Merge branch 'staging/for_v3.4' into v4l_for_linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
60 */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
83 *
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
86 */
87
88 #define PG_ANY 0
89 #define PG_SAFE 1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP 0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
101 while (res && swsusp_page_is_free(virt_to_page(res))) {
102 /* The page is unsafe, mark it for swsusp_free() */
103 swsusp_set_page_forbidden(virt_to_page(res));
104 allocated_unsafe_pages++;
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
110 }
111 return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
127 }
128 return page;
129 }
130
131 /**
132 * free_image_page - free page represented by @addr, allocated with
133 * get_image_page (page flags set by it must be cleared)
134 */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
144 swsusp_unset_page_forbidden(page);
145 if (clear_nosave_free)
146 swsusp_unset_page_free(page);
147
148 __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169 }
170
171 /**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184 struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220 }
221
222 /**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
229 * represent each blocks of bitmap in which information is stored.
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
250 */
251
252 #define BM_END_OF_MAP (~0UL)
253
254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257 struct list_head hook; /* hook into a list of bitmap blocks */
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
260 unsigned long *data; /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271 struct bm_block *block;
272 int bit;
273 };
274
275 struct memory_bitmap {
276 struct list_head blocks; /* list of bitmap blocks */
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295 * create_bm_block_list - create a list of block bitmap objects
296 * @pages - number of pages to track
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
299 */
300 static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
303 {
304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
311 return -ENOMEM;
312 list_add(&bb->hook, list);
313 }
314
315 return 0;
316 }
317
318 struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322 };
323
324 /**
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
327 */
328 static void free_mem_extents(struct list_head *list)
329 {
330 struct mem_extent *ext, *aux;
331
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336 }
337
338 /**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 struct zone *zone;
347
348 INIT_LIST_HEAD(list);
349
350 for_each_populated_zone(zone) {
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
354 zone_start = zone->zone_start_pfn;
355 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
360
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
392 }
393
394 return 0;
395 }
396
397 /**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 struct chain_allocator ca;
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
407
408 chain_init(&ca, gfp_mask, safe_needed);
409 INIT_LIST_HEAD(&bm->blocks);
410
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
414
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
419
420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
425
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
432
433 bb->start_pfn = pfn;
434 if (pages >= BM_BITS_PER_BLOCK) {
435 pfn += BM_BITS_PER_BLOCK;
436 pages -= BM_BITS_PER_BLOCK;
437 } else {
438 /* This is executed only once in the loop */
439 pfn += pages;
440 }
441 bb->end_pfn = pfn;
442 }
443 }
444
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
450
451 Error:
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 goto Exit;
455 }
456
457 /**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 struct bm_block *bb;
463
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
467
468 free_list_of_pages(bm->p_list, clear_nosave_free);
469
470 INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
477 */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 void **addr, unsigned int *bit_nr)
480 {
481 struct bm_block *bb;
482
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
488 if (pfn < bb->start_pfn)
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
492
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
497
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
503 pfn -= bb->start_pfn;
504 bm->cur.bit = pfn + 1;
505 *bit_nr = pfn;
506 *addr = bb->data;
507 return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 void *addr;
513 unsigned int bit;
514 int error;
515
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
518 set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 void *addr;
536 unsigned int bit;
537 int error;
538
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
541 clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 void *addr;
547 unsigned int bit;
548 int error;
549
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
552 return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 struct bm_block *bb;
575 int bit;
576
577 bb = bm->cur.block;
578 do {
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
592 Return_pfn:
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
595 }
596
597 /**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602 struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
619 {
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
640 region = alloc_bootmem(sizeof(struct nosave_region));
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(&region->list, &nosave_regions);
644 Report:
645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648
649 /*
650 * Set bits in this map correspond to the page frames the contents of which
651 * should not be saved during the suspend.
652 */
653 static struct memory_bitmap *forbidden_pages_map;
654
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657
658 /*
659 * Each page frame allocated for creating the image is marked by setting the
660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661 */
662
663 void swsusp_set_page_free(struct page *page)
664 {
665 if (free_pages_map)
666 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668
669 static int swsusp_page_is_free(struct page *page)
670 {
671 return free_pages_map ?
672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674
675 void swsusp_unset_page_free(struct page *page)
676 {
677 if (free_pages_map)
678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680
681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683 if (forbidden_pages_map)
684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686
687 int swsusp_page_is_forbidden(struct page *page)
688 {
689 return forbidden_pages_map ?
690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692
693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695 if (forbidden_pages_map)
696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698
699 /**
700 * mark_nosave_pages - set bits corresponding to the page frames the
701 * contents of which should not be saved in a given bitmap.
702 */
703
704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706 struct nosave_region *region;
707
708 if (list_empty(&nosave_regions))
709 return;
710
711 list_for_each_entry(region, &nosave_regions, list) {
712 unsigned long pfn;
713
714 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715 region->start_pfn << PAGE_SHIFT,
716 region->end_pfn << PAGE_SHIFT);
717
718 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719 if (pfn_valid(pfn)) {
720 /*
721 * It is safe to ignore the result of
722 * mem_bm_set_bit_check() here, since we won't
723 * touch the PFNs for which the error is
724 * returned anyway.
725 */
726 mem_bm_set_bit_check(bm, pfn);
727 }
728 }
729 }
730
731 /**
732 * create_basic_memory_bitmaps - create bitmaps needed for marking page
733 * frames that should not be saved and free page frames. The pointers
734 * forbidden_pages_map and free_pages_map are only modified if everything
735 * goes well, because we don't want the bits to be used before both bitmaps
736 * are set up.
737 */
738
739 int create_basic_memory_bitmaps(void)
740 {
741 struct memory_bitmap *bm1, *bm2;
742 int error = 0;
743
744 BUG_ON(forbidden_pages_map || free_pages_map);
745
746 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747 if (!bm1)
748 return -ENOMEM;
749
750 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751 if (error)
752 goto Free_first_object;
753
754 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755 if (!bm2)
756 goto Free_first_bitmap;
757
758 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759 if (error)
760 goto Free_second_object;
761
762 forbidden_pages_map = bm1;
763 free_pages_map = bm2;
764 mark_nosave_pages(forbidden_pages_map);
765
766 pr_debug("PM: Basic memory bitmaps created\n");
767
768 return 0;
769
770 Free_second_object:
771 kfree(bm2);
772 Free_first_bitmap:
773 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774 Free_first_object:
775 kfree(bm1);
776 return -ENOMEM;
777 }
778
779 /**
780 * free_basic_memory_bitmaps - free memory bitmaps allocated by
781 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
782 * so that the bitmaps themselves are not referred to while they are being
783 * freed.
784 */
785
786 void free_basic_memory_bitmaps(void)
787 {
788 struct memory_bitmap *bm1, *bm2;
789
790 BUG_ON(!(forbidden_pages_map && free_pages_map));
791
792 bm1 = forbidden_pages_map;
793 bm2 = free_pages_map;
794 forbidden_pages_map = NULL;
795 free_pages_map = NULL;
796 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797 kfree(bm1);
798 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799 kfree(bm2);
800
801 pr_debug("PM: Basic memory bitmaps freed\n");
802 }
803
804 /**
805 * snapshot_additional_pages - estimate the number of additional pages
806 * be needed for setting up the suspend image data structures for given
807 * zone (usually the returned value is greater than the exact number)
808 */
809
810 unsigned int snapshot_additional_pages(struct zone *zone)
811 {
812 unsigned int res;
813
814 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
816 LINKED_PAGE_DATA_SIZE);
817 return 2 * res;
818 }
819
820 #ifdef CONFIG_HIGHMEM
821 /**
822 * count_free_highmem_pages - compute the total number of free highmem
823 * pages, system-wide.
824 */
825
826 static unsigned int count_free_highmem_pages(void)
827 {
828 struct zone *zone;
829 unsigned int cnt = 0;
830
831 for_each_populated_zone(zone)
832 if (is_highmem(zone))
833 cnt += zone_page_state(zone, NR_FREE_PAGES);
834
835 return cnt;
836 }
837
838 /**
839 * saveable_highmem_page - Determine whether a highmem page should be
840 * included in the suspend image.
841 *
842 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
843 * and it isn't a part of a free chunk of pages.
844 */
845 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
846 {
847 struct page *page;
848
849 if (!pfn_valid(pfn))
850 return NULL;
851
852 page = pfn_to_page(pfn);
853 if (page_zone(page) != zone)
854 return NULL;
855
856 BUG_ON(!PageHighMem(page));
857
858 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
859 PageReserved(page))
860 return NULL;
861
862 if (page_is_guard(page))
863 return NULL;
864
865 return page;
866 }
867
868 /**
869 * count_highmem_pages - compute the total number of saveable highmem
870 * pages.
871 */
872
873 static unsigned int count_highmem_pages(void)
874 {
875 struct zone *zone;
876 unsigned int n = 0;
877
878 for_each_populated_zone(zone) {
879 unsigned long pfn, max_zone_pfn;
880
881 if (!is_highmem(zone))
882 continue;
883
884 mark_free_pages(zone);
885 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
886 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
887 if (saveable_highmem_page(zone, pfn))
888 n++;
889 }
890 return n;
891 }
892 #else
893 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
894 {
895 return NULL;
896 }
897 #endif /* CONFIG_HIGHMEM */
898
899 /**
900 * saveable_page - Determine whether a non-highmem page should be included
901 * in the suspend image.
902 *
903 * We should save the page if it isn't Nosave, and is not in the range
904 * of pages statically defined as 'unsaveable', and it isn't a part of
905 * a free chunk of pages.
906 */
907 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
908 {
909 struct page *page;
910
911 if (!pfn_valid(pfn))
912 return NULL;
913
914 page = pfn_to_page(pfn);
915 if (page_zone(page) != zone)
916 return NULL;
917
918 BUG_ON(PageHighMem(page));
919
920 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
921 return NULL;
922
923 if (PageReserved(page)
924 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
925 return NULL;
926
927 if (page_is_guard(page))
928 return NULL;
929
930 return page;
931 }
932
933 /**
934 * count_data_pages - compute the total number of saveable non-highmem
935 * pages.
936 */
937
938 static unsigned int count_data_pages(void)
939 {
940 struct zone *zone;
941 unsigned long pfn, max_zone_pfn;
942 unsigned int n = 0;
943
944 for_each_populated_zone(zone) {
945 if (is_highmem(zone))
946 continue;
947
948 mark_free_pages(zone);
949 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
950 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
951 if (saveable_page(zone, pfn))
952 n++;
953 }
954 return n;
955 }
956
957 /* This is needed, because copy_page and memcpy are not usable for copying
958 * task structs.
959 */
960 static inline void do_copy_page(long *dst, long *src)
961 {
962 int n;
963
964 for (n = PAGE_SIZE / sizeof(long); n; n--)
965 *dst++ = *src++;
966 }
967
968
969 /**
970 * safe_copy_page - check if the page we are going to copy is marked as
971 * present in the kernel page tables (this always is the case if
972 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
973 * kernel_page_present() always returns 'true').
974 */
975 static void safe_copy_page(void *dst, struct page *s_page)
976 {
977 if (kernel_page_present(s_page)) {
978 do_copy_page(dst, page_address(s_page));
979 } else {
980 kernel_map_pages(s_page, 1, 1);
981 do_copy_page(dst, page_address(s_page));
982 kernel_map_pages(s_page, 1, 0);
983 }
984 }
985
986
987 #ifdef CONFIG_HIGHMEM
988 static inline struct page *
989 page_is_saveable(struct zone *zone, unsigned long pfn)
990 {
991 return is_highmem(zone) ?
992 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
993 }
994
995 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
996 {
997 struct page *s_page, *d_page;
998 void *src, *dst;
999
1000 s_page = pfn_to_page(src_pfn);
1001 d_page = pfn_to_page(dst_pfn);
1002 if (PageHighMem(s_page)) {
1003 src = kmap_atomic(s_page, KM_USER0);
1004 dst = kmap_atomic(d_page, KM_USER1);
1005 do_copy_page(dst, src);
1006 kunmap_atomic(dst, KM_USER1);
1007 kunmap_atomic(src, KM_USER0);
1008 } else {
1009 if (PageHighMem(d_page)) {
1010 /* Page pointed to by src may contain some kernel
1011 * data modified by kmap_atomic()
1012 */
1013 safe_copy_page(buffer, s_page);
1014 dst = kmap_atomic(d_page, KM_USER0);
1015 copy_page(dst, buffer);
1016 kunmap_atomic(dst, KM_USER0);
1017 } else {
1018 safe_copy_page(page_address(d_page), s_page);
1019 }
1020 }
1021 }
1022 #else
1023 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1024
1025 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1026 {
1027 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1028 pfn_to_page(src_pfn));
1029 }
1030 #endif /* CONFIG_HIGHMEM */
1031
1032 static void
1033 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1034 {
1035 struct zone *zone;
1036 unsigned long pfn;
1037
1038 for_each_populated_zone(zone) {
1039 unsigned long max_zone_pfn;
1040
1041 mark_free_pages(zone);
1042 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1043 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1044 if (page_is_saveable(zone, pfn))
1045 memory_bm_set_bit(orig_bm, pfn);
1046 }
1047 memory_bm_position_reset(orig_bm);
1048 memory_bm_position_reset(copy_bm);
1049 for(;;) {
1050 pfn = memory_bm_next_pfn(orig_bm);
1051 if (unlikely(pfn == BM_END_OF_MAP))
1052 break;
1053 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1054 }
1055 }
1056
1057 /* Total number of image pages */
1058 static unsigned int nr_copy_pages;
1059 /* Number of pages needed for saving the original pfns of the image pages */
1060 static unsigned int nr_meta_pages;
1061 /*
1062 * Numbers of normal and highmem page frames allocated for hibernation image
1063 * before suspending devices.
1064 */
1065 unsigned int alloc_normal, alloc_highmem;
1066 /*
1067 * Memory bitmap used for marking saveable pages (during hibernation) or
1068 * hibernation image pages (during restore)
1069 */
1070 static struct memory_bitmap orig_bm;
1071 /*
1072 * Memory bitmap used during hibernation for marking allocated page frames that
1073 * will contain copies of saveable pages. During restore it is initially used
1074 * for marking hibernation image pages, but then the set bits from it are
1075 * duplicated in @orig_bm and it is released. On highmem systems it is next
1076 * used for marking "safe" highmem pages, but it has to be reinitialized for
1077 * this purpose.
1078 */
1079 static struct memory_bitmap copy_bm;
1080
1081 /**
1082 * swsusp_free - free pages allocated for the suspend.
1083 *
1084 * Suspend pages are alocated before the atomic copy is made, so we
1085 * need to release them after the resume.
1086 */
1087
1088 void swsusp_free(void)
1089 {
1090 struct zone *zone;
1091 unsigned long pfn, max_zone_pfn;
1092
1093 for_each_populated_zone(zone) {
1094 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1095 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1096 if (pfn_valid(pfn)) {
1097 struct page *page = pfn_to_page(pfn);
1098
1099 if (swsusp_page_is_forbidden(page) &&
1100 swsusp_page_is_free(page)) {
1101 swsusp_unset_page_forbidden(page);
1102 swsusp_unset_page_free(page);
1103 __free_page(page);
1104 }
1105 }
1106 }
1107 nr_copy_pages = 0;
1108 nr_meta_pages = 0;
1109 restore_pblist = NULL;
1110 buffer = NULL;
1111 alloc_normal = 0;
1112 alloc_highmem = 0;
1113 }
1114
1115 /* Helper functions used for the shrinking of memory. */
1116
1117 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1118
1119 /**
1120 * preallocate_image_pages - Allocate a number of pages for hibernation image
1121 * @nr_pages: Number of page frames to allocate.
1122 * @mask: GFP flags to use for the allocation.
1123 *
1124 * Return value: Number of page frames actually allocated
1125 */
1126 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1127 {
1128 unsigned long nr_alloc = 0;
1129
1130 while (nr_pages > 0) {
1131 struct page *page;
1132
1133 page = alloc_image_page(mask);
1134 if (!page)
1135 break;
1136 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1137 if (PageHighMem(page))
1138 alloc_highmem++;
1139 else
1140 alloc_normal++;
1141 nr_pages--;
1142 nr_alloc++;
1143 }
1144
1145 return nr_alloc;
1146 }
1147
1148 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1149 unsigned long avail_normal)
1150 {
1151 unsigned long alloc;
1152
1153 if (avail_normal <= alloc_normal)
1154 return 0;
1155
1156 alloc = avail_normal - alloc_normal;
1157 if (nr_pages < alloc)
1158 alloc = nr_pages;
1159
1160 return preallocate_image_pages(alloc, GFP_IMAGE);
1161 }
1162
1163 #ifdef CONFIG_HIGHMEM
1164 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1165 {
1166 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1167 }
1168
1169 /**
1170 * __fraction - Compute (an approximation of) x * (multiplier / base)
1171 */
1172 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1173 {
1174 x *= multiplier;
1175 do_div(x, base);
1176 return (unsigned long)x;
1177 }
1178
1179 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1180 unsigned long highmem,
1181 unsigned long total)
1182 {
1183 unsigned long alloc = __fraction(nr_pages, highmem, total);
1184
1185 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1186 }
1187 #else /* CONFIG_HIGHMEM */
1188 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1189 {
1190 return 0;
1191 }
1192
1193 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1194 unsigned long highmem,
1195 unsigned long total)
1196 {
1197 return 0;
1198 }
1199 #endif /* CONFIG_HIGHMEM */
1200
1201 /**
1202 * free_unnecessary_pages - Release preallocated pages not needed for the image
1203 */
1204 static void free_unnecessary_pages(void)
1205 {
1206 unsigned long save, to_free_normal, to_free_highmem;
1207
1208 save = count_data_pages();
1209 if (alloc_normal >= save) {
1210 to_free_normal = alloc_normal - save;
1211 save = 0;
1212 } else {
1213 to_free_normal = 0;
1214 save -= alloc_normal;
1215 }
1216 save += count_highmem_pages();
1217 if (alloc_highmem >= save) {
1218 to_free_highmem = alloc_highmem - save;
1219 } else {
1220 to_free_highmem = 0;
1221 save -= alloc_highmem;
1222 if (to_free_normal > save)
1223 to_free_normal -= save;
1224 else
1225 to_free_normal = 0;
1226 }
1227
1228 memory_bm_position_reset(&copy_bm);
1229
1230 while (to_free_normal > 0 || to_free_highmem > 0) {
1231 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1232 struct page *page = pfn_to_page(pfn);
1233
1234 if (PageHighMem(page)) {
1235 if (!to_free_highmem)
1236 continue;
1237 to_free_highmem--;
1238 alloc_highmem--;
1239 } else {
1240 if (!to_free_normal)
1241 continue;
1242 to_free_normal--;
1243 alloc_normal--;
1244 }
1245 memory_bm_clear_bit(&copy_bm, pfn);
1246 swsusp_unset_page_forbidden(page);
1247 swsusp_unset_page_free(page);
1248 __free_page(page);
1249 }
1250 }
1251
1252 /**
1253 * minimum_image_size - Estimate the minimum acceptable size of an image
1254 * @saveable: Number of saveable pages in the system.
1255 *
1256 * We want to avoid attempting to free too much memory too hard, so estimate the
1257 * minimum acceptable size of a hibernation image to use as the lower limit for
1258 * preallocating memory.
1259 *
1260 * We assume that the minimum image size should be proportional to
1261 *
1262 * [number of saveable pages] - [number of pages that can be freed in theory]
1263 *
1264 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1265 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1266 * minus mapped file pages.
1267 */
1268 static unsigned long minimum_image_size(unsigned long saveable)
1269 {
1270 unsigned long size;
1271
1272 size = global_page_state(NR_SLAB_RECLAIMABLE)
1273 + global_page_state(NR_ACTIVE_ANON)
1274 + global_page_state(NR_INACTIVE_ANON)
1275 + global_page_state(NR_ACTIVE_FILE)
1276 + global_page_state(NR_INACTIVE_FILE)
1277 - global_page_state(NR_FILE_MAPPED);
1278
1279 return saveable <= size ? 0 : saveable - size;
1280 }
1281
1282 /**
1283 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1284 *
1285 * To create a hibernation image it is necessary to make a copy of every page
1286 * frame in use. We also need a number of page frames to be free during
1287 * hibernation for allocations made while saving the image and for device
1288 * drivers, in case they need to allocate memory from their hibernation
1289 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1290 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1291 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1292 * total number of available page frames and allocate at least
1293 *
1294 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1295 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1296 *
1297 * of them, which corresponds to the maximum size of a hibernation image.
1298 *
1299 * If image_size is set below the number following from the above formula,
1300 * the preallocation of memory is continued until the total number of saveable
1301 * pages in the system is below the requested image size or the minimum
1302 * acceptable image size returned by minimum_image_size(), whichever is greater.
1303 */
1304 int hibernate_preallocate_memory(void)
1305 {
1306 struct zone *zone;
1307 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1308 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1309 struct timeval start, stop;
1310 int error;
1311
1312 printk(KERN_INFO "PM: Preallocating image memory... ");
1313 do_gettimeofday(&start);
1314
1315 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1316 if (error)
1317 goto err_out;
1318
1319 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1320 if (error)
1321 goto err_out;
1322
1323 alloc_normal = 0;
1324 alloc_highmem = 0;
1325
1326 /* Count the number of saveable data pages. */
1327 save_highmem = count_highmem_pages();
1328 saveable = count_data_pages();
1329
1330 /*
1331 * Compute the total number of page frames we can use (count) and the
1332 * number of pages needed for image metadata (size).
1333 */
1334 count = saveable;
1335 saveable += save_highmem;
1336 highmem = save_highmem;
1337 size = 0;
1338 for_each_populated_zone(zone) {
1339 size += snapshot_additional_pages(zone);
1340 if (is_highmem(zone))
1341 highmem += zone_page_state(zone, NR_FREE_PAGES);
1342 else
1343 count += zone_page_state(zone, NR_FREE_PAGES);
1344 }
1345 avail_normal = count;
1346 count += highmem;
1347 count -= totalreserve_pages;
1348
1349 /* Add number of pages required for page keys (s390 only). */
1350 size += page_key_additional_pages(saveable);
1351
1352 /* Compute the maximum number of saveable pages to leave in memory. */
1353 max_size = (count - (size + PAGES_FOR_IO)) / 2
1354 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1355 /* Compute the desired number of image pages specified by image_size. */
1356 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1357 if (size > max_size)
1358 size = max_size;
1359 /*
1360 * If the desired number of image pages is at least as large as the
1361 * current number of saveable pages in memory, allocate page frames for
1362 * the image and we're done.
1363 */
1364 if (size >= saveable) {
1365 pages = preallocate_image_highmem(save_highmem);
1366 pages += preallocate_image_memory(saveable - pages, avail_normal);
1367 goto out;
1368 }
1369
1370 /* Estimate the minimum size of the image. */
1371 pages = minimum_image_size(saveable);
1372 /*
1373 * To avoid excessive pressure on the normal zone, leave room in it to
1374 * accommodate an image of the minimum size (unless it's already too
1375 * small, in which case don't preallocate pages from it at all).
1376 */
1377 if (avail_normal > pages)
1378 avail_normal -= pages;
1379 else
1380 avail_normal = 0;
1381 if (size < pages)
1382 size = min_t(unsigned long, pages, max_size);
1383
1384 /*
1385 * Let the memory management subsystem know that we're going to need a
1386 * large number of page frames to allocate and make it free some memory.
1387 * NOTE: If this is not done, performance will be hurt badly in some
1388 * test cases.
1389 */
1390 shrink_all_memory(saveable - size);
1391
1392 /*
1393 * The number of saveable pages in memory was too high, so apply some
1394 * pressure to decrease it. First, make room for the largest possible
1395 * image and fail if that doesn't work. Next, try to decrease the size
1396 * of the image as much as indicated by 'size' using allocations from
1397 * highmem and non-highmem zones separately.
1398 */
1399 pages_highmem = preallocate_image_highmem(highmem / 2);
1400 alloc = (count - max_size) - pages_highmem;
1401 pages = preallocate_image_memory(alloc, avail_normal);
1402 if (pages < alloc) {
1403 /* We have exhausted non-highmem pages, try highmem. */
1404 alloc -= pages;
1405 pages += pages_highmem;
1406 pages_highmem = preallocate_image_highmem(alloc);
1407 if (pages_highmem < alloc)
1408 goto err_out;
1409 pages += pages_highmem;
1410 /*
1411 * size is the desired number of saveable pages to leave in
1412 * memory, so try to preallocate (all memory - size) pages.
1413 */
1414 alloc = (count - pages) - size;
1415 pages += preallocate_image_highmem(alloc);
1416 } else {
1417 /*
1418 * There are approximately max_size saveable pages at this point
1419 * and we want to reduce this number down to size.
1420 */
1421 alloc = max_size - size;
1422 size = preallocate_highmem_fraction(alloc, highmem, count);
1423 pages_highmem += size;
1424 alloc -= size;
1425 size = preallocate_image_memory(alloc, avail_normal);
1426 pages_highmem += preallocate_image_highmem(alloc - size);
1427 pages += pages_highmem + size;
1428 }
1429
1430 /*
1431 * We only need as many page frames for the image as there are saveable
1432 * pages in memory, but we have allocated more. Release the excessive
1433 * ones now.
1434 */
1435 free_unnecessary_pages();
1436
1437 out:
1438 do_gettimeofday(&stop);
1439 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1440 swsusp_show_speed(&start, &stop, pages, "Allocated");
1441
1442 return 0;
1443
1444 err_out:
1445 printk(KERN_CONT "\n");
1446 swsusp_free();
1447 return -ENOMEM;
1448 }
1449
1450 #ifdef CONFIG_HIGHMEM
1451 /**
1452 * count_pages_for_highmem - compute the number of non-highmem pages
1453 * that will be necessary for creating copies of highmem pages.
1454 */
1455
1456 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1457 {
1458 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1459
1460 if (free_highmem >= nr_highmem)
1461 nr_highmem = 0;
1462 else
1463 nr_highmem -= free_highmem;
1464
1465 return nr_highmem;
1466 }
1467 #else
1468 static unsigned int
1469 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1470 #endif /* CONFIG_HIGHMEM */
1471
1472 /**
1473 * enough_free_mem - Make sure we have enough free memory for the
1474 * snapshot image.
1475 */
1476
1477 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1478 {
1479 struct zone *zone;
1480 unsigned int free = alloc_normal;
1481
1482 for_each_populated_zone(zone)
1483 if (!is_highmem(zone))
1484 free += zone_page_state(zone, NR_FREE_PAGES);
1485
1486 nr_pages += count_pages_for_highmem(nr_highmem);
1487 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1488 nr_pages, PAGES_FOR_IO, free);
1489
1490 return free > nr_pages + PAGES_FOR_IO;
1491 }
1492
1493 #ifdef CONFIG_HIGHMEM
1494 /**
1495 * get_highmem_buffer - if there are some highmem pages in the suspend
1496 * image, we may need the buffer to copy them and/or load their data.
1497 */
1498
1499 static inline int get_highmem_buffer(int safe_needed)
1500 {
1501 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1502 return buffer ? 0 : -ENOMEM;
1503 }
1504
1505 /**
1506 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1507 * Try to allocate as many pages as needed, but if the number of free
1508 * highmem pages is lesser than that, allocate them all.
1509 */
1510
1511 static inline unsigned int
1512 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1513 {
1514 unsigned int to_alloc = count_free_highmem_pages();
1515
1516 if (to_alloc > nr_highmem)
1517 to_alloc = nr_highmem;
1518
1519 nr_highmem -= to_alloc;
1520 while (to_alloc-- > 0) {
1521 struct page *page;
1522
1523 page = alloc_image_page(__GFP_HIGHMEM);
1524 memory_bm_set_bit(bm, page_to_pfn(page));
1525 }
1526 return nr_highmem;
1527 }
1528 #else
1529 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1530
1531 static inline unsigned int
1532 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1533 #endif /* CONFIG_HIGHMEM */
1534
1535 /**
1536 * swsusp_alloc - allocate memory for the suspend image
1537 *
1538 * We first try to allocate as many highmem pages as there are
1539 * saveable highmem pages in the system. If that fails, we allocate
1540 * non-highmem pages for the copies of the remaining highmem ones.
1541 *
1542 * In this approach it is likely that the copies of highmem pages will
1543 * also be located in the high memory, because of the way in which
1544 * copy_data_pages() works.
1545 */
1546
1547 static int
1548 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1549 unsigned int nr_pages, unsigned int nr_highmem)
1550 {
1551 if (nr_highmem > 0) {
1552 if (get_highmem_buffer(PG_ANY))
1553 goto err_out;
1554 if (nr_highmem > alloc_highmem) {
1555 nr_highmem -= alloc_highmem;
1556 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1557 }
1558 }
1559 if (nr_pages > alloc_normal) {
1560 nr_pages -= alloc_normal;
1561 while (nr_pages-- > 0) {
1562 struct page *page;
1563
1564 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1565 if (!page)
1566 goto err_out;
1567 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1568 }
1569 }
1570
1571 return 0;
1572
1573 err_out:
1574 swsusp_free();
1575 return -ENOMEM;
1576 }
1577
1578 asmlinkage int swsusp_save(void)
1579 {
1580 unsigned int nr_pages, nr_highmem;
1581
1582 printk(KERN_INFO "PM: Creating hibernation image:\n");
1583
1584 drain_local_pages(NULL);
1585 nr_pages = count_data_pages();
1586 nr_highmem = count_highmem_pages();
1587 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1588
1589 if (!enough_free_mem(nr_pages, nr_highmem)) {
1590 printk(KERN_ERR "PM: Not enough free memory\n");
1591 return -ENOMEM;
1592 }
1593
1594 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1595 printk(KERN_ERR "PM: Memory allocation failed\n");
1596 return -ENOMEM;
1597 }
1598
1599 /* During allocating of suspend pagedir, new cold pages may appear.
1600 * Kill them.
1601 */
1602 drain_local_pages(NULL);
1603 copy_data_pages(&copy_bm, &orig_bm);
1604
1605 /*
1606 * End of critical section. From now on, we can write to memory,
1607 * but we should not touch disk. This specially means we must _not_
1608 * touch swap space! Except we must write out our image of course.
1609 */
1610
1611 nr_pages += nr_highmem;
1612 nr_copy_pages = nr_pages;
1613 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1614
1615 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1616 nr_pages);
1617
1618 return 0;
1619 }
1620
1621 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1622 static int init_header_complete(struct swsusp_info *info)
1623 {
1624 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1625 info->version_code = LINUX_VERSION_CODE;
1626 return 0;
1627 }
1628
1629 static char *check_image_kernel(struct swsusp_info *info)
1630 {
1631 if (info->version_code != LINUX_VERSION_CODE)
1632 return "kernel version";
1633 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1634 return "system type";
1635 if (strcmp(info->uts.release,init_utsname()->release))
1636 return "kernel release";
1637 if (strcmp(info->uts.version,init_utsname()->version))
1638 return "version";
1639 if (strcmp(info->uts.machine,init_utsname()->machine))
1640 return "machine";
1641 return NULL;
1642 }
1643 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1644
1645 unsigned long snapshot_get_image_size(void)
1646 {
1647 return nr_copy_pages + nr_meta_pages + 1;
1648 }
1649
1650 static int init_header(struct swsusp_info *info)
1651 {
1652 memset(info, 0, sizeof(struct swsusp_info));
1653 info->num_physpages = num_physpages;
1654 info->image_pages = nr_copy_pages;
1655 info->pages = snapshot_get_image_size();
1656 info->size = info->pages;
1657 info->size <<= PAGE_SHIFT;
1658 return init_header_complete(info);
1659 }
1660
1661 /**
1662 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1663 * are stored in the array @buf[] (1 page at a time)
1664 */
1665
1666 static inline void
1667 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1668 {
1669 int j;
1670
1671 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1672 buf[j] = memory_bm_next_pfn(bm);
1673 if (unlikely(buf[j] == BM_END_OF_MAP))
1674 break;
1675 /* Save page key for data page (s390 only). */
1676 page_key_read(buf + j);
1677 }
1678 }
1679
1680 /**
1681 * snapshot_read_next - used for reading the system memory snapshot.
1682 *
1683 * On the first call to it @handle should point to a zeroed
1684 * snapshot_handle structure. The structure gets updated and a pointer
1685 * to it should be passed to this function every next time.
1686 *
1687 * On success the function returns a positive number. Then, the caller
1688 * is allowed to read up to the returned number of bytes from the memory
1689 * location computed by the data_of() macro.
1690 *
1691 * The function returns 0 to indicate the end of data stream condition,
1692 * and a negative number is returned on error. In such cases the
1693 * structure pointed to by @handle is not updated and should not be used
1694 * any more.
1695 */
1696
1697 int snapshot_read_next(struct snapshot_handle *handle)
1698 {
1699 if (handle->cur > nr_meta_pages + nr_copy_pages)
1700 return 0;
1701
1702 if (!buffer) {
1703 /* This makes the buffer be freed by swsusp_free() */
1704 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1705 if (!buffer)
1706 return -ENOMEM;
1707 }
1708 if (!handle->cur) {
1709 int error;
1710
1711 error = init_header((struct swsusp_info *)buffer);
1712 if (error)
1713 return error;
1714 handle->buffer = buffer;
1715 memory_bm_position_reset(&orig_bm);
1716 memory_bm_position_reset(&copy_bm);
1717 } else if (handle->cur <= nr_meta_pages) {
1718 clear_page(buffer);
1719 pack_pfns(buffer, &orig_bm);
1720 } else {
1721 struct page *page;
1722
1723 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1724 if (PageHighMem(page)) {
1725 /* Highmem pages are copied to the buffer,
1726 * because we can't return with a kmapped
1727 * highmem page (we may not be called again).
1728 */
1729 void *kaddr;
1730
1731 kaddr = kmap_atomic(page, KM_USER0);
1732 copy_page(buffer, kaddr);
1733 kunmap_atomic(kaddr, KM_USER0);
1734 handle->buffer = buffer;
1735 } else {
1736 handle->buffer = page_address(page);
1737 }
1738 }
1739 handle->cur++;
1740 return PAGE_SIZE;
1741 }
1742
1743 /**
1744 * mark_unsafe_pages - mark the pages that cannot be used for storing
1745 * the image during resume, because they conflict with the pages that
1746 * had been used before suspend
1747 */
1748
1749 static int mark_unsafe_pages(struct memory_bitmap *bm)
1750 {
1751 struct zone *zone;
1752 unsigned long pfn, max_zone_pfn;
1753
1754 /* Clear page flags */
1755 for_each_populated_zone(zone) {
1756 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1757 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1758 if (pfn_valid(pfn))
1759 swsusp_unset_page_free(pfn_to_page(pfn));
1760 }
1761
1762 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1763 memory_bm_position_reset(bm);
1764 do {
1765 pfn = memory_bm_next_pfn(bm);
1766 if (likely(pfn != BM_END_OF_MAP)) {
1767 if (likely(pfn_valid(pfn)))
1768 swsusp_set_page_free(pfn_to_page(pfn));
1769 else
1770 return -EFAULT;
1771 }
1772 } while (pfn != BM_END_OF_MAP);
1773
1774 allocated_unsafe_pages = 0;
1775
1776 return 0;
1777 }
1778
1779 static void
1780 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1781 {
1782 unsigned long pfn;
1783
1784 memory_bm_position_reset(src);
1785 pfn = memory_bm_next_pfn(src);
1786 while (pfn != BM_END_OF_MAP) {
1787 memory_bm_set_bit(dst, pfn);
1788 pfn = memory_bm_next_pfn(src);
1789 }
1790 }
1791
1792 static int check_header(struct swsusp_info *info)
1793 {
1794 char *reason;
1795
1796 reason = check_image_kernel(info);
1797 if (!reason && info->num_physpages != num_physpages)
1798 reason = "memory size";
1799 if (reason) {
1800 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1801 return -EPERM;
1802 }
1803 return 0;
1804 }
1805
1806 /**
1807 * load header - check the image header and copy data from it
1808 */
1809
1810 static int
1811 load_header(struct swsusp_info *info)
1812 {
1813 int error;
1814
1815 restore_pblist = NULL;
1816 error = check_header(info);
1817 if (!error) {
1818 nr_copy_pages = info->image_pages;
1819 nr_meta_pages = info->pages - info->image_pages - 1;
1820 }
1821 return error;
1822 }
1823
1824 /**
1825 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1826 * the corresponding bit in the memory bitmap @bm
1827 */
1828 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1829 {
1830 int j;
1831
1832 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1833 if (unlikely(buf[j] == BM_END_OF_MAP))
1834 break;
1835
1836 /* Extract and buffer page key for data page (s390 only). */
1837 page_key_memorize(buf + j);
1838
1839 if (memory_bm_pfn_present(bm, buf[j]))
1840 memory_bm_set_bit(bm, buf[j]);
1841 else
1842 return -EFAULT;
1843 }
1844
1845 return 0;
1846 }
1847
1848 /* List of "safe" pages that may be used to store data loaded from the suspend
1849 * image
1850 */
1851 static struct linked_page *safe_pages_list;
1852
1853 #ifdef CONFIG_HIGHMEM
1854 /* struct highmem_pbe is used for creating the list of highmem pages that
1855 * should be restored atomically during the resume from disk, because the page
1856 * frames they have occupied before the suspend are in use.
1857 */
1858 struct highmem_pbe {
1859 struct page *copy_page; /* data is here now */
1860 struct page *orig_page; /* data was here before the suspend */
1861 struct highmem_pbe *next;
1862 };
1863
1864 /* List of highmem PBEs needed for restoring the highmem pages that were
1865 * allocated before the suspend and included in the suspend image, but have
1866 * also been allocated by the "resume" kernel, so their contents cannot be
1867 * written directly to their "original" page frames.
1868 */
1869 static struct highmem_pbe *highmem_pblist;
1870
1871 /**
1872 * count_highmem_image_pages - compute the number of highmem pages in the
1873 * suspend image. The bits in the memory bitmap @bm that correspond to the
1874 * image pages are assumed to be set.
1875 */
1876
1877 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1878 {
1879 unsigned long pfn;
1880 unsigned int cnt = 0;
1881
1882 memory_bm_position_reset(bm);
1883 pfn = memory_bm_next_pfn(bm);
1884 while (pfn != BM_END_OF_MAP) {
1885 if (PageHighMem(pfn_to_page(pfn)))
1886 cnt++;
1887
1888 pfn = memory_bm_next_pfn(bm);
1889 }
1890 return cnt;
1891 }
1892
1893 /**
1894 * prepare_highmem_image - try to allocate as many highmem pages as
1895 * there are highmem image pages (@nr_highmem_p points to the variable
1896 * containing the number of highmem image pages). The pages that are
1897 * "safe" (ie. will not be overwritten when the suspend image is
1898 * restored) have the corresponding bits set in @bm (it must be
1899 * unitialized).
1900 *
1901 * NOTE: This function should not be called if there are no highmem
1902 * image pages.
1903 */
1904
1905 static unsigned int safe_highmem_pages;
1906
1907 static struct memory_bitmap *safe_highmem_bm;
1908
1909 static int
1910 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1911 {
1912 unsigned int to_alloc;
1913
1914 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1915 return -ENOMEM;
1916
1917 if (get_highmem_buffer(PG_SAFE))
1918 return -ENOMEM;
1919
1920 to_alloc = count_free_highmem_pages();
1921 if (to_alloc > *nr_highmem_p)
1922 to_alloc = *nr_highmem_p;
1923 else
1924 *nr_highmem_p = to_alloc;
1925
1926 safe_highmem_pages = 0;
1927 while (to_alloc-- > 0) {
1928 struct page *page;
1929
1930 page = alloc_page(__GFP_HIGHMEM);
1931 if (!swsusp_page_is_free(page)) {
1932 /* The page is "safe", set its bit the bitmap */
1933 memory_bm_set_bit(bm, page_to_pfn(page));
1934 safe_highmem_pages++;
1935 }
1936 /* Mark the page as allocated */
1937 swsusp_set_page_forbidden(page);
1938 swsusp_set_page_free(page);
1939 }
1940 memory_bm_position_reset(bm);
1941 safe_highmem_bm = bm;
1942 return 0;
1943 }
1944
1945 /**
1946 * get_highmem_page_buffer - for given highmem image page find the buffer
1947 * that suspend_write_next() should set for its caller to write to.
1948 *
1949 * If the page is to be saved to its "original" page frame or a copy of
1950 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1951 * the copy of the page is to be made in normal memory, so the address of
1952 * the copy is returned.
1953 *
1954 * If @buffer is returned, the caller of suspend_write_next() will write
1955 * the page's contents to @buffer, so they will have to be copied to the
1956 * right location on the next call to suspend_write_next() and it is done
1957 * with the help of copy_last_highmem_page(). For this purpose, if
1958 * @buffer is returned, @last_highmem page is set to the page to which
1959 * the data will have to be copied from @buffer.
1960 */
1961
1962 static struct page *last_highmem_page;
1963
1964 static void *
1965 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1966 {
1967 struct highmem_pbe *pbe;
1968 void *kaddr;
1969
1970 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1971 /* We have allocated the "original" page frame and we can
1972 * use it directly to store the loaded page.
1973 */
1974 last_highmem_page = page;
1975 return buffer;
1976 }
1977 /* The "original" page frame has not been allocated and we have to
1978 * use a "safe" page frame to store the loaded page.
1979 */
1980 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1981 if (!pbe) {
1982 swsusp_free();
1983 return ERR_PTR(-ENOMEM);
1984 }
1985 pbe->orig_page = page;
1986 if (safe_highmem_pages > 0) {
1987 struct page *tmp;
1988
1989 /* Copy of the page will be stored in high memory */
1990 kaddr = buffer;
1991 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1992 safe_highmem_pages--;
1993 last_highmem_page = tmp;
1994 pbe->copy_page = tmp;
1995 } else {
1996 /* Copy of the page will be stored in normal memory */
1997 kaddr = safe_pages_list;
1998 safe_pages_list = safe_pages_list->next;
1999 pbe->copy_page = virt_to_page(kaddr);
2000 }
2001 pbe->next = highmem_pblist;
2002 highmem_pblist = pbe;
2003 return kaddr;
2004 }
2005
2006 /**
2007 * copy_last_highmem_page - copy the contents of a highmem image from
2008 * @buffer, where the caller of snapshot_write_next() has place them,
2009 * to the right location represented by @last_highmem_page .
2010 */
2011
2012 static void copy_last_highmem_page(void)
2013 {
2014 if (last_highmem_page) {
2015 void *dst;
2016
2017 dst = kmap_atomic(last_highmem_page, KM_USER0);
2018 copy_page(dst, buffer);
2019 kunmap_atomic(dst, KM_USER0);
2020 last_highmem_page = NULL;
2021 }
2022 }
2023
2024 static inline int last_highmem_page_copied(void)
2025 {
2026 return !last_highmem_page;
2027 }
2028
2029 static inline void free_highmem_data(void)
2030 {
2031 if (safe_highmem_bm)
2032 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2033
2034 if (buffer)
2035 free_image_page(buffer, PG_UNSAFE_CLEAR);
2036 }
2037 #else
2038 static inline int get_safe_write_buffer(void) { return 0; }
2039
2040 static unsigned int
2041 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2042
2043 static inline int
2044 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2045 {
2046 return 0;
2047 }
2048
2049 static inline void *
2050 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2051 {
2052 return ERR_PTR(-EINVAL);
2053 }
2054
2055 static inline void copy_last_highmem_page(void) {}
2056 static inline int last_highmem_page_copied(void) { return 1; }
2057 static inline void free_highmem_data(void) {}
2058 #endif /* CONFIG_HIGHMEM */
2059
2060 /**
2061 * prepare_image - use the memory bitmap @bm to mark the pages that will
2062 * be overwritten in the process of restoring the system memory state
2063 * from the suspend image ("unsafe" pages) and allocate memory for the
2064 * image.
2065 *
2066 * The idea is to allocate a new memory bitmap first and then allocate
2067 * as many pages as needed for the image data, but not to assign these
2068 * pages to specific tasks initially. Instead, we just mark them as
2069 * allocated and create a lists of "safe" pages that will be used
2070 * later. On systems with high memory a list of "safe" highmem pages is
2071 * also created.
2072 */
2073
2074 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2075
2076 static int
2077 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2078 {
2079 unsigned int nr_pages, nr_highmem;
2080 struct linked_page *sp_list, *lp;
2081 int error;
2082
2083 /* If there is no highmem, the buffer will not be necessary */
2084 free_image_page(buffer, PG_UNSAFE_CLEAR);
2085 buffer = NULL;
2086
2087 nr_highmem = count_highmem_image_pages(bm);
2088 error = mark_unsafe_pages(bm);
2089 if (error)
2090 goto Free;
2091
2092 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2093 if (error)
2094 goto Free;
2095
2096 duplicate_memory_bitmap(new_bm, bm);
2097 memory_bm_free(bm, PG_UNSAFE_KEEP);
2098 if (nr_highmem > 0) {
2099 error = prepare_highmem_image(bm, &nr_highmem);
2100 if (error)
2101 goto Free;
2102 }
2103 /* Reserve some safe pages for potential later use.
2104 *
2105 * NOTE: This way we make sure there will be enough safe pages for the
2106 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2107 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2108 */
2109 sp_list = NULL;
2110 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2111 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2112 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2113 while (nr_pages > 0) {
2114 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2115 if (!lp) {
2116 error = -ENOMEM;
2117 goto Free;
2118 }
2119 lp->next = sp_list;
2120 sp_list = lp;
2121 nr_pages--;
2122 }
2123 /* Preallocate memory for the image */
2124 safe_pages_list = NULL;
2125 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2126 while (nr_pages > 0) {
2127 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2128 if (!lp) {
2129 error = -ENOMEM;
2130 goto Free;
2131 }
2132 if (!swsusp_page_is_free(virt_to_page(lp))) {
2133 /* The page is "safe", add it to the list */
2134 lp->next = safe_pages_list;
2135 safe_pages_list = lp;
2136 }
2137 /* Mark the page as allocated */
2138 swsusp_set_page_forbidden(virt_to_page(lp));
2139 swsusp_set_page_free(virt_to_page(lp));
2140 nr_pages--;
2141 }
2142 /* Free the reserved safe pages so that chain_alloc() can use them */
2143 while (sp_list) {
2144 lp = sp_list->next;
2145 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2146 sp_list = lp;
2147 }
2148 return 0;
2149
2150 Free:
2151 swsusp_free();
2152 return error;
2153 }
2154
2155 /**
2156 * get_buffer - compute the address that snapshot_write_next() should
2157 * set for its caller to write to.
2158 */
2159
2160 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2161 {
2162 struct pbe *pbe;
2163 struct page *page;
2164 unsigned long pfn = memory_bm_next_pfn(bm);
2165
2166 if (pfn == BM_END_OF_MAP)
2167 return ERR_PTR(-EFAULT);
2168
2169 page = pfn_to_page(pfn);
2170 if (PageHighMem(page))
2171 return get_highmem_page_buffer(page, ca);
2172
2173 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2174 /* We have allocated the "original" page frame and we can
2175 * use it directly to store the loaded page.
2176 */
2177 return page_address(page);
2178
2179 /* The "original" page frame has not been allocated and we have to
2180 * use a "safe" page frame to store the loaded page.
2181 */
2182 pbe = chain_alloc(ca, sizeof(struct pbe));
2183 if (!pbe) {
2184 swsusp_free();
2185 return ERR_PTR(-ENOMEM);
2186 }
2187 pbe->orig_address = page_address(page);
2188 pbe->address = safe_pages_list;
2189 safe_pages_list = safe_pages_list->next;
2190 pbe->next = restore_pblist;
2191 restore_pblist = pbe;
2192 return pbe->address;
2193 }
2194
2195 /**
2196 * snapshot_write_next - used for writing the system memory snapshot.
2197 *
2198 * On the first call to it @handle should point to a zeroed
2199 * snapshot_handle structure. The structure gets updated and a pointer
2200 * to it should be passed to this function every next time.
2201 *
2202 * On success the function returns a positive number. Then, the caller
2203 * is allowed to write up to the returned number of bytes to the memory
2204 * location computed by the data_of() macro.
2205 *
2206 * The function returns 0 to indicate the "end of file" condition,
2207 * and a negative number is returned on error. In such cases the
2208 * structure pointed to by @handle is not updated and should not be used
2209 * any more.
2210 */
2211
2212 int snapshot_write_next(struct snapshot_handle *handle)
2213 {
2214 static struct chain_allocator ca;
2215 int error = 0;
2216
2217 /* Check if we have already loaded the entire image */
2218 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2219 return 0;
2220
2221 handle->sync_read = 1;
2222
2223 if (!handle->cur) {
2224 if (!buffer)
2225 /* This makes the buffer be freed by swsusp_free() */
2226 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2227
2228 if (!buffer)
2229 return -ENOMEM;
2230
2231 handle->buffer = buffer;
2232 } else if (handle->cur == 1) {
2233 error = load_header(buffer);
2234 if (error)
2235 return error;
2236
2237 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2238 if (error)
2239 return error;
2240
2241 /* Allocate buffer for page keys. */
2242 error = page_key_alloc(nr_copy_pages);
2243 if (error)
2244 return error;
2245
2246 } else if (handle->cur <= nr_meta_pages + 1) {
2247 error = unpack_orig_pfns(buffer, &copy_bm);
2248 if (error)
2249 return error;
2250
2251 if (handle->cur == nr_meta_pages + 1) {
2252 error = prepare_image(&orig_bm, &copy_bm);
2253 if (error)
2254 return error;
2255
2256 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2257 memory_bm_position_reset(&orig_bm);
2258 restore_pblist = NULL;
2259 handle->buffer = get_buffer(&orig_bm, &ca);
2260 handle->sync_read = 0;
2261 if (IS_ERR(handle->buffer))
2262 return PTR_ERR(handle->buffer);
2263 }
2264 } else {
2265 copy_last_highmem_page();
2266 /* Restore page key for data page (s390 only). */
2267 page_key_write(handle->buffer);
2268 handle->buffer = get_buffer(&orig_bm, &ca);
2269 if (IS_ERR(handle->buffer))
2270 return PTR_ERR(handle->buffer);
2271 if (handle->buffer != buffer)
2272 handle->sync_read = 0;
2273 }
2274 handle->cur++;
2275 return PAGE_SIZE;
2276 }
2277
2278 /**
2279 * snapshot_write_finalize - must be called after the last call to
2280 * snapshot_write_next() in case the last page in the image happens
2281 * to be a highmem page and its contents should be stored in the
2282 * highmem. Additionally, it releases the memory that will not be
2283 * used any more.
2284 */
2285
2286 void snapshot_write_finalize(struct snapshot_handle *handle)
2287 {
2288 copy_last_highmem_page();
2289 /* Restore page key for data page (s390 only). */
2290 page_key_write(handle->buffer);
2291 page_key_free();
2292 /* Free only if we have loaded the image entirely */
2293 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2294 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2295 free_highmem_data();
2296 }
2297 }
2298
2299 int snapshot_image_loaded(struct snapshot_handle *handle)
2300 {
2301 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2302 handle->cur <= nr_meta_pages + nr_copy_pages);
2303 }
2304
2305 #ifdef CONFIG_HIGHMEM
2306 /* Assumes that @buf is ready and points to a "safe" page */
2307 static inline void
2308 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2309 {
2310 void *kaddr1, *kaddr2;
2311
2312 kaddr1 = kmap_atomic(p1, KM_USER0);
2313 kaddr2 = kmap_atomic(p2, KM_USER1);
2314 copy_page(buf, kaddr1);
2315 copy_page(kaddr1, kaddr2);
2316 copy_page(kaddr2, buf);
2317 kunmap_atomic(kaddr2, KM_USER1);
2318 kunmap_atomic(kaddr1, KM_USER0);
2319 }
2320
2321 /**
2322 * restore_highmem - for each highmem page that was allocated before
2323 * the suspend and included in the suspend image, and also has been
2324 * allocated by the "resume" kernel swap its current (ie. "before
2325 * resume") contents with the previous (ie. "before suspend") one.
2326 *
2327 * If the resume eventually fails, we can call this function once
2328 * again and restore the "before resume" highmem state.
2329 */
2330
2331 int restore_highmem(void)
2332 {
2333 struct highmem_pbe *pbe = highmem_pblist;
2334 void *buf;
2335
2336 if (!pbe)
2337 return 0;
2338
2339 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2340 if (!buf)
2341 return -ENOMEM;
2342
2343 while (pbe) {
2344 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2345 pbe = pbe->next;
2346 }
2347 free_image_page(buf, PG_UNSAFE_CLEAR);
2348 return 0;
2349 }
2350 #endif /* CONFIG_HIGHMEM */