Auto-update from upstream
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / power / swsusp.c
1 /*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file provides code to write suspend image to swap and read it back.
5 *
6 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz>
8 *
9 * This file is released under the GPLv2.
10 *
11 * I'd like to thank the following people for their work:
12 *
13 * Pavel Machek <pavel@ucw.cz>:
14 * Modifications, defectiveness pointing, being with me at the very beginning,
15 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
16 *
17 * Steve Doddi <dirk@loth.demon.co.uk>:
18 * Support the possibility of hardware state restoring.
19 *
20 * Raph <grey.havens@earthling.net>:
21 * Support for preserving states of network devices and virtual console
22 * (including X and svgatextmode)
23 *
24 * Kurt Garloff <garloff@suse.de>:
25 * Straightened the critical function in order to prevent compilers from
26 * playing tricks with local variables.
27 *
28 * Andreas Mohr <a.mohr@mailto.de>
29 *
30 * Alex Badea <vampire@go.ro>:
31 * Fixed runaway init
32 *
33 * Rafael J. Wysocki <rjw@sisk.pl>
34 * Added the swap map data structure and reworked the handling of swap
35 *
36 * More state savers are welcome. Especially for the scsi layer...
37 *
38 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
39 */
40
41 #include <linux/module.h>
42 #include <linux/mm.h>
43 #include <linux/suspend.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/utsname.h>
47 #include <linux/version.h>
48 #include <linux/delay.h>
49 #include <linux/bitops.h>
50 #include <linux/spinlock.h>
51 #include <linux/genhd.h>
52 #include <linux/kernel.h>
53 #include <linux/major.h>
54 #include <linux/swap.h>
55 #include <linux/pm.h>
56 #include <linux/device.h>
57 #include <linux/buffer_head.h>
58 #include <linux/swapops.h>
59 #include <linux/bootmem.h>
60 #include <linux/syscalls.h>
61 #include <linux/highmem.h>
62 #include <linux/bio.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/io.h>
69
70 #include "power.h"
71
72 /*
73 * Preferred image size in MB (tunable via /sys/power/image_size).
74 * When it is set to N, swsusp will do its best to ensure the image
75 * size will not exceed N MB, but if that is impossible, it will
76 * try to create the smallest image possible.
77 */
78 unsigned int image_size = 500;
79
80 #ifdef CONFIG_HIGHMEM
81 unsigned int count_highmem_pages(void);
82 int save_highmem(void);
83 int restore_highmem(void);
84 #else
85 static int save_highmem(void) { return 0; }
86 static int restore_highmem(void) { return 0; }
87 static unsigned int count_highmem_pages(void) { return 0; }
88 #endif
89
90 extern char resume_file[];
91
92 #define SWSUSP_SIG "S1SUSPEND"
93
94 static struct swsusp_header {
95 char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
96 swp_entry_t image;
97 char orig_sig[10];
98 char sig[10];
99 } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
100
101 static struct swsusp_info swsusp_info;
102
103 /*
104 * Saving part...
105 */
106
107 static unsigned short root_swap = 0xffff;
108
109 static int mark_swapfiles(swp_entry_t start)
110 {
111 int error;
112
113 rw_swap_page_sync(READ,
114 swp_entry(root_swap, 0),
115 virt_to_page((unsigned long)&swsusp_header));
116 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
117 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
118 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
119 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
120 swsusp_header.image = start;
121 error = rw_swap_page_sync(WRITE,
122 swp_entry(root_swap, 0),
123 virt_to_page((unsigned long)
124 &swsusp_header));
125 } else {
126 pr_debug("swsusp: Partition is not swap space.\n");
127 error = -ENODEV;
128 }
129 return error;
130 }
131
132 /*
133 * Check whether the swap device is the specified resume
134 * device, irrespective of whether they are specified by
135 * identical names.
136 *
137 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
138 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
139 * and they'll be considered the same device. This is *necessary* for
140 * devfs, since the resume code can only recognize the form /dev/hda4,
141 * but the suspend code would see the long name.)
142 */
143 static inline int is_resume_device(const struct swap_info_struct *swap_info)
144 {
145 struct file *file = swap_info->swap_file;
146 struct inode *inode = file->f_dentry->d_inode;
147
148 return S_ISBLK(inode->i_mode) &&
149 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
150 }
151
152 static int swsusp_swap_check(void) /* This is called before saving image */
153 {
154 int i;
155
156 if (!swsusp_resume_device)
157 return -ENODEV;
158 spin_lock(&swap_lock);
159 for (i = 0; i < MAX_SWAPFILES; i++) {
160 if (!(swap_info[i].flags & SWP_WRITEOK))
161 continue;
162 if (is_resume_device(swap_info + i)) {
163 spin_unlock(&swap_lock);
164 root_swap = i;
165 return 0;
166 }
167 }
168 spin_unlock(&swap_lock);
169 return -ENODEV;
170 }
171
172 /**
173 * write_page - Write one page to a fresh swap location.
174 * @addr: Address we're writing.
175 * @loc: Place to store the entry we used.
176 *
177 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
178 * errors. That is an artifact left over from swsusp. It did not
179 * check the return of rw_swap_page_sync() at all, since most pages
180 * written back to swap would return -EIO.
181 * This is a partial improvement, since we will at least return other
182 * errors, though we need to eventually fix the damn code.
183 */
184 static int write_page(unsigned long addr, swp_entry_t *loc)
185 {
186 swp_entry_t entry;
187 int error = -ENOSPC;
188
189 entry = get_swap_page_of_type(root_swap);
190 if (swp_offset(entry)) {
191 error = rw_swap_page_sync(WRITE, entry, virt_to_page(addr));
192 if (!error || error == -EIO)
193 *loc = entry;
194 }
195 return error;
196 }
197
198 /**
199 * Swap map-handling functions
200 *
201 * The swap map is a data structure used for keeping track of each page
202 * written to the swap. It consists of many swap_map_page structures
203 * that contain each an array of MAP_PAGE_SIZE swap entries.
204 * These structures are linked together with the help of either the
205 * .next (in memory) or the .next_swap (in swap) member.
206 *
207 * The swap map is created during suspend. At that time we need to keep
208 * it in memory, because we have to free all of the allocated swap
209 * entries if an error occurs. The memory needed is preallocated
210 * so that we know in advance if there's enough of it.
211 *
212 * The first swap_map_page structure is filled with the swap entries that
213 * correspond to the first MAP_PAGE_SIZE data pages written to swap and
214 * so on. After the all of the data pages have been written, the order
215 * of the swap_map_page structures in the map is reversed so that they
216 * can be read from swap in the original order. This causes the data
217 * pages to be loaded in exactly the same order in which they have been
218 * saved.
219 *
220 * During resume we only need to use one swap_map_page structure
221 * at a time, which means that we only need to use two memory pages for
222 * reading the image - one for reading the swap_map_page structures
223 * and the second for reading the data pages from swap.
224 */
225
226 #define MAP_PAGE_SIZE ((PAGE_SIZE - sizeof(swp_entry_t) - sizeof(void *)) \
227 / sizeof(swp_entry_t))
228
229 struct swap_map_page {
230 swp_entry_t entries[MAP_PAGE_SIZE];
231 swp_entry_t next_swap;
232 struct swap_map_page *next;
233 };
234
235 static inline void free_swap_map(struct swap_map_page *swap_map)
236 {
237 struct swap_map_page *swp;
238
239 while (swap_map) {
240 swp = swap_map->next;
241 free_page((unsigned long)swap_map);
242 swap_map = swp;
243 }
244 }
245
246 static struct swap_map_page *alloc_swap_map(unsigned int nr_pages)
247 {
248 struct swap_map_page *swap_map, *swp;
249 unsigned n = 0;
250
251 if (!nr_pages)
252 return NULL;
253
254 pr_debug("alloc_swap_map(): nr_pages = %d\n", nr_pages);
255 swap_map = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
256 swp = swap_map;
257 for (n = MAP_PAGE_SIZE; n < nr_pages; n += MAP_PAGE_SIZE) {
258 swp->next = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
259 swp = swp->next;
260 if (!swp) {
261 free_swap_map(swap_map);
262 return NULL;
263 }
264 }
265 return swap_map;
266 }
267
268 /**
269 * reverse_swap_map - reverse the order of pages in the swap map
270 * @swap_map
271 */
272
273 static inline struct swap_map_page *reverse_swap_map(struct swap_map_page *swap_map)
274 {
275 struct swap_map_page *prev, *next;
276
277 prev = NULL;
278 while (swap_map) {
279 next = swap_map->next;
280 swap_map->next = prev;
281 prev = swap_map;
282 swap_map = next;
283 }
284 return prev;
285 }
286
287 /**
288 * free_swap_map_entries - free the swap entries allocated to store
289 * the swap map @swap_map (this is only called in case of an error)
290 */
291 static inline void free_swap_map_entries(struct swap_map_page *swap_map)
292 {
293 while (swap_map) {
294 if (swap_map->next_swap.val)
295 swap_free(swap_map->next_swap);
296 swap_map = swap_map->next;
297 }
298 }
299
300 /**
301 * save_swap_map - save the swap map used for tracing the data pages
302 * stored in the swap
303 */
304
305 static int save_swap_map(struct swap_map_page *swap_map, swp_entry_t *start)
306 {
307 swp_entry_t entry = (swp_entry_t){0};
308 int error;
309
310 while (swap_map) {
311 swap_map->next_swap = entry;
312 if ((error = write_page((unsigned long)swap_map, &entry)))
313 return error;
314 swap_map = swap_map->next;
315 }
316 *start = entry;
317 return 0;
318 }
319
320 /**
321 * free_image_entries - free the swap entries allocated to store
322 * the image data pages (this is only called in case of an error)
323 */
324
325 static inline void free_image_entries(struct swap_map_page *swp)
326 {
327 unsigned k;
328
329 while (swp) {
330 for (k = 0; k < MAP_PAGE_SIZE; k++)
331 if (swp->entries[k].val)
332 swap_free(swp->entries[k]);
333 swp = swp->next;
334 }
335 }
336
337 /**
338 * The swap_map_handle structure is used for handling the swap map in
339 * a file-alike way
340 */
341
342 struct swap_map_handle {
343 struct swap_map_page *cur;
344 unsigned int k;
345 };
346
347 static inline void init_swap_map_handle(struct swap_map_handle *handle,
348 struct swap_map_page *map)
349 {
350 handle->cur = map;
351 handle->k = 0;
352 }
353
354 static inline int swap_map_write_page(struct swap_map_handle *handle,
355 unsigned long addr)
356 {
357 int error;
358
359 error = write_page(addr, handle->cur->entries + handle->k);
360 if (error)
361 return error;
362 if (++handle->k >= MAP_PAGE_SIZE) {
363 handle->cur = handle->cur->next;
364 handle->k = 0;
365 }
366 return 0;
367 }
368
369 /**
370 * save_image_data - save the data pages pointed to by the PBEs
371 * from the list @pblist using the swap map handle @handle
372 * (assume there are @nr_pages data pages to save)
373 */
374
375 static int save_image_data(struct pbe *pblist,
376 struct swap_map_handle *handle,
377 unsigned int nr_pages)
378 {
379 unsigned int m;
380 struct pbe *p;
381 int error = 0;
382
383 printk("Saving image data pages (%u pages) ... ", nr_pages);
384 m = nr_pages / 100;
385 if (!m)
386 m = 1;
387 nr_pages = 0;
388 for_each_pbe (p, pblist) {
389 error = swap_map_write_page(handle, p->address);
390 if (error)
391 break;
392 if (!(nr_pages % m))
393 printk("\b\b\b\b%3d%%", nr_pages / m);
394 nr_pages++;
395 }
396 if (!error)
397 printk("\b\b\b\bdone\n");
398 return error;
399 }
400
401 static void dump_info(void)
402 {
403 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
404 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
405 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
406 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
407 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
408 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
409 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
410 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
411 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
412 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
413 pr_debug(" swsusp: Total: %ld Pages\n", swsusp_info.pages);
414 }
415
416 static void init_header(unsigned int nr_pages)
417 {
418 memset(&swsusp_info, 0, sizeof(swsusp_info));
419 swsusp_info.version_code = LINUX_VERSION_CODE;
420 swsusp_info.num_physpages = num_physpages;
421 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
422
423 swsusp_info.cpus = num_online_cpus();
424 swsusp_info.image_pages = nr_pages;
425 swsusp_info.pages = nr_pages +
426 ((nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT) + 1;
427 }
428
429 /**
430 * pack_orig_addresses - the .orig_address fields of the PBEs from the
431 * list starting at @pbe are stored in the array @buf[] (1 page)
432 */
433
434 static inline struct pbe *pack_orig_addresses(unsigned long *buf,
435 struct pbe *pbe)
436 {
437 int j;
438
439 for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) {
440 buf[j] = pbe->orig_address;
441 pbe = pbe->next;
442 }
443 if (!pbe)
444 for (; j < PAGE_SIZE / sizeof(long); j++)
445 buf[j] = 0;
446 return pbe;
447 }
448
449 /**
450 * save_image_metadata - save the .orig_address fields of the PBEs
451 * from the list @pblist using the swap map handle @handle
452 */
453
454 static int save_image_metadata(struct pbe *pblist,
455 struct swap_map_handle *handle)
456 {
457 unsigned long *buf;
458 unsigned int n = 0;
459 struct pbe *p;
460 int error = 0;
461
462 printk("Saving image metadata ... ");
463 buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC);
464 if (!buf)
465 return -ENOMEM;
466 p = pblist;
467 while (p) {
468 p = pack_orig_addresses(buf, p);
469 error = swap_map_write_page(handle, (unsigned long)buf);
470 if (error)
471 break;
472 n++;
473 }
474 free_page((unsigned long)buf);
475 if (!error)
476 printk("done (%u pages saved)\n", n);
477 return error;
478 }
479
480 /**
481 * enough_swap - Make sure we have enough swap to save the image.
482 *
483 * Returns TRUE or FALSE after checking the total amount of swap
484 * space avaiable from the resume partition.
485 */
486
487 static int enough_swap(unsigned int nr_pages)
488 {
489 unsigned int free_swap = swap_info[root_swap].pages -
490 swap_info[root_swap].inuse_pages;
491
492 pr_debug("swsusp: free swap pages: %u\n", free_swap);
493 return free_swap > (nr_pages + PAGES_FOR_IO +
494 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
495 }
496
497 /**
498 * swsusp_write - Write entire image and metadata.
499 *
500 * It is important _NOT_ to umount filesystems at this point. We want
501 * them synced (in case something goes wrong) but we DO not want to mark
502 * filesystem clean: it is not. (And it does not matter, if we resume
503 * correctly, we'll mark system clean, anyway.)
504 */
505
506 int swsusp_write(struct pbe *pblist, unsigned int nr_pages)
507 {
508 struct swap_map_page *swap_map;
509 struct swap_map_handle handle;
510 swp_entry_t start;
511 int error;
512
513 if ((error = swsusp_swap_check())) {
514 printk(KERN_ERR "swsusp: Cannot find swap device, try swapon -a.\n");
515 return error;
516 }
517 if (!enough_swap(nr_pages)) {
518 printk(KERN_ERR "swsusp: Not enough free swap\n");
519 return -ENOSPC;
520 }
521
522 init_header(nr_pages);
523 swap_map = alloc_swap_map(swsusp_info.pages);
524 if (!swap_map)
525 return -ENOMEM;
526 init_swap_map_handle(&handle, swap_map);
527
528 error = swap_map_write_page(&handle, (unsigned long)&swsusp_info);
529 if (!error)
530 error = save_image_metadata(pblist, &handle);
531 if (!error)
532 error = save_image_data(pblist, &handle, nr_pages);
533 if (error)
534 goto Free_image_entries;
535
536 swap_map = reverse_swap_map(swap_map);
537 error = save_swap_map(swap_map, &start);
538 if (error)
539 goto Free_map_entries;
540
541 dump_info();
542 printk( "S" );
543 error = mark_swapfiles(start);
544 printk( "|\n" );
545 if (error)
546 goto Free_map_entries;
547
548 Free_swap_map:
549 free_swap_map(swap_map);
550 return error;
551
552 Free_map_entries:
553 free_swap_map_entries(swap_map);
554 Free_image_entries:
555 free_image_entries(swap_map);
556 goto Free_swap_map;
557 }
558
559 /**
560 * swsusp_shrink_memory - Try to free as much memory as needed
561 *
562 * ... but do not OOM-kill anyone
563 *
564 * Notice: all userland should be stopped before it is called, or
565 * livelock is possible.
566 */
567
568 #define SHRINK_BITE 10000
569
570 int swsusp_shrink_memory(void)
571 {
572 long size, tmp;
573 struct zone *zone;
574 unsigned long pages = 0;
575 unsigned int i = 0;
576 char *p = "-\\|/";
577
578 printk("Shrinking memory... ");
579 do {
580 size = 2 * count_highmem_pages();
581 size += size / 50 + count_data_pages();
582 size += (size + PBES_PER_PAGE - 1) / PBES_PER_PAGE +
583 PAGES_FOR_IO;
584 tmp = size;
585 for_each_zone (zone)
586 if (!is_highmem(zone))
587 tmp -= zone->free_pages;
588 if (tmp > 0) {
589 tmp = shrink_all_memory(SHRINK_BITE);
590 if (!tmp)
591 return -ENOMEM;
592 pages += tmp;
593 } else if (size > (image_size * 1024 * 1024) / PAGE_SIZE) {
594 tmp = shrink_all_memory(SHRINK_BITE);
595 pages += tmp;
596 }
597 printk("\b%c", p[i++%4]);
598 } while (tmp > 0);
599 printk("\bdone (%lu pages freed)\n", pages);
600
601 return 0;
602 }
603
604 int swsusp_suspend(void)
605 {
606 int error;
607
608 if ((error = arch_prepare_suspend()))
609 return error;
610 local_irq_disable();
611 /* At this point, device_suspend() has been called, but *not*
612 * device_power_down(). We *must* device_power_down() now.
613 * Otherwise, drivers for some devices (e.g. interrupt controllers)
614 * become desynchronized with the actual state of the hardware
615 * at resume time, and evil weirdness ensues.
616 */
617 if ((error = device_power_down(PMSG_FREEZE))) {
618 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
619 goto Enable_irqs;
620 }
621
622 if ((error = save_highmem())) {
623 printk(KERN_ERR "swsusp: Not enough free pages for highmem\n");
624 goto Restore_highmem;
625 }
626
627 save_processor_state();
628 if ((error = swsusp_arch_suspend()))
629 printk(KERN_ERR "Error %d suspending\n", error);
630 /* Restore control flow magically appears here */
631 restore_processor_state();
632 Restore_highmem:
633 restore_highmem();
634 device_power_up();
635 Enable_irqs:
636 local_irq_enable();
637 return error;
638 }
639
640 int swsusp_resume(void)
641 {
642 int error;
643 local_irq_disable();
644 if (device_power_down(PMSG_FREEZE))
645 printk(KERN_ERR "Some devices failed to power down, very bad\n");
646 /* We'll ignore saved state, but this gets preempt count (etc) right */
647 save_processor_state();
648 error = swsusp_arch_resume();
649 /* Code below is only ever reached in case of failure. Otherwise
650 * execution continues at place where swsusp_arch_suspend was called
651 */
652 BUG_ON(!error);
653 /* The only reason why swsusp_arch_resume() can fail is memory being
654 * very tight, so we have to free it as soon as we can to avoid
655 * subsequent failures
656 */
657 swsusp_free();
658 restore_processor_state();
659 restore_highmem();
660 touch_softlockup_watchdog();
661 device_power_up();
662 local_irq_enable();
663 return error;
664 }
665
666 /**
667 * mark_unsafe_pages - mark the pages that cannot be used for storing
668 * the image during resume, because they conflict with the pages that
669 * had been used before suspend
670 */
671
672 static void mark_unsafe_pages(struct pbe *pblist)
673 {
674 struct zone *zone;
675 unsigned long zone_pfn;
676 struct pbe *p;
677
678 if (!pblist) /* a sanity check */
679 return;
680
681 /* Clear page flags */
682 for_each_zone (zone) {
683 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
684 if (pfn_valid(zone_pfn + zone->zone_start_pfn))
685 ClearPageNosaveFree(pfn_to_page(zone_pfn +
686 zone->zone_start_pfn));
687 }
688
689 /* Mark orig addresses */
690 for_each_pbe (p, pblist)
691 SetPageNosaveFree(virt_to_page(p->orig_address));
692
693 }
694
695 static void copy_page_backup_list(struct pbe *dst, struct pbe *src)
696 {
697 /* We assume both lists contain the same number of elements */
698 while (src) {
699 dst->orig_address = src->orig_address;
700 dst = dst->next;
701 src = src->next;
702 }
703 }
704
705 /*
706 * Using bio to read from swap.
707 * This code requires a bit more work than just using buffer heads
708 * but, it is the recommended way for 2.5/2.6.
709 * The following are to signal the beginning and end of I/O. Bios
710 * finish asynchronously, while we want them to happen synchronously.
711 * A simple atomic_t, and a wait loop take care of this problem.
712 */
713
714 static atomic_t io_done = ATOMIC_INIT(0);
715
716 static int end_io(struct bio *bio, unsigned int num, int err)
717 {
718 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
719 panic("I/O error reading memory image");
720 atomic_set(&io_done, 0);
721 return 0;
722 }
723
724 static struct block_device *resume_bdev;
725
726 /**
727 * submit - submit BIO request.
728 * @rw: READ or WRITE.
729 * @off physical offset of page.
730 * @page: page we're reading or writing.
731 *
732 * Straight from the textbook - allocate and initialize the bio.
733 * If we're writing, make sure the page is marked as dirty.
734 * Then submit it and wait.
735 */
736
737 static int submit(int rw, pgoff_t page_off, void *page)
738 {
739 int error = 0;
740 struct bio *bio;
741
742 bio = bio_alloc(GFP_ATOMIC, 1);
743 if (!bio)
744 return -ENOMEM;
745 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
746 bio_get(bio);
747 bio->bi_bdev = resume_bdev;
748 bio->bi_end_io = end_io;
749
750 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
751 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
752 error = -EFAULT;
753 goto Done;
754 }
755
756 if (rw == WRITE)
757 bio_set_pages_dirty(bio);
758
759 atomic_set(&io_done, 1);
760 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
761 while (atomic_read(&io_done))
762 yield();
763
764 Done:
765 bio_put(bio);
766 return error;
767 }
768
769 static int bio_read_page(pgoff_t page_off, void *page)
770 {
771 return submit(READ, page_off, page);
772 }
773
774 static int bio_write_page(pgoff_t page_off, void *page)
775 {
776 return submit(WRITE, page_off, page);
777 }
778
779 /**
780 * The following functions allow us to read data using a swap map
781 * in a file-alike way
782 */
783
784 static inline void release_swap_map_reader(struct swap_map_handle *handle)
785 {
786 if (handle->cur)
787 free_page((unsigned long)handle->cur);
788 handle->cur = NULL;
789 }
790
791 static inline int get_swap_map_reader(struct swap_map_handle *handle,
792 swp_entry_t start)
793 {
794 int error;
795
796 if (!swp_offset(start))
797 return -EINVAL;
798 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC);
799 if (!handle->cur)
800 return -ENOMEM;
801 error = bio_read_page(swp_offset(start), handle->cur);
802 if (error) {
803 release_swap_map_reader(handle);
804 return error;
805 }
806 handle->k = 0;
807 return 0;
808 }
809
810 static inline int swap_map_read_page(struct swap_map_handle *handle, void *buf)
811 {
812 unsigned long offset;
813 int error;
814
815 if (!handle->cur)
816 return -EINVAL;
817 offset = swp_offset(handle->cur->entries[handle->k]);
818 if (!offset)
819 return -EINVAL;
820 error = bio_read_page(offset, buf);
821 if (error)
822 return error;
823 if (++handle->k >= MAP_PAGE_SIZE) {
824 handle->k = 0;
825 offset = swp_offset(handle->cur->next_swap);
826 if (!offset)
827 release_swap_map_reader(handle);
828 else
829 error = bio_read_page(offset, handle->cur);
830 }
831 return error;
832 }
833
834 static int check_header(void)
835 {
836 char *reason = NULL;
837
838 dump_info();
839 if (swsusp_info.version_code != LINUX_VERSION_CODE)
840 reason = "kernel version";
841 if (swsusp_info.num_physpages != num_physpages)
842 reason = "memory size";
843 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
844 reason = "system type";
845 if (strcmp(swsusp_info.uts.release,system_utsname.release))
846 reason = "kernel release";
847 if (strcmp(swsusp_info.uts.version,system_utsname.version))
848 reason = "version";
849 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
850 reason = "machine";
851 if (reason) {
852 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
853 return -EPERM;
854 }
855 return 0;
856 }
857
858 /**
859 * load_image_data - load the image data using the swap map handle
860 * @handle and store them using the page backup list @pblist
861 * (assume there are @nr_pages pages to load)
862 */
863
864 static int load_image_data(struct pbe *pblist,
865 struct swap_map_handle *handle,
866 unsigned int nr_pages)
867 {
868 int error;
869 unsigned int m;
870 struct pbe *p;
871
872 if (!pblist)
873 return -EINVAL;
874 printk("Loading image data pages (%u pages) ... ", nr_pages);
875 m = nr_pages / 100;
876 if (!m)
877 m = 1;
878 nr_pages = 0;
879 p = pblist;
880 while (p) {
881 error = swap_map_read_page(handle, (void *)p->address);
882 if (error)
883 break;
884 p = p->next;
885 if (!(nr_pages % m))
886 printk("\b\b\b\b%3d%%", nr_pages / m);
887 nr_pages++;
888 }
889 if (!error)
890 printk("\b\b\b\bdone\n");
891 return error;
892 }
893
894 /**
895 * unpack_orig_addresses - copy the elements of @buf[] (1 page) to
896 * the PBEs in the list starting at @pbe
897 */
898
899 static inline struct pbe *unpack_orig_addresses(unsigned long *buf,
900 struct pbe *pbe)
901 {
902 int j;
903
904 for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) {
905 pbe->orig_address = buf[j];
906 pbe = pbe->next;
907 }
908 return pbe;
909 }
910
911 /**
912 * load_image_metadata - load the image metadata using the swap map
913 * handle @handle and put them into the PBEs in the list @pblist
914 */
915
916 static int load_image_metadata(struct pbe *pblist, struct swap_map_handle *handle)
917 {
918 struct pbe *p;
919 unsigned long *buf;
920 unsigned int n = 0;
921 int error = 0;
922
923 printk("Loading image metadata ... ");
924 buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC);
925 if (!buf)
926 return -ENOMEM;
927 p = pblist;
928 while (p) {
929 error = swap_map_read_page(handle, buf);
930 if (error)
931 break;
932 p = unpack_orig_addresses(buf, p);
933 n++;
934 }
935 free_page((unsigned long)buf);
936 if (!error)
937 printk("done (%u pages loaded)\n", n);
938 return error;
939 }
940
941 int swsusp_read(struct pbe **pblist_ptr)
942 {
943 int error;
944 struct pbe *p, *pblist;
945 struct swap_map_handle handle;
946 unsigned int nr_pages;
947
948 if (IS_ERR(resume_bdev)) {
949 pr_debug("swsusp: block device not initialised\n");
950 return PTR_ERR(resume_bdev);
951 }
952
953 error = get_swap_map_reader(&handle, swsusp_header.image);
954 if (!error)
955 error = swap_map_read_page(&handle, &swsusp_info);
956 if (!error)
957 error = check_header();
958 if (error)
959 return error;
960 nr_pages = swsusp_info.image_pages;
961 p = alloc_pagedir(nr_pages, GFP_ATOMIC, 0);
962 if (!p)
963 return -ENOMEM;
964 error = load_image_metadata(p, &handle);
965 if (!error) {
966 mark_unsafe_pages(p);
967 pblist = alloc_pagedir(nr_pages, GFP_ATOMIC, 1);
968 if (pblist)
969 copy_page_backup_list(pblist, p);
970 free_pagedir(p);
971 if (!pblist)
972 error = -ENOMEM;
973
974 /* Allocate memory for the image and read the data from swap */
975 if (!error)
976 error = alloc_data_pages(pblist, GFP_ATOMIC, 1);
977 if (!error) {
978 release_eaten_pages();
979 error = load_image_data(pblist, &handle, nr_pages);
980 }
981 if (!error)
982 *pblist_ptr = pblist;
983 }
984 release_swap_map_reader(&handle);
985
986 blkdev_put(resume_bdev);
987
988 if (!error)
989 pr_debug("swsusp: Reading resume file was successful\n");
990 else
991 pr_debug("swsusp: Error %d resuming\n", error);
992 return error;
993 }
994
995 /**
996 * swsusp_check - Check for swsusp signature in the resume device
997 */
998
999 int swsusp_check(void)
1000 {
1001 int error;
1002
1003 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1004 if (!IS_ERR(resume_bdev)) {
1005 set_blocksize(resume_bdev, PAGE_SIZE);
1006 memset(&swsusp_header, 0, sizeof(swsusp_header));
1007 if ((error = bio_read_page(0, &swsusp_header)))
1008 return error;
1009 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1010 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
1011 /* Reset swap signature now */
1012 error = bio_write_page(0, &swsusp_header);
1013 } else {
1014 return -EINVAL;
1015 }
1016 if (error)
1017 blkdev_put(resume_bdev);
1018 else
1019 pr_debug("swsusp: Signature found, resuming\n");
1020 } else {
1021 error = PTR_ERR(resume_bdev);
1022 }
1023
1024 if (error)
1025 pr_debug("swsusp: Error %d check for resume file\n", error);
1026
1027 return error;
1028 }
1029
1030 /**
1031 * swsusp_close - close swap device.
1032 */
1033
1034 void swsusp_close(void)
1035 {
1036 if (IS_ERR(resume_bdev)) {
1037 pr_debug("swsusp: block device not initialised\n");
1038 return;
1039 }
1040
1041 blkdev_put(resume_bdev);
1042 }