if (i >> 3)
416 facility = i >> 3;
417 endp++;
418 len -= endp - line;
419 line = endp;
420 }
421 }
422 line[len] = '\0';
423
424 printk_emit(facility, level, NULL, 0, "%s", line);
425 out:
426 kfree(buf);
427 return ret;
428 }
429
430 static ssize_t devkmsg_read(struct file *file, char __user *buf,
431 size_t count, loff_t *ppos)
432 {
433 struct devkmsg_user *user = file->private_data;
434 struct log *msg;
435 u64 ts_usec;
436 size_t i;
437 char cont = '-';
438 size_t len;
439 ssize_t ret;
440
441 if (!user)
442 return -EBADF;
443
444 ret = mutex_lock_interruptible(&user->lock);
445 if (ret)
446 return ret;
447 raw_spin_lock_irq(&logbuf_lock);
448 while (user->seq == log_next_seq) {
449 if (file->f_flags & O_NONBLOCK) {
450 ret = -EAGAIN;
451 raw_spin_unlock_irq(&logbuf_lock);
452 goto out;
453 }
454
455 raw_spin_unlock_irq(&logbuf_lock);
456 ret = wait_event_interruptible(log_wait,
457 user->seq != log_next_seq);
458 if (ret)
459 goto out;
460 raw_spin_lock_irq(&logbuf_lock);
461 }
462
463 if (user->seq < log_first_seq) {
464 /* our last seen message is gone, return error and reset */
465 user->idx = log_first_idx;
466 user->seq = log_first_seq;
467 ret = -EPIPE;
468 raw_spin_unlock_irq(&logbuf_lock);
469 goto out;
470 }
471
472 msg = log_from_idx(user->idx);
473 ts_usec = msg->ts_nsec;
474 do_div(ts_usec, 1000);
475
476 /*
477 * If we couldn't merge continuation line fragments during the print,
478 * export the stored flags to allow an optional external merge of the
479 * records. Merging the records isn't always neccessarily correct, like
480 * when we hit a race during printing. In most cases though, it produces
481 * better readable output. 'c' in the record flags mark the first
482 * fragment of a line, '+' the following.
483 */
484 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
485 cont = 'c';
486 else if ((msg->flags & LOG_CONT) ||
487 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
488 cont = '+';
489
490 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
491 (msg->facility << 3) | msg->level,
492 user->seq, ts_usec, cont);
493 user->prev = msg->flags;
494
495 /* escape non-printable characters */
496 for (i = 0; i < msg->text_len; i++) {
497 unsigned char c = log_text(msg)[i];
498
499 if (c < ' ' || c >= 127 || c == '\\')
500 len += sprintf(user->buf + len, "\\x%02x", c);
501 else
502 user->buf[len++] = c;
503 }
504 user->buf[len++] = '\n';
505
506 if (msg->dict_len) {
507 bool line = true;
508
509 for (i = 0; i < msg->dict_len; i++) {
510 unsigned char c = log_dict(msg)[i];
511
512 if (line) {
513 user->buf[len++] = ' ';
514 line = false;
515 }
516
517 if (c == '\0') {
518 user->buf[len++] = '\n';
519 line = true;
520 continue;
521 }
522
523 if (c < ' ' || c >= 127 || c == '\\') {
524 len += sprintf(user->buf + len, "\\x%02x", c);
525 continue;
526 }
527
528 user->buf[len++] = c;
529 }
530 user->buf[len++] = '\n';
531 }
532
533 user->idx = log_next(user->idx);
534 user->seq++;
535 raw_spin_unlock_irq(&logbuf_lock);
536
537 if (len > count) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 if (copy_to_user(buf, user->buf, len)) {
543 ret = -EFAULT;
544 goto out;
545 }
546 ret = len;
547 out:
548 mutex_unlock(&user->lock);
549 return ret;
550 }
551
552 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
553 {
554 struct devkmsg_user *user = file->private_data;
555 loff_t ret = 0;
556
557 if (!user)
558 return -EBADF;
559 if (offset)
560 return -ESPIPE;
561
562 raw_spin_lock_irq(&logbuf_lock);
563 switch (whence) {
564 case SEEK_SET:
565 /* the first record */
566 user->idx = log_first_idx;
567 user->seq = log_first_seq;
568 break;
569 case SEEK_DATA:
570 /*
571 * The first record after the last SYSLOG_ACTION_CLEAR,
572 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
573 * changes no global state, and does not clear anything.
574 */
575 user->idx = clear_idx;
576 user->seq = clear_seq;
577 break;
578 case SEEK_END:
579 /* after the last record */
580 user->idx = log_next_idx;
581 user->seq = log_next_seq;
582 break;
583 default:
584 ret = -EINVAL;
585 }
586 raw_spin_unlock_irq(&logbuf_lock);
587 return ret;
588 }
589
590 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
591 {
592 struct devkmsg_user *user = file->private_data;
593 int ret = 0;
594
595 if (!user)
596 return POLLERR|POLLNVAL;
597
598 poll_wait(file, &log_wait, wait);
599
600 raw_spin_lock_irq(&logbuf_lock);
601 if (user->seq < log_next_seq) {
602 /* return error when data has vanished underneath us */
603 if (user->seq < log_first_seq)
604 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
605 ret = POLLIN|POLLRDNORM;
606 }
607 raw_spin_unlock_irq(&logbuf_lock);
608
609 return ret;
610 }
611
612 static int devkmsg_open(struct inode *inode, struct file *file)
613 {
614 struct devkmsg_user *user;
615 int err;
616
617 /* write-only does not need any file context */
618 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
619 return 0;
620
621 err = security_syslog(SYSLOG_ACTION_READ_ALL);
622 if (err)
623 return err;
624
625 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
626 if (!user)
627 return -ENOMEM;
628
629 mutex_init(&user->lock);
630
631 raw_spin_lock_irq(&logbuf_lock);
632 user->idx = log_first_idx;
633 user->seq = log_first_seq;
634 raw_spin_unlock_irq(&logbuf_lock);
635
636 file->private_data = user;
637 return 0;
638 }
639
640 static int devkmsg_release(struct inode *inode, struct file *file)
641 {
642 struct devkmsg_user *user = file->private_data;
643
644 if (!user)
645 return 0;
646
647 mutex_destroy(&user->lock);
648 kfree(user);
649 return 0;
650 }
651
652 const struct file_operations kmsg_fops = {
653 .open = devkmsg_open,
654 .read = devkmsg_read,
655 .aio_write = devkmsg_writev,
656 .llseek = devkmsg_llseek,
657 .poll = devkmsg_poll,
658 .release = devkmsg_release,
659 };
660
661 #ifdef CONFIG_KEXEC
662 /*
663 * This appends the listed symbols to /proc/vmcoreinfo
664 *
665 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
666 * obtain access to symbols that are otherwise very difficult to locate. These
667 * symbols are specifically used so that utilities can access and extract the
668 * dmesg log from a vmcore file after a crash.
669 */
670 void log_buf_kexec_setup(void)
671 {
672 VMCOREINFO_SYMBOL(log_buf);
673 VMCOREINFO_SYMBOL(log_buf_len);
674 VMCOREINFO_SYMBOL(log_first_idx);
675 VMCOREINFO_SYMBOL(log_next_idx);
676 /*
677 * Export struct log size and field offsets. User space tools can
678 * parse it and detect any changes to structure down the line.
679 */
680 VMCOREINFO_STRUCT_SIZE(log);
681 VMCOREINFO_OFFSET(log, ts_nsec);
682 VMCOREINFO_OFFSET(log, len);
683 VMCOREINFO_OFFSET(log, text_len);
684 VMCOREINFO_OFFSET(log, dict_len);
685 }
686 #endif
687
688 /* requested log_buf_len from kernel cmdline */
689 static unsigned long __initdata new_log_buf_len;
690
691 /* save requested log_buf_len since it's too early to process it */
692 static int __init log_buf_len_setup(char *str)
693 {
694 unsigned size = memparse(str, &str);
695
696 if (size)
697 size = roundup_pow_of_two(size);
698 if (size > log_buf_len)
699 new_log_buf_len = size;
700
701 return 0;
702 }
703 early_param("log_buf_len", log_buf_len_setup);
704
705 void __init setup_log_buf(int early)
706 {
707 unsigned long flags;
708 char *new_log_buf;
709 int free;
710
711 if (!new_log_buf_len)
712 return;
713
714 if (early) {
715 unsigned long mem;
716
717 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
718 if (!mem)
719 return;
720 new_log_buf = __va(mem);
721 } else {
722 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
723 }
724
725 if (unlikely(!new_log_buf)) {
726 pr_err("log_buf_len: %ld bytes not available\n",
727 new_log_buf_len);
728 return;
729 }
730
731 raw_spin_lock_irqsave(&logbuf_lock, flags);
732 log_buf_len = new_log_buf_len;
733 log_buf = new_log_buf;
734 new_log_buf_len = 0;
735 free = __LOG_BUF_LEN - log_next_idx;
736 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
737 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
738
739 pr_info("log_buf_len: %d\n", log_buf_len);
740 pr_info("early log buf free: %d(%d%%)\n",
741 free, (free * 100) / __LOG_BUF_LEN);
742 }
743
744 #ifdef CONFIG_BOOT_PRINTK_DELAY
745
746 static int boot_delay; /* msecs delay after each printk during bootup */
747 static unsigned long long loops_per_msec; /* based on boot_delay */
748
749 static int __init boot_delay_setup(char *str)
750 {
751 unsigned long lpj;
752
753 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
754 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
755
756 get_option(&str, &boot_delay);
757 if (boot_delay > 10 * 1000)
758 boot_delay = 0;
759
760 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
761 "HZ: %d, loops_per_msec: %llu\n",
762 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
763 return 1;
764 }
765 __setup("boot_delay=", boot_delay_setup);
766
767 static void boot_delay_msec(void)
768 {
769 unsigned long long k;
770 unsigned long timeout;
771
772 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
773 return;
774
775 k = (unsigned long long)loops_per_msec * boot_delay;
776
777 timeout = jiffies + msecs_to_jiffies(boot_delay);
778 while (k) {
779 k--;
780 cpu_relax();
781 /*
782 * use (volatile) jiffies to prevent
783 * compiler reduction; loop termination via jiffies
784 * is secondary and may or may not happen.
785 */
786 if (time_after(jiffies, timeout))
787 break;
788 touch_nmi_watchdog();
789 }
790 }
791 #else
792 static inline void boot_delay_msec(void)
793 {
794 }
795 #endif
796
797 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
798 int dmesg_restrict = 1;
799 #else
800 int dmesg_restrict;
801 #endif
802
803 static int syslog_action_restricted(int type)
804 {
805 if (dmesg_restrict)
806 return 1;
807 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
808 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
809 }
810
811 static int check_syslog_permissions(int type, bool from_file)
812 {
813 /*
814 * If this is from /proc/kmsg and we've already opened it, then we've
815 * already done the capabilities checks at open time.
816 */
817 if (from_file && type != SYSLOG_ACTION_OPEN)
818 return 0;
819
820 if (syslog_action_restricted(type)) {
821 if (capable(CAP_SYSLOG))
822 return 0;
823 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
824 if (capable(CAP_SYS_ADMIN)) {
825 printk_once(KERN_WARNING "%s (%d): "
826 "Attempt to access syslog with CAP_SYS_ADMIN "
827 "but no CAP_SYSLOG (deprecated).\n",
828 current->comm, task_pid_nr(current));
829 return 0;
830 }
831 return -EPERM;
832 }
833 return 0;
834 }
835
836 #if defined(CONFIG_PRINTK_TIME)
837 static bool printk_time = 1;
838 #else
839 static bool printk_time;
840 #endif
841 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
842
843 static size_t print_time(u64 ts, char *buf)
844 {
845 unsigned long rem_nsec;
846
847 if (!printk_time)
848 return 0;
849
850 if (!buf)
851 return 15;
852
853 rem_nsec = do_div(ts, 1000000000);
854 return sprintf(buf, "[%5lu.%06lu] ",
855 (unsigned long)ts, rem_nsec / 1000);
856 }
857
858 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
859 {
860 size_t len = 0;
861 unsigned int prefix = (msg->facility << 3) | msg->level;
862
863 if (syslog) {
864 if (buf) {
865 len += sprintf(buf, "<%u>", prefix);
866 } else {
867 len += 3;
868 if (prefix > 999)
869 len += 3;
870 else if (prefix > 99)
871 len += 2;
872 else if (prefix > 9)
873 len++;
874 }
875 }
876
877 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
878 return len;
879 }
880
881 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
882 bool syslog, char *buf, size_t size)
883 {
884 const char *text = log_text(msg);
885 size_t text_size = msg->text_len;
886 bool prefix = true;
887 bool newline = true;
888 size_t len = 0;
889
890 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
891 prefix = false;
892
893 if (msg->flags & LOG_CONT) {
894 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
895 prefix = false;
896
897 if (!(msg->flags & LOG_NEWLINE))
898 newline = false;
899 }
900
901 do {
902 const char *next = memchr(text, '\n', text_size);
903 size_t text_len;
904
905 if (next) {
906 text_len = next - text;
907 next++;
908 text_size -= next - text;
909 } else {
910 text_len = text_size;
911 }
912
913 if (buf) {
914 if (print_prefix(msg, syslog, NULL) +
915 text_len + 1 >= size - len)
916 break;
917
918 if (prefix)
919 len += print_prefix(msg, syslog, buf + len);
920 memcpy(buf + len, text, text_len);
921 len += text_len;
922 if (next || newline)
923 buf[len++] = '\n';
924 } else {
925 /* SYSLOG_ACTION_* buffer size only calculation */
926 if (prefix)
927 len += print_prefix(msg, syslog, NULL);
928 len += text_len;
929 if (next || newline)
930 len++;
931 }
932
933 prefix = true;
934 text = next;
935 } while (text);
936
937 return len;
938 }
939
940 static int syslog_print(char __user *buf, int size)
941 {
942 char *text;
943 struct log *msg;
944 int len = 0;
945
946 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
947 if (!text)
948 return -ENOMEM;
949
950 while (size > 0) {
951 size_t n;
952 size_t skip;
953
954 raw_spin_lock_irq(&logbuf_lock);
955 if (syslog_seq < log_first_seq) {
956 /* messages are gone, move to first one */
957 syslog_seq = log_first_seq;
958 syslog_idx = log_first_idx;
959 syslog_prev = 0;
960 syslog_partial = 0;
961 }
962 if (syslog_seq == log_next_seq) {
963 raw_spin_unlock_irq(&logbuf_lock);
964 break;
965 }
966
967 skip = syslog_partial;
968 msg = log_from_idx(syslog_idx);
969 n = msg_print_text(msg, syslog_prev, true, text,
970 LOG_LINE_MAX + PREFIX_MAX);
971 if (n - syslog_partial <= size) {
972 /* message fits into buffer, move forward */
973 syslog_idx = log_next(syslog_idx);
974 syslog_seq++;
975 syslog_prev = msg->flags;
976 n -= syslog_partial;
977 syslog_partial = 0;
978 } else if (!len){
979 /* partial read(), remember position */
980 n = size;
981 syslog_partial += n;
982 } else
983 n = 0;
984 raw_spin_unlock_irq(&logbuf_lock);
985
986 if (!n)
987 break;
988
989 if (copy_to_user(buf, text + skip, n)) {
990 if (!len)
991 len = -EFAULT;
992 break;
993 }
994
995 len += n;
996 size -= n;
997 buf += n;
998 }
999
1000 kfree(text);
1001 return len;
1002 }
1003
1004 static int syslog_print_all(char __user *buf, int size, bool clear)
1005 {
1006 char *text;
1007 int len = 0;
1008
1009 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1010 if (!text)
1011 return -ENOMEM;
1012
1013 raw_spin_lock_irq(&logbuf_lock);
1014 if (buf) {
1015 u64 next_seq;
1016 u64 seq;
1017 u32 idx;
1018 enum log_flags prev;
1019
1020 if (clear_seq < log_first_seq) {
1021 /* messages are gone, move to first available one */
1022 clear_seq = log_first_seq;
1023 clear_idx = log_first_idx;
1024 }
1025
1026 /*
1027 * Find first record that fits, including all following records,
1028 * into the user-provided buffer for this dump.
1029 */
1030 seq = clear_seq;
1031 idx = clear_idx;
1032 prev = 0;
1033 while (seq < log_next_seq) {
1034 struct log *msg = log_from_idx(idx);
1035
1036 len += msg_print_text(msg, prev, true, NULL, 0);
1037 prev = msg->flags;
1038 idx = log_next(idx);
1039 seq++;
1040 }
1041
1042 /* move first record forward until length fits into the buffer */
1043 seq = clear_seq;
1044 idx = clear_idx;
1045 prev = 0;
1046 while (len > size && seq < log_next_seq) {
1047 struct log *msg = log_from_idx(idx);
1048
1049 len -= msg_print_text(msg, prev, true, NULL, 0);
1050 prev = msg->flags;
1051 idx = log_next(idx);
1052 seq++;
1053 }
1054
1055 /* last message fitting into this dump */
1056 next_seq = log_next_seq;
1057
1058 len = 0;
1059 prev = 0;
1060 while (len >= 0 && seq < next_seq) {
1061 struct log *msg = log_from_idx(idx);
1062 int textlen;
1063
1064 textlen = msg_print_text(msg, prev, true, text,
1065 LOG_LINE_MAX + PREFIX_MAX);
1066 if (textlen < 0) {
1067 len = textlen;
1068 break;
1069 }
1070 idx = log_next(idx);
1071 seq++;
1072 prev = msg->flags;
1073
1074 raw_spin_unlock_irq(&logbuf_lock);
1075 if (copy_to_user(buf + len, text, textlen))
1076 len = -EFAULT;
1077 else
1078 len += textlen;
1079 raw_spin_lock_irq(&logbuf_lock);
1080
1081 if (seq < log_first_seq) {
1082 /* messages are gone, move to next one */
1083 seq = log_first_seq;
1084 idx = log_first_idx;
1085 prev = 0;
1086 }
1087 }
1088 }
1089
1090 if (clear) {
1091 clear_seq = log_next_seq;
1092 clear_idx = log_next_idx;
1093 }
1094 raw_spin_unlock_irq(&logbuf_lock);
1095
1096 kfree(text);
1097 return len;
1098 }
1099
1100 int do_syslog(int type, char __user *buf, int len, bool from_file)
1101 {
1102 bool clear = false;
1103 static int saved_console_loglevel = -1;
1104 int error;
1105
1106 error = check_syslog_permissions(type, from_file);
1107 if (error)
1108 goto out;
1109
1110 error = security_syslog(type);
1111 if (error)
1112 return error;
1113
1114 switch (type) {
1115 case SYSLOG_ACTION_CLOSE: /* Close log */
1116 break;
1117 case SYSLOG_ACTION_OPEN: /* Open log */
1118 break;
1119 case SYSLOG_ACTION_READ: /* Read from log */
1120 error = -EINVAL;
1121 if (!buf || len < 0)
1122 goto out;
1123 error = 0;
1124 if (!len)
1125 goto out;
1126 if (!access_ok(VERIFY_WRITE, buf, len)) {
1127 error = -EFAULT;
1128 goto out;
1129 }
1130 error = wait_event_interruptible(log_wait,
1131 syslog_seq != log_next_seq);
1132 if (error)
1133 goto out;
1134 error = syslog_print(buf, len);
1135 break;
1136 /* Read/clear last kernel messages */
1137 case SYSLOG_ACTION_READ_CLEAR:
1138 clear = true;
1139 /* FALL THRU */
1140 /* Read last kernel messages */
1141 case SYSLOG_ACTION_READ_ALL:
1142 error = -EINVAL;
1143 if (!buf || len < 0)
1144 goto out;
1145 error = 0;
1146 if (!len)
1147 goto out;
1148 if (!access_ok(VERIFY_WRITE, buf, len)) {
1149 error = -EFAULT;
1150 goto out;
1151 }
1152 error = syslog_print_all(buf, len, clear);
1153 break;
1154 /* Clear ring buffer */
1155 case SYSLOG_ACTION_CLEAR:
1156 syslog_print_all(NULL, 0, true);
1157 break;
1158 /* Disable logging to console */
1159 case SYSLOG_ACTION_CONSOLE_OFF:
1160 if (saved_console_loglevel == -1)
1161 saved_console_loglevel = console_loglevel;
1162 console_loglevel = minimum_console_loglevel;
1163 break;
1164 /* Enable logging to console */
1165 case SYSLOG_ACTION_CONSOLE_ON:
1166 if (saved_console_loglevel != -1) {
1167 console_loglevel = saved_console_loglevel;
1168 saved_console_loglevel = -1;
1169 }
1170 break;
1171 /* Set level of messages printed to console */
1172 case SYSLOG_ACTION_CONSOLE_LEVEL:
1173 error = -EINVAL;
1174 if (len < 1 || len > 8)
1175 goto out;
1176 if (len < minimum_console_loglevel)
1177 len = minimum_console_loglevel;
1178 console_loglevel = len;
1179 /* Implicitly re-enable logging to console */
1180 saved_console_loglevel = -1;
1181 error = 0;
1182 break;
1183 /* Number of chars in the log buffer */
1184 case SYSLOG_ACTION_SIZE_UNREAD:
1185 raw_spin_lock_irq(&logbuf_lock);
1186 if (syslog_seq < log_first_seq) {
1187 /* messages are gone, move to first one */
1188 syslog_seq = log_first_seq;
1189 syslog_idx = log_first_idx;
1190 syslog_prev = 0;
1191 syslog_partial = 0;
1192 }
1193 if (from_file) {
1194 /*
1195 * Short-cut for poll(/"proc/kmsg") which simply checks
1196 * for pending data, not the size; return the count of
1197 * records, not the length.
1198 */
1199 error = log_next_idx - syslog_idx;
1200 } else {
1201 u64 seq = syslog_seq;
1202 u32 idx = syslog_idx;
1203 enum log_flags prev = syslog_prev;
1204
1205 error = 0;
1206 while (seq < log_next_seq) {
1207 struct log *msg = log_from_idx(idx);
1208
1209 error += msg_print_text(msg, prev, true, NULL, 0);
1210 idx = log_next(idx);
1211 seq++;
1212 prev = msg->flags;
1213 }
1214 error -= syslog_partial;
1215 }
1216 raw_spin_unlock_irq(&logbuf_lock);
1217 break;
1218 /* Size of the log buffer */
1219 case SYSLOG_ACTION_SIZE_BUFFER:
1220 error = log_buf_len;
1221 break;
1222 default:
1223 error = -EINVAL;
1224 break;
1225 }
1226 out:
1227 return error;
1228 }
1229
1230 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1231 {
1232 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1233 }
1234
1235 static bool __read_mostly ignore_loglevel;
1236
1237 static int __init ignore_loglevel_setup(char *str)
1238 {
1239 ignore_loglevel = 1;
1240 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1241
1242 return 0;
1243 }
1244
1245 early_param("ignore_loglevel", ignore_loglevel_setup);
1246 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1247 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1248 "print all kernel messages to the console.");
1249
1250 /*
1251 * Call the console drivers, asking them to write out
1252 * log_buf[start] to log_buf[end - 1].
1253 * The console_lock must be held.
1254 */
1255 static void call_console_drivers(int level, const char *text, size_t len)
1256 {
1257 struct console *con;
1258
1259 trace_console(text, 0, len, len);
1260
1261 if (level >= console_loglevel && !ignore_loglevel)
1262 return;
1263 if (!console_drivers)
1264 return;
1265
1266 for_each_console(con) {
1267 if (exclusive_console && con != exclusive_console)
1268 continue;
1269 if (!(con->flags & CON_ENABLED))
1270 continue;
1271 if (!con->write)
1272 continue;
1273 if (!cpu_online(smp_processor_id()) &&
1274 !(con->flags & CON_ANYTIME))
1275 continue;
1276 con->write(con, text, len);
1277 }
1278 }
1279
1280 /*
1281 * Zap console related locks when oopsing. Only zap at most once
1282 * every 10 seconds, to leave time for slow consoles to print a
1283 * full oops.
1284 */
1285 static void zap_locks(void)
1286 {
1287 static unsigned long oops_timestamp;
1288
1289 if (time_after_eq(jiffies, oops_timestamp) &&
1290 !time_after(jiffies, oops_timestamp + 30 * HZ))
1291 return;
1292
1293 oops_timestamp = jiffies;
1294
1295 debug_locks_off();
1296 /* If a crash is occurring, make sure we can't deadlock */
1297 raw_spin_lock_init(&logbuf_lock);
1298 /* And make sure that we print immediately */
1299 sema_init(&console_sem, 1);
1300 }
1301
1302 /* Check if we have any console registered that can be called early in boot. */
1303 static int have_callable_console(void)
1304 {
1305 struct console *con;
1306
1307 for_each_console(con)
1308 if (con->flags & CON_ANYTIME)
1309 return 1;
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * Can we actually use the console at this time on this cpu?
1316 *
1317 * Console drivers may assume that per-cpu resources have
1318 * been allocated. So unless they're explicitly marked as
1319 * being able to cope (CON_ANYTIME) don't call them until
1320 * this CPU is officially up.
1321 */
1322 static inline int can_use_console(unsigned int cpu)
1323 {
1324 return cpu_online(cpu) || have_callable_console();
1325 }
1326
1327 /*
1328 * Try to get console ownership to actually show the kernel
1329 * messages from a 'printk'. Return true (and with the
1330 * console_lock held, and 'console_locked' set) if it
1331 * is successful, false otherwise.
1332 *
1333 * This gets called with the 'logbuf_lock' spinlock held and
1334 * interrupts disabled. It should return with 'lockbuf_lock'
1335 * released but interrupts still disabled.
1336 */
1337 static int console_trylock_for_printk(unsigned int cpu)
1338 __releases(&logbuf_lock)
1339 {
1340 int retval = 0, wake = 0;
1341
1342 if (console_trylock()) {
1343 retval = 1;
1344
1345 /*
1346 * If we can't use the console, we need to release
1347 * the console semaphore by hand to avoid flushing
1348 * the buffer. We need to hold the console semaphore
1349 * in order to do this test safely.
1350 */
1351 if (!can_use_console(cpu)) {
1352 console_locked = 0;
1353 wake = 1;
1354 retval = 0;
1355 }
1356 }
1357 logbuf_cpu = UINT_MAX;
1358 if (wake)
1359 up(&console_sem);
1360 raw_spin_unlock(&logbuf_lock);
1361 return retval;
1362 }
1363
1364 int printk_delay_msec __read_mostly;
1365
1366 static inline void printk_delay(void)
1367 {
1368 if (unlikely(printk_delay_msec)) {
1369 int m = printk_delay_msec;
1370
1371 while (m--) {
1372 mdelay(1);
1373 touch_nmi_watchdog();
1374 }
1375 }
1376 }
1377
1378 /*
1379 * Continuation lines are buffered, and not committed to the record buffer
1380 * until the line is complete, or a race forces it. The line fragments
1381 * though, are printed immediately to the consoles to ensure everything has
1382 * reached the console in case of a kernel crash.
1383 */
1384 static struct cont {
1385 char buf[LOG_LINE_MAX];
1386 size_t len; /* length == 0 means unused buffer */
1387 size_t cons; /* bytes written to console */
1388 struct task_struct *owner; /* task of first print*/
1389 u64 ts_nsec; /* time of first print */
1390 u8 level; /* log level of first message */
1391 u8 facility; /* log level of first message */
1392 enum log_flags flags; /* prefix, newline flags */
1393 bool flushed:1; /* buffer sealed and committed */
1394 } cont;
1395
1396 static void cont_flush(enum log_flags flags)
1397 {
1398 if (cont.flushed)
1399 return;
1400 if (cont.len == 0)
1401 return;
1402
1403 if (cont.cons) {
1404 /*
1405 * If a fragment of this line was directly flushed to the
1406 * console; wait for the console to pick up the rest of the
1407 * line. LOG_NOCONS suppresses a duplicated output.
1408 */
1409 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1410 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1411 cont.flags = flags;
1412 cont.flushed = true;
1413 } else {
1414 /*
1415 * If no fragment of this line ever reached the console,
1416 * just submit it to the store and free the buffer.
1417 */
1418 log_store(cont.facility, cont.level, flags, 0,
1419 NULL, 0, cont.buf, cont.len);
1420 cont.len = 0;
1421 }
1422 }
1423
1424 static bool cont_add(int facility, int level, const char *text, size_t len)
1425 {
1426 if (cont.len && cont.flushed)
1427 return false;
1428
1429 if (cont.len + len > sizeof(cont.buf)) {
1430 /* the line gets too long, split it up in separate records */
1431 cont_flush(LOG_CONT);
1432 return false;
1433 }
1434
1435 if (!cont.len) {
1436 cont.facility = facility;
1437 cont.level = level;
1438 cont.owner = current;
1439 cont.ts_nsec = local_clock();
1440 cont.flags = 0;
1441 cont.cons = 0;
1442 cont.flushed = false;
1443 }
1444
1445 memcpy(cont.buf + cont.len, text, len);
1446 cont.len += len;
1447
1448 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1449 cont_flush(LOG_CONT);
1450
1451 return true;
1452 }
1453
1454 static size_t cont_print_text(char *text, size_t size)
1455 {
1456 size_t textlen = 0;
1457 size_t len;
1458
1459 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1460 textlen += print_time(cont.ts_nsec, text);
1461 size -= textlen;
1462 }
1463
1464 len = cont.len - cont.cons;
1465 if (len > 0) {
1466 if (len+1 > size)
1467 len = size-1;
1468 memcpy(text + textlen, cont.buf + cont.cons, len);
1469 textlen += len;
1470 cont.cons = cont.len;
1471 }
1472
1473 if (cont.flushed) {
1474 if (cont.flags & LOG_NEWLINE)
1475 text[textlen++] = '\n';
1476 /* got everything, release buffer */
1477 cont.len = 0;
1478 }
1479 return textlen;
1480 }
1481
1482 asmlinkage int vprintk_emit(int facility, int level,
1483 const char *dict, size_t dictlen,
1484 const char *fmt, va_list args)
1485 {
1486 static int recursion_bug;
1487 static char textbuf[LOG_LINE_MAX];
1488 char *text = textbuf;
1489 size_t text_len;
1490 enum log_flags lflags = 0;
1491 unsigned long flags;
1492 int this_cpu;
1493 int printed_len = 0;
1494
1495 boot_delay_msec();
1496 printk_delay();
1497
1498 /* This stops the holder of console_sem just where we want him */
1499 local_irq_save(flags);
1500 this_cpu = smp_processor_id();
1501
1502 /*
1503 * Ouch, printk recursed into itself!
1504 */
1505 if (unlikely(logbuf_cpu == this_cpu)) {
1506 /*
1507 * If a crash is occurring during printk() on this CPU,
1508 * then try to get the crash message out but make sure
1509 * we can't deadlock. Otherwise just return to avoid the
1510 * recursion and return - but flag the recursion so that
1511 * it can be printed at the next appropriate moment:
1512 */
1513 if (!oops_in_progress && !lockdep_recursing(current)) {
1514 recursion_bug = 1;
1515 goto out_restore_irqs;
1516 }
1517 zap_locks();
1518 }
1519
1520 lockdep_off();
1521 raw_spin_lock(&logbuf_lock);
1522 logbuf_cpu = this_cpu;
1523
1524 if (recursion_bug) {
1525 static const char recursion_msg[] =
1526 "BUG: recent printk recursion!";
1527
1528 recursion_bug = 0;
1529 printed_len += strlen(recursion_msg);
1530 /* emit KERN_CRIT message */
1531 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1532 NULL, 0, recursion_msg, printed_len);
1533 }
1534
1535 /*
1536 * The printf needs to come first; we need the syslog
1537 * prefix which might be passed-in as a parameter.
1538 */
1539 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1540
1541 /* mark and strip a trailing newline */
1542 if (text_len && text[text_len-1] == '\n') {
1543 text_len--;
1544 lflags |= LOG_NEWLINE;
1545 }
1546
1547 /* strip kernel syslog prefix and extract log level or control flags */
1548 if (facility == 0) {
1549 int kern_level = printk_get_level(text);
1550
1551 if (kern_level) {
1552 const char *end_of_header = printk_skip_level(text);
1553 switch (kern_level) {
1554 case '0' ... '7':
1555 if (level == -1)
1556 level = kern_level - '0';
1557 case 'd': /* KERN_DEFAULT */
1558 lflags |= LOG_PREFIX;
1559 case 'c': /* KERN_CONT */
1560 break;
1561 }
1562 text_len -= end_of_header - text;
1563 text = (char *)end_of_header;
1564 }
1565 }
1566
1567 if (level == -1)
1568 level = default_message_loglevel;
1569
1570 if (dict)
1571 lflags |= LOG_PREFIX|LOG_NEWLINE;
1572
1573 if (!(lflags & LOG_NEWLINE)) {
1574 /*
1575 * Flush the conflicting buffer. An earlier newline was missing,
1576 * or another task also prints continuation lines.
1577 */
1578 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1579 cont_flush(LOG_NEWLINE);
1580
1581 /* buffer line if possible, otherwise store it right away */
1582 if (!cont_add(facility, level, text, text_len))
1583 log_store(facility, level, lflags | LOG_CONT, 0,
1584 dict, dictlen, text, text_len);
1585 } else {
1586 bool stored = false;
1587
1588 /*
1589 * If an earlier newline was missing and it was the same task,
1590 * either merge it with the current buffer and flush, or if
1591 * there was a race with interrupts (prefix == true) then just
1592 * flush it out and store this line separately.
1593 */
1594 if (cont.len && cont.owner == current) {
1595 if (!(lflags & LOG_PREFIX))
1596 stored = cont_add(facility, level, text, text_len);
1597 cont_flush(LOG_NEWLINE);
1598 }
1599
1600 if (!stored)
1601 log_store(facility, level, lflags, 0,
1602 dict, dictlen, text, text_len);
1603 }
1604 printed_len += text_len;
1605
1606 /*
1607 * Try to acquire and then immediately release the console semaphore.
1608 * The release will print out buffers and wake up /dev/kmsg and syslog()
1609 * users.
1610 *
1611 * The console_trylock_for_printk() function will release 'logbuf_lock'
1612 * regardless of whether it actually gets the console semaphore or not.
1613 */
1614 if (console_trylock_for_printk(this_cpu))
1615 console_unlock();
1616
1617 lockdep_on();
1618 out_restore_irqs:
1619 local_irq_restore(flags);
1620
1621 return printed_len;
1622 }
1623 EXPORT_SYMBOL(vprintk_emit);
1624
1625 asmlinkage int vprintk(const char *fmt, va_list args)
1626 {
1627 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1628 }
1629 EXPORT_SYMBOL(vprintk);
1630
1631 asmlinkage int printk_emit(int facility, int level,
1632 const char *dict, size_t dictlen,
1633 const char *fmt, ...)
1634 {
1635 va_list args;
1636 int r;
1637
1638 va_start(args, fmt);
1639 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1640 va_end(args);
1641
1642 return r;
1643 }
1644 EXPORT_SYMBOL(printk_emit);
1645
1646 /**
1647 * printk - print a kernel message
1648 * @fmt: format string
1649 *
1650 * This is printk(). It can be called from any context. We want it to work.
1651 *
1652 * We try to grab the console_lock. If we succeed, it's easy - we log the
1653 * output and call the console drivers. If we fail to get the semaphore, we
1654 * place the output into the log buffer and return. The current holder of
1655 * the console_sem will notice the new output in console_unlock(); and will
1656 * send it to the consoles before releasing the lock.
1657 *
1658 * One effect of this deferred printing is that code which calls printk() and
1659 * then changes console_loglevel may break. This is because console_loglevel
1660 * is inspected when the actual printing occurs.
1661 *
1662 * See also:
1663 * printf(3)
1664 *
1665 * See the vsnprintf() documentation for format string extensions over C99.
1666 */
1667 asmlinkage int printk(const char *fmt, ...)
1668 {
1669 va_list args;
1670 int r;
1671
1672 #ifdef CONFIG_KGDB_KDB
1673 if (unlikely(kdb_trap_printk)) {
1674 va_start(args, fmt);
1675 r = vkdb_printf(fmt, args);
1676 va_end(args);
1677 return r;
1678 }
1679 #endif
1680 va_start(args, fmt);
1681 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1682 va_end(args);
1683
1684 return r;
1685 }
1686 EXPORT_SYMBOL(printk);
1687
1688 #else /* CONFIG_PRINTK */
1689
1690 #define LOG_LINE_MAX 0
1691 #define PREFIX_MAX 0
1692 #define LOG_LINE_MAX 0
1693 static u64 syslog_seq;
1694 static u32 syslog_idx;
1695 static u64 console_seq;
1696 static u32 console_idx;
1697 static enum log_flags syslog_prev;
1698 static u64 log_first_seq;
1699 static u32 log_first_idx;
1700 static u64 log_next_seq;
1701 static enum log_flags console_prev;
1702 static struct cont {
1703 size_t len;
1704 size_t cons;
1705 u8 level;
1706 bool flushed:1;
1707 } cont;
1708 static struct log *log_from_idx(u32 idx) { return NULL; }
1709 static u32 log_next(u32 idx) { return 0; }
1710 static void call_console_drivers(int level, const char *text, size_t len) {}
1711 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1712 bool syslog, char *buf, size_t size) { return 0; }
1713 static size_t cont_print_text(char *text, size_t size) { return 0; }
1714
1715 #endif /* CONFIG_PRINTK */
1716
1717 static int __add_preferred_console(char *name, int idx, char *options,
1718 char *brl_options)
1719 {
1720 struct console_cmdline *c;
1721 int i;
1722
1723 /*
1724 * See if this tty is not yet registered, and
1725 * if we have a slot free.
1726 */
1727 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1728 if (strcmp(console_cmdline[i].name, name) == 0 &&
1729 console_cmdline[i].index == idx) {
1730 if (!brl_options)
1731 selected_console = i;
1732 return 0;
1733 }
1734 if (i == MAX_CMDLINECONSOLES)
1735 return -E2BIG;
1736 if (!brl_options)
1737 selected_console = i;
1738 c = &console_cmdline[i];
1739 strlcpy(c->name, name, sizeof(c->name));
1740 c->options = options;
1741 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1742 c->brl_options = brl_options;
1743 #endif
1744 c->index = idx;
1745 return 0;
1746 }
1747 /*
1748 * Set up a list of consoles. Called from init/main.c
1749 */
1750 static int __init console_setup(char *str)
1751 {
1752 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1753 char *s, *options, *brl_options = NULL;
1754 int idx;
1755
1756 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1757 if (!memcmp(str, "brl,", 4)) {
1758 brl_options = "";
1759 str += 4;
1760 } else if (!memcmp(str, "brl=", 4)) {
1761 brl_options = str + 4;
1762 str = strchr(brl_options, ',');
1763 if (!str) {
1764 printk(KERN_ERR "need port name after brl=\n");
1765 return 1;
1766 }
1767 *(str++) = 0;
1768 }
1769 #endif
1770
1771 /*
1772 * Decode str into name, index, options.
1773 */
1774 if (str[0] >= '0' && str[0] <= '9') {
1775 strcpy(buf, "ttyS");
1776 strncpy(buf + 4, str, sizeof(buf) - 5);
1777 } else {
1778 strncpy(buf, str, sizeof(buf) - 1);
1779 }
1780 buf[sizeof(buf) - 1] = 0;
1781 if ((options = strchr(str, ',')) != NULL)
1782 *(options++) = 0;
1783 #ifdef __sparc__
1784 if (!strcmp(str, "ttya"))
1785 strcpy(buf, "ttyS0");
1786 if (!strcmp(str, "ttyb"))
1787 strcpy(buf, "ttyS1");
1788 #endif
1789 for (s = buf; *s; s++)
1790 if ((*s >= '0' && *s <= '9') || *s == ',')
1791 break;
1792 idx = simple_strtoul(s, NULL, 10);
1793 *s = 0;
1794
1795 __add_preferred_console(buf, idx, options, brl_options);
1796 console_set_on_cmdline = 1;
1797 return 1;
1798 }
1799 __setup("console=", console_setup);
1800
1801 /**
1802 * add_preferred_console - add a device to the list of preferred consoles.
1803 * @name: device name
1804 * @idx: device index
1805 * @options: options for this console
1806 *
1807 * The last preferred console added will be used for kernel messages
1808 * and stdin/out/err for init. Normally this is used by console_setup
1809 * above to handle user-supplied console arguments; however it can also
1810 * be used by arch-specific code either to override the user or more
1811 * commonly to provide a default console (ie from PROM variables) when
1812 * the user has not supplied one.
1813 */
1814 int add_preferred_console(char *name, int idx, char *options)
1815 {
1816 return __add_preferred_console(name, idx, options, NULL);
1817 }
1818
1819 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1820 {
1821 struct console_cmdline *c;
1822 int i;
1823
1824 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1825 if (strcmp(console_cmdline[i].name, name) == 0 &&
1826 console_cmdline[i].index == idx) {
1827 c = &console_cmdline[i];
1828 strlcpy(c->name, name_new, sizeof(c->name));
1829 c->name[sizeof(c->name) - 1] = 0;
1830 c->options = options;
1831 c->index = idx_new;
1832 return i;
1833 }
1834 /* not found */
1835 return -1;
1836 }
1837
1838 bool console_suspend_enabled = 1;
1839 EXPORT_SYMBOL(console_suspend_enabled);
1840
1841 static int __init console_suspend_disable(char *str)
1842 {
1843 console_suspend_enabled = 0;
1844 return 1;
1845 }
1846 __setup("no_console_suspend", console_suspend_disable);
1847 module_param_named(console_suspend, console_suspend_enabled,
1848 bool, S_IRUGO | S_IWUSR);
1849 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1850 " and hibernate operations");
1851
1852 /**
1853 * suspend_console - suspend the console subsystem
1854 *
1855 * This disables printk() while we go into suspend states
1856 */
1857 void suspend_console(void)
1858 {
1859 if (!console_suspend_enabled)
1860 return;
1861 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1862 console_lock();
1863 console_suspended = 1;
1864 up(&console_sem);
1865 }
1866
1867 void resume_console(void)
1868 {
1869 if (!console_suspend_enabled)
1870 return;
1871 down(&console_sem);
1872 console_suspended = 0;
1873 console_unlock();
1874 }
1875
1876 /**
1877 * console_cpu_notify - print deferred console messages after CPU hotplug
1878 * @self: notifier struct
1879 * @action: CPU hotplug event
1880 * @hcpu: unused
1881 *
1882 * If printk() is called from a CPU that is not online yet, the messages
1883 * will be spooled but will not show up on the console. This function is
1884 * called when a new CPU comes online (or fails to come up), and ensures
1885 * that any such output gets printed.
1886 */
1887 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1888 unsigned long action, void *hcpu)
1889 {
1890 switch (action) {
1891 case CPU_ONLINE:
1892 case CPU_DEAD:
1893 case CPU_DOWN_FAILED:
1894 case CPU_UP_CANCELED:
1895 console_lock();
1896 console_unlock();
1897 }
1898 return NOTIFY_OK;
1899 }
1900
1901 /**
1902 * console_lock - lock the console system for exclusive use.
1903 *
1904 * Acquires a lock which guarantees that the caller has
1905 * exclusive access to the console system and the console_drivers list.
1906 *
1907 * Can sleep, returns nothing.
1908 */
1909 void console_lock(void)
1910 {
1911 BUG_ON(in_interrupt());
1912 down(&console_sem);
1913 if (console_suspended)
1914 return;
1915 console_locked = 1;
1916 console_may_schedule = 1;
1917 }
1918 EXPORT_SYMBOL(console_lock);
1919
1920 /**
1921 * console_trylock - try to lock the console system for exclusive use.
1922 *
1923 * Tried to acquire a lock which guarantees that the caller has
1924 * exclusive access to the console system and the console_drivers list.
1925 *
1926 * returns 1 on success, and 0 on failure to acquire the lock.
1927 */
1928 int console_trylock(void)
1929 {
1930 if (down_trylock(&console_sem))
1931 return 0;
1932 if (console_suspended) {
1933 up(&console_sem);
1934 return 0;
1935 }
1936 console_locked = 1;
1937 console_may_schedule = 0;
1938 return 1;
1939 }
1940 EXPORT_SYMBOL(console_trylock);
1941
1942 int is_console_locked(void)
1943 {
1944 return console_locked;
1945 }
1946
1947 /*
1948 * Delayed printk version, for scheduler-internal messages:
1949 */
1950 #define PRINTK_BUF_SIZE 512
1951
1952 #define PRINTK_PENDING_WAKEUP 0x01
1953 #define PRINTK_PENDING_SCHED 0x02
1954
1955 static DEFINE_PER_CPU(int, printk_pending);
1956 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1957
1958 void printk_tick(void)
1959 {
1960 if (__this_cpu_read(printk_pending)) {
1961 int pending = __this_cpu_xchg(printk_pending, 0);
1962 if (pending & PRINTK_PENDING_SCHED) {
1963 char *buf = __get_cpu_var(printk_sched_buf);
1964 printk(KERN_WARNING "[sched_delayed] %s", buf);
1965 }
1966 if (pending & PRINTK_PENDING_WAKEUP)
1967 wake_up_interruptible(&log_wait);
1968 }
1969 }
1970
1971 int printk_needs_cpu(int cpu)
1972 {
1973 if (cpu_is_offline(cpu))
1974 printk_tick();
1975 return __this_cpu_read(printk_pending);
1976 }
1977
1978 void wake_up_klogd(void)
1979 {
1980 if (waitqueue_active(&log_wait))
1981 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1982 }
1983
1984 static void console_cont_flush(char *text, size_t size)
1985 {
1986 unsigned long flags;
1987 size_t len;
1988
1989 raw_spin_lock_irqsave(&logbuf_lock, flags);
1990
1991 if (!cont.len)
1992 goto out;
1993
1994 /*
1995 * We still queue earlier records, likely because the console was
1996 * busy. The earlier ones need to be printed before this one, we
1997 * did not flush any fragment so far, so just let it queue up.
1998 */
1999 if (console_seq < log_next_seq && !cont.cons)
2000 goto out;
2001
2002 len = cont_print_text(text, size);
2003 raw_spin_unlock(&logbuf_lock);
2004 stop_critical_timings();
2005 call_console_drivers(cont.level, text, len);
2006 start_critical_timings();
2007 local_irq_restore(flags);
2008 return;
2009 out:
2010 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2011 }
2012
2013 /**
2014 * console_unlock - unlock the console system
2015 *
2016 * Releases the console_lock which the caller holds on the console system
2017 * and the console driver list.
2018 *
2019 * While the console_lock was held, console output may have been buffered
2020 * by printk(). If this is the case, console_unlock(); emits
2021 * the output prior to releasing the lock.
2022 *
2023 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2024 *
2025 * console_unlock(); may be called from any context.
2026 */
2027 void console_unlock(void)
2028 {
2029 static char text[LOG_LINE_MAX + PREFIX_MAX];
2030 static u64 seen_seq;
2031 unsigned long flags;
2032 bool wake_klogd = false;
2033 bool retry;
2034
2035 if (console_suspended) {
2036 up(&console_sem);
2037 return;
2038 }
2039
2040 console_may_schedule = 0;
2041
2042 /* flush buffered message fragment immediately to console */
2043 console_cont_flush(text, sizeof(text));
2044 again:
2045 for (;;) {
2046 struct log *msg;
2047 size_t len;
2048 int level;
2049
2050 raw_spin_lock_irqsave(&logbuf_lock, flags);
2051 if (seen_seq != log_next_seq) {
2052 wake_klogd = true;
2053 seen_seq = log_next_seq;
2054 }
2055
2056 if (console_seq < log_first_seq) {
2057 /* messages are gone, move to first one */
2058 console_seq = log_first_seq;
2059 console_idx = log_first_idx;
2060 console_prev = 0;
2061 }
2062 skip:
2063 if (console_seq == log_next_seq)
2064 break;
2065
2066 msg = log_from_idx(console_idx);
2067 if (msg->flags & LOG_NOCONS) {
2068 /*
2069 * Skip record we have buffered and already printed
2070 * directly to the console when we received it.
2071 */
2072 console_idx = log_next(console_idx);
2073 console_seq++;
2074 /*
2075 * We will get here again when we register a new
2076 * CON_PRINTBUFFER console. Clear the flag so we
2077 * will properly dump everything later.
2078 */
2079 msg->flags &= ~LOG_NOCONS;
2080 console_prev = msg->flags;
2081 goto skip;
2082 }
2083
2084 level = msg->level;
2085 len = msg_print_text(msg, console_prev, false,
2086 text, sizeof(text));
2087 console_idx = log_next(console_idx);
2088 console_seq++;
2089 console_prev = msg->flags;
2090 raw_spin_unlock(&logbuf_lock);
2091
2092 stop_critical_timings(); /* don't trace print latency */
2093 call_console_drivers(level, text, len);
2094 start_critical_timings();
2095 local_irq_restore(flags);
2096 }
2097 console_locked = 0;
2098
2099 /* Release the exclusive_console once it is used */
2100 if (unlikely(exclusive_console))
2101 exclusive_console = NULL;
2102
2103 raw_spin_unlock(&logbuf_lock);
2104
2105 up(&console_sem);
2106
2107 /*
2108 * Someone could have filled up the buffer again, so re-check if there's
2109 * something to flush. In case we cannot trylock the console_sem again,
2110 * there's a new owner and the console_unlock() from them will do the
2111 * flush, no worries.
2112 */
2113 raw_spin_lock(&logbuf_lock);
2114 retry = console_seq != log_next_seq;
2115 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2116
2117 if (retry && console_trylock())
2118 goto again;
2119
2120 if (wake_klogd)
2121 wake_up_klogd();
2122 }
2123 EXPORT_SYMBOL(console_unlock);
2124
2125 /**
2126 * console_conditional_schedule - yield the CPU if required
2127 *
2128 * If the console code is currently allowed to sleep, and
2129 * if this CPU should yield the CPU to another task, do
2130 * so here.
2131 *
2132 * Must be called within console_lock();.
2133 */
2134 void __sched console_conditional_schedule(void)
2135 {
2136 if (console_may_schedule)
2137 cond_resched();
2138 }
2139 EXPORT_SYMBOL(console_conditional_schedule);
2140
2141 void console_unblank(void)
2142 {
2143 struct console *c;
2144
2145 /*
2146 * console_unblank can no longer be called in interrupt context unless
2147 * oops_in_progress is set to 1..
2148 */
2149 if (oops_in_progress) {
2150 if (down_trylock(&console_sem) != 0)
2151 return;
2152 } else
2153 console_lock();
2154
2155 console_locked = 1;
2156 console_may_schedule = 0;
2157 for_each_console(c)
2158 if ((c->flags & CON_ENABLED) && c->unblank)
2159 c->unblank();
2160 console_unlock();
2161 }
2162
2163 /*
2164 * Return the console tty driver structure and its associated index
2165 */
2166 struct tty_driver *console_device(int *index)
2167 {
2168 struct console *c;
2169 struct tty_driver *driver = NULL;
2170
2171 console_lock();
2172 for_each_console(c) {
2173 if (!c->device)
2174 continue;
2175 driver = c->device(c, index);
2176 if (driver)
2177 break;
2178 }
2179 console_unlock();
2180 return driver;
2181 }
2182
2183 /*
2184 * Prevent further output on the passed console device so that (for example)
2185 * serial drivers can disable console output before suspending a port, and can
2186 * re-enable output afterwards.
2187 */
2188 void console_stop(struct console *console)
2189 {
2190 console_lock();
2191 console->flags &= ~CON_ENABLED;
2192 console_unlock();
2193 }
2194 EXPORT_SYMBOL(console_stop);
2195
2196 void console_start(struct console *console)
2197 {
2198 console_lock();
2199 console->flags |= CON_ENABLED;
2200 console_unlock();
2201 }
2202 EXPORT_SYMBOL(console_start);
2203
2204 static int __read_mostly keep_bootcon;
2205
2206 static int __init keep_bootcon_setup(char *str)
2207 {
2208 keep_bootcon = 1;
2209 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2210
2211 return 0;
2212 }
2213
2214 early_param("keep_bootcon", keep_bootcon_setup);
2215
2216 /*
2217 * The console driver calls this routine during kernel initialization
2218 * to register the console printing procedure with printk() and to
2219 * print any messages that were printed by the kernel before the
2220 * console driver was initialized.
2221 *
2222 * This can happen pretty early during the boot process (because of
2223 * early_printk) - sometimes before setup_arch() completes - be careful
2224 * of what kernel features are used - they may not be initialised yet.
2225 *
2226 * There are two types of consoles - bootconsoles (early_printk) and
2227 * "real" consoles (everything which is not a bootconsole) which are
2228 * handled differently.
2229 * - Any number of bootconsoles can be registered at any time.
2230 * - As soon as a "real" console is registered, all bootconsoles
2231 * will be unregistered automatically.
2232 * - Once a "real" console is registered, any attempt to register a
2233 * bootconsoles will be rejected
2234 */
2235 void register_console(struct console *newcon)
2236 {
2237 int i;
2238 unsigned long flags;
2239 struct console *bcon = NULL;
2240
2241 /*
2242 * before we register a new CON_BOOT console, make sure we don't
2243 * already have a valid console
2244 */
2245 if (console_drivers && newcon->flags & CON_BOOT) {
2246 /* find the last or real console */
2247 for_each_console(bcon) {
2248 if (!(bcon->flags & CON_BOOT)) {
2249 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2250 newcon->name, newcon->index);
2251 return;
2252 }
2253 }
2254 }
2255
2256 if (console_drivers && console_drivers->flags & CON_BOOT)
2257 bcon = console_drivers;
2258
2259 if (preferred_console < 0 || bcon || !console_drivers)
2260 preferred_console = selected_console;
2261
2262 if (newcon->early_setup)
2263 newcon->early_setup();
2264
2265 /*
2266 * See if we want to use this console driver. If we
2267 * didn't select a console we take the first one
2268 * that registers here.
2269 */
2270 if (preferred_console < 0) {
2271 if (newcon->index < 0)
2272 newcon->index = 0;
2273 if (newcon->setup == NULL ||
2274 newcon->setup(newcon, NULL) == 0) {
2275 newcon->flags |= CON_ENABLED;
2276 if (newcon->device) {
2277 newcon->flags |= CON_CONSDEV;
2278 preferred_console = 0;
2279 }
2280 }
2281 }
2282
2283 /*
2284 * See if this console matches one we selected on
2285 * the command line.
2286 */
2287 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2288 i++) {
2289 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2290 continue;
2291 if (newcon->index >= 0 &&
2292 newcon->index != console_cmdline[i].index)
2293 continue;
2294 if (newcon->index < 0)
2295 newcon->index = console_cmdline[i].index;
2296 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2297 if (console_cmdline[i].brl_options) {
2298 newcon->flags |= CON_BRL;
2299 braille_register_console(newcon,
2300 console_cmdline[i].index,
2301 console_cmdline[i].options,
2302 console_cmdline[i].brl_options);
2303 return;
2304 }
2305 #endif
2306 if (newcon->setup &&
2307 newcon->setup(newcon, console_cmdline[i].options) != 0)
2308 break;
2309 newcon->flags |= CON_ENABLED;
2310 newcon->index = console_cmdline[i].index;
2311 if (i == selected_console) {
2312 newcon->flags |= CON_CONSDEV;
2313 preferred_console = selected_console;
2314 }
2315 break;
2316 }
2317
2318 if (!(newcon->flags & CON_ENABLED))
2319 return;
2320
2321 /*
2322 * If we have a bootconsole, and are switching to a real console,
2323 * don't print everything out again, since when the boot console, and
2324 * the real console are the same physical device, it's annoying to
2325 * see the beginning boot messages twice
2326 */
2327 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2328 newcon->flags &= ~CON_PRINTBUFFER;
2329
2330 /*
2331 * Put this console in the list - keep the
2332 * preferred driver at the head of the list.
2333 */
2334 console_lock();
2335 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2336 newcon->next = console_drivers;
2337 console_drivers = newcon;
2338 if (newcon->next)
2339 newcon->next->flags &= ~CON_CONSDEV;
2340 } else {
2341 newcon->next = console_drivers->next;
2342 console_drivers->next = newcon;
2343 }
2344 if (newcon->flags & CON_PRINTBUFFER) {
2345 /*
2346 * console_unlock(); will print out the buffered messages
2347 * for us.
2348 */
2349 raw_spin_lock_irqsave(&logbuf_lock, flags);
2350 console_seq = syslog_seq;
2351 console_idx = syslog_idx;
2352 console_prev = syslog_prev;
2353 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2354 /*
2355 * We're about to replay the log buffer. Only do this to the
2356 * just-registered console to avoid excessive message spam to
2357 * the already-registered consoles.
2358 */
2359 exclusive_console = newcon;
2360 }
2361 console_unlock();
2362 console_sysfs_notify();
2363
2364 /*
2365 * By unregistering the bootconsoles after we enable the real console
2366 * we get the "console xxx enabled" message on all the consoles -
2367 * boot consoles, real consoles, etc - this is to ensure that end
2368 * users know there might be something in the kernel's log buffer that
2369 * went to the bootconsole (that they do not see on the real console)
2370 */
2371 if (bcon &&
2372 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2373 !keep_bootcon) {
2374 /* we need to iterate through twice, to make sure we print
2375 * everything out, before we unregister the console(s)
2376 */
2377 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2378 newcon->name, newcon->index);
2379 for_each_console(bcon)
2380 if (bcon->flags & CON_BOOT)
2381 unregister_console(bcon);
2382 } else {
2383 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2384 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2385 newcon->name, newcon->index);
2386 }
2387 }
2388 EXPORT_SYMBOL(register_console);
2389
2390 int unregister_console(struct console *console)
2391 {
2392 struct console *a, *b;
2393 int res = 1;
2394
2395 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2396 if (console->flags & CON_BRL)
2397 return braille_unregister_console(console);
2398 #endif
2399
2400 console_lock();
2401 if (console_drivers == console) {
2402 console_drivers=console->next;
2403 res = 0;
2404 } else if (console_drivers) {
2405 for (a=console_drivers->next, b=console_drivers ;
2406 a; b=a, a=b->next) {
2407 if (a == console) {
2408 b->next = a->next;
2409 res = 0;
2410 break;
2411 }
2412 }
2413 }
2414
2415 /*
2416 * If this isn't the last console and it has CON_CONSDEV set, we
2417 * need to set it on the next preferred console.
2418 */
2419 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2420 console_drivers->flags |= CON_CONSDEV;
2421
2422 console_unlock();
2423 console_sysfs_notify();
2424 return res;
2425 }
2426 EXPORT_SYMBOL(unregister_console);
2427
2428 static int __init printk_late_init(void)
2429 {
2430 struct console *con;
2431
2432 for_each_console(con) {
2433 if (!keep_bootcon && con->flags & CON_BOOT) {
2434 printk(KERN_INFO "turn off boot console %s%d\n",
2435 con->name, con->index);
2436 unregister_console(con);
2437 }
2438 }
2439 hotcpu_notifier(console_cpu_notify, 0);
2440 return 0;
2441 }
2442 late_initcall(printk_late_init);
2443
2444 #if defined CONFIG_PRINTK
2445
2446 int printk_sched(const char *fmt, ...)
2447 {
2448 unsigned long flags;
2449 va_list args;
2450 char *buf;
2451 int r;
2452
2453 local_irq_save(flags);
2454 buf = __get_cpu_var(printk_sched_buf);
2455
2456 va_start(args, fmt);
2457 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2458 va_end(args);
2459
2460 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2461 local_irq_restore(flags);
2462
2463 return r;
2464 }
2465
2466 /*
2467 * printk rate limiting, lifted from the networking subsystem.
2468 *
2469 * This enforces a rate limit: not more than 10 kernel messages
2470 * every 5s to make a denial-of-service attack impossible.
2471 */
2472 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2473
2474 int __printk_ratelimit(const char *func)
2475 {
2476 return ___ratelimit(&printk_ratelimit_state, func);
2477 }
2478 EXPORT_SYMBOL(__printk_ratelimit);
2479
2480 /**
2481 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2482 * @caller_jiffies: pointer to caller's state
2483 * @interval_msecs: minimum interval between prints
2484 *
2485 * printk_timed_ratelimit() returns true if more than @interval_msecs
2486 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2487 * returned true.
2488 */
2489 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2490 unsigned int interval_msecs)
2491 {
2492 if (*caller_jiffies == 0
2493 || !time_in_range(jiffies, *caller_jiffies,
2494 *caller_jiffies
2495 + msecs_to_jiffies(interval_msecs))) {
2496 *caller_jiffies = jiffies;
2497 return true;
2498 }
2499 return false;
2500 }
2501 EXPORT_SYMBOL(printk_timed_ratelimit);
2502
2503 static DEFINE_SPINLOCK(dump_list_lock);
2504 static LIST_HEAD(dump_list);
2505
2506 /**
2507 * kmsg_dump_register - register a kernel log dumper.
2508 * @dumper: pointer to the kmsg_dumper structure
2509 *
2510 * Adds a kernel log dumper to the system. The dump callback in the
2511 * structure will be called when the kernel oopses or panics and must be
2512 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2513 */
2514 int kmsg_dump_register(struct kmsg_dumper *dumper)
2515 {
2516 unsigned long flags;
2517 int err = -EBUSY;
2518
2519 /* The dump callback needs to be set */
2520 if (!dumper->dump)
2521 return -EINVAL;
2522
2523 spin_lock_irqsave(&dump_list_lock, flags);
2524 /* Don't allow registering multiple times */
2525 if (!dumper->registered) {
2526 dumper->registered = 1;
2527 list_add_tail_rcu(&dumper->list, &dump_list);
2528 err = 0;
2529 }
2530 spin_unlock_irqrestore(&dump_list_lock, flags);
2531
2532 return err;
2533 }
2534 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2535
2536 /**
2537 * kmsg_dump_unregister - unregister a kmsg dumper.
2538 * @dumper: pointer to the kmsg_dumper structure
2539 *
2540 * Removes a dump device from the system. Returns zero on success and
2541 * %-EINVAL otherwise.
2542 */
2543 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2544 {
2545 unsigned long flags;
2546 int err = -EINVAL;
2547
2548 spin_lock_irqsave(&dump_list_lock, flags);
2549 if (dumper->registered) {
2550 dumper->registered = 0;
2551 list_del_rcu(&dumper->list);
2552 err = 0;
2553 }
2554 spin_unlock_irqrestore(&dump_list_lock, flags);
2555 synchronize_rcu();
2556
2557 return err;
2558 }
2559 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2560
2561 static bool always_kmsg_dump;
2562 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2563
2564 /**
2565 * kmsg_dump - dump kernel log to kernel message dumpers.
2566 * @reason: the reason (oops, panic etc) for dumping
2567 *
2568 * Call each of the registered dumper's dump() callback, which can
2569 * retrieve the kmsg records with kmsg_dump_get_line() or
2570 * kmsg_dump_get_buffer().
2571 */
2572 void kmsg_dump(enum kmsg_dump_reason reason)
2573 {
2574 struct kmsg_dumper *dumper;
2575 unsigned long flags;
2576
2577 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2578 return;
2579
2580 rcu_read_lock();
2581 list_for_each_entry_rcu(dumper, &dump_list, list) {
2582 if (dumper->max_reason && reason > dumper->max_reason)
2583 continue;
2584
2585 /* initialize iterator with data about the stored records */
2586 dumper->active = true;
2587
2588 raw_spin_lock_irqsave(&logbuf_lock, flags);
2589 dumper->cur_seq = clear_seq;
2590 dumper->cur_idx = clear_idx;
2591 dumper->next_seq = log_next_seq;
2592 dumper->next_idx = log_next_idx;
2593 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2594
2595 /* invoke dumper which will iterate over records */
2596 dumper->dump(dumper, reason);
2597
2598 /* reset iterator */
2599 dumper->active = false;
2600 }
2601 rcu_read_unlock();
2602 }
2603
2604 /**
2605 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2606 * @dumper: registered kmsg dumper
2607 * @syslog: include the "<4>" prefixes
2608 * @line: buffer to copy the line to
2609 * @size: maximum size of the buffer
2610 * @len: length of line placed into buffer
2611 *
2612 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2613 * record, and copy one record into the provided buffer.
2614 *
2615 * Consecutive calls will return the next available record moving
2616 * towards the end of the buffer with the youngest messages.
2617 *
2618 * A return value of FALSE indicates that there are no more records to
2619 * read.
2620 *
2621 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2622 */
2623 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2624 char *line, size_t size, size_t *len)
2625 {
2626 struct log *msg;
2627 size_t l = 0;
2628 bool ret = false;
2629
2630 if (!dumper->active)
2631 goto out;
2632
2633 if (dumper->cur_seq < log_first_seq) {
2634 /* messages are gone, move to first available one */
2635 dumper->cur_seq = log_first_seq;
2636 dumper->cur_idx = log_first_idx;
2637 }
2638
2639 /* last entry */
2640 if (dumper->cur_seq >= log_next_seq)
2641 goto out;
2642
2643 msg = log_from_idx(dumper->cur_idx);
2644 l = msg_print_text(msg, 0, syslog, line, size);
2645
2646 dumper->cur_idx = log_next(dumper->cur_idx);
2647 dumper->cur_seq++;
2648 ret = true;
2649 out:
2650 if (len)
2651 *len = l;
2652 return ret;
2653 }
2654
2655 /**
2656 * kmsg_dump_get_line - retrieve one kmsg log line
2657 * @dumper: registered kmsg dumper
2658 * @syslog: include the "<4>" prefixes
2659 * @line: buffer to copy the line to
2660 * @size: maximum size of the buffer
2661 * @len: length of line placed into buffer
2662 *
2663 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2664 * record, and copy one record into the provided buffer.
2665 *
2666 * Consecutive calls will return the next available record moving
2667 * towards the end of the buffer with the youngest messages.
2668 *
2669 * A return value of FALSE indicates that there are no more records to
2670 * read.
2671 */
2672 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2673 char *line, size_t size, size_t *len)
2674 {
2675 unsigned long flags;
2676 bool ret;
2677
2678 raw_spin_lock_irqsave(&logbuf_lock, flags);
2679 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2680 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2681
2682 return ret;
2683 }
2684 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2685
2686 /**
2687 * kmsg_dump_get_buffer - copy kmsg log lines
2688 * @dumper: registered kmsg dumper
2689 * @syslog: include the "<4>" prefixes
2690 * @buf: buffer to copy the line to
2691 * @size: maximum size of the buffer
2692 * @len: length of line placed into buffer
2693 *
2694 * Start at the end of the kmsg buffer and fill the provided buffer
2695 * with as many of the the *youngest* kmsg records that fit into it.
2696 * If the buffer is large enough, all available kmsg records will be
2697 * copied with a single call.
2698 *
2699 * Consecutive calls will fill the buffer with the next block of
2700 * available older records, not including the earlier retrieved ones.
2701 *
2702 * A return value of FALSE indicates that there are no more records to
2703 * read.
2704 */
2705 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2706 char *buf, size_t size, size_t *len)
2707 {
2708 unsigned long flags;
2709 u64 seq;
2710 u32 idx;
2711 u64 next_seq;
2712 u32 next_idx;
2713 enum log_flags prev;
2714 size_t l = 0;
2715 bool ret = false;
2716
2717 if (!dumper->active)
2718 goto out;
2719
2720 raw_spin_lock_irqsave(&logbuf_lock, flags);
2721 if (dumper->cur_seq < log_first_seq) {
2722 /* messages are gone, move to first available one */
2723 dumper->cur_seq = log_first_seq;
2724 dumper->cur_idx = log_first_idx;
2725 }
2726
2727 /* last entry */
2728 if (dumper->cur_seq >= dumper->next_seq) {
2729 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2730 goto out;
2731 }
2732
2733 /* calculate length of entire buffer */
2734 seq = dumper->cur_seq;
2735 idx = dumper->cur_idx;
2736 prev = 0;
2737 while (seq < dumper->next_seq) {
2738 struct log *msg = log_from_idx(idx);
2739
2740 l += msg_print_text(msg, prev, true, NULL, 0);
2741 idx = log_next(idx);
2742 seq++;
2743 prev = msg->flags;
2744 }
2745
2746 /* move first record forward until length fits into the buffer */
2747 seq = dumper->cur_seq;
2748 idx = dumper->cur_idx;
2749 prev = 0;
2750 while (l > size && seq < dumper->next_seq) {
2751 struct log *msg = log_from_idx(idx);
2752
2753 l -= msg_print_text(msg, prev, true, NULL, 0);
2754 idx = log_next(idx);
2755 seq++;
2756 prev = msg->flags;
2757 }
2758
2759 /* last message in next interation */
2760 next_seq = seq;
2761 next_idx = idx;
2762
2763 l = 0;
2764 prev = 0;
2765 while (seq < dumper->next_seq) {
2766 struct log *msg = log_from_idx(idx);
2767
2768 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2769 idx = log_next(idx);
2770 seq++;
2771 prev = msg->flags;
2772 }
2773
2774 dumper->next_seq = next_seq;
2775 dumper->next_idx = next_idx;
2776 ret = true;
2777 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2778 out:
2779 if (len)
2780 *len = l;
2781 return ret;
2782 }
2783 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2784
2785 /**
2786 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2787 * @dumper: registered kmsg dumper
2788 *
2789 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2790 * kmsg_dump_get_buffer() can be called again and used multiple
2791 * times within the same dumper.dump() callback.
2792 *
2793 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2794 */
2795 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2796 {
2797 dumper->cur_seq = clear_seq;
2798 dumper->cur_idx = clear_idx;
2799 dumper->next_seq = log_next_seq;
2800 dumper->next_idx = log_next_idx;
2801 }
2802
2803 /**
2804 * kmsg_dump_rewind - reset the interator
2805 * @dumper: registered kmsg dumper
2806 *
2807 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2808 * kmsg_dump_get_buffer() can be called again and used multiple
2809 * times within the same dumper.dump() callback.
2810 */
2811 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2812 {
2813 unsigned long flags;
2814
2815 raw_spin_lock_irqsave(&logbuf_lock, flags);
2816 kmsg_dump_rewind_nolock(dumper);
2817 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2818 }
2819 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2820 #endif