Merge tag 'for-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45
46 #include <asm/uaccess.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/printk.h>
50
51 /*
52 * Architectures can override it:
53 */
54 void asmlinkage __attribute__((weak)) early_printk(const char *fmt, ...)
55 {
56 }
57
58 /* printk's without a loglevel use this.. */
59 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
60
61 /* We show everything that is MORE important than this.. */
62 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
63 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
64
65 DECLARE_WAIT_QUEUE_HEAD(log_wait);
66
67 int console_printk[4] = {
68 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
69 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
70 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
71 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
72 };
73
74 /*
75 * Low level drivers may need that to know if they can schedule in
76 * their unblank() callback or not. So let's export it.
77 */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80
81 /*
82 * console_sem protects the console_drivers list, and also
83 * provides serialisation for access to the entire console
84 * driver system.
85 */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89
90 #ifdef CONFIG_LOCKDEP
91 static struct lockdep_map console_lock_dep_map = {
92 .name = "console_lock"
93 };
94 #endif
95
96 /*
97 * This is used for debugging the mess that is the VT code by
98 * keeping track if we have the console semaphore held. It's
99 * definitely not the perfect debug tool (we don't know if _WE_
100 * hold it are racing, but it helps tracking those weird code
101 * path in the console code where we end up in places I want
102 * locked without the console sempahore held
103 */
104 static int console_locked, console_suspended;
105
106 /*
107 * If exclusive_console is non-NULL then only this console is to be printed to.
108 */
109 static struct console *exclusive_console;
110
111 /*
112 * Array of consoles built from command line options (console=)
113 */
114 struct console_cmdline
115 {
116 char name[8]; /* Name of the driver */
117 int index; /* Minor dev. to use */
118 char *options; /* Options for the driver */
119 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
120 char *brl_options; /* Options for braille driver */
121 #endif
122 };
123
124 #define MAX_CMDLINECONSOLES 8
125
126 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
127 static int selected_console = -1;
128 static int preferred_console = -1;
129 int console_set_on_cmdline;
130 EXPORT_SYMBOL(console_set_on_cmdline);
131
132 /* Flag: console code may call schedule() */
133 static int console_may_schedule;
134
135 /*
136 * The printk log buffer consists of a chain of concatenated variable
137 * length records. Every record starts with a record header, containing
138 * the overall length of the record.
139 *
140 * The heads to the first and last entry in the buffer, as well as the
141 * sequence numbers of these both entries are maintained when messages
142 * are stored..
143 *
144 * If the heads indicate available messages, the length in the header
145 * tells the start next message. A length == 0 for the next message
146 * indicates a wrap-around to the beginning of the buffer.
147 *
148 * Every record carries the monotonic timestamp in microseconds, as well as
149 * the standard userspace syslog level and syslog facility. The usual
150 * kernel messages use LOG_KERN; userspace-injected messages always carry
151 * a matching syslog facility, by default LOG_USER. The origin of every
152 * message can be reliably determined that way.
153 *
154 * The human readable log message directly follows the message header. The
155 * length of the message text is stored in the header, the stored message
156 * is not terminated.
157 *
158 * Optionally, a message can carry a dictionary of properties (key/value pairs),
159 * to provide userspace with a machine-readable message context.
160 *
161 * Examples for well-defined, commonly used property names are:
162 * DEVICE=b12:8 device identifier
163 * b12:8 block dev_t
164 * c127:3 char dev_t
165 * n8 netdev ifindex
166 * +sound:card0 subsystem:devname
167 * SUBSYSTEM=pci driver-core subsystem name
168 *
169 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
170 * follows directly after a '=' character. Every property is terminated by
171 * a '\0' character. The last property is not terminated.
172 *
173 * Example of a message structure:
174 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
175 * 0008 34 00 record is 52 bytes long
176 * 000a 0b 00 text is 11 bytes long
177 * 000c 1f 00 dictionary is 23 bytes long
178 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
179 * 0010 69 74 27 73 20 61 20 6c "it's a l"
180 * 69 6e 65 "ine"
181 * 001b 44 45 56 49 43 "DEVIC"
182 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
183 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
184 * 67 "g"
185 * 0032 00 00 00 padding to next message header
186 *
187 * The 'struct log' buffer header must never be directly exported to
188 * userspace, it is a kernel-private implementation detail that might
189 * need to be changed in the future, when the requirements change.
190 *
191 * /dev/kmsg exports the structured data in the following line format:
192 * "level,sequnum,timestamp;<message text>\n"
193 *
194 * The optional key/value pairs are attached as continuation lines starting
195 * with a space character and terminated by a newline. All possible
196 * non-prinatable characters are escaped in the "\xff" notation.
197 *
198 * Users of the export format should ignore possible additional values
199 * separated by ',', and find the message after the ';' character.
200 */
201
202 enum log_flags {
203 LOG_NOCONS = 1, /* already flushed, do not print to console */
204 LOG_NEWLINE = 2, /* text ended with a newline */
205 LOG_PREFIX = 4, /* text started with a prefix */
206 LOG_CONT = 8, /* text is a fragment of a continuation line */
207 };
208
209 struct log {
210 u64 ts_nsec; /* timestamp in nanoseconds */
211 u16 len; /* length of entire record */
212 u16 text_len; /* length of text buffer */
213 u16 dict_len; /* length of dictionary buffer */
214 u8 facility; /* syslog facility */
215 u8 flags:5; /* internal record flags */
216 u8 level:3; /* syslog level */
217 };
218
219 /*
220 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
221 * used in interesting ways to provide interlocking in console_unlock();
222 */
223 static DEFINE_RAW_SPINLOCK(logbuf_lock);
224
225 #ifdef CONFIG_PRINTK
226 /* the next printk record to read by syslog(READ) or /proc/kmsg */
227 static u64 syslog_seq;
228 static u32 syslog_idx;
229 static enum log_flags syslog_prev;
230 static size_t syslog_partial;
231
232 /* index and sequence number of the first record stored in the buffer */
233 static u64 log_first_seq;
234 static u32 log_first_idx;
235
236 /* index and sequence number of the next record to store in the buffer */
237 static u64 log_next_seq;
238 static u32 log_next_idx;
239
240 /* the next printk record to write to the console */
241 static u64 console_seq;
242 static u32 console_idx;
243 static enum log_flags console_prev;
244
245 /* the next printk record to read after the last 'clear' command */
246 static u64 clear_seq;
247 static u32 clear_idx;
248
249 #define PREFIX_MAX 32
250 #define LOG_LINE_MAX 1024 - PREFIX_MAX
251
252 /* record buffer */
253 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
254 #define LOG_ALIGN 4
255 #else
256 #define LOG_ALIGN __alignof__(struct log)
257 #endif
258 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
259 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
260 static char *log_buf = __log_buf;
261 static u32 log_buf_len = __LOG_BUF_LEN;
262
263 /* cpu currently holding logbuf_lock */
264 static volatile unsigned int logbuf_cpu = UINT_MAX;
265
266 /* human readable text of the record */
267 static char *log_text(const struct log *msg)
268 {
269 return (char *)msg + sizeof(struct log);
270 }
271
272 /* optional key/value pair dictionary attached to the record */
273 static char *log_dict(const struct log *msg)
274 {
275 return (char *)msg + sizeof(struct log) + msg->text_len;
276 }
277
278 /* get record by index; idx must point to valid msg */
279 static struct log *log_from_idx(u32 idx)
280 {
281 struct log *msg = (struct log *)(log_buf + idx);
282
283 /*
284 * A length == 0 record is the end of buffer marker. Wrap around and
285 * read the message at the start of the buffer.
286 */
287 if (!msg->len)
288 return (struct log *)log_buf;
289 return msg;
290 }
291
292 /* get next record; idx must point to valid msg */
293 static u32 log_next(u32 idx)
294 {
295 struct log *msg = (struct log *)(log_buf + idx);
296
297 /* length == 0 indicates the end of the buffer; wrap */
298 /*
299 * A length == 0 record is the end of buffer marker. Wrap around and
300 * read the message at the start of the buffer as *this* one, and
301 * return the one after that.
302 */
303 if (!msg->len) {
304 msg = (struct log *)log_buf;
305 return msg->len;
306 }
307 return idx + msg->len;
308 }
309
310 /* insert record into the buffer, discard old ones, update heads */
311 static void log_store(int facility, int level,
312 enum log_flags flags, u64 ts_nsec,
313 const char *dict, u16 dict_len,
314 const char *text, u16 text_len)
315 {
316 struct log *msg;
317 u32 size, pad_len;
318
319 /* number of '\0' padding bytes to next message */
320 size = sizeof(struct log) + text_len + dict_len;
321 pad_len = (-size) & (LOG_ALIGN - 1);
322 size += pad_len;
323
324 while (log_first_seq < log_next_seq) {
325 u32 free;
326
327 if (log_next_idx > log_first_idx)
328 free = max(log_buf_len - log_next_idx, log_first_idx);
329 else
330 free = log_first_idx - log_next_idx;
331
332 if (free > size + sizeof(struct log))
333 break;
334
335 /* drop old messages until we have enough contiuous space */
336 log_first_idx = log_next(log_first_idx);
337 log_first_seq++;
338 }
339
340 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
341 /*
342 * This message + an additional empty header does not fit
343 * at the end of the buffer. Add an empty header with len == 0
344 * to signify a wrap around.
345 */
346 memset(log_buf + log_next_idx, 0, sizeof(struct log));
347 log_next_idx = 0;
348 }
349
350 /* fill message */
351 msg = (struct log *)(log_buf + log_next_idx);
352 memcpy(log_text(msg), text, text_len);
353 msg->text_len = text_len;
354 memcpy(log_dict(msg), dict, dict_len);
355 msg->dict_len = dict_len;
356 msg->facility = facility;
357 msg->level = level & 7;
358 msg->flags = flags & 0x1f;
359 if (ts_nsec > 0)
360 msg->ts_nsec = ts_nsec;
361 else
362 msg->ts_nsec = local_clock();
363 memset(log_dict(msg) + dict_len, 0, pad_len);
364 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
365
366 /* insert message */
367 log_next_idx += msg->len;
368 log_next_seq++;
369 }
370
371 /* /dev/kmsg - userspace message inject/listen interface */
372 struct devkmsg_user {
373 u64 seq;
374 u32 idx;
375 enum log_flags prev;
376 struct mutex lock;
377 char buf[8192];
378 };
379
380 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
381 unsigned long count, loff_t pos)
382 {
383 char *buf, *line;
384 int i;
385 int level = default_message_loglevel;
386 int facility = 1; /* LOG_USER */
387 size_t len = iov_length(iv, count);
388 ssize_t ret = len;
389
390 if (len > LOG_LINE_MAX)
391 return -EINVAL;
392 buf = kmalloc(len+1, GFP_KERNEL);
393 if (buf == NULL)
394 return -ENOMEM;
395
396 line = buf;
397 for (i = 0; i < count; i++) {
398 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
399 ret = -EFAULT;
400 goto out;
401 }
402 line += iv[i].iov_len;
403 }
404
405 /*
406 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
407 * the decimal value represents 32bit, the lower 3 bit are the log
408 * level, the rest are the log facility.
409 *
410 * If no prefix or no userspace facility is specified, we
411 * enforce LOG_USER, to be able to reliably distinguish
412 * kernel-generated messages from userspace-injected ones.
413 */
414 line = buf;
415 if (line[0] == '<') {
416 char *endp = NULL;
417
418 i = simple_strtoul(line+1, &endp, 10);
419 if (endp && endp[0] == '>') {
420 level = i & 7;
421 if (i >> 3)
422 facility = i >> 3;
423 endp++;
424 len -= endp - line;
425 line = endp;
426 }
427 }
428 line[len] = '\0';
429
430 printk_emit(facility, level, NULL, 0, "%s", line);
431 out:
432 kfree(buf);
433 return ret;
434 }
435
436 static ssize_t devkmsg_read(struct file *file, char __user *buf,
437 size_t count, loff_t *ppos)
438 {
439 struct devkmsg_user *user = file->private_data;
440 struct log *msg;
441 u64 ts_usec;
442 size_t i;
443 char cont = '-';
444 size_t len;
445 ssize_t ret;
446
447 if (!user)
448 return -EBADF;
449
450 ret = mutex_lock_interruptible(&user->lock);
451 if (ret)
452 return ret;
453 raw_spin_lock_irq(&logbuf_lock);
454 while (user->seq == log_next_seq) {
455 if (file->f_flags & O_NONBLOCK) {
456 ret = -EAGAIN;
457 raw_spin_unlock_irq(&logbuf_lock);
458 goto out;
459 }
460
461 raw_spin_unlock_irq(&logbuf_lock);
462 ret = wait_event_interruptible(log_wait,
463 user->seq != log_next_seq);
464 if (ret)
465 goto out;
466 raw_spin_lock_irq(&logbuf_lock);
467 }
468
469 if (user->seq < log_first_seq) {
470 /* our last seen message is gone, return error and reset */
471 user->idx = log_first_idx;
472 user->seq = log_first_seq;
473 ret = -EPIPE;
474 raw_spin_unlock_irq(&logbuf_lock);
475 goto out;
476 }
477
478 msg = log_from_idx(user->idx);
479 ts_usec = msg->ts_nsec;
480 do_div(ts_usec, 1000);
481
482 /*
483 * If we couldn't merge continuation line fragments during the print,
484 * export the stored flags to allow an optional external merge of the
485 * records. Merging the records isn't always neccessarily correct, like
486 * when we hit a race during printing. In most cases though, it produces
487 * better readable output. 'c' in the record flags mark the first
488 * fragment of a line, '+' the following.
489 */
490 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
491 cont = 'c';
492 else if ((msg->flags & LOG_CONT) ||
493 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
494 cont = '+';
495
496 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
497 (msg->facility << 3) | msg->level,
498 user->seq, ts_usec, cont);
499 user->prev = msg->flags;
500
501 /* escape non-printable characters */
502 for (i = 0; i < msg->text_len; i++) {
503 unsigned char c = log_text(msg)[i];
504
505 if (c < ' ' || c >= 127 || c == '\\')
506 len += sprintf(user->buf + len, "\\x%02x", c);
507 else
508 user->buf[len++] = c;
509 }
510 user->buf[len++] = '\n';
511
512 if (msg->dict_len) {
513 bool line = true;
514
515 for (i = 0; i < msg->dict_len; i++) {
516 unsigned char c = log_dict(msg)[i];
517
518 if (line) {
519 user->buf[len++] = ' ';
520 line = false;
521 }
522
523 if (c == '\0') {
524 user->buf[len++] = '\n';
525 line = true;
526 continue;
527 }
528
529 if (c < ' ' || c >= 127 || c == '\\') {
530 len += sprintf(user->buf + len, "\\x%02x", c);
531 continue;
532 }
533
534 user->buf[len++] = c;
535 }
536 user->buf[len++] = '\n';
537 }
538
539 user->idx = log_next(user->idx);
540 user->seq++;
541 raw_spin_unlock_irq(&logbuf_lock);
542
543 if (len > count) {
544 ret = -EINVAL;
545 goto out;
546 }
547
548 if (copy_to_user(buf, user->buf, len)) {
549 ret = -EFAULT;
550 goto out;
551 }
552 ret = len;
553 out:
554 mutex_unlock(&user->lock);
555 return ret;
556 }
557
558 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
559 {
560 struct devkmsg_user *user = file->private_data;
561 loff_t ret = 0;
562
563 if (!user)
564 return -EBADF;
565 if (offset)
566 return -ESPIPE;
567
568 raw_spin_lock_irq(&logbuf_lock);
569 switch (whence) {
570 case SEEK_SET:
571 /* the first record */
572 user->idx = log_first_idx;
573 user->seq = log_first_seq;
574 break;
575 case SEEK_DATA:
576 /*
577 * The first record after the last SYSLOG_ACTION_CLEAR,
578 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
579 * changes no global state, and does not clear anything.
580 */
581 user->idx = clear_idx;
582 user->seq = clear_seq;
583 break;
584 case SEEK_END:
585 /* after the last record */
586 user->idx = log_next_idx;
587 user->seq = log_next_seq;
588 break;
589 default:
590 ret = -EINVAL;
591 }
592 raw_spin_unlock_irq(&logbuf_lock);
593 return ret;
594 }
595
596 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
597 {
598 struct devkmsg_user *user = file->private_data;
599 int ret = 0;
600
601 if (!user)
602 return POLLERR|POLLNVAL;
603
604 poll_wait(file, &log_wait, wait);
605
606 raw_spin_lock_irq(&logbuf_lock);
607 if (user->seq < log_next_seq) {
608 /* return error when data has vanished underneath us */
609 if (user->seq < log_first_seq)
610 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
611 ret = POLLIN|POLLRDNORM;
612 }
613 raw_spin_unlock_irq(&logbuf_lock);
614
615 return ret;
616 }
617
618 static int devkmsg_open(struct inode *inode, struct file *file)
619 {
620 struct devkmsg_user *user;
621 int err;
622
623 /* write-only does not need any file context */
624 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
625 return 0;
626
627 err = security_syslog(SYSLOG_ACTION_READ_ALL);
628 if (err)
629 return err;
630
631 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
632 if (!user)
633 return -ENOMEM;
634
635 mutex_init(&user->lock);
636
637 raw_spin_lock_irq(&logbuf_lock);
638 user->idx = log_first_idx;
639 user->seq = log_first_seq;
640 raw_spin_unlock_irq(&logbuf_lock);
641
642 file->private_data = user;
643 return 0;
644 }
645
646 static int devkmsg_release(struct inode *inode, struct file *file)
647 {
648 struct devkmsg_user *user = file->private_data;
649
650 if (!user)
651 return 0;
652
653 mutex_destroy(&user->lock);
654 kfree(user);
655 return 0;
656 }
657
658 const struct file_operations kmsg_fops = {
659 .open = devkmsg_open,
660 .read = devkmsg_read,
661 .aio_write = devkmsg_writev,
662 .llseek = devkmsg_llseek,
663 .poll = devkmsg_poll,
664 .release = devkmsg_release,
665 };
666
667 #ifdef CONFIG_KEXEC
668 /*
669 * This appends the listed symbols to /proc/vmcoreinfo
670 *
671 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
672 * obtain access to symbols that are otherwise very difficult to locate. These
673 * symbols are specifically used so that utilities can access and extract the
674 * dmesg log from a vmcore file after a crash.
675 */
676 void log_buf_kexec_setup(void)
677 {
678 VMCOREINFO_SYMBOL(log_buf);
679 VMCOREINFO_SYMBOL(log_buf_len);
680 VMCOREINFO_SYMBOL(log_first_idx);
681 VMCOREINFO_SYMBOL(log_next_idx);
682 /*
683 * Export struct log size and field offsets. User space tools can
684 * parse it and detect any changes to structure down the line.
685 */
686 VMCOREINFO_STRUCT_SIZE(log);
687 VMCOREINFO_OFFSET(log, ts_nsec);
688 VMCOREINFO_OFFSET(log, len);
689 VMCOREINFO_OFFSET(log, text_len);
690 VMCOREINFO_OFFSET(log, dict_len);
691 }
692 #endif
693
694 /* requested log_buf_len from kernel cmdline */
695 static unsigned long __initdata new_log_buf_len;
696
697 /* save requested log_buf_len since it's too early to process it */
698 static int __init log_buf_len_setup(char *str)
699 {
700 unsigned size = memparse(str, &str);
701
702 if (size)
703 size = roundup_pow_of_two(size);
704 if (size > log_buf_len)
705 new_log_buf_len = size;
706
707 return 0;
708 }
709 early_param("log_buf_len", log_buf_len_setup);
710
711 void __init setup_log_buf(int early)
712 {
713 unsigned long flags;
714 char *new_log_buf;
715 int free;
716
717 if (!new_log_buf_len)
718 return;
719
720 if (early) {
721 unsigned long mem;
722
723 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
724 if (!mem)
725 return;
726 new_log_buf = __va(mem);
727 } else {
728 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
729 }
730
731 if (unlikely(!new_log_buf)) {
732 pr_err("log_buf_len: %ld bytes not available\n",
733 new_log_buf_len);
734 return;
735 }
736
737 raw_spin_lock_irqsave(&logbuf_lock, flags);
738 log_buf_len = new_log_buf_len;
739 log_buf = new_log_buf;
740 new_log_buf_len = 0;
741 free = __LOG_BUF_LEN - log_next_idx;
742 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
743 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
744
745 pr_info("log_buf_len: %d\n", log_buf_len);
746 pr_info("early log buf free: %d(%d%%)\n",
747 free, (free * 100) / __LOG_BUF_LEN);
748 }
749
750 #ifdef CONFIG_BOOT_PRINTK_DELAY
751
752 static int boot_delay; /* msecs delay after each printk during bootup */
753 static unsigned long long loops_per_msec; /* based on boot_delay */
754
755 static int __init boot_delay_setup(char *str)
756 {
757 unsigned long lpj;
758
759 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
760 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
761
762 get_option(&str, &boot_delay);
763 if (boot_delay > 10 * 1000)
764 boot_delay = 0;
765
766 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
767 "HZ: %d, loops_per_msec: %llu\n",
768 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
769 return 1;
770 }
771 __setup("boot_delay=", boot_delay_setup);
772
773 static void boot_delay_msec(void)
774 {
775 unsigned long long k;
776 unsigned long timeout;
777
778 if (boot_delay == 0 || system_state != SYSTEM_BOOTING)
779 return;
780
781 k = (unsigned long long)loops_per_msec * boot_delay;
782
783 timeout = jiffies + msecs_to_jiffies(boot_delay);
784 while (k) {
785 k--;
786 cpu_relax();
787 /*
788 * use (volatile) jiffies to prevent
789 * compiler reduction; loop termination via jiffies
790 * is secondary and may or may not happen.
791 */
792 if (time_after(jiffies, timeout))
793 break;
794 touch_nmi_watchdog();
795 }
796 }
797 #else
798 static inline void boot_delay_msec(void)
799 {
800 }
801 #endif
802
803 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
804 int dmesg_restrict = 1;
805 #else
806 int dmesg_restrict;
807 #endif
808
809 static int syslog_action_restricted(int type)
810 {
811 if (dmesg_restrict)
812 return 1;
813 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
814 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
815 }
816
817 static int check_syslog_permissions(int type, bool from_file)
818 {
819 /*
820 * If this is from /proc/kmsg and we've already opened it, then we've
821 * already done the capabilities checks at open time.
822 */
823 if (from_file && type != SYSLOG_ACTION_OPEN)
824 return 0;
825
826 if (syslog_action_restricted(type)) {
827 if (capable(CAP_SYSLOG))
828 return 0;
829 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
830 if (capable(CAP_SYS_ADMIN)) {
831 printk_once(KERN_WARNING "%s (%d): "
832 "Attempt to access syslog with CAP_SYS_ADMIN "
833 "but no CAP_SYSLOG (deprecated).\n",
834 current->comm, task_pid_nr(current));
835 return 0;
836 }
837 return -EPERM;
838 }
839 return 0;
840 }
841
842 #if defined(CONFIG_PRINTK_TIME)
843 static bool printk_time = 1;
844 #else
845 static bool printk_time;
846 #endif
847 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
848
849 static size_t print_time(u64 ts, char *buf)
850 {
851 unsigned long rem_nsec;
852
853 if (!printk_time)
854 return 0;
855
856 if (!buf)
857 return 15;
858
859 rem_nsec = do_div(ts, 1000000000);
860 return sprintf(buf, "[%5lu.%06lu] ",
861 (unsigned long)ts, rem_nsec / 1000);
862 }
863
864 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
865 {
866 size_t len = 0;
867 unsigned int prefix = (msg->facility << 3) | msg->level;
868
869 if (syslog) {
870 if (buf) {
871 len += sprintf(buf, "<%u>", prefix);
872 } else {
873 len += 3;
874 if (prefix > 999)
875 len += 3;
876 else if (prefix > 99)
877 len += 2;
878 else if (prefix > 9)
879 len++;
880 }
881 }
882
883 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
884 return len;
885 }
886
887 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
888 bool syslog, char *buf, size_t size)
889 {
890 const char *text = log_text(msg);
891 size_t text_size = msg->text_len;
892 bool prefix = true;
893 bool newline = true;
894 size_t len = 0;
895
896 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
897 prefix = false;
898
899 if (msg->flags & LOG_CONT) {
900 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
901 prefix = false;
902
903 if (!(msg->flags & LOG_NEWLINE))
904 newline = false;
905 }
906
907 do {
908 const char *next = memchr(text, '\n', text_size);
909 size_t text_len;
910
911 if (next) {
912 text_len = next - text;
913 next++;
914 text_size -= next - text;
915 } else {
916 text_len = text_size;
917 }
918
919 if (buf) {
920 if (print_prefix(msg, syslog, NULL) +
921 text_len + 1 >= size - len)
922 break;
923
924 if (prefix)
925 len += print_prefix(msg, syslog, buf + len);
926 memcpy(buf + len, text, text_len);
927 len += text_len;
928 if (next || newline)
929 buf[len++] = '\n';
930 } else {
931 /* SYSLOG_ACTION_* buffer size only calculation */
932 if (prefix)
933 len += print_prefix(msg, syslog, NULL);
934 len += text_len;
935 if (next || newline)
936 len++;
937 }
938
939 prefix = true;
940 text = next;
941 } while (text);
942
943 return len;
944 }
945
946 static int syslog_print(char __user *buf, int size)
947 {
948 char *text;
949 struct log *msg;
950 int len = 0;
951
952 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
953 if (!text)
954 return -ENOMEM;
955
956 while (size > 0) {
957 size_t n;
958 size_t skip;
959
960 raw_spin_lock_irq(&logbuf_lock);
961 if (syslog_seq < log_first_seq) {
962 /* messages are gone, move to first one */
963 syslog_seq = log_first_seq;
964 syslog_idx = log_first_idx;
965 syslog_prev = 0;
966 syslog_partial = 0;
967 }
968 if (syslog_seq == log_next_seq) {
969 raw_spin_unlock_irq(&logbuf_lock);
970 break;
971 }
972
973 skip = syslog_partial;
974 msg = log_from_idx(syslog_idx);
975 n = msg_print_text(msg, syslog_prev, true, text,
976 LOG_LINE_MAX + PREFIX_MAX);
977 if (n - syslog_partial <= size) {
978 /* message fits into buffer, move forward */
979 syslog_idx = log_next(syslog_idx);
980 syslog_seq++;
981 syslog_prev = msg->flags;
982 n -= syslog_partial;
983 syslog_partial = 0;
984 } else if (!len){
985 /* partial read(), remember position */
986 n = size;
987 syslog_partial += n;
988 } else
989 n = 0;
990 raw_spin_unlock_irq(&logbuf_lock);
991
992 if (!n)
993 break;
994
995 if (copy_to_user(buf, text + skip, n)) {
996 if (!len)
997 len = -EFAULT;
998 break;
999 }
1000
1001 len += n;
1002 size -= n;
1003 buf += n;
1004 }
1005
1006 kfree(text);
1007 return len;
1008 }
1009
1010 static int syslog_print_all(char __user *buf, int size, bool clear)
1011 {
1012 char *text;
1013 int len = 0;
1014
1015 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1016 if (!text)
1017 return -ENOMEM;
1018
1019 raw_spin_lock_irq(&logbuf_lock);
1020 if (buf) {
1021 u64 next_seq;
1022 u64 seq;
1023 u32 idx;
1024 enum log_flags prev;
1025
1026 if (clear_seq < log_first_seq) {
1027 /* messages are gone, move to first available one */
1028 clear_seq = log_first_seq;
1029 clear_idx = log_first_idx;
1030 }
1031
1032 /*
1033 * Find first record that fits, including all following records,
1034 * into the user-provided buffer for this dump.
1035 */
1036 seq = clear_seq;
1037 idx = clear_idx;
1038 prev = 0;
1039 while (seq < log_next_seq) {
1040 struct log *msg = log_from_idx(idx);
1041
1042 len += msg_print_text(msg, prev, true, NULL, 0);
1043 prev = msg->flags;
1044 idx = log_next(idx);
1045 seq++;
1046 }
1047
1048 /* move first record forward until length fits into the buffer */
1049 seq = clear_seq;
1050 idx = clear_idx;
1051 prev = 0;
1052 while (len > size && seq < log_next_seq) {
1053 struct log *msg = log_from_idx(idx);
1054
1055 len -= msg_print_text(msg, prev, true, NULL, 0);
1056 prev = msg->flags;
1057 idx = log_next(idx);
1058 seq++;
1059 }
1060
1061 /* last message fitting into this dump */
1062 next_seq = log_next_seq;
1063
1064 len = 0;
1065 prev = 0;
1066 while (len >= 0 && seq < next_seq) {
1067 struct log *msg = log_from_idx(idx);
1068 int textlen;
1069
1070 textlen = msg_print_text(msg, prev, true, text,
1071 LOG_LINE_MAX + PREFIX_MAX);
1072 if (textlen < 0) {
1073 len = textlen;
1074 break;
1075 }
1076 idx = log_next(idx);
1077 seq++;
1078 prev = msg->flags;
1079
1080 raw_spin_unlock_irq(&logbuf_lock);
1081 if (copy_to_user(buf + len, text, textlen))
1082 len = -EFAULT;
1083 else
1084 len += textlen;
1085 raw_spin_lock_irq(&logbuf_lock);
1086
1087 if (seq < log_first_seq) {
1088 /* messages are gone, move to next one */
1089 seq = log_first_seq;
1090 idx = log_first_idx;
1091 prev = 0;
1092 }
1093 }
1094 }
1095
1096 if (clear) {
1097 clear_seq = log_next_seq;
1098 clear_idx = log_next_idx;
1099 }
1100 raw_spin_unlock_irq(&logbuf_lock);
1101
1102 kfree(text);
1103 return len;
1104 }
1105
1106 int do_syslog(int type, char __user *buf, int len, bool from_file)
1107 {
1108 bool clear = false;
1109 static int saved_console_loglevel = -1;
1110 int error;
1111
1112 error = check_syslog_permissions(type, from_file);
1113 if (error)
1114 goto out;
1115
1116 error = security_syslog(type);
1117 if (error)
1118 return error;
1119
1120 switch (type) {
1121 case SYSLOG_ACTION_CLOSE: /* Close log */
1122 break;
1123 case SYSLOG_ACTION_OPEN: /* Open log */
1124 break;
1125 case SYSLOG_ACTION_READ: /* Read from log */
1126 error = -EINVAL;
1127 if (!buf || len < 0)
1128 goto out;
1129 error = 0;
1130 if (!len)
1131 goto out;
1132 if (!access_ok(VERIFY_WRITE, buf, len)) {
1133 error = -EFAULT;
1134 goto out;
1135 }
1136 error = wait_event_interruptible(log_wait,
1137 syslog_seq != log_next_seq);
1138 if (error)
1139 goto out;
1140 error = syslog_print(buf, len);
1141 break;
1142 /* Read/clear last kernel messages */
1143 case SYSLOG_ACTION_READ_CLEAR:
1144 clear = true;
1145 /* FALL THRU */
1146 /* Read last kernel messages */
1147 case SYSLOG_ACTION_READ_ALL:
1148 error = -EINVAL;
1149 if (!buf || len < 0)
1150 goto out;
1151 error = 0;
1152 if (!len)
1153 goto out;
1154 if (!access_ok(VERIFY_WRITE, buf, len)) {
1155 error = -EFAULT;
1156 goto out;
1157 }
1158 error = syslog_print_all(buf, len, clear);
1159 break;
1160 /* Clear ring buffer */
1161 case SYSLOG_ACTION_CLEAR:
1162 syslog_print_all(NULL, 0, true);
1163 break;
1164 /* Disable logging to console */
1165 case SYSLOG_ACTION_CONSOLE_OFF:
1166 if (saved_console_loglevel == -1)
1167 saved_console_loglevel = console_loglevel;
1168 console_loglevel = minimum_console_loglevel;
1169 break;
1170 /* Enable logging to console */
1171 case SYSLOG_ACTION_CONSOLE_ON:
1172 if (saved_console_loglevel != -1) {
1173 console_loglevel = saved_console_loglevel;
1174 saved_console_loglevel = -1;
1175 }
1176 break;
1177 /* Set level of messages printed to console */
1178 case SYSLOG_ACTION_CONSOLE_LEVEL:
1179 error = -EINVAL;
1180 if (len < 1 || len > 8)
1181 goto out;
1182 if (len < minimum_console_loglevel)
1183 len = minimum_console_loglevel;
1184 console_loglevel = len;
1185 /* Implicitly re-enable logging to console */
1186 saved_console_loglevel = -1;
1187 error = 0;
1188 break;
1189 /* Number of chars in the log buffer */
1190 case SYSLOG_ACTION_SIZE_UNREAD:
1191 raw_spin_lock_irq(&logbuf_lock);
1192 if (syslog_seq < log_first_seq) {
1193 /* messages are gone, move to first one */
1194 syslog_seq = log_first_seq;
1195 syslog_idx = log_first_idx;
1196 syslog_prev = 0;
1197 syslog_partial = 0;
1198 }
1199 if (from_file) {
1200 /*
1201 * Short-cut for poll(/"proc/kmsg") which simply checks
1202 * for pending data, not the size; return the count of
1203 * records, not the length.
1204 */
1205 error = log_next_idx - syslog_idx;
1206 } else {
1207 u64 seq = syslog_seq;
1208 u32 idx = syslog_idx;
1209 enum log_flags prev = syslog_prev;
1210
1211 error = 0;
1212 while (seq < log_next_seq) {
1213 struct log *msg = log_from_idx(idx);
1214
1215 error += msg_print_text(msg, prev, true, NULL, 0);
1216 idx = log_next(idx);
1217 seq++;
1218 prev = msg->flags;
1219 }
1220 error -= syslog_partial;
1221 }
1222 raw_spin_unlock_irq(&logbuf_lock);
1223 break;
1224 /* Size of the log buffer */
1225 case SYSLOG_ACTION_SIZE_BUFFER:
1226 error = log_buf_len;
1227 break;
1228 default:
1229 error = -EINVAL;
1230 break;
1231 }
1232 out:
1233 return error;
1234 }
1235
1236 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1237 {
1238 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1239 }
1240
1241 static bool __read_mostly ignore_loglevel;
1242
1243 static int __init ignore_loglevel_setup(char *str)
1244 {
1245 ignore_loglevel = 1;
1246 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
1247
1248 return 0;
1249 }
1250
1251 early_param("ignore_loglevel", ignore_loglevel_setup);
1252 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1253 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
1254 "print all kernel messages to the console.");
1255
1256 /*
1257 * Call the console drivers, asking them to write out
1258 * log_buf[start] to log_buf[end - 1].
1259 * The console_lock must be held.
1260 */
1261 static void call_console_drivers(int level, const char *text, size_t len)
1262 {
1263 struct console *con;
1264
1265 trace_console(text, 0, len, len);
1266
1267 if (level >= console_loglevel && !ignore_loglevel)
1268 return;
1269 if (!console_drivers)
1270 return;
1271
1272 for_each_console(con) {
1273 if (exclusive_console && con != exclusive_console)
1274 continue;
1275 if (!(con->flags & CON_ENABLED))
1276 continue;
1277 if (!con->write)
1278 continue;
1279 if (!cpu_online(smp_processor_id()) &&
1280 !(con->flags & CON_ANYTIME))
1281 continue;
1282 con->write(con, text, len);
1283 }
1284 }
1285
1286 /*
1287 * Zap console related locks when oopsing. Only zap at most once
1288 * every 10 seconds, to leave time for slow consoles to print a
1289 * full oops.
1290 */
1291 static void zap_locks(void)
1292 {
1293 static unsigned long oops_timestamp;
1294
1295 if (time_after_eq(jiffies, oops_timestamp) &&
1296 !time_after(jiffies, oops_timestamp + 30 * HZ))
1297 return;
1298
1299 oops_timestamp = jiffies;
1300
1301 debug_locks_off();
1302 /* If a crash is occurring, make sure we can't deadlock */
1303 raw_spin_lock_init(&logbuf_lock);
1304 /* And make sure that we print immediately */
1305 sema_init(&console_sem, 1);
1306 }
1307
1308 /* Check if we have any console registered that can be called early in boot. */
1309 static int have_callable_console(void)
1310 {
1311 struct console *con;
1312
1313 for_each_console(con)
1314 if (con->flags & CON_ANYTIME)
1315 return 1;
1316
1317 return 0;
1318 }
1319
1320 /*
1321 * Can we actually use the console at this time on this cpu?
1322 *
1323 * Console drivers may assume that per-cpu resources have
1324 * been allocated. So unless they're explicitly marked as
1325 * being able to cope (CON_ANYTIME) don't call them until
1326 * this CPU is officially up.
1327 */
1328 static inline int can_use_console(unsigned int cpu)
1329 {
1330 return cpu_online(cpu) || have_callable_console();
1331 }
1332
1333 /*
1334 * Try to get console ownership to actually show the kernel
1335 * messages from a 'printk'. Return true (and with the
1336 * console_lock held, and 'console_locked' set) if it
1337 * is successful, false otherwise.
1338 *
1339 * This gets called with the 'logbuf_lock' spinlock held and
1340 * interrupts disabled. It should return with 'lockbuf_lock'
1341 * released but interrupts still disabled.
1342 */
1343 static int console_trylock_for_printk(unsigned int cpu)
1344 __releases(&logbuf_lock)
1345 {
1346 int retval = 0, wake = 0;
1347
1348 if (console_trylock()) {
1349 retval = 1;
1350
1351 /*
1352 * If we can't use the console, we need to release
1353 * the console semaphore by hand to avoid flushing
1354 * the buffer. We need to hold the console semaphore
1355 * in order to do this test safely.
1356 */
1357 if (!can_use_console(cpu)) {
1358 console_locked = 0;
1359 wake = 1;
1360 retval = 0;
1361 }
1362 }
1363 logbuf_cpu = UINT_MAX;
1364 if (wake)
1365 up(&console_sem);
1366 raw_spin_unlock(&logbuf_lock);
1367 return retval;
1368 }
1369
1370 int printk_delay_msec __read_mostly;
1371
1372 static inline void printk_delay(void)
1373 {
1374 if (unlikely(printk_delay_msec)) {
1375 int m = printk_delay_msec;
1376
1377 while (m--) {
1378 mdelay(1);
1379 touch_nmi_watchdog();
1380 }
1381 }
1382 }
1383
1384 /*
1385 * Continuation lines are buffered, and not committed to the record buffer
1386 * until the line is complete, or a race forces it. The line fragments
1387 * though, are printed immediately to the consoles to ensure everything has
1388 * reached the console in case of a kernel crash.
1389 */
1390 static struct cont {
1391 char buf[LOG_LINE_MAX];
1392 size_t len; /* length == 0 means unused buffer */
1393 size_t cons; /* bytes written to console */
1394 struct task_struct *owner; /* task of first print*/
1395 u64 ts_nsec; /* time of first print */
1396 u8 level; /* log level of first message */
1397 u8 facility; /* log level of first message */
1398 enum log_flags flags; /* prefix, newline flags */
1399 bool flushed:1; /* buffer sealed and committed */
1400 } cont;
1401
1402 static void cont_flush(enum log_flags flags)
1403 {
1404 if (cont.flushed)
1405 return;
1406 if (cont.len == 0)
1407 return;
1408
1409 if (cont.cons) {
1410 /*
1411 * If a fragment of this line was directly flushed to the
1412 * console; wait for the console to pick up the rest of the
1413 * line. LOG_NOCONS suppresses a duplicated output.
1414 */
1415 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1416 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1417 cont.flags = flags;
1418 cont.flushed = true;
1419 } else {
1420 /*
1421 * If no fragment of this line ever reached the console,
1422 * just submit it to the store and free the buffer.
1423 */
1424 log_store(cont.facility, cont.level, flags, 0,
1425 NULL, 0, cont.buf, cont.len);
1426 cont.len = 0;
1427 }
1428 }
1429
1430 static bool cont_add(int facility, int level, const char *text, size_t len)
1431 {
1432 if (cont.len && cont.flushed)
1433 return false;
1434
1435 if (cont.len + len > sizeof(cont.buf)) {
1436 /* the line gets too long, split it up in separate records */
1437 cont_flush(LOG_CONT);
1438 return false;
1439 }
1440
1441 if (!cont.len) {
1442 cont.facility = facility;
1443 cont.level = level;
1444 cont.owner = current;
1445 cont.ts_nsec = local_clock();
1446 cont.flags = 0;
1447 cont.cons = 0;
1448 cont.flushed = false;
1449 }
1450
1451 memcpy(cont.buf + cont.len, text, len);
1452 cont.len += len;
1453
1454 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1455 cont_flush(LOG_CONT);
1456
1457 return true;
1458 }
1459
1460 static size_t cont_print_text(char *text, size_t size)
1461 {
1462 size_t textlen = 0;
1463 size_t len;
1464
1465 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1466 textlen += print_time(cont.ts_nsec, text);
1467 size -= textlen;
1468 }
1469
1470 len = cont.len - cont.cons;
1471 if (len > 0) {
1472 if (len+1 > size)
1473 len = size-1;
1474 memcpy(text + textlen, cont.buf + cont.cons, len);
1475 textlen += len;
1476 cont.cons = cont.len;
1477 }
1478
1479 if (cont.flushed) {
1480 if (cont.flags & LOG_NEWLINE)
1481 text[textlen++] = '\n';
1482 /* got everything, release buffer */
1483 cont.len = 0;
1484 }
1485 return textlen;
1486 }
1487
1488 asmlinkage int vprintk_emit(int facility, int level,
1489 const char *dict, size_t dictlen,
1490 const char *fmt, va_list args)
1491 {
1492 static int recursion_bug;
1493 static char textbuf[LOG_LINE_MAX];
1494 char *text = textbuf;
1495 size_t text_len;
1496 enum log_flags lflags = 0;
1497 unsigned long flags;
1498 int this_cpu;
1499 int printed_len = 0;
1500
1501 boot_delay_msec();
1502 printk_delay();
1503
1504 /* This stops the holder of console_sem just where we want him */
1505 local_irq_save(flags);
1506 this_cpu = smp_processor_id();
1507
1508 /*
1509 * Ouch, printk recursed into itself!
1510 */
1511 if (unlikely(logbuf_cpu == this_cpu)) {
1512 /*
1513 * If a crash is occurring during printk() on this CPU,
1514 * then try to get the crash message out but make sure
1515 * we can't deadlock. Otherwise just return to avoid the
1516 * recursion and return - but flag the recursion so that
1517 * it can be printed at the next appropriate moment:
1518 */
1519 if (!oops_in_progress && !lockdep_recursing(current)) {
1520 recursion_bug = 1;
1521 goto out_restore_irqs;
1522 }
1523 zap_locks();
1524 }
1525
1526 lockdep_off();
1527 raw_spin_lock(&logbuf_lock);
1528 logbuf_cpu = this_cpu;
1529
1530 if (recursion_bug) {
1531 static const char recursion_msg[] =
1532 "BUG: recent printk recursion!";
1533
1534 recursion_bug = 0;
1535 printed_len += strlen(recursion_msg);
1536 /* emit KERN_CRIT message */
1537 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1538 NULL, 0, recursion_msg, printed_len);
1539 }
1540
1541 /*
1542 * The printf needs to come first; we need the syslog
1543 * prefix which might be passed-in as a parameter.
1544 */
1545 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1546
1547 /* mark and strip a trailing newline */
1548 if (text_len && text[text_len-1] == '\n') {
1549 text_len--;
1550 lflags |= LOG_NEWLINE;
1551 }
1552
1553 /* strip kernel syslog prefix and extract log level or control flags */
1554 if (facility == 0) {
1555 int kern_level = printk_get_level(text);
1556
1557 if (kern_level) {
1558 const char *end_of_header = printk_skip_level(text);
1559 switch (kern_level) {
1560 case '0' ... '7':
1561 if (level == -1)
1562 level = kern_level - '0';
1563 case 'd': /* KERN_DEFAULT */
1564 lflags |= LOG_PREFIX;
1565 case 'c': /* KERN_CONT */
1566 break;
1567 }
1568 text_len -= end_of_header - text;
1569 text = (char *)end_of_header;
1570 }
1571 }
1572
1573 if (level == -1)
1574 level = default_message_loglevel;
1575
1576 if (dict)
1577 lflags |= LOG_PREFIX|LOG_NEWLINE;
1578
1579 if (!(lflags & LOG_NEWLINE)) {
1580 /*
1581 * Flush the conflicting buffer. An earlier newline was missing,
1582 * or another task also prints continuation lines.
1583 */
1584 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1585 cont_flush(LOG_NEWLINE);
1586
1587 /* buffer line if possible, otherwise store it right away */
1588 if (!cont_add(facility, level, text, text_len))
1589 log_store(facility, level, lflags | LOG_CONT, 0,
1590 dict, dictlen, text, text_len);
1591 } else {
1592 bool stored = false;
1593
1594 /*
1595 * If an earlier newline was missing and it was the same task,
1596 * either merge it with the current buffer and flush, or if
1597 * there was a race with interrupts (prefix == true) then just
1598 * flush it out and store this line separately.
1599 */
1600 if (cont.len && cont.owner == current) {
1601 if (!(lflags & LOG_PREFIX))
1602 stored = cont_add(facility, level, text, text_len);
1603 cont_flush(LOG_NEWLINE);
1604 }
1605
1606 if (!stored)
1607 log_store(facility, level, lflags, 0,
1608 dict, dictlen, text, text_len);
1609 }
1610 printed_len += text_len;
1611
1612 /*
1613 * Try to acquire and then immediately release the console semaphore.
1614 * The release will print out buffers and wake up /dev/kmsg and syslog()
1615 * users.
1616 *
1617 * The console_trylock_for_printk() function will release 'logbuf_lock'
1618 * regardless of whether it actually gets the console semaphore or not.
1619 */
1620 if (console_trylock_for_printk(this_cpu))
1621 console_unlock();
1622
1623 lockdep_on();
1624 out_restore_irqs:
1625 local_irq_restore(flags);
1626
1627 return printed_len;
1628 }
1629 EXPORT_SYMBOL(vprintk_emit);
1630
1631 asmlinkage int vprintk(const char *fmt, va_list args)
1632 {
1633 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1634 }
1635 EXPORT_SYMBOL(vprintk);
1636
1637 asmlinkage int printk_emit(int facility, int level,
1638 const char *dict, size_t dictlen,
1639 const char *fmt, ...)
1640 {
1641 va_list args;
1642 int r;
1643
1644 va_start(args, fmt);
1645 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1646 va_end(args);
1647
1648 return r;
1649 }
1650 EXPORT_SYMBOL(printk_emit);
1651
1652 /**
1653 * printk - print a kernel message
1654 * @fmt: format string
1655 *
1656 * This is printk(). It can be called from any context. We want it to work.
1657 *
1658 * We try to grab the console_lock. If we succeed, it's easy - we log the
1659 * output and call the console drivers. If we fail to get the semaphore, we
1660 * place the output into the log buffer and return. The current holder of
1661 * the console_sem will notice the new output in console_unlock(); and will
1662 * send it to the consoles before releasing the lock.
1663 *
1664 * One effect of this deferred printing is that code which calls printk() and
1665 * then changes console_loglevel may break. This is because console_loglevel
1666 * is inspected when the actual printing occurs.
1667 *
1668 * See also:
1669 * printf(3)
1670 *
1671 * See the vsnprintf() documentation for format string extensions over C99.
1672 */
1673 asmlinkage int printk(const char *fmt, ...)
1674 {
1675 va_list args;
1676 int r;
1677
1678 #ifdef CONFIG_KGDB_KDB
1679 if (unlikely(kdb_trap_printk)) {
1680 va_start(args, fmt);
1681 r = vkdb_printf(fmt, args);
1682 va_end(args);
1683 return r;
1684 }
1685 #endif
1686 va_start(args, fmt);
1687 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1688 va_end(args);
1689
1690 return r;
1691 }
1692 EXPORT_SYMBOL(printk);
1693
1694 #else /* CONFIG_PRINTK */
1695
1696 #define LOG_LINE_MAX 0
1697 #define PREFIX_MAX 0
1698 #define LOG_LINE_MAX 0
1699 static u64 syslog_seq;
1700 static u32 syslog_idx;
1701 static u64 console_seq;
1702 static u32 console_idx;
1703 static enum log_flags syslog_prev;
1704 static u64 log_first_seq;
1705 static u32 log_first_idx;
1706 static u64 log_next_seq;
1707 static enum log_flags console_prev;
1708 static struct cont {
1709 size_t len;
1710 size_t cons;
1711 u8 level;
1712 bool flushed:1;
1713 } cont;
1714 static struct log *log_from_idx(u32 idx) { return NULL; }
1715 static u32 log_next(u32 idx) { return 0; }
1716 static void call_console_drivers(int level, const char *text, size_t len) {}
1717 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1718 bool syslog, char *buf, size_t size) { return 0; }
1719 static size_t cont_print_text(char *text, size_t size) { return 0; }
1720
1721 #endif /* CONFIG_PRINTK */
1722
1723 static int __add_preferred_console(char *name, int idx, char *options,
1724 char *brl_options)
1725 {
1726 struct console_cmdline *c;
1727 int i;
1728
1729 /*
1730 * See if this tty is not yet registered, and
1731 * if we have a slot free.
1732 */
1733 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1734 if (strcmp(console_cmdline[i].name, name) == 0 &&
1735 console_cmdline[i].index == idx) {
1736 if (!brl_options)
1737 selected_console = i;
1738 return 0;
1739 }
1740 if (i == MAX_CMDLINECONSOLES)
1741 return -E2BIG;
1742 if (!brl_options)
1743 selected_console = i;
1744 c = &console_cmdline[i];
1745 strlcpy(c->name, name, sizeof(c->name));
1746 c->options = options;
1747 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1748 c->brl_options = brl_options;
1749 #endif
1750 c->index = idx;
1751 return 0;
1752 }
1753 /*
1754 * Set up a list of consoles. Called from init/main.c
1755 */
1756 static int __init console_setup(char *str)
1757 {
1758 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1759 char *s, *options, *brl_options = NULL;
1760 int idx;
1761
1762 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1763 if (!memcmp(str, "brl,", 4)) {
1764 brl_options = "";
1765 str += 4;
1766 } else if (!memcmp(str, "brl=", 4)) {
1767 brl_options = str + 4;
1768 str = strchr(brl_options, ',');
1769 if (!str) {
1770 printk(KERN_ERR "need port name after brl=\n");
1771 return 1;
1772 }
1773 *(str++) = 0;
1774 }
1775 #endif
1776
1777 /*
1778 * Decode str into name, index, options.
1779 */
1780 if (str[0] >= '0' && str[0] <= '9') {
1781 strcpy(buf, "ttyS");
1782 strncpy(buf + 4, str, sizeof(buf) - 5);
1783 } else {
1784 strncpy(buf, str, sizeof(buf) - 1);
1785 }
1786 buf[sizeof(buf) - 1] = 0;
1787 if ((options = strchr(str, ',')) != NULL)
1788 *(options++) = 0;
1789 #ifdef __sparc__
1790 if (!strcmp(str, "ttya"))
1791 strcpy(buf, "ttyS0");
1792 if (!strcmp(str, "ttyb"))
1793 strcpy(buf, "ttyS1");
1794 #endif
1795 for (s = buf; *s; s++)
1796 if ((*s >= '0' && *s <= '9') || *s == ',')
1797 break;
1798 idx = simple_strtoul(s, NULL, 10);
1799 *s = 0;
1800
1801 __add_preferred_console(buf, idx, options, brl_options);
1802 console_set_on_cmdline = 1;
1803 return 1;
1804 }
1805 __setup("console=", console_setup);
1806
1807 /**
1808 * add_preferred_console - add a device to the list of preferred consoles.
1809 * @name: device name
1810 * @idx: device index
1811 * @options: options for this console
1812 *
1813 * The last preferred console added will be used for kernel messages
1814 * and stdin/out/err for init. Normally this is used by console_setup
1815 * above to handle user-supplied console arguments; however it can also
1816 * be used by arch-specific code either to override the user or more
1817 * commonly to provide a default console (ie from PROM variables) when
1818 * the user has not supplied one.
1819 */
1820 int add_preferred_console(char *name, int idx, char *options)
1821 {
1822 return __add_preferred_console(name, idx, options, NULL);
1823 }
1824
1825 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1826 {
1827 struct console_cmdline *c;
1828 int i;
1829
1830 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1831 if (strcmp(console_cmdline[i].name, name) == 0 &&
1832 console_cmdline[i].index == idx) {
1833 c = &console_cmdline[i];
1834 strlcpy(c->name, name_new, sizeof(c->name));
1835 c->name[sizeof(c->name) - 1] = 0;
1836 c->options = options;
1837 c->index = idx_new;
1838 return i;
1839 }
1840 /* not found */
1841 return -1;
1842 }
1843
1844 bool console_suspend_enabled = 1;
1845 EXPORT_SYMBOL(console_suspend_enabled);
1846
1847 static int __init console_suspend_disable(char *str)
1848 {
1849 console_suspend_enabled = 0;
1850 return 1;
1851 }
1852 __setup("no_console_suspend", console_suspend_disable);
1853 module_param_named(console_suspend, console_suspend_enabled,
1854 bool, S_IRUGO | S_IWUSR);
1855 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1856 " and hibernate operations");
1857
1858 /**
1859 * suspend_console - suspend the console subsystem
1860 *
1861 * This disables printk() while we go into suspend states
1862 */
1863 void suspend_console(void)
1864 {
1865 if (!console_suspend_enabled)
1866 return;
1867 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1868 console_lock();
1869 console_suspended = 1;
1870 up(&console_sem);
1871 }
1872
1873 void resume_console(void)
1874 {
1875 if (!console_suspend_enabled)
1876 return;
1877 down(&console_sem);
1878 console_suspended = 0;
1879 console_unlock();
1880 }
1881
1882 /**
1883 * console_cpu_notify - print deferred console messages after CPU hotplug
1884 * @self: notifier struct
1885 * @action: CPU hotplug event
1886 * @hcpu: unused
1887 *
1888 * If printk() is called from a CPU that is not online yet, the messages
1889 * will be spooled but will not show up on the console. This function is
1890 * called when a new CPU comes online (or fails to come up), and ensures
1891 * that any such output gets printed.
1892 */
1893 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1894 unsigned long action, void *hcpu)
1895 {
1896 switch (action) {
1897 case CPU_ONLINE:
1898 case CPU_DEAD:
1899 case CPU_DOWN_FAILED:
1900 case CPU_UP_CANCELED:
1901 console_lock();
1902 console_unlock();
1903 }
1904 return NOTIFY_OK;
1905 }
1906
1907 /**
1908 * console_lock - lock the console system for exclusive use.
1909 *
1910 * Acquires a lock which guarantees that the caller has
1911 * exclusive access to the console system and the console_drivers list.
1912 *
1913 * Can sleep, returns nothing.
1914 */
1915 void console_lock(void)
1916 {
1917 might_sleep();
1918
1919 down(&console_sem);
1920 if (console_suspended)
1921 return;
1922 console_locked = 1;
1923 console_may_schedule = 1;
1924 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1925 }
1926 EXPORT_SYMBOL(console_lock);
1927
1928 /**
1929 * console_trylock - try to lock the console system for exclusive use.
1930 *
1931 * Tried to acquire a lock which guarantees that the caller has
1932 * exclusive access to the console system and the console_drivers list.
1933 *
1934 * returns 1 on success, and 0 on failure to acquire the lock.
1935 */
1936 int console_trylock(void)
1937 {
1938 if (down_trylock(&console_sem))
1939 return 0;
1940 if (console_suspended) {
1941 up(&console_sem);
1942 return 0;
1943 }
1944 console_locked = 1;
1945 console_may_schedule = 0;
1946 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1947 return 1;
1948 }
1949 EXPORT_SYMBOL(console_trylock);
1950
1951 int is_console_locked(void)
1952 {
1953 return console_locked;
1954 }
1955
1956 /*
1957 * Delayed printk version, for scheduler-internal messages:
1958 */
1959 #define PRINTK_BUF_SIZE 512
1960
1961 #define PRINTK_PENDING_WAKEUP 0x01
1962 #define PRINTK_PENDING_SCHED 0x02
1963
1964 static DEFINE_PER_CPU(int, printk_pending);
1965 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
1966
1967 void printk_tick(void)
1968 {
1969 if (__this_cpu_read(printk_pending)) {
1970 int pending = __this_cpu_xchg(printk_pending, 0);
1971 if (pending & PRINTK_PENDING_SCHED) {
1972 char *buf = __get_cpu_var(printk_sched_buf);
1973 printk(KERN_WARNING "[sched_delayed] %s", buf);
1974 }
1975 if (pending & PRINTK_PENDING_WAKEUP)
1976 wake_up_interruptible(&log_wait);
1977 }
1978 }
1979
1980 int printk_needs_cpu(int cpu)
1981 {
1982 if (cpu_is_offline(cpu))
1983 printk_tick();
1984 return __this_cpu_read(printk_pending);
1985 }
1986
1987 void wake_up_klogd(void)
1988 {
1989 if (waitqueue_active(&log_wait))
1990 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
1991 }
1992
1993 static void console_cont_flush(char *text, size_t size)
1994 {
1995 unsigned long flags;
1996 size_t len;
1997
1998 raw_spin_lock_irqsave(&logbuf_lock, flags);
1999
2000 if (!cont.len)
2001 goto out;
2002
2003 /*
2004 * We still queue earlier records, likely because the console was
2005 * busy. The earlier ones need to be printed before this one, we
2006 * did not flush any fragment so far, so just let it queue up.
2007 */
2008 if (console_seq < log_next_seq && !cont.cons)
2009 goto out;
2010
2011 len = cont_print_text(text, size);
2012 raw_spin_unlock(&logbuf_lock);
2013 stop_critical_timings();
2014 call_console_drivers(cont.level, text, len);
2015 start_critical_timings();
2016 local_irq_restore(flags);
2017 return;
2018 out:
2019 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2020 }
2021
2022 /**
2023 * console_unlock - unlock the console system
2024 *
2025 * Releases the console_lock which the caller holds on the console system
2026 * and the console driver list.
2027 *
2028 * While the console_lock was held, console output may have been buffered
2029 * by printk(). If this is the case, console_unlock(); emits
2030 * the output prior to releasing the lock.
2031 *
2032 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2033 *
2034 * console_unlock(); may be called from any context.
2035 */
2036 void console_unlock(void)
2037 {
2038 static char text[LOG_LINE_MAX + PREFIX_MAX];
2039 static u64 seen_seq;
2040 unsigned long flags;
2041 bool wake_klogd = false;
2042 bool retry;
2043
2044 if (console_suspended) {
2045 up(&console_sem);
2046 return;
2047 }
2048
2049 console_may_schedule = 0;
2050
2051 /* flush buffered message fragment immediately to console */
2052 console_cont_flush(text, sizeof(text));
2053 again:
2054 for (;;) {
2055 struct log *msg;
2056 size_t len;
2057 int level;
2058
2059 raw_spin_lock_irqsave(&logbuf_lock, flags);
2060 if (seen_seq != log_next_seq) {
2061 wake_klogd = true;
2062 seen_seq = log_next_seq;
2063 }
2064
2065 if (console_seq < log_first_seq) {
2066 /* messages are gone, move to first one */
2067 console_seq = log_first_seq;
2068 console_idx = log_first_idx;
2069 console_prev = 0;
2070 }
2071 skip:
2072 if (console_seq == log_next_seq)
2073 break;
2074
2075 msg = log_from_idx(console_idx);
2076 if (msg->flags & LOG_NOCONS) {
2077 /*
2078 * Skip record we have buffered and already printed
2079 * directly to the console when we received it.
2080 */
2081 console_idx = log_next(console_idx);
2082 console_seq++;
2083 /*
2084 * We will get here again when we register a new
2085 * CON_PRINTBUFFER console. Clear the flag so we
2086 * will properly dump everything later.
2087 */
2088 msg->flags &= ~LOG_NOCONS;
2089 console_prev = msg->flags;
2090 goto skip;
2091 }
2092
2093 level = msg->level;
2094 len = msg_print_text(msg, console_prev, false,
2095 text, sizeof(text));
2096 console_idx = log_next(console_idx);
2097 console_seq++;
2098 console_prev = msg->flags;
2099 raw_spin_unlock(&logbuf_lock);
2100
2101 stop_critical_timings(); /* don't trace print latency */
2102 call_console_drivers(level, text, len);
2103 start_critical_timings();
2104 local_irq_restore(flags);
2105 }
2106 console_locked = 0;
2107 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2108
2109 /* Release the exclusive_console once it is used */
2110 if (unlikely(exclusive_console))
2111 exclusive_console = NULL;
2112
2113 raw_spin_unlock(&logbuf_lock);
2114
2115 up(&console_sem);
2116
2117 /*
2118 * Someone could have filled up the buffer again, so re-check if there's
2119 * something to flush. In case we cannot trylock the console_sem again,
2120 * there's a new owner and the console_unlock() from them will do the
2121 * flush, no worries.
2122 */
2123 raw_spin_lock(&logbuf_lock);
2124 retry = console_seq != log_next_seq;
2125 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2126
2127 if (retry && console_trylock())
2128 goto again;
2129
2130 if (wake_klogd)
2131 wake_up_klogd();
2132 }
2133 EXPORT_SYMBOL(console_unlock);
2134
2135 /**
2136 * console_conditional_schedule - yield the CPU if required
2137 *
2138 * If the console code is currently allowed to sleep, and
2139 * if this CPU should yield the CPU to another task, do
2140 * so here.
2141 *
2142 * Must be called within console_lock();.
2143 */
2144 void __sched console_conditional_schedule(void)
2145 {
2146 if (console_may_schedule)
2147 cond_resched();
2148 }
2149 EXPORT_SYMBOL(console_conditional_schedule);
2150
2151 void console_unblank(void)
2152 {
2153 struct console *c;
2154
2155 /*
2156 * console_unblank can no longer be called in interrupt context unless
2157 * oops_in_progress is set to 1..
2158 */
2159 if (oops_in_progress) {
2160 if (down_trylock(&console_sem) != 0)
2161 return;
2162 } else
2163 console_lock();
2164
2165 console_locked = 1;
2166 console_may_schedule = 0;
2167 for_each_console(c)
2168 if ((c->flags & CON_ENABLED) && c->unblank)
2169 c->unblank();
2170 console_unlock();
2171 }
2172
2173 /*
2174 * Return the console tty driver structure and its associated index
2175 */
2176 struct tty_driver *console_device(int *index)
2177 {
2178 struct console *c;
2179 struct tty_driver *driver = NULL;
2180
2181 console_lock();
2182 for_each_console(c) {
2183 if (!c->device)
2184 continue;
2185 driver = c->device(c, index);
2186 if (driver)
2187 break;
2188 }
2189 console_unlock();
2190 return driver;
2191 }
2192
2193 /*
2194 * Prevent further output on the passed console device so that (for example)
2195 * serial drivers can disable console output before suspending a port, and can
2196 * re-enable output afterwards.
2197 */
2198 void console_stop(struct console *console)
2199 {
2200 console_lock();
2201 console->flags &= ~CON_ENABLED;
2202 console_unlock();
2203 }
2204 EXPORT_SYMBOL(console_stop);
2205
2206 void console_start(struct console *console)
2207 {
2208 console_lock();
2209 console->flags |= CON_ENABLED;
2210 console_unlock();
2211 }
2212 EXPORT_SYMBOL(console_start);
2213
2214 static int __read_mostly keep_bootcon;
2215
2216 static int __init keep_bootcon_setup(char *str)
2217 {
2218 keep_bootcon = 1;
2219 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2220
2221 return 0;
2222 }
2223
2224 early_param("keep_bootcon", keep_bootcon_setup);
2225
2226 /*
2227 * The console driver calls this routine during kernel initialization
2228 * to register the console printing procedure with printk() and to
2229 * print any messages that were printed by the kernel before the
2230 * console driver was initialized.
2231 *
2232 * This can happen pretty early during the boot process (because of
2233 * early_printk) - sometimes before setup_arch() completes - be careful
2234 * of what kernel features are used - they may not be initialised yet.
2235 *
2236 * There are two types of consoles - bootconsoles (early_printk) and
2237 * "real" consoles (everything which is not a bootconsole) which are
2238 * handled differently.
2239 * - Any number of bootconsoles can be registered at any time.
2240 * - As soon as a "real" console is registered, all bootconsoles
2241 * will be unregistered automatically.
2242 * - Once a "real" console is registered, any attempt to register a
2243 * bootconsoles will be rejected
2244 */
2245 void register_console(struct console *newcon)
2246 {
2247 int i;
2248 unsigned long flags;
2249 struct console *bcon = NULL;
2250
2251 /*
2252 * before we register a new CON_BOOT console, make sure we don't
2253 * already have a valid console
2254 */
2255 if (console_drivers && newcon->flags & CON_BOOT) {
2256 /* find the last or real console */
2257 for_each_console(bcon) {
2258 if (!(bcon->flags & CON_BOOT)) {
2259 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2260 newcon->name, newcon->index);
2261 return;
2262 }
2263 }
2264 }
2265
2266 if (console_drivers && console_drivers->flags & CON_BOOT)
2267 bcon = console_drivers;
2268
2269 if (preferred_console < 0 || bcon || !console_drivers)
2270 preferred_console = selected_console;
2271
2272 if (newcon->early_setup)
2273 newcon->early_setup();
2274
2275 /*
2276 * See if we want to use this console driver. If we
2277 * didn't select a console we take the first one
2278 * that registers here.
2279 */
2280 if (preferred_console < 0) {
2281 if (newcon->index < 0)
2282 newcon->index = 0;
2283 if (newcon->setup == NULL ||
2284 newcon->setup(newcon, NULL) == 0) {
2285 newcon->flags |= CON_ENABLED;
2286 if (newcon->device) {
2287 newcon->flags |= CON_CONSDEV;
2288 preferred_console = 0;
2289 }
2290 }
2291 }
2292
2293 /*
2294 * See if this console matches one we selected on
2295 * the command line.
2296 */
2297 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2298 i++) {
2299 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2300 continue;
2301 if (newcon->index >= 0 &&
2302 newcon->index != console_cmdline[i].index)
2303 continue;
2304 if (newcon->index < 0)
2305 newcon->index = console_cmdline[i].index;
2306 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2307 if (console_cmdline[i].brl_options) {
2308 newcon->flags |= CON_BRL;
2309 braille_register_console(newcon,
2310 console_cmdline[i].index,
2311 console_cmdline[i].options,
2312 console_cmdline[i].brl_options);
2313 return;
2314 }
2315 #endif
2316 if (newcon->setup &&
2317 newcon->setup(newcon, console_cmdline[i].options) != 0)
2318 break;
2319 newcon->flags |= CON_ENABLED;
2320 newcon->index = console_cmdline[i].index;
2321 if (i == selected_console) {
2322 newcon->flags |= CON_CONSDEV;
2323 preferred_console = selected_console;
2324 }
2325 break;
2326 }
2327
2328 if (!(newcon->flags & CON_ENABLED))
2329 return;
2330
2331 /*
2332 * If we have a bootconsole, and are switching to a real console,
2333 * don't print everything out again, since when the boot console, and
2334 * the real console are the same physical device, it's annoying to
2335 * see the beginning boot messages twice
2336 */
2337 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2338 newcon->flags &= ~CON_PRINTBUFFER;
2339
2340 /*
2341 * Put this console in the list - keep the
2342 * preferred driver at the head of the list.
2343 */
2344 console_lock();
2345 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2346 newcon->next = console_drivers;
2347 console_drivers = newcon;
2348 if (newcon->next)
2349 newcon->next->flags &= ~CON_CONSDEV;
2350 } else {
2351 newcon->next = console_drivers->next;
2352 console_drivers->next = newcon;
2353 }
2354 if (newcon->flags & CON_PRINTBUFFER) {
2355 /*
2356 * console_unlock(); will print out the buffered messages
2357 * for us.
2358 */
2359 raw_spin_lock_irqsave(&logbuf_lock, flags);
2360 console_seq = syslog_seq;
2361 console_idx = syslog_idx;
2362 console_prev = syslog_prev;
2363 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2364 /*
2365 * We're about to replay the log buffer. Only do this to the
2366 * just-registered console to avoid excessive message spam to
2367 * the already-registered consoles.
2368 */
2369 exclusive_console = newcon;
2370 }
2371 console_unlock();
2372 console_sysfs_notify();
2373
2374 /*
2375 * By unregistering the bootconsoles after we enable the real console
2376 * we get the "console xxx enabled" message on all the consoles -
2377 * boot consoles, real consoles, etc - this is to ensure that end
2378 * users know there might be something in the kernel's log buffer that
2379 * went to the bootconsole (that they do not see on the real console)
2380 */
2381 if (bcon &&
2382 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2383 !keep_bootcon) {
2384 /* we need to iterate through twice, to make sure we print
2385 * everything out, before we unregister the console(s)
2386 */
2387 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2388 newcon->name, newcon->index);
2389 for_each_console(bcon)
2390 if (bcon->flags & CON_BOOT)
2391 unregister_console(bcon);
2392 } else {
2393 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2394 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2395 newcon->name, newcon->index);
2396 }
2397 }
2398 EXPORT_SYMBOL(register_console);
2399
2400 int unregister_console(struct console *console)
2401 {
2402 struct console *a, *b;
2403 int res = 1;
2404
2405 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2406 if (console->flags & CON_BRL)
2407 return braille_unregister_console(console);
2408 #endif
2409
2410 console_lock();
2411 if (console_drivers == console) {
2412 console_drivers=console->next;
2413 res = 0;
2414 } else if (console_drivers) {
2415 for (a=console_drivers->next, b=console_drivers ;
2416 a; b=a, a=b->next) {
2417 if (a == console) {
2418 b->next = a->next;
2419 res = 0;
2420 break;
2421 }
2422 }
2423 }
2424
2425 /*
2426 * If this isn't the last console and it has CON_CONSDEV set, we
2427 * need to set it on the next preferred console.
2428 */
2429 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2430 console_drivers->flags |= CON_CONSDEV;
2431
2432 console_unlock();
2433 console_sysfs_notify();
2434 return res;
2435 }
2436 EXPORT_SYMBOL(unregister_console);
2437
2438 static int __init printk_late_init(void)
2439 {
2440 struct console *con;
2441
2442 for_each_console(con) {
2443 if (!keep_bootcon && con->flags & CON_BOOT) {
2444 printk(KERN_INFO "turn off boot console %s%d\n",
2445 con->name, con->index);
2446 unregister_console(con);
2447 }
2448 }
2449 hotcpu_notifier(console_cpu_notify, 0);
2450 return 0;
2451 }
2452 late_initcall(printk_late_init);
2453
2454 #if defined CONFIG_PRINTK
2455
2456 int printk_sched(const char *fmt, ...)
2457 {
2458 unsigned long flags;
2459 va_list args;
2460 char *buf;
2461 int r;
2462
2463 local_irq_save(flags);
2464 buf = __get_cpu_var(printk_sched_buf);
2465
2466 va_start(args, fmt);
2467 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2468 va_end(args);
2469
2470 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2471 local_irq_restore(flags);
2472
2473 return r;
2474 }
2475
2476 /*
2477 * printk rate limiting, lifted from the networking subsystem.
2478 *
2479 * This enforces a rate limit: not more than 10 kernel messages
2480 * every 5s to make a denial-of-service attack impossible.
2481 */
2482 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2483
2484 int __printk_ratelimit(const char *func)
2485 {
2486 return ___ratelimit(&printk_ratelimit_state, func);
2487 }
2488 EXPORT_SYMBOL(__printk_ratelimit);
2489
2490 /**
2491 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2492 * @caller_jiffies: pointer to caller's state
2493 * @interval_msecs: minimum interval between prints
2494 *
2495 * printk_timed_ratelimit() returns true if more than @interval_msecs
2496 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2497 * returned true.
2498 */
2499 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2500 unsigned int interval_msecs)
2501 {
2502 if (*caller_jiffies == 0
2503 || !time_in_range(jiffies, *caller_jiffies,
2504 *caller_jiffies
2505 + msecs_to_jiffies(interval_msecs))) {
2506 *caller_jiffies = jiffies;
2507 return true;
2508 }
2509 return false;
2510 }
2511 EXPORT_SYMBOL(printk_timed_ratelimit);
2512
2513 static DEFINE_SPINLOCK(dump_list_lock);
2514 static LIST_HEAD(dump_list);
2515
2516 /**
2517 * kmsg_dump_register - register a kernel log dumper.
2518 * @dumper: pointer to the kmsg_dumper structure
2519 *
2520 * Adds a kernel log dumper to the system. The dump callback in the
2521 * structure will be called when the kernel oopses or panics and must be
2522 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2523 */
2524 int kmsg_dump_register(struct kmsg_dumper *dumper)
2525 {
2526 unsigned long flags;
2527 int err = -EBUSY;
2528
2529 /* The dump callback needs to be set */
2530 if (!dumper->dump)
2531 return -EINVAL;
2532
2533 spin_lock_irqsave(&dump_list_lock, flags);
2534 /* Don't allow registering multiple times */
2535 if (!dumper->registered) {
2536 dumper->registered = 1;
2537 list_add_tail_rcu(&dumper->list, &dump_list);
2538 err = 0;
2539 }
2540 spin_unlock_irqrestore(&dump_list_lock, flags);
2541
2542 return err;
2543 }
2544 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2545
2546 /**
2547 * kmsg_dump_unregister - unregister a kmsg dumper.
2548 * @dumper: pointer to the kmsg_dumper structure
2549 *
2550 * Removes a dump device from the system. Returns zero on success and
2551 * %-EINVAL otherwise.
2552 */
2553 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2554 {
2555 unsigned long flags;
2556 int err = -EINVAL;
2557
2558 spin_lock_irqsave(&dump_list_lock, flags);
2559 if (dumper->registered) {
2560 dumper->registered = 0;
2561 list_del_rcu(&dumper->list);
2562 err = 0;
2563 }
2564 spin_unlock_irqrestore(&dump_list_lock, flags);
2565 synchronize_rcu();
2566
2567 return err;
2568 }
2569 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2570
2571 static bool always_kmsg_dump;
2572 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2573
2574 /**
2575 * kmsg_dump - dump kernel log to kernel message dumpers.
2576 * @reason: the reason (oops, panic etc) for dumping
2577 *
2578 * Call each of the registered dumper's dump() callback, which can
2579 * retrieve the kmsg records with kmsg_dump_get_line() or
2580 * kmsg_dump_get_buffer().
2581 */
2582 void kmsg_dump(enum kmsg_dump_reason reason)
2583 {
2584 struct kmsg_dumper *dumper;
2585 unsigned long flags;
2586
2587 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2588 return;
2589
2590 rcu_read_lock();
2591 list_for_each_entry_rcu(dumper, &dump_list, list) {
2592 if (dumper->max_reason && reason > dumper->max_reason)
2593 continue;
2594
2595 /* initialize iterator with data about the stored records */
2596 dumper->active = true;
2597
2598 raw_spin_lock_irqsave(&logbuf_lock, flags);
2599 dumper->cur_seq = clear_seq;
2600 dumper->cur_idx = clear_idx;
2601 dumper->next_seq = log_next_seq;
2602 dumper->next_idx = log_next_idx;
2603 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2604
2605 /* invoke dumper which will iterate over records */
2606 dumper->dump(dumper, reason);
2607
2608 /* reset iterator */
2609 dumper->active = false;
2610 }
2611 rcu_read_unlock();
2612 }
2613
2614 /**
2615 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2616 * @dumper: registered kmsg dumper
2617 * @syslog: include the "<4>" prefixes
2618 * @line: buffer to copy the line to
2619 * @size: maximum size of the buffer
2620 * @len: length of line placed into buffer
2621 *
2622 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2623 * record, and copy one record into the provided buffer.
2624 *
2625 * Consecutive calls will return the next available record moving
2626 * towards the end of the buffer with the youngest messages.
2627 *
2628 * A return value of FALSE indicates that there are no more records to
2629 * read.
2630 *
2631 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2632 */
2633 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2634 char *line, size_t size, size_t *len)
2635 {
2636 struct log *msg;
2637 size_t l = 0;
2638 bool ret = false;
2639
2640 if (!dumper->active)
2641 goto out;
2642
2643 if (dumper->cur_seq < log_first_seq) {
2644 /* messages are gone, move to first available one */
2645 dumper->cur_seq = log_first_seq;
2646 dumper->cur_idx = log_first_idx;
2647 }
2648
2649 /* last entry */
2650 if (dumper->cur_seq >= log_next_seq)
2651 goto out;
2652
2653 msg = log_from_idx(dumper->cur_idx);
2654 l = msg_print_text(msg, 0, syslog, line, size);
2655
2656 dumper->cur_idx = log_next(dumper->cur_idx);
2657 dumper->cur_seq++;
2658 ret = true;
2659 out:
2660 if (len)
2661 *len = l;
2662 return ret;
2663 }
2664
2665 /**
2666 * kmsg_dump_get_line - retrieve one kmsg log line
2667 * @dumper: registered kmsg dumper
2668 * @syslog: include the "<4>" prefixes
2669 * @line: buffer to copy the line to
2670 * @size: maximum size of the buffer
2671 * @len: length of line placed into buffer
2672 *
2673 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2674 * record, and copy one record into the provided buffer.
2675 *
2676 * Consecutive calls will return the next available record moving
2677 * towards the end of the buffer with the youngest messages.
2678 *
2679 * A return value of FALSE indicates that there are no more records to
2680 * read.
2681 */
2682 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2683 char *line, size_t size, size_t *len)
2684 {
2685 unsigned long flags;
2686 bool ret;
2687
2688 raw_spin_lock_irqsave(&logbuf_lock, flags);
2689 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2690 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2691
2692 return ret;
2693 }
2694 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2695
2696 /**
2697 * kmsg_dump_get_buffer - copy kmsg log lines
2698 * @dumper: registered kmsg dumper
2699 * @syslog: include the "<4>" prefixes
2700 * @buf: buffer to copy the line to
2701 * @size: maximum size of the buffer
2702 * @len: length of line placed into buffer
2703 *
2704 * Start at the end of the kmsg buffer and fill the provided buffer
2705 * with as many of the the *youngest* kmsg records that fit into it.
2706 * If the buffer is large enough, all available kmsg records will be
2707 * copied with a single call.
2708 *
2709 * Consecutive calls will fill the buffer with the next block of
2710 * available older records, not including the earlier retrieved ones.
2711 *
2712 * A return value of FALSE indicates that there are no more records to
2713 * read.
2714 */
2715 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2716 char *buf, size_t size, size_t *len)
2717 {
2718 unsigned long flags;
2719 u64 seq;
2720 u32 idx;
2721 u64 next_seq;
2722 u32 next_idx;
2723 enum log_flags prev;
2724 size_t l = 0;
2725 bool ret = false;
2726
2727 if (!dumper->active)
2728 goto out;
2729
2730 raw_spin_lock_irqsave(&logbuf_lock, flags);
2731 if (dumper->cur_seq < log_first_seq) {
2732 /* messages are gone, move to first available one */
2733 dumper->cur_seq = log_first_seq;
2734 dumper->cur_idx = log_first_idx;
2735 }
2736
2737 /* last entry */
2738 if (dumper->cur_seq >= dumper->next_seq) {
2739 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2740 goto out;
2741 }
2742
2743 /* calculate length of entire buffer */
2744 seq = dumper->cur_seq;
2745 idx = dumper->cur_idx;
2746 prev = 0;
2747 while (seq < dumper->next_seq) {
2748 struct log *msg = log_from_idx(idx);
2749
2750 l += msg_print_text(msg, prev, true, NULL, 0);
2751 idx = log_next(idx);
2752 seq++;
2753 prev = msg->flags;
2754 }
2755
2756 /* move first record forward until length fits into the buffer */
2757 seq = dumper->cur_seq;
2758 idx = dumper->cur_idx;
2759 prev = 0;
2760 while (l > size && seq < dumper->next_seq) {
2761 struct log *msg = log_from_idx(idx);
2762
2763 l -= msg_print_text(msg, prev, true, NULL, 0);
2764 idx = log_next(idx);
2765 seq++;
2766 prev = msg->flags;
2767 }
2768
2769 /* last message in next interation */
2770 next_seq = seq;
2771 next_idx = idx;
2772
2773 l = 0;
2774 prev = 0;
2775 while (seq < dumper->next_seq) {
2776 struct log *msg = log_from_idx(idx);
2777
2778 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2779 idx = log_next(idx);
2780 seq++;
2781 prev = msg->flags;
2782 }
2783
2784 dumper->next_seq = next_seq;
2785 dumper->next_idx = next_idx;
2786 ret = true;
2787 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2788 out:
2789 if (len)
2790 *len = l;
2791 return ret;
2792 }
2793 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2794
2795 /**
2796 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2797 * @dumper: registered kmsg dumper
2798 *
2799 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2800 * kmsg_dump_get_buffer() can be called again and used multiple
2801 * times within the same dumper.dump() callback.
2802 *
2803 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2804 */
2805 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2806 {
2807 dumper->cur_seq = clear_seq;
2808 dumper->cur_idx = clear_idx;
2809 dumper->next_seq = log_next_seq;
2810 dumper->next_idx = log_next_idx;
2811 }
2812
2813 /**
2814 * kmsg_dump_rewind - reset the interator
2815 * @dumper: registered kmsg dumper
2816 *
2817 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2818 * kmsg_dump_get_buffer() can be called again and used multiple
2819 * times within the same dumper.dump() callback.
2820 */
2821 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2822 {
2823 unsigned long flags;
2824
2825 raw_spin_lock_irqsave(&logbuf_lock, flags);
2826 kmsg_dump_rewind_nolock(dumper);
2827 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2828 }
2829 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2830 #endif