Merge branch 'block-dir' of git://brick.kernel.dk/data/git/linux-2.6-block
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / power / swsusp.c
1 /*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file provides code to write suspend image to swap and read it back.
5 *
6 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
8 *
9 * This file is released under the GPLv2.
10 *
11 * I'd like to thank the following people for their work:
12 *
13 * Pavel Machek <pavel@ucw.cz>:
14 * Modifications, defectiveness pointing, being with me at the very beginning,
15 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
16 *
17 * Steve Doddi <dirk@loth.demon.co.uk>:
18 * Support the possibility of hardware state restoring.
19 *
20 * Raph <grey.havens@earthling.net>:
21 * Support for preserving states of network devices and virtual console
22 * (including X and svgatextmode)
23 *
24 * Kurt Garloff <garloff@suse.de>:
25 * Straightened the critical function in order to prevent compilers from
26 * playing tricks with local variables.
27 *
28 * Andreas Mohr <a.mohr@mailto.de>
29 *
30 * Alex Badea <vampire@go.ro>:
31 * Fixed runaway init
32 *
33 * Andreas Steinmetz <ast@domdv.de>:
34 * Added encrypted suspend option
35 *
36 * More state savers are welcome. Especially for the scsi layer...
37 *
38 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
39 */
40
41 #include <linux/module.h>
42 #include <linux/mm.h>
43 #include <linux/suspend.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/utsname.h>
47 #include <linux/version.h>
48 #include <linux/delay.h>
49 #include <linux/bitops.h>
50 #include <linux/spinlock.h>
51 #include <linux/genhd.h>
52 #include <linux/kernel.h>
53 #include <linux/major.h>
54 #include <linux/swap.h>
55 #include <linux/pm.h>
56 #include <linux/device.h>
57 #include <linux/buffer_head.h>
58 #include <linux/swapops.h>
59 #include <linux/bootmem.h>
60 #include <linux/syscalls.h>
61 #include <linux/highmem.h>
62 #include <linux/bio.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/io.h>
69
70 #include <linux/random.h>
71 #include <linux/crypto.h>
72 #include <asm/scatterlist.h>
73
74 #include "power.h"
75
76 #define CIPHER "aes"
77 #define MAXKEY 32
78 #define MAXIV 32
79
80 extern char resume_file[];
81
82 /* Local variables that should not be affected by save */
83 unsigned int nr_copy_pages __nosavedata = 0;
84
85 /* Suspend pagedir is allocated before final copy, therefore it
86 must be freed after resume
87
88 Warning: this is even more evil than it seems. Pagedirs this file
89 talks about are completely different from page directories used by
90 MMU hardware.
91 */
92 suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
93
94 #define SWSUSP_SIG "S1SUSPEND"
95
96 static struct swsusp_header {
97 char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
98 u8 key_iv[MAXKEY+MAXIV];
99 swp_entry_t swsusp_info;
100 char orig_sig[10];
101 char sig[10];
102 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
103
104 static struct swsusp_info swsusp_info;
105
106 /*
107 * Saving part...
108 */
109
110 /* We memorize in swapfile_used what swap devices are used for suspension */
111 #define SWAPFILE_UNUSED 0
112 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */
113 #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
114
115 static unsigned short swapfile_used[MAX_SWAPFILES];
116 static unsigned short root_swap;
117
118 static int write_page(unsigned long addr, swp_entry_t *loc);
119 static int bio_read_page(pgoff_t page_off, void *page);
120
121 static u8 key_iv[MAXKEY+MAXIV];
122
123 #ifdef CONFIG_SWSUSP_ENCRYPT
124
125 static int crypto_init(int mode, void **mem)
126 {
127 int error = 0;
128 int len;
129 char *modemsg;
130 struct crypto_tfm *tfm;
131
132 modemsg = mode ? "suspend not possible" : "resume not possible";
133
134 tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
135 if(!tfm) {
136 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
137 error = -EINVAL;
138 goto out;
139 }
140
141 if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
142 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
143 error = -ENOKEY;
144 goto fail;
145 }
146
147 if (mode)
148 get_random_bytes(key_iv, MAXKEY+MAXIV);
149
150 len = crypto_tfm_alg_max_keysize(tfm);
151 if (len > MAXKEY)
152 len = MAXKEY;
153
154 if (crypto_cipher_setkey(tfm, key_iv, len)) {
155 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
156 error = -EKEYREJECTED;
157 goto fail;
158 }
159
160 len = crypto_tfm_alg_ivsize(tfm);
161
162 if (MAXIV < len) {
163 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
164 error = -EOVERFLOW;
165 goto fail;
166 }
167
168 crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
169
170 *mem=(void *)tfm;
171
172 goto out;
173
174 fail: crypto_free_tfm(tfm);
175 out: return error;
176 }
177
178 static __inline__ void crypto_exit(void *mem)
179 {
180 crypto_free_tfm((struct crypto_tfm *)mem);
181 }
182
183 static __inline__ int crypto_write(struct pbe *p, void *mem)
184 {
185 int error = 0;
186 struct scatterlist src, dst;
187
188 src.page = virt_to_page(p->address);
189 src.offset = 0;
190 src.length = PAGE_SIZE;
191 dst.page = virt_to_page((void *)&swsusp_header);
192 dst.offset = 0;
193 dst.length = PAGE_SIZE;
194
195 error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
196 PAGE_SIZE);
197
198 if (!error)
199 error = write_page((unsigned long)&swsusp_header,
200 &(p->swap_address));
201 return error;
202 }
203
204 static __inline__ int crypto_read(struct pbe *p, void *mem)
205 {
206 int error = 0;
207 struct scatterlist src, dst;
208
209 error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
210 if (!error) {
211 src.offset = 0;
212 src.length = PAGE_SIZE;
213 dst.offset = 0;
214 dst.length = PAGE_SIZE;
215 src.page = dst.page = virt_to_page((void *)p->address);
216
217 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
218 &src, PAGE_SIZE);
219 }
220 return error;
221 }
222 #else
223 static __inline__ int crypto_init(int mode, void *mem)
224 {
225 return 0;
226 }
227
228 static __inline__ void crypto_exit(void *mem)
229 {
230 }
231
232 static __inline__ int crypto_write(struct pbe *p, void *mem)
233 {
234 return write_page(p->address, &(p->swap_address));
235 }
236
237 static __inline__ int crypto_read(struct pbe *p, void *mem)
238 {
239 return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
240 }
241 #endif
242
243 static int mark_swapfiles(swp_entry_t prev)
244 {
245 int error;
246
247 rw_swap_page_sync(READ,
248 swp_entry(root_swap, 0),
249 virt_to_page((unsigned long)&swsusp_header));
250 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
251 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
252 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
253 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
254 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
255 swsusp_header.swsusp_info = prev;
256 error = rw_swap_page_sync(WRITE,
257 swp_entry(root_swap, 0),
258 virt_to_page((unsigned long)
259 &swsusp_header));
260 } else {
261 pr_debug("swsusp: Partition is not swap space.\n");
262 error = -ENODEV;
263 }
264 return error;
265 }
266
267 /*
268 * Check whether the swap device is the specified resume
269 * device, irrespective of whether they are specified by
270 * identical names.
271 *
272 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
273 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
274 * and they'll be considered the same device. This is *necessary* for
275 * devfs, since the resume code can only recognize the form /dev/hda4,
276 * but the suspend code would see the long name.)
277 */
278 static int is_resume_device(const struct swap_info_struct *swap_info)
279 {
280 struct file *file = swap_info->swap_file;
281 struct inode *inode = file->f_dentry->d_inode;
282
283 return S_ISBLK(inode->i_mode) &&
284 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
285 }
286
287 static int swsusp_swap_check(void) /* This is called before saving image */
288 {
289 int i, len;
290
291 len=strlen(resume_file);
292 root_swap = 0xFFFF;
293
294 spin_lock(&swap_lock);
295 for (i=0; i<MAX_SWAPFILES; i++) {
296 if (!(swap_info[i].flags & SWP_WRITEOK)) {
297 swapfile_used[i]=SWAPFILE_UNUSED;
298 } else {
299 if (!len) {
300 printk(KERN_WARNING "resume= option should be used to set suspend device" );
301 if (root_swap == 0xFFFF) {
302 swapfile_used[i] = SWAPFILE_SUSPEND;
303 root_swap = i;
304 } else
305 swapfile_used[i] = SWAPFILE_IGNORED;
306 } else {
307 /* we ignore all swap devices that are not the resume_file */
308 if (is_resume_device(&swap_info[i])) {
309 swapfile_used[i] = SWAPFILE_SUSPEND;
310 root_swap = i;
311 } else {
312 swapfile_used[i] = SWAPFILE_IGNORED;
313 }
314 }
315 }
316 }
317 spin_unlock(&swap_lock);
318 return (root_swap != 0xffff) ? 0 : -ENODEV;
319 }
320
321 /**
322 * This is called after saving image so modification
323 * will be lost after resume... and that's what we want.
324 * we make the device unusable. A new call to
325 * lock_swapdevices can unlock the devices.
326 */
327 static void lock_swapdevices(void)
328 {
329 int i;
330
331 spin_lock(&swap_lock);
332 for (i = 0; i< MAX_SWAPFILES; i++)
333 if (swapfile_used[i] == SWAPFILE_IGNORED) {
334 swap_info[i].flags ^= SWP_WRITEOK;
335 }
336 spin_unlock(&swap_lock);
337 }
338
339 /**
340 * write_page - Write one page to a fresh swap location.
341 * @addr: Address we're writing.
342 * @loc: Place to store the entry we used.
343 *
344 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
345 * errors. That is an artifact left over from swsusp. It did not
346 * check the return of rw_swap_page_sync() at all, since most pages
347 * written back to swap would return -EIO.
348 * This is a partial improvement, since we will at least return other
349 * errors, though we need to eventually fix the damn code.
350 */
351 static int write_page(unsigned long addr, swp_entry_t *loc)
352 {
353 swp_entry_t entry;
354 int error = 0;
355
356 entry = get_swap_page();
357 if (swp_offset(entry) &&
358 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
359 error = rw_swap_page_sync(WRITE, entry,
360 virt_to_page(addr));
361 if (error == -EIO)
362 error = 0;
363 if (!error)
364 *loc = entry;
365 } else
366 error = -ENOSPC;
367 return error;
368 }
369
370 /**
371 * data_free - Free the swap entries used by the saved image.
372 *
373 * Walk the list of used swap entries and free each one.
374 * This is only used for cleanup when suspend fails.
375 */
376 static void data_free(void)
377 {
378 swp_entry_t entry;
379 struct pbe *p;
380
381 for_each_pbe (p, pagedir_nosave) {
382 entry = p->swap_address;
383 if (entry.val)
384 swap_free(entry);
385 else
386 break;
387 }
388 }
389
390 /**
391 * data_write - Write saved image to swap.
392 *
393 * Walk the list of pages in the image and sync each one to swap.
394 */
395 static int data_write(void)
396 {
397 int error = 0, i = 0;
398 unsigned int mod = nr_copy_pages / 100;
399 struct pbe *p;
400 void *tfm;
401
402 if ((error = crypto_init(1, &tfm)))
403 return error;
404
405 if (!mod)
406 mod = 1;
407
408 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
409 for_each_pbe (p, pagedir_nosave) {
410 if (!(i%mod))
411 printk( "\b\b\b\b%3d%%", i / mod );
412 if ((error = crypto_write(p, tfm))) {
413 crypto_exit(tfm);
414 return error;
415 }
416 i++;
417 }
418 printk("\b\b\b\bdone\n");
419 crypto_exit(tfm);
420 return error;
421 }
422
423 static void dump_info(void)
424 {
425 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
426 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
427 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
428 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
429 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
430 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
431 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
432 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
433 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
434 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
435 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
436 }
437
438 static void init_header(void)
439 {
440 memset(&swsusp_info, 0, sizeof(swsusp_info));
441 swsusp_info.version_code = LINUX_VERSION_CODE;
442 swsusp_info.num_physpages = num_physpages;
443 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
444
445 swsusp_info.suspend_pagedir = pagedir_nosave;
446 swsusp_info.cpus = num_online_cpus();
447 swsusp_info.image_pages = nr_copy_pages;
448 }
449
450 static int close_swap(void)
451 {
452 swp_entry_t entry;
453 int error;
454
455 dump_info();
456 error = write_page((unsigned long)&swsusp_info, &entry);
457 if (!error) {
458 printk( "S" );
459 error = mark_swapfiles(entry);
460 printk( "|\n" );
461 }
462 return error;
463 }
464
465 /**
466 * free_pagedir_entries - Free pages used by the page directory.
467 *
468 * This is used during suspend for error recovery.
469 */
470
471 static void free_pagedir_entries(void)
472 {
473 int i;
474
475 for (i = 0; i < swsusp_info.pagedir_pages; i++)
476 swap_free(swsusp_info.pagedir[i]);
477 }
478
479
480 /**
481 * write_pagedir - Write the array of pages holding the page directory.
482 * @last: Last swap entry we write (needed for header).
483 */
484
485 static int write_pagedir(void)
486 {
487 int error = 0;
488 unsigned int n = 0;
489 struct pbe *pbe;
490
491 printk( "Writing pagedir...");
492 for_each_pb_page (pbe, pagedir_nosave) {
493 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
494 return error;
495 }
496
497 swsusp_info.pagedir_pages = n;
498 printk("done (%u pages)\n", n);
499 return error;
500 }
501
502 /**
503 * write_suspend_image - Write entire image and metadata.
504 *
505 */
506 static int write_suspend_image(void)
507 {
508 int error;
509
510 init_header();
511 if ((error = data_write()))
512 goto FreeData;
513
514 if ((error = write_pagedir()))
515 goto FreePagedir;
516
517 if ((error = close_swap()))
518 goto FreePagedir;
519 Done:
520 memset(key_iv, 0, MAXKEY+MAXIV);
521 return error;
522 FreePagedir:
523 free_pagedir_entries();
524 FreeData:
525 data_free();
526 goto Done;
527 }
528
529 /**
530 * enough_swap - Make sure we have enough swap to save the image.
531 *
532 * Returns TRUE or FALSE after checking the total amount of swap
533 * space avaiable.
534 *
535 * FIXME: si_swapinfo(&i) returns all swap devices information.
536 * We should only consider resume_device.
537 */
538
539 int enough_swap(unsigned int nr_pages)
540 {
541 struct sysinfo i;
542
543 si_swapinfo(&i);
544 pr_debug("swsusp: available swap: %lu pages\n", i.freeswap);
545 return i.freeswap > (nr_pages + PAGES_FOR_IO +
546 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
547 }
548
549
550 /* It is important _NOT_ to umount filesystems at this point. We want
551 * them synced (in case something goes wrong) but we DO not want to mark
552 * filesystem clean: it is not. (And it does not matter, if we resume
553 * correctly, we'll mark system clean, anyway.)
554 */
555 int swsusp_write(void)
556 {
557 int error;
558
559 lock_swapdevices();
560 error = write_suspend_image();
561 /* This will unlock ignored swap devices since writing is finished */
562 lock_swapdevices();
563 return error;
564
565 }
566
567
568
569 int swsusp_suspend(void)
570 {
571 int error;
572 if ((error = arch_prepare_suspend()))
573 return error;
574 local_irq_disable();
575 /* At this point, device_suspend() has been called, but *not*
576 * device_power_down(). We *must* device_power_down() now.
577 * Otherwise, drivers for some devices (e.g. interrupt controllers)
578 * become desynchronized with the actual state of the hardware
579 * at resume time, and evil weirdness ensues.
580 */
581 if ((error = device_power_down(PMSG_FREEZE))) {
582 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
583 local_irq_enable();
584 return error;
585 }
586
587 if ((error = swsusp_swap_check())) {
588 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
589 device_power_up();
590 local_irq_enable();
591 return error;
592 }
593
594 save_processor_state();
595 if ((error = swsusp_arch_suspend()))
596 printk(KERN_ERR "Error %d suspending\n", error);
597 /* Restore control flow magically appears here */
598 restore_processor_state();
599 restore_highmem();
600 device_power_up();
601 local_irq_enable();
602 return error;
603 }
604
605 int swsusp_resume(void)
606 {
607 int error;
608 local_irq_disable();
609 if (device_power_down(PMSG_FREEZE))
610 printk(KERN_ERR "Some devices failed to power down, very bad\n");
611 /* We'll ignore saved state, but this gets preempt count (etc) right */
612 save_processor_state();
613 error = swsusp_arch_resume();
614 /* Code below is only ever reached in case of failure. Otherwise
615 * execution continues at place where swsusp_arch_suspend was called
616 */
617 BUG_ON(!error);
618 /* The only reason why swsusp_arch_resume() can fail is memory being
619 * very tight, so we have to free it as soon as we can to avoid
620 * subsequent failures
621 */
622 swsusp_free();
623 restore_processor_state();
624 restore_highmem();
625 touch_softlockup_watchdog();
626 device_power_up();
627 local_irq_enable();
628 return error;
629 }
630
631 /**
632 * On resume, for storing the PBE list and the image,
633 * we can only use memory pages that do not conflict with the pages
634 * which had been used before suspend.
635 *
636 * We don't know which pages are usable until we allocate them.
637 *
638 * Allocated but unusable (ie eaten) memory pages are marked so that
639 * swsusp_free() can release them
640 */
641
642 unsigned long get_safe_page(gfp_t gfp_mask)
643 {
644 unsigned long m;
645
646 do {
647 m = get_zeroed_page(gfp_mask);
648 if (m && PageNosaveFree(virt_to_page(m)))
649 /* This is for swsusp_free() */
650 SetPageNosave(virt_to_page(m));
651 } while (m && PageNosaveFree(virt_to_page(m)));
652 if (m) {
653 /* This is for swsusp_free() */
654 SetPageNosave(virt_to_page(m));
655 SetPageNosaveFree(virt_to_page(m));
656 }
657 return m;
658 }
659
660 /**
661 * check_pagedir - We ensure here that pages that the PBEs point to
662 * won't collide with pages where we're going to restore from the loaded
663 * pages later
664 */
665
666 static int check_pagedir(struct pbe *pblist)
667 {
668 struct pbe *p;
669
670 /* This is necessary, so that we can free allocated pages
671 * in case of failure
672 */
673 for_each_pbe (p, pblist)
674 p->address = 0UL;
675
676 for_each_pbe (p, pblist) {
677 p->address = get_safe_page(GFP_ATOMIC);
678 if (!p->address)
679 return -ENOMEM;
680 }
681 return 0;
682 }
683
684 /**
685 * swsusp_pagedir_relocate - It is possible, that some memory pages
686 * occupied by the list of PBEs collide with pages where we're going to
687 * restore from the loaded pages later. We relocate them here.
688 */
689
690 static struct pbe *swsusp_pagedir_relocate(struct pbe *pblist)
691 {
692 struct zone *zone;
693 unsigned long zone_pfn;
694 struct pbe *pbpage, *tail, *p;
695 void *m;
696 int rel = 0;
697
698 if (!pblist) /* a sanity check */
699 return NULL;
700
701 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
702 swsusp_info.pagedir_pages);
703
704 /* Clear page flags */
705
706 for_each_zone (zone) {
707 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
708 if (pfn_valid(zone_pfn + zone->zone_start_pfn))
709 ClearPageNosaveFree(pfn_to_page(zone_pfn +
710 zone->zone_start_pfn));
711 }
712
713 /* Mark orig addresses */
714
715 for_each_pbe (p, pblist)
716 SetPageNosaveFree(virt_to_page(p->orig_address));
717
718 tail = pblist + PB_PAGE_SKIP;
719
720 /* Relocate colliding pages */
721
722 for_each_pb_page (pbpage, pblist) {
723 if (PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
724 m = (void *)get_safe_page(GFP_ATOMIC | __GFP_COLD);
725 if (!m)
726 return NULL;
727 memcpy(m, (void *)pbpage, PAGE_SIZE);
728 if (pbpage == pblist)
729 pblist = (struct pbe *)m;
730 else
731 tail->next = (struct pbe *)m;
732 pbpage = (struct pbe *)m;
733
734 /* We have to link the PBEs again */
735 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
736 if (p->next) /* needed to save the end */
737 p->next = p + 1;
738
739 rel++;
740 }
741 tail = pbpage + PB_PAGE_SKIP;
742 }
743
744 /* This is for swsusp_free() */
745 for_each_pb_page (pbpage, pblist) {
746 SetPageNosave(virt_to_page(pbpage));
747 SetPageNosaveFree(virt_to_page(pbpage));
748 }
749
750 printk("swsusp: Relocated %d pages\n", rel);
751
752 return pblist;
753 }
754
755 /*
756 * Using bio to read from swap.
757 * This code requires a bit more work than just using buffer heads
758 * but, it is the recommended way for 2.5/2.6.
759 * The following are to signal the beginning and end of I/O. Bios
760 * finish asynchronously, while we want them to happen synchronously.
761 * A simple atomic_t, and a wait loop take care of this problem.
762 */
763
764 static atomic_t io_done = ATOMIC_INIT(0);
765
766 static int end_io(struct bio *bio, unsigned int num, int err)
767 {
768 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
769 panic("I/O error reading memory image");
770 atomic_set(&io_done, 0);
771 return 0;
772 }
773
774 static struct block_device *resume_bdev;
775
776 /**
777 * submit - submit BIO request.
778 * @rw: READ or WRITE.
779 * @off physical offset of page.
780 * @page: page we're reading or writing.
781 *
782 * Straight from the textbook - allocate and initialize the bio.
783 * If we're writing, make sure the page is marked as dirty.
784 * Then submit it and wait.
785 */
786
787 static int submit(int rw, pgoff_t page_off, void *page)
788 {
789 int error = 0;
790 struct bio *bio;
791
792 bio = bio_alloc(GFP_ATOMIC, 1);
793 if (!bio)
794 return -ENOMEM;
795 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
796 bio_get(bio);
797 bio->bi_bdev = resume_bdev;
798 bio->bi_end_io = end_io;
799
800 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
801 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
802 error = -EFAULT;
803 goto Done;
804 }
805
806 if (rw == WRITE)
807 bio_set_pages_dirty(bio);
808
809 atomic_set(&io_done, 1);
810 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
811 while (atomic_read(&io_done))
812 yield();
813
814 Done:
815 bio_put(bio);
816 return error;
817 }
818
819 static int bio_read_page(pgoff_t page_off, void *page)
820 {
821 return submit(READ, page_off, page);
822 }
823
824 static int bio_write_page(pgoff_t page_off, void *page)
825 {
826 return submit(WRITE, page_off, page);
827 }
828
829 /*
830 * Sanity check if this image makes sense with this kernel/swap context
831 * I really don't think that it's foolproof but more than nothing..
832 */
833
834 static const char *sanity_check(void)
835 {
836 dump_info();
837 if (swsusp_info.version_code != LINUX_VERSION_CODE)
838 return "kernel version";
839 if (swsusp_info.num_physpages != num_physpages)
840 return "memory size";
841 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
842 return "system type";
843 if (strcmp(swsusp_info.uts.release,system_utsname.release))
844 return "kernel release";
845 if (strcmp(swsusp_info.uts.version,system_utsname.version))
846 return "version";
847 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
848 return "machine";
849 #if 0
850 /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
851 if (swsusp_info.cpus != num_possible_cpus())
852 return "number of cpus";
853 #endif
854 return NULL;
855 }
856
857
858 static int check_header(void)
859 {
860 const char *reason = NULL;
861 int error;
862
863 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
864 return error;
865
866 /* Is this same machine? */
867 if ((reason = sanity_check())) {
868 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
869 return -EPERM;
870 }
871 nr_copy_pages = swsusp_info.image_pages;
872 return error;
873 }
874
875 static int check_sig(void)
876 {
877 int error;
878
879 memset(&swsusp_header, 0, sizeof(swsusp_header));
880 if ((error = bio_read_page(0, &swsusp_header)))
881 return error;
882 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
883 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
884 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
885 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
886
887 /*
888 * Reset swap signature now.
889 */
890 error = bio_write_page(0, &swsusp_header);
891 } else {
892 return -EINVAL;
893 }
894 if (!error)
895 pr_debug("swsusp: Signature found, resuming\n");
896 return error;
897 }
898
899 /**
900 * data_read - Read image pages from swap.
901 *
902 * You do not need to check for overlaps, check_pagedir()
903 * already did that.
904 */
905
906 static int data_read(struct pbe *pblist)
907 {
908 struct pbe *p;
909 int error = 0;
910 int i = 0;
911 int mod = swsusp_info.image_pages / 100;
912 void *tfm;
913
914 if ((error = crypto_init(0, &tfm)))
915 return error;
916
917 if (!mod)
918 mod = 1;
919
920 printk("swsusp: Reading image data (%lu pages): ",
921 swsusp_info.image_pages);
922
923 for_each_pbe (p, pblist) {
924 if (!(i % mod))
925 printk("\b\b\b\b%3d%%", i / mod);
926
927 if ((error = crypto_read(p, tfm))) {
928 crypto_exit(tfm);
929 return error;
930 }
931
932 i++;
933 }
934 printk("\b\b\b\bdone\n");
935 crypto_exit(tfm);
936 return error;
937 }
938
939 /**
940 * read_pagedir - Read page backup list pages from swap
941 */
942
943 static int read_pagedir(struct pbe *pblist)
944 {
945 struct pbe *pbpage, *p;
946 unsigned int i = 0;
947 int error;
948
949 if (!pblist)
950 return -EFAULT;
951
952 printk("swsusp: Reading pagedir (%lu pages)\n",
953 swsusp_info.pagedir_pages);
954
955 for_each_pb_page (pbpage, pblist) {
956 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
957
958 error = -EFAULT;
959 if (offset) {
960 p = (pbpage + PB_PAGE_SKIP)->next;
961 error = bio_read_page(offset, (void *)pbpage);
962 (pbpage + PB_PAGE_SKIP)->next = p;
963 }
964 if (error)
965 break;
966 }
967
968 if (!error)
969 BUG_ON(i != swsusp_info.pagedir_pages);
970
971 return error;
972 }
973
974
975 static int check_suspend_image(void)
976 {
977 int error = 0;
978
979 if ((error = check_sig()))
980 return error;
981
982 if ((error = check_header()))
983 return error;
984
985 return 0;
986 }
987
988 static int read_suspend_image(void)
989 {
990 int error = 0;
991 struct pbe *p;
992
993 if (!(p = alloc_pagedir(nr_copy_pages)))
994 return -ENOMEM;
995
996 if ((error = read_pagedir(p)))
997 return error;
998
999 create_pbe_list(p, nr_copy_pages);
1000
1001 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1002 return -ENOMEM;
1003
1004 /* Allocate memory for the image and read the data from swap */
1005
1006 error = check_pagedir(pagedir_nosave);
1007
1008 if (!error)
1009 error = data_read(pagedir_nosave);
1010
1011 return error;
1012 }
1013
1014 /**
1015 * swsusp_check - Check for saved image in swap
1016 */
1017
1018 int swsusp_check(void)
1019 {
1020 int error;
1021
1022 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1023 if (!IS_ERR(resume_bdev)) {
1024 set_blocksize(resume_bdev, PAGE_SIZE);
1025 error = check_suspend_image();
1026 if (error)
1027 blkdev_put(resume_bdev);
1028 } else
1029 error = PTR_ERR(resume_bdev);
1030
1031 if (!error)
1032 pr_debug("swsusp: resume file found\n");
1033 else
1034 pr_debug("swsusp: Error %d check for resume file\n", error);
1035 return error;
1036 }
1037
1038 /**
1039 * swsusp_read - Read saved image from swap.
1040 */
1041
1042 int swsusp_read(void)
1043 {
1044 int error;
1045
1046 if (IS_ERR(resume_bdev)) {
1047 pr_debug("swsusp: block device not initialised\n");
1048 return PTR_ERR(resume_bdev);
1049 }
1050
1051 error = read_suspend_image();
1052 blkdev_put(resume_bdev);
1053 memset(key_iv, 0, MAXKEY+MAXIV);
1054
1055 if (!error)
1056 pr_debug("swsusp: Reading resume file was successful\n");
1057 else
1058 pr_debug("swsusp: Error %d resuming\n", error);
1059 return error;
1060 }
1061
1062 /**
1063 * swsusp_close - close swap device.
1064 */
1065
1066 void swsusp_close(void)
1067 {
1068 if (IS_ERR(resume_bdev)) {
1069 pr_debug("swsusp: block device not initialised\n");
1070 return;
1071 }
1072
1073 blkdev_put(resume_bdev);
1074 }