add toggle for disabling newly added USB devices
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / power / swap.c
1 /*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG "S1SUSPEND"
38
39 /*
40 * When reading an {un,}compressed image, we may restore pages in place,
41 * in which case some architectures need these pages cleaning before they
42 * can be executed. We don't know which pages these may be, so clean the lot.
43 */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48 * The swap map is a data structure used for keeping track of each page
49 * written to a swap partition. It consists of many swap_map_page
50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51 * These structures are stored on the swap and linked together with the
52 * help of the .next_swap member.
53 *
54 * The swap map is created during suspend. The swap map pages are
55 * allocated and populated one at a time, so we only need one memory
56 * page to set up the entire structure.
57 *
58 * During resume we pick up all swap_map_page structures into a list.
59 */
60
61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64 * Number of free pages that are not high.
65 */
66 static inline unsigned long low_free_pages(void)
67 {
68 return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72 * Number of pages required to be kept free while writing the image. Always
73 * half of all available low pages before the writing starts.
74 */
75 static inline unsigned long reqd_free_pages(void)
76 {
77 return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81 sector_t entries[MAP_PAGE_ENTRIES];
82 sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86 struct swap_map_page *map;
87 struct swap_map_page_list *next;
88 };
89
90 /**
91 * The swap_map_handle structure is used for handling swap in
92 * a file-alike way
93 */
94
95 struct swap_map_handle {
96 struct swap_map_page *cur;
97 struct swap_map_page_list *maps;
98 sector_t cur_swap;
99 sector_t first_sector;
100 unsigned int k;
101 unsigned long reqd_free_pages;
102 u32 crc32;
103 };
104
105 struct swsusp_header {
106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107 sizeof(u32)];
108 u32 crc32;
109 sector_t image;
110 unsigned int flags; /* Flags to pass to the "boot" kernel */
111 char orig_sig[10];
112 char sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118 * The following functions are used for tracing the allocated
119 * swap pages, so that they can be freed in case of an error.
120 */
121
122 struct swsusp_extent {
123 struct rb_node node;
124 unsigned long start;
125 unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132 struct rb_node **new = &(swsusp_extents.rb_node);
133 struct rb_node *parent = NULL;
134 struct swsusp_extent *ext;
135
136 /* Figure out where to put the new node */
137 while (*new) {
138 ext = rb_entry(*new, struct swsusp_extent, node);
139 parent = *new;
140 if (swap_offset < ext->start) {
141 /* Try to merge */
142 if (swap_offset == ext->start - 1) {
143 ext->start--;
144 return 0;
145 }
146 new = &((*new)->rb_left);
147 } else if (swap_offset > ext->end) {
148 /* Try to merge */
149 if (swap_offset == ext->end + 1) {
150 ext->end++;
151 return 0;
152 }
153 new = &((*new)->rb_right);
154 } else {
155 /* It already is in the tree */
156 return -EINVAL;
157 }
158 }
159 /* Add the new node and rebalance the tree. */
160 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161 if (!ext)
162 return -ENOMEM;
163
164 ext->start = swap_offset;
165 ext->end = swap_offset;
166 rb_link_node(&ext->node, parent, new);
167 rb_insert_color(&ext->node, &swsusp_extents);
168 return 0;
169 }
170
171 /**
172 * alloc_swapdev_block - allocate a swap page and register that it has
173 * been allocated, so that it can be freed in case of an error.
174 */
175
176 sector_t alloc_swapdev_block(int swap)
177 {
178 unsigned long offset;
179
180 offset = swp_offset(get_swap_page_of_type(swap));
181 if (offset) {
182 if (swsusp_extents_insert(offset))
183 swap_free(swp_entry(swap, offset));
184 else
185 return swapdev_block(swap, offset);
186 }
187 return 0;
188 }
189
190 /**
191 * free_all_swap_pages - free swap pages allocated for saving image data.
192 * It also frees the extents used to register which swap entries had been
193 * allocated.
194 */
195
196 void free_all_swap_pages(int swap)
197 {
198 struct rb_node *node;
199
200 while ((node = swsusp_extents.rb_node)) {
201 struct swsusp_extent *ext;
202 unsigned long offset;
203
204 ext = rb_entry(node, struct swsusp_extent, node);
205 rb_erase(node, &swsusp_extents);
206 for (offset = ext->start; offset <= ext->end; offset++)
207 swap_free(swp_entry(swap, offset));
208
209 kfree(ext);
210 }
211 }
212
213 int swsusp_swap_in_use(void)
214 {
215 return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219 * General things
220 */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226 atomic_t count;
227 wait_queue_head_t wait;
228 blk_status_t error;
229 };
230
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233 atomic_set(&hb->count, 0);
234 init_waitqueue_head(&hb->wait);
235 hb->error = BLK_STS_OK;
236 }
237
238 static void hib_end_io(struct bio *bio)
239 {
240 struct hib_bio_batch *hb = bio->bi_private;
241 struct page *page = bio->bi_io_vec[0].bv_page;
242
243 if (bio->bi_status) {
244 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
245 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
246 (unsigned long long)bio->bi_iter.bi_sector);
247 }
248
249 if (bio_data_dir(bio) == WRITE)
250 put_page(page);
251 else if (clean_pages_on_read)
252 flush_icache_range((unsigned long)page_address(page),
253 (unsigned long)page_address(page) + PAGE_SIZE);
254
255 if (bio->bi_status && !hb->error)
256 hb->error = bio->bi_status;
257 if (atomic_dec_and_test(&hb->count))
258 wake_up(&hb->wait);
259
260 bio_put(bio);
261 }
262
263 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
264 struct hib_bio_batch *hb)
265 {
266 struct page *page = virt_to_page(addr);
267 struct bio *bio;
268 int error = 0;
269
270 bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
271 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
272 bio_set_dev(bio, hib_resume_bdev);
273 bio_set_op_attrs(bio, op, op_flags);
274
275 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
276 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
277 (unsigned long long)bio->bi_iter.bi_sector);
278 bio_put(bio);
279 return -EFAULT;
280 }
281
282 if (hb) {
283 bio->bi_end_io = hib_end_io;
284 bio->bi_private = hb;
285 atomic_inc(&hb->count);
286 submit_bio(bio);
287 } else {
288 error = submit_bio_wait(bio);
289 bio_put(bio);
290 }
291
292 return error;
293 }
294
295 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
296 {
297 wait_event(hb->wait, atomic_read(&hb->count) == 0);
298 return blk_status_to_errno(hb->error);
299 }
300
301 /*
302 * Saving part
303 */
304
305 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
306 {
307 int error;
308
309 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
310 swsusp_header, NULL);
311 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315 swsusp_header->image = handle->first_sector;
316 swsusp_header->flags = flags;
317 if (flags & SF_CRC32_MODE)
318 swsusp_header->crc32 = handle->crc32;
319 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
320 swsusp_resume_block, swsusp_header, NULL);
321 } else {
322 printk(KERN_ERR "PM: Swap header not found!\n");
323 error = -ENODEV;
324 }
325 return error;
326 }
327
328 /**
329 * swsusp_swap_check - check if the resume device is a swap device
330 * and get its index (if so)
331 *
332 * This is called before saving image
333 */
334 static int swsusp_swap_check(void)
335 {
336 int res;
337
338 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
339 &hib_resume_bdev);
340 if (res < 0)
341 return res;
342
343 root_swap = res;
344 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
345 if (res)
346 return res;
347
348 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
349 if (res < 0)
350 blkdev_put(hib_resume_bdev, FMODE_WRITE);
351
352 /*
353 * Update the resume device to the one actually used,
354 * so the test_resume mode can use it in case it is
355 * invoked from hibernate() to test the snapshot.
356 */
357 swsusp_resume_device = hib_resume_bdev->bd_dev;
358 return res;
359 }
360
361 /**
362 * write_page - Write one page to given swap location.
363 * @buf: Address we're writing.
364 * @offset: Offset of the swap page we're writing to.
365 * @hb: bio completion batch
366 */
367
368 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
369 {
370 void *src;
371 int ret;
372
373 if (!offset)
374 return -ENOSPC;
375
376 if (hb) {
377 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
378 __GFP_NORETRY);
379 if (src) {
380 copy_page(src, buf);
381 } else {
382 ret = hib_wait_io(hb); /* Free pages */
383 if (ret)
384 return ret;
385 src = (void *)__get_free_page(__GFP_RECLAIM |
386 __GFP_NOWARN |
387 __GFP_NORETRY);
388 if (src) {
389 copy_page(src, buf);
390 } else {
391 WARN_ON_ONCE(1);
392 hb = NULL; /* Go synchronous */
393 src = buf;
394 }
395 }
396 } else {
397 src = buf;
398 }
399 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
400 }
401
402 static void release_swap_writer(struct swap_map_handle *handle)
403 {
404 if (handle->cur)
405 free_page((unsigned long)handle->cur);
406 handle->cur = NULL;
407 }
408
409 static int get_swap_writer(struct swap_map_handle *handle)
410 {
411 int ret;
412
413 ret = swsusp_swap_check();
414 if (ret) {
415 if (ret != -ENOSPC)
416 printk(KERN_ERR "PM: Cannot find swap device, try "
417 "swapon -a.\n");
418 return ret;
419 }
420 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
421 if (!handle->cur) {
422 ret = -ENOMEM;
423 goto err_close;
424 }
425 handle->cur_swap = alloc_swapdev_block(root_swap);
426 if (!handle->cur_swap) {
427 ret = -ENOSPC;
428 goto err_rel;
429 }
430 handle->k = 0;
431 handle->reqd_free_pages = reqd_free_pages();
432 handle->first_sector = handle->cur_swap;
433 return 0;
434 err_rel:
435 release_swap_writer(handle);
436 err_close:
437 swsusp_close(FMODE_WRITE);
438 return ret;
439 }
440
441 static int swap_write_page(struct swap_map_handle *handle, void *buf,
442 struct hib_bio_batch *hb)
443 {
444 int error = 0;
445 sector_t offset;
446
447 if (!handle->cur)
448 return -EINVAL;
449 offset = alloc_swapdev_block(root_swap);
450 error = write_page(buf, offset, hb);
451 if (error)
452 return error;
453 handle->cur->entries[handle->k++] = offset;
454 if (handle->k >= MAP_PAGE_ENTRIES) {
455 offset = alloc_swapdev_block(root_swap);
456 if (!offset)
457 return -ENOSPC;
458 handle->cur->next_swap = offset;
459 error = write_page(handle->cur, handle->cur_swap, hb);
460 if (error)
461 goto out;
462 clear_page(handle->cur);
463 handle->cur_swap = offset;
464 handle->k = 0;
465
466 if (hb && low_free_pages() <= handle->reqd_free_pages) {
467 error = hib_wait_io(hb);
468 if (error)
469 goto out;
470 /*
471 * Recalculate the number of required free pages, to
472 * make sure we never take more than half.
473 */
474 handle->reqd_free_pages = reqd_free_pages();
475 }
476 }
477 out:
478 return error;
479 }
480
481 static int flush_swap_writer(struct swap_map_handle *handle)
482 {
483 if (handle->cur && handle->cur_swap)
484 return write_page(handle->cur, handle->cur_swap, NULL);
485 else
486 return -EINVAL;
487 }
488
489 static int swap_writer_finish(struct swap_map_handle *handle,
490 unsigned int flags, int error)
491 {
492 if (!error) {
493 flush_swap_writer(handle);
494 printk(KERN_INFO "PM: S");
495 error = mark_swapfiles(handle, flags);
496 printk("|\n");
497 }
498
499 if (error)
500 free_all_swap_pages(root_swap);
501 release_swap_writer(handle);
502 swsusp_close(FMODE_WRITE);
503
504 return error;
505 }
506
507 /* We need to remember how much compressed data we need to read. */
508 #define LZO_HEADER sizeof(size_t)
509
510 /* Number of pages/bytes we'll compress at one time. */
511 #define LZO_UNC_PAGES 32
512 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
513
514 /* Number of pages/bytes we need for compressed data (worst case). */
515 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
516 LZO_HEADER, PAGE_SIZE)
517 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
518
519 /* Maximum number of threads for compression/decompression. */
520 #define LZO_THREADS 3
521
522 /* Minimum/maximum number of pages for read buffering. */
523 #define LZO_MIN_RD_PAGES 1024
524 #define LZO_MAX_RD_PAGES 8192
525
526
527 /**
528 * save_image - save the suspend image data
529 */
530
531 static int save_image(struct swap_map_handle *handle,
532 struct snapshot_handle *snapshot,
533 unsigned int nr_to_write)
534 {
535 unsigned int m;
536 int ret;
537 int nr_pages;
538 int err2;
539 struct hib_bio_batch hb;
540 ktime_t start;
541 ktime_t stop;
542
543 hib_init_batch(&hb);
544
545 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
546 nr_to_write);
547 m = nr_to_write / 10;
548 if (!m)
549 m = 1;
550 nr_pages = 0;
551 start = ktime_get();
552 while (1) {
553 ret = snapshot_read_next(snapshot);
554 if (ret <= 0)
555 break;
556 ret = swap_write_page(handle, data_of(*snapshot), &hb);
557 if (ret)
558 break;
559 if (!(nr_pages % m))
560 printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
561 nr_pages / m * 10);
562 nr_pages++;
563 }
564 err2 = hib_wait_io(&hb);
565 stop = ktime_get();
566 if (!ret)
567 ret = err2;
568 if (!ret)
569 printk(KERN_INFO "PM: Image saving done.\n");
570 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
571 return ret;
572 }
573
574 /**
575 * Structure used for CRC32.
576 */
577 struct crc_data {
578 struct task_struct *thr; /* thread */
579 atomic_t ready; /* ready to start flag */
580 atomic_t stop; /* ready to stop flag */
581 unsigned run_threads; /* nr current threads */
582 wait_queue_head_t go; /* start crc update */
583 wait_queue_head_t done; /* crc update done */
584 u32 *crc32; /* points to handle's crc32 */
585 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
586 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
587 };
588
589 /**
590 * CRC32 update function that runs in its own thread.
591 */
592 static int crc32_threadfn(void *data)
593 {
594 struct crc_data *d = data;
595 unsigned i;
596
597 while (1) {
598 wait_event(d->go, atomic_read(&d->ready) ||
599 kthread_should_stop());
600 if (kthread_should_stop()) {
601 d->thr = NULL;
602 atomic_set(&d->stop, 1);
603 wake_up(&d->done);
604 break;
605 }
606 atomic_set(&d->ready, 0);
607
608 for (i = 0; i < d->run_threads; i++)
609 *d->crc32 = crc32_le(*d->crc32,
610 d->unc[i], *d->unc_len[i]);
611 atomic_set(&d->stop, 1);
612 wake_up(&d->done);
613 }
614 return 0;
615 }
616 /**
617 * Structure used for LZO data compression.
618 */
619 struct cmp_data {
620 struct task_struct *thr; /* thread */
621 atomic_t ready; /* ready to start flag */
622 atomic_t stop; /* ready to stop flag */
623 int ret; /* return code */
624 wait_queue_head_t go; /* start compression */
625 wait_queue_head_t done; /* compression done */
626 size_t unc_len; /* uncompressed length */
627 size_t cmp_len; /* compressed length */
628 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
629 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
630 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
631 };
632
633 /**
634 * Compression function that runs in its own thread.
635 */
636 static int lzo_compress_threadfn(void *data)
637 {
638 struct cmp_data *d = data;
639
640 while (1) {
641 wait_event(d->go, atomic_read(&d->ready) ||
642 kthread_should_stop());
643 if (kthread_should_stop()) {
644 d->thr = NULL;
645 d->ret = -1;
646 atomic_set(&d->stop, 1);
647 wake_up(&d->done);
648 break;
649 }
650 atomic_set(&d->ready, 0);
651
652 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
653 d->cmp + LZO_HEADER, &d->cmp_len,
654 d->wrk);
655 atomic_set(&d->stop, 1);
656 wake_up(&d->done);
657 }
658 return 0;
659 }
660
661 /**
662 * save_image_lzo - Save the suspend image data compressed with LZO.
663 * @handle: Swap map handle to use for saving the image.
664 * @snapshot: Image to read data from.
665 * @nr_to_write: Number of pages to save.
666 */
667 static int save_image_lzo(struct swap_map_handle *handle,
668 struct snapshot_handle *snapshot,
669 unsigned int nr_to_write)
670 {
671 unsigned int m;
672 int ret = 0;
673 int nr_pages;
674 int err2;
675 struct hib_bio_batch hb;
676 ktime_t start;
677 ktime_t stop;
678 size_t off;
679 unsigned thr, run_threads, nr_threads;
680 unsigned char *page = NULL;
681 struct cmp_data *data = NULL;
682 struct crc_data *crc = NULL;
683
684 hib_init_batch(&hb);
685
686 /*
687 * We'll limit the number of threads for compression to limit memory
688 * footprint.
689 */
690 nr_threads = num_online_cpus() - 1;
691 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
692
693 page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
694 if (!page) {
695 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
696 ret = -ENOMEM;
697 goto out_clean;
698 }
699
700 data = vmalloc(sizeof(*data) * nr_threads);
701 if (!data) {
702 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
703 ret = -ENOMEM;
704 goto out_clean;
705 }
706 for (thr = 0; thr < nr_threads; thr++)
707 memset(&data[thr], 0, offsetof(struct cmp_data, go));
708
709 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
710 if (!crc) {
711 printk(KERN_ERR "PM: Failed to allocate crc\n");
712 ret = -ENOMEM;
713 goto out_clean;
714 }
715 memset(crc, 0, offsetof(struct crc_data, go));
716
717 /*
718 * Start the compression threads.
719 */
720 for (thr = 0; thr < nr_threads; thr++) {
721 init_waitqueue_head(&data[thr].go);
722 init_waitqueue_head(&data[thr].done);
723
724 data[thr].thr = kthread_run(lzo_compress_threadfn,
725 &data[thr],
726 "image_compress/%u", thr);
727 if (IS_ERR(data[thr].thr)) {
728 data[thr].thr = NULL;
729 printk(KERN_ERR
730 "PM: Cannot start compression threads\n");
731 ret = -ENOMEM;
732 goto out_clean;
733 }
734 }
735
736 /*
737 * Start the CRC32 thread.
738 */
739 init_waitqueue_head(&crc->go);
740 init_waitqueue_head(&crc->done);
741
742 handle->crc32 = 0;
743 crc->crc32 = &handle->crc32;
744 for (thr = 0; thr < nr_threads; thr++) {
745 crc->unc[thr] = data[thr].unc;
746 crc->unc_len[thr] = &data[thr].unc_len;
747 }
748
749 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
750 if (IS_ERR(crc->thr)) {
751 crc->thr = NULL;
752 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
753 ret = -ENOMEM;
754 goto out_clean;
755 }
756
757 /*
758 * Adjust the number of required free pages after all allocations have
759 * been done. We don't want to run out of pages when writing.
760 */
761 handle->reqd_free_pages = reqd_free_pages();
762
763 printk(KERN_INFO
764 "PM: Using %u thread(s) for compression.\n"
765 "PM: Compressing and saving image data (%u pages)...\n",
766 nr_threads, nr_to_write);
767 m = nr_to_write / 10;
768 if (!m)
769 m = 1;
770 nr_pages = 0;
771 start = ktime_get();
772 for (;;) {
773 for (thr = 0; thr < nr_threads; thr++) {
774 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
775 ret = snapshot_read_next(snapshot);
776 if (ret < 0)
777 goto out_finish;
778
779 if (!ret)
780 break;
781
782 memcpy(data[thr].unc + off,
783 data_of(*snapshot), PAGE_SIZE);
784
785 if (!(nr_pages % m))
786 printk(KERN_INFO
787 "PM: Image saving progress: "
788 "%3d%%\n",
789 nr_pages / m * 10);
790 nr_pages++;
791 }
792 if (!off)
793 break;
794
795 data[thr].unc_len = off;
796
797 atomic_set(&data[thr].ready, 1);
798 wake_up(&data[thr].go);
799 }
800
801 if (!thr)
802 break;
803
804 crc->run_threads = thr;
805 atomic_set(&crc->ready, 1);
806 wake_up(&crc->go);
807
808 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
809 wait_event(data[thr].done,
810 atomic_read(&data[thr].stop));
811 atomic_set(&data[thr].stop, 0);
812
813 ret = data[thr].ret;
814
815 if (ret < 0) {
816 printk(KERN_ERR "PM: LZO compression failed\n");
817 goto out_finish;
818 }
819
820 if (unlikely(!data[thr].cmp_len ||
821 data[thr].cmp_len >
822 lzo1x_worst_compress(data[thr].unc_len))) {
823 printk(KERN_ERR
824 "PM: Invalid LZO compressed length\n");
825 ret = -1;
826 goto out_finish;
827 }
828
829 *(size_t *)data[thr].cmp = data[thr].cmp_len;
830
831 /*
832 * Given we are writing one page at a time to disk, we
833 * copy that much from the buffer, although the last
834 * bit will likely be smaller than full page. This is
835 * OK - we saved the length of the compressed data, so
836 * any garbage at the end will be discarded when we
837 * read it.
838 */
839 for (off = 0;
840 off < LZO_HEADER + data[thr].cmp_len;
841 off += PAGE_SIZE) {
842 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
843
844 ret = swap_write_page(handle, page, &hb);
845 if (ret)
846 goto out_finish;
847 }
848 }
849
850 wait_event(crc->done, atomic_read(&crc->stop));
851 atomic_set(&crc->stop, 0);
852 }
853
854 out_finish:
855 err2 = hib_wait_io(&hb);
856 stop = ktime_get();
857 if (!ret)
858 ret = err2;
859 if (!ret)
860 printk(KERN_INFO "PM: Image saving done.\n");
861 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
862 out_clean:
863 if (crc) {
864 if (crc->thr)
865 kthread_stop(crc->thr);
866 kfree(crc);
867 }
868 if (data) {
869 for (thr = 0; thr < nr_threads; thr++)
870 if (data[thr].thr)
871 kthread_stop(data[thr].thr);
872 vfree(data);
873 }
874 if (page) free_page((unsigned long)page);
875
876 return ret;
877 }
878
879 /**
880 * enough_swap - Make sure we have enough swap to save the image.
881 *
882 * Returns TRUE or FALSE after checking the total amount of swap
883 * space avaiable from the resume partition.
884 */
885
886 static int enough_swap(unsigned int nr_pages, unsigned int flags)
887 {
888 unsigned int free_swap = count_swap_pages(root_swap, 1);
889 unsigned int required;
890
891 pr_debug("PM: Free swap pages: %u\n", free_swap);
892
893 required = PAGES_FOR_IO + nr_pages;
894 return free_swap > required;
895 }
896
897 /**
898 * swsusp_write - Write entire image and metadata.
899 * @flags: flags to pass to the "boot" kernel in the image header
900 *
901 * It is important _NOT_ to umount filesystems at this point. We want
902 * them synced (in case something goes wrong) but we DO not want to mark
903 * filesystem clean: it is not. (And it does not matter, if we resume
904 * correctly, we'll mark system clean, anyway.)
905 */
906
907 int swsusp_write(unsigned int flags)
908 {
909 struct swap_map_handle handle;
910 struct snapshot_handle snapshot;
911 struct swsusp_info *header;
912 unsigned long pages;
913 int error;
914
915 pages = snapshot_get_image_size();
916 error = get_swap_writer(&handle);
917 if (error) {
918 printk(KERN_ERR "PM: Cannot get swap writer\n");
919 return error;
920 }
921 if (flags & SF_NOCOMPRESS_MODE) {
922 if (!enough_swap(pages, flags)) {
923 printk(KERN_ERR "PM: Not enough free swap\n");
924 error = -ENOSPC;
925 goto out_finish;
926 }
927 }
928 memset(&snapshot, 0, sizeof(struct snapshot_handle));
929 error = snapshot_read_next(&snapshot);
930 if (error < PAGE_SIZE) {
931 if (error >= 0)
932 error = -EFAULT;
933
934 goto out_finish;
935 }
936 header = (struct swsusp_info *)data_of(snapshot);
937 error = swap_write_page(&handle, header, NULL);
938 if (!error) {
939 error = (flags & SF_NOCOMPRESS_MODE) ?
940 save_image(&handle, &snapshot, pages - 1) :
941 save_image_lzo(&handle, &snapshot, pages - 1);
942 }
943 out_finish:
944 error = swap_writer_finish(&handle, flags, error);
945 return error;
946 }
947
948 /**
949 * The following functions allow us to read data using a swap map
950 * in a file-alike way
951 */
952
953 static void release_swap_reader(struct swap_map_handle *handle)
954 {
955 struct swap_map_page_list *tmp;
956
957 while (handle->maps) {
958 if (handle->maps->map)
959 free_page((unsigned long)handle->maps->map);
960 tmp = handle->maps;
961 handle->maps = handle->maps->next;
962 kfree(tmp);
963 }
964 handle->cur = NULL;
965 }
966
967 static int get_swap_reader(struct swap_map_handle *handle,
968 unsigned int *flags_p)
969 {
970 int error;
971 struct swap_map_page_list *tmp, *last;
972 sector_t offset;
973
974 *flags_p = swsusp_header->flags;
975
976 if (!swsusp_header->image) /* how can this happen? */
977 return -EINVAL;
978
979 handle->cur = NULL;
980 last = handle->maps = NULL;
981 offset = swsusp_header->image;
982 while (offset) {
983 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
984 if (!tmp) {
985 release_swap_reader(handle);
986 return -ENOMEM;
987 }
988 memset(tmp, 0, sizeof(*tmp));
989 if (!handle->maps)
990 handle->maps = tmp;
991 if (last)
992 last->next = tmp;
993 last = tmp;
994
995 tmp->map = (struct swap_map_page *)
996 __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
997 if (!tmp->map) {
998 release_swap_reader(handle);
999 return -ENOMEM;
1000 }
1001
1002 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1003 if (error) {
1004 release_swap_reader(handle);
1005 return error;
1006 }
1007 offset = tmp->map->next_swap;
1008 }
1009 handle->k = 0;
1010 handle->cur = handle->maps->map;
1011 return 0;
1012 }
1013
1014 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1015 struct hib_bio_batch *hb)
1016 {
1017 sector_t offset;
1018 int error;
1019 struct swap_map_page_list *tmp;
1020
1021 if (!handle->cur)
1022 return -EINVAL;
1023 offset = handle->cur->entries[handle->k];
1024 if (!offset)
1025 return -EFAULT;
1026 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1027 if (error)
1028 return error;
1029 if (++handle->k >= MAP_PAGE_ENTRIES) {
1030 handle->k = 0;
1031 free_page((unsigned long)handle->maps->map);
1032 tmp = handle->maps;
1033 handle->maps = handle->maps->next;
1034 kfree(tmp);
1035 if (!handle->maps)
1036 release_swap_reader(handle);
1037 else
1038 handle->cur = handle->maps->map;
1039 }
1040 return error;
1041 }
1042
1043 static int swap_reader_finish(struct swap_map_handle *handle)
1044 {
1045 release_swap_reader(handle);
1046
1047 return 0;
1048 }
1049
1050 /**
1051 * load_image - load the image using the swap map handle
1052 * @handle and the snapshot handle @snapshot
1053 * (assume there are @nr_pages pages to load)
1054 */
1055
1056 static int load_image(struct swap_map_handle *handle,
1057 struct snapshot_handle *snapshot,
1058 unsigned int nr_to_read)
1059 {
1060 unsigned int m;
1061 int ret = 0;
1062 ktime_t start;
1063 ktime_t stop;
1064 struct hib_bio_batch hb;
1065 int err2;
1066 unsigned nr_pages;
1067
1068 hib_init_batch(&hb);
1069
1070 clean_pages_on_read = true;
1071 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1072 nr_to_read);
1073 m = nr_to_read / 10;
1074 if (!m)
1075 m = 1;
1076 nr_pages = 0;
1077 start = ktime_get();
1078 for ( ; ; ) {
1079 ret = snapshot_write_next(snapshot);
1080 if (ret <= 0)
1081 break;
1082 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1083 if (ret)
1084 break;
1085 if (snapshot->sync_read)
1086 ret = hib_wait_io(&hb);
1087 if (ret)
1088 break;
1089 if (!(nr_pages % m))
1090 printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1091 nr_pages / m * 10);
1092 nr_pages++;
1093 }
1094 err2 = hib_wait_io(&hb);
1095 stop = ktime_get();
1096 if (!ret)
1097 ret = err2;
1098 if (!ret) {
1099 printk(KERN_INFO "PM: Image loading done.\n");
1100 snapshot_write_finalize(snapshot);
1101 if (!snapshot_image_loaded(snapshot))
1102 ret = -ENODATA;
1103 }
1104 swsusp_show_speed(start, stop, nr_to_read, "Read");
1105 return ret;
1106 }
1107
1108 /**
1109 * Structure used for LZO data decompression.
1110 */
1111 struct dec_data {
1112 struct task_struct *thr; /* thread */
1113 atomic_t ready; /* ready to start flag */
1114 atomic_t stop; /* ready to stop flag */
1115 int ret; /* return code */
1116 wait_queue_head_t go; /* start decompression */
1117 wait_queue_head_t done; /* decompression done */
1118 size_t unc_len; /* uncompressed length */
1119 size_t cmp_len; /* compressed length */
1120 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1121 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1122 };
1123
1124 /**
1125 * Deompression function that runs in its own thread.
1126 */
1127 static int lzo_decompress_threadfn(void *data)
1128 {
1129 struct dec_data *d = data;
1130
1131 while (1) {
1132 wait_event(d->go, atomic_read(&d->ready) ||
1133 kthread_should_stop());
1134 if (kthread_should_stop()) {
1135 d->thr = NULL;
1136 d->ret = -1;
1137 atomic_set(&d->stop, 1);
1138 wake_up(&d->done);
1139 break;
1140 }
1141 atomic_set(&d->ready, 0);
1142
1143 d->unc_len = LZO_UNC_SIZE;
1144 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1145 d->unc, &d->unc_len);
1146 if (clean_pages_on_decompress)
1147 flush_icache_range((unsigned long)d->unc,
1148 (unsigned long)d->unc + d->unc_len);
1149
1150 atomic_set(&d->stop, 1);
1151 wake_up(&d->done);
1152 }
1153 return 0;
1154 }
1155
1156 /**
1157 * load_image_lzo - Load compressed image data and decompress them with LZO.
1158 * @handle: Swap map handle to use for loading data.
1159 * @snapshot: Image to copy uncompressed data into.
1160 * @nr_to_read: Number of pages to load.
1161 */
1162 static int load_image_lzo(struct swap_map_handle *handle,
1163 struct snapshot_handle *snapshot,
1164 unsigned int nr_to_read)
1165 {
1166 unsigned int m;
1167 int ret = 0;
1168 int eof = 0;
1169 struct hib_bio_batch hb;
1170 ktime_t start;
1171 ktime_t stop;
1172 unsigned nr_pages;
1173 size_t off;
1174 unsigned i, thr, run_threads, nr_threads;
1175 unsigned ring = 0, pg = 0, ring_size = 0,
1176 have = 0, want, need, asked = 0;
1177 unsigned long read_pages = 0;
1178 unsigned char **page = NULL;
1179 struct dec_data *data = NULL;
1180 struct crc_data *crc = NULL;
1181
1182 hib_init_batch(&hb);
1183
1184 /*
1185 * We'll limit the number of threads for decompression to limit memory
1186 * footprint.
1187 */
1188 nr_threads = num_online_cpus() - 1;
1189 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1190
1191 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1192 if (!page) {
1193 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1194 ret = -ENOMEM;
1195 goto out_clean;
1196 }
1197
1198 data = vmalloc(sizeof(*data) * nr_threads);
1199 if (!data) {
1200 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1201 ret = -ENOMEM;
1202 goto out_clean;
1203 }
1204 for (thr = 0; thr < nr_threads; thr++)
1205 memset(&data[thr], 0, offsetof(struct dec_data, go));
1206
1207 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1208 if (!crc) {
1209 printk(KERN_ERR "PM: Failed to allocate crc\n");
1210 ret = -ENOMEM;
1211 goto out_clean;
1212 }
1213 memset(crc, 0, offsetof(struct crc_data, go));
1214
1215 clean_pages_on_decompress = true;
1216
1217 /*
1218 * Start the decompression threads.
1219 */
1220 for (thr = 0; thr < nr_threads; thr++) {
1221 init_waitqueue_head(&data[thr].go);
1222 init_waitqueue_head(&data[thr].done);
1223
1224 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1225 &data[thr],
1226 "image_decompress/%u", thr);
1227 if (IS_ERR(data[thr].thr)) {
1228 data[thr].thr = NULL;
1229 printk(KERN_ERR
1230 "PM: Cannot start decompression threads\n");
1231 ret = -ENOMEM;
1232 goto out_clean;
1233 }
1234 }
1235
1236 /*
1237 * Start the CRC32 thread.
1238 */
1239 init_waitqueue_head(&crc->go);
1240 init_waitqueue_head(&crc->done);
1241
1242 handle->crc32 = 0;
1243 crc->crc32 = &handle->crc32;
1244 for (thr = 0; thr < nr_threads; thr++) {
1245 crc->unc[thr] = data[thr].unc;
1246 crc->unc_len[thr] = &data[thr].unc_len;
1247 }
1248
1249 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1250 if (IS_ERR(crc->thr)) {
1251 crc->thr = NULL;
1252 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1253 ret = -ENOMEM;
1254 goto out_clean;
1255 }
1256
1257 /*
1258 * Set the number of pages for read buffering.
1259 * This is complete guesswork, because we'll only know the real
1260 * picture once prepare_image() is called, which is much later on
1261 * during the image load phase. We'll assume the worst case and
1262 * say that none of the image pages are from high memory.
1263 */
1264 if (low_free_pages() > snapshot_get_image_size())
1265 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1266 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1267
1268 for (i = 0; i < read_pages; i++) {
1269 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1270 __GFP_RECLAIM | __GFP_HIGH :
1271 __GFP_RECLAIM | __GFP_NOWARN |
1272 __GFP_NORETRY);
1273
1274 if (!page[i]) {
1275 if (i < LZO_CMP_PAGES) {
1276 ring_size = i;
1277 printk(KERN_ERR
1278 "PM: Failed to allocate LZO pages\n");
1279 ret = -ENOMEM;
1280 goto out_clean;
1281 } else {
1282 break;
1283 }
1284 }
1285 }
1286 want = ring_size = i;
1287
1288 printk(KERN_INFO
1289 "PM: Using %u thread(s) for decompression.\n"
1290 "PM: Loading and decompressing image data (%u pages)...\n",
1291 nr_threads, nr_to_read);
1292 m = nr_to_read / 10;
1293 if (!m)
1294 m = 1;
1295 nr_pages = 0;
1296 start = ktime_get();
1297
1298 ret = snapshot_write_next(snapshot);
1299 if (ret <= 0)
1300 goto out_finish;
1301
1302 for(;;) {
1303 for (i = 0; !eof && i < want; i++) {
1304 ret = swap_read_page(handle, page[ring], &hb);
1305 if (ret) {
1306 /*
1307 * On real read error, finish. On end of data,
1308 * set EOF flag and just exit the read loop.
1309 */
1310 if (handle->cur &&
1311 handle->cur->entries[handle->k]) {
1312 goto out_finish;
1313 } else {
1314 eof = 1;
1315 break;
1316 }
1317 }
1318 if (++ring >= ring_size)
1319 ring = 0;
1320 }
1321 asked += i;
1322 want -= i;
1323
1324 /*
1325 * We are out of data, wait for some more.
1326 */
1327 if (!have) {
1328 if (!asked)
1329 break;
1330
1331 ret = hib_wait_io(&hb);
1332 if (ret)
1333 goto out_finish;
1334 have += asked;
1335 asked = 0;
1336 if (eof)
1337 eof = 2;
1338 }
1339
1340 if (crc->run_threads) {
1341 wait_event(crc->done, atomic_read(&crc->stop));
1342 atomic_set(&crc->stop, 0);
1343 crc->run_threads = 0;
1344 }
1345
1346 for (thr = 0; have && thr < nr_threads; thr++) {
1347 data[thr].cmp_len = *(size_t *)page[pg];
1348 if (unlikely(!data[thr].cmp_len ||
1349 data[thr].cmp_len >
1350 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1351 printk(KERN_ERR
1352 "PM: Invalid LZO compressed length\n");
1353 ret = -1;
1354 goto out_finish;
1355 }
1356
1357 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1358 PAGE_SIZE);
1359 if (need > have) {
1360 if (eof > 1) {
1361 ret = -1;
1362 goto out_finish;
1363 }
1364 break;
1365 }
1366
1367 for (off = 0;
1368 off < LZO_HEADER + data[thr].cmp_len;
1369 off += PAGE_SIZE) {
1370 memcpy(data[thr].cmp + off,
1371 page[pg], PAGE_SIZE);
1372 have--;
1373 want++;
1374 if (++pg >= ring_size)
1375 pg = 0;
1376 }
1377
1378 atomic_set(&data[thr].ready, 1);
1379 wake_up(&data[thr].go);
1380 }
1381
1382 /*
1383 * Wait for more data while we are decompressing.
1384 */
1385 if (have < LZO_CMP_PAGES && asked) {
1386 ret = hib_wait_io(&hb);
1387 if (ret)
1388 goto out_finish;
1389 have += asked;
1390 asked = 0;
1391 if (eof)
1392 eof = 2;
1393 }
1394
1395 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1396 wait_event(data[thr].done,
1397 atomic_read(&data[thr].stop));
1398 atomic_set(&data[thr].stop, 0);
1399
1400 ret = data[thr].ret;
1401
1402 if (ret < 0) {
1403 printk(KERN_ERR
1404 "PM: LZO decompression failed\n");
1405 goto out_finish;
1406 }
1407
1408 if (unlikely(!data[thr].unc_len ||
1409 data[thr].unc_len > LZO_UNC_SIZE ||
1410 data[thr].unc_len & (PAGE_SIZE - 1))) {
1411 printk(KERN_ERR
1412 "PM: Invalid LZO uncompressed length\n");
1413 ret = -1;
1414 goto out_finish;
1415 }
1416
1417 for (off = 0;
1418 off < data[thr].unc_len; off += PAGE_SIZE) {
1419 memcpy(data_of(*snapshot),
1420 data[thr].unc + off, PAGE_SIZE);
1421
1422 if (!(nr_pages % m))
1423 printk(KERN_INFO
1424 "PM: Image loading progress: "
1425 "%3d%%\n",
1426 nr_pages / m * 10);
1427 nr_pages++;
1428
1429 ret = snapshot_write_next(snapshot);
1430 if (ret <= 0) {
1431 crc->run_threads = thr + 1;
1432 atomic_set(&crc->ready, 1);
1433 wake_up(&crc->go);
1434 goto out_finish;
1435 }
1436 }
1437 }
1438
1439 crc->run_threads = thr;
1440 atomic_set(&crc->ready, 1);
1441 wake_up(&crc->go);
1442 }
1443
1444 out_finish:
1445 if (crc->run_threads) {
1446 wait_event(crc->done, atomic_read(&crc->stop));
1447 atomic_set(&crc->stop, 0);
1448 }
1449 stop = ktime_get();
1450 if (!ret) {
1451 printk(KERN_INFO "PM: Image loading done.\n");
1452 snapshot_write_finalize(snapshot);
1453 if (!snapshot_image_loaded(snapshot))
1454 ret = -ENODATA;
1455 if (!ret) {
1456 if (swsusp_header->flags & SF_CRC32_MODE) {
1457 if(handle->crc32 != swsusp_header->crc32) {
1458 printk(KERN_ERR
1459 "PM: Invalid image CRC32!\n");
1460 ret = -ENODATA;
1461 }
1462 }
1463 }
1464 }
1465 swsusp_show_speed(start, stop, nr_to_read, "Read");
1466 out_clean:
1467 for (i = 0; i < ring_size; i++)
1468 free_page((unsigned long)page[i]);
1469 if (crc) {
1470 if (crc->thr)
1471 kthread_stop(crc->thr);
1472 kfree(crc);
1473 }
1474 if (data) {
1475 for (thr = 0; thr < nr_threads; thr++)
1476 if (data[thr].thr)
1477 kthread_stop(data[thr].thr);
1478 vfree(data);
1479 }
1480 vfree(page);
1481
1482 return ret;
1483 }
1484
1485 /**
1486 * swsusp_read - read the hibernation image.
1487 * @flags_p: flags passed by the "frozen" kernel in the image header should
1488 * be written into this memory location
1489 */
1490
1491 int swsusp_read(unsigned int *flags_p)
1492 {
1493 int error;
1494 struct swap_map_handle handle;
1495 struct snapshot_handle snapshot;
1496 struct swsusp_info *header;
1497
1498 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1499 error = snapshot_write_next(&snapshot);
1500 if (error < PAGE_SIZE)
1501 return error < 0 ? error : -EFAULT;
1502 header = (struct swsusp_info *)data_of(snapshot);
1503 error = get_swap_reader(&handle, flags_p);
1504 if (error)
1505 goto end;
1506 if (!error)
1507 error = swap_read_page(&handle, header, NULL);
1508 if (!error) {
1509 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1510 load_image(&handle, &snapshot, header->pages - 1) :
1511 load_image_lzo(&handle, &snapshot, header->pages - 1);
1512 }
1513 swap_reader_finish(&handle);
1514 end:
1515 if (!error)
1516 pr_debug("PM: Image successfully loaded\n");
1517 else
1518 pr_debug("PM: Error %d resuming\n", error);
1519 return error;
1520 }
1521
1522 /**
1523 * swsusp_check - Check for swsusp signature in the resume device
1524 */
1525
1526 int swsusp_check(void)
1527 {
1528 int error;
1529
1530 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1531 FMODE_READ, NULL);
1532 if (!IS_ERR(hib_resume_bdev)) {
1533 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1534 clear_page(swsusp_header);
1535 error = hib_submit_io(REQ_OP_READ, 0,
1536 swsusp_resume_block,
1537 swsusp_header, NULL);
1538 if (error)
1539 goto put;
1540
1541 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1542 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1543 /* Reset swap signature now */
1544 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1545 swsusp_resume_block,
1546 swsusp_header, NULL);
1547 } else {
1548 error = -EINVAL;
1549 }
1550
1551 put:
1552 if (error)
1553 blkdev_put(hib_resume_bdev, FMODE_READ);
1554 else
1555 pr_debug("PM: Image signature found, resuming\n");
1556 } else {
1557 error = PTR_ERR(hib_resume_bdev);
1558 }
1559
1560 if (error)
1561 pr_debug("PM: Image not found (code %d)\n", error);
1562
1563 return error;
1564 }
1565
1566 /**
1567 * swsusp_close - close swap device.
1568 */
1569
1570 void swsusp_close(fmode_t mode)
1571 {
1572 if (IS_ERR(hib_resume_bdev)) {
1573 pr_debug("PM: Image device not initialised\n");
1574 return;
1575 }
1576
1577 blkdev_put(hib_resume_bdev, mode);
1578 }
1579
1580 /**
1581 * swsusp_unmark - Unmark swsusp signature in the resume device
1582 */
1583
1584 #ifdef CONFIG_SUSPEND
1585 int swsusp_unmark(void)
1586 {
1587 int error;
1588
1589 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1590 swsusp_header, NULL);
1591 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1592 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1593 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1594 swsusp_resume_block,
1595 swsusp_header, NULL);
1596 } else {
1597 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1598 error = -ENODEV;
1599 }
1600
1601 /*
1602 * We just returned from suspend, we don't need the image any more.
1603 */
1604 free_all_swap_pages(root_swap);
1605
1606 return error;
1607 }
1608 #endif
1609
1610 static int swsusp_header_init(void)
1611 {
1612 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1613 if (!swsusp_header)
1614 panic("Could not allocate memory for swsusp_header\n");
1615 return 0;
1616 }
1617
1618 core_initcall(swsusp_header_init);