Merge branch 'slab/next' into slab/for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50
51 /*
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
55 *
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
67 */
68
69 /*
70 * Lets keep our timers in a slab cache :-)
71 */
72 static struct kmem_cache *posix_timers_cache;
73 static struct idr posix_timers_id;
74 static DEFINE_SPINLOCK(idr_lock);
75
76 /*
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
79 */
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83 #endif
84
85 /*
86 * parisc wants ENOTSUP instead of EOPNOTSUPP
87 */
88 #ifndef ENOTSUP
89 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
90 #else
91 # define ENANOSLEEP_NOTSUP ENOTSUP
92 #endif
93
94 /*
95 * The timer ID is turned into a timer address by idr_find().
96 * Verifying a valid ID consists of:
97 *
98 * a) checking that idr_find() returns other than -1.
99 * b) checking that the timer id matches the one in the timer itself.
100 * c) that the timer owner is in the callers thread group.
101 */
102
103 /*
104 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
105 * to implement others. This structure defines the various
106 * clocks.
107 *
108 * RESOLUTION: Clock resolution is used to round up timer and interval
109 * times, NOT to report clock times, which are reported with as
110 * much resolution as the system can muster. In some cases this
111 * resolution may depend on the underlying clock hardware and
112 * may not be quantifiable until run time, and only then is the
113 * necessary code is written. The standard says we should say
114 * something about this issue in the documentation...
115 *
116 * FUNCTIONS: The CLOCKs structure defines possible functions to
117 * handle various clock functions.
118 *
119 * The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for
121 * the timer. 2.) The list, it_lock, it_clock, it_id and
122 * it_pid fields are not modified by timer code.
123 *
124 * Permissions: It is assumed that the clock_settime() function defined
125 * for each clock will take care of permission checks. Some
126 * clocks may be set able by any user (i.e. local process
127 * clocks) others not. Currently the only set able clock we
128 * have is CLOCK_REALTIME and its high res counter part, both of
129 * which we beg off on and pass to do_sys_settimeofday().
130 */
131
132 static struct k_clock posix_clocks[MAX_CLOCKS];
133
134 /*
135 * These ones are defined below.
136 */
137 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
138 struct timespec __user *rmtp);
139 static int common_timer_create(struct k_itimer *new_timer);
140 static void common_timer_get(struct k_itimer *, struct itimerspec *);
141 static int common_timer_set(struct k_itimer *, int,
142 struct itimerspec *, struct itimerspec *);
143 static int common_timer_del(struct k_itimer *timer);
144
145 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
146
147 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
148
149 #define lock_timer(tid, flags) \
150 ({ struct k_itimer *__timr; \
151 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
152 __timr; \
153 })
154
155 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
156 {
157 spin_unlock_irqrestore(&timr->it_lock, flags);
158 }
159
160 /* Get clock_realtime */
161 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
162 {
163 ktime_get_real_ts(tp);
164 return 0;
165 }
166
167 /* Set clock_realtime */
168 static int posix_clock_realtime_set(const clockid_t which_clock,
169 const struct timespec *tp)
170 {
171 return do_sys_settimeofday(tp, NULL);
172 }
173
174 static int posix_clock_realtime_adj(const clockid_t which_clock,
175 struct timex *t)
176 {
177 return do_adjtimex(t);
178 }
179
180 /*
181 * Get monotonic time for posix timers
182 */
183 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
184 {
185 ktime_get_ts(tp);
186 return 0;
187 }
188
189 /*
190 * Get monotonic-raw time for posix timers
191 */
192 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
193 {
194 getrawmonotonic(tp);
195 return 0;
196 }
197
198
199 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
200 {
201 *tp = current_kernel_time();
202 return 0;
203 }
204
205 static int posix_get_monotonic_coarse(clockid_t which_clock,
206 struct timespec *tp)
207 {
208 *tp = get_monotonic_coarse();
209 return 0;
210 }
211
212 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
213 {
214 *tp = ktime_to_timespec(KTIME_LOW_RES);
215 return 0;
216 }
217
218 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
219 {
220 get_monotonic_boottime(tp);
221 return 0;
222 }
223
224
225 /*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228 static __init int init_posix_timers(void)
229 {
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
232 .clock_get = posix_clock_realtime_get,
233 .clock_set = posix_clock_realtime_set,
234 .clock_adj = posix_clock_realtime_adj,
235 .nsleep = common_nsleep,
236 .nsleep_restart = hrtimer_nanosleep_restart,
237 .timer_create = common_timer_create,
238 .timer_set = common_timer_set,
239 .timer_get = common_timer_get,
240 .timer_del = common_timer_del,
241 };
242 struct k_clock clock_monotonic = {
243 .clock_getres = hrtimer_get_res,
244 .clock_get = posix_ktime_get_ts,
245 .nsleep = common_nsleep,
246 .nsleep_restart = hrtimer_nanosleep_restart,
247 .timer_create = common_timer_create,
248 .timer_set = common_timer_set,
249 .timer_get = common_timer_get,
250 .timer_del = common_timer_del,
251 };
252 struct k_clock clock_monotonic_raw = {
253 .clock_getres = hrtimer_get_res,
254 .clock_get = posix_get_monotonic_raw,
255 };
256 struct k_clock clock_realtime_coarse = {
257 .clock_getres = posix_get_coarse_res,
258 .clock_get = posix_get_realtime_coarse,
259 };
260 struct k_clock clock_monotonic_coarse = {
261 .clock_getres = posix_get_coarse_res,
262 .clock_get = posix_get_monotonic_coarse,
263 };
264 struct k_clock clock_boottime = {
265 .clock_getres = hrtimer_get_res,
266 .clock_get = posix_get_boottime,
267 .nsleep = common_nsleep,
268 .nsleep_restart = hrtimer_nanosleep_restart,
269 .timer_create = common_timer_create,
270 .timer_set = common_timer_set,
271 .timer_get = common_timer_get,
272 .timer_del = common_timer_del,
273 };
274
275 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
276 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
277 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
278 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
279 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
280 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
281
282 posix_timers_cache = kmem_cache_create("posix_timers_cache",
283 sizeof (struct k_itimer), 0, SLAB_PANIC,
284 NULL);
285 idr_init(&posix_timers_id);
286 return 0;
287 }
288
289 __initcall(init_posix_timers);
290
291 static void schedule_next_timer(struct k_itimer *timr)
292 {
293 struct hrtimer *timer = &timr->it.real.timer;
294
295 if (timr->it.real.interval.tv64 == 0)
296 return;
297
298 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
299 timer->base->get_time(),
300 timr->it.real.interval);
301
302 timr->it_overrun_last = timr->it_overrun;
303 timr->it_overrun = -1;
304 ++timr->it_requeue_pending;
305 hrtimer_restart(timer);
306 }
307
308 /*
309 * This function is exported for use by the signal deliver code. It is
310 * called just prior to the info block being released and passes that
311 * block to us. It's function is to update the overrun entry AND to
312 * restart the timer. It should only be called if the timer is to be
313 * restarted (i.e. we have flagged this in the sys_private entry of the
314 * info block).
315 *
316 * To protect against the timer going away while the interrupt is queued,
317 * we require that the it_requeue_pending flag be set.
318 */
319 void do_schedule_next_timer(struct siginfo *info)
320 {
321 struct k_itimer *timr;
322 unsigned long flags;
323
324 timr = lock_timer(info->si_tid, &flags);
325
326 if (timr && timr->it_requeue_pending == info->si_sys_private) {
327 if (timr->it_clock < 0)
328 posix_cpu_timer_schedule(timr);
329 else
330 schedule_next_timer(timr);
331
332 info->si_overrun += timr->it_overrun_last;
333 }
334
335 if (timr)
336 unlock_timer(timr, flags);
337 }
338
339 int posix_timer_event(struct k_itimer *timr, int si_private)
340 {
341 struct task_struct *task;
342 int shared, ret = -1;
343 /*
344 * FIXME: if ->sigq is queued we can race with
345 * dequeue_signal()->do_schedule_next_timer().
346 *
347 * If dequeue_signal() sees the "right" value of
348 * si_sys_private it calls do_schedule_next_timer().
349 * We re-queue ->sigq and drop ->it_lock().
350 * do_schedule_next_timer() locks the timer
351 * and re-schedules it while ->sigq is pending.
352 * Not really bad, but not that we want.
353 */
354 timr->sigq->info.si_sys_private = si_private;
355
356 rcu_read_lock();
357 task = pid_task(timr->it_pid, PIDTYPE_PID);
358 if (task) {
359 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
360 ret = send_sigqueue(timr->sigq, task, shared);
361 }
362 rcu_read_unlock();
363 /* If we failed to send the signal the timer stops. */
364 return ret > 0;
365 }
366 EXPORT_SYMBOL_GPL(posix_timer_event);
367
368 /*
369 * This function gets called when a POSIX.1b interval timer expires. It
370 * is used as a callback from the kernel internal timer. The
371 * run_timer_list code ALWAYS calls with interrupts on.
372
373 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
374 */
375 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
376 {
377 struct k_itimer *timr;
378 unsigned long flags;
379 int si_private = 0;
380 enum hrtimer_restart ret = HRTIMER_NORESTART;
381
382 timr = container_of(timer, struct k_itimer, it.real.timer);
383 spin_lock_irqsave(&timr->it_lock, flags);
384
385 if (timr->it.real.interval.tv64 != 0)
386 si_private = ++timr->it_requeue_pending;
387
388 if (posix_timer_event(timr, si_private)) {
389 /*
390 * signal was not sent because of sig_ignor
391 * we will not get a call back to restart it AND
392 * it should be restarted.
393 */
394 if (timr->it.real.interval.tv64 != 0) {
395 ktime_t now = hrtimer_cb_get_time(timer);
396
397 /*
398 * FIXME: What we really want, is to stop this
399 * timer completely and restart it in case the
400 * SIG_IGN is removed. This is a non trivial
401 * change which involves sighand locking
402 * (sigh !), which we don't want to do late in
403 * the release cycle.
404 *
405 * For now we just let timers with an interval
406 * less than a jiffie expire every jiffie to
407 * avoid softirq starvation in case of SIG_IGN
408 * and a very small interval, which would put
409 * the timer right back on the softirq pending
410 * list. By moving now ahead of time we trick
411 * hrtimer_forward() to expire the timer
412 * later, while we still maintain the overrun
413 * accuracy, but have some inconsistency in
414 * the timer_gettime() case. This is at least
415 * better than a starved softirq. A more
416 * complex fix which solves also another related
417 * inconsistency is already in the pipeline.
418 */
419 #ifdef CONFIG_HIGH_RES_TIMERS
420 {
421 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
422
423 if (timr->it.real.interval.tv64 < kj.tv64)
424 now = ktime_add(now, kj);
425 }
426 #endif
427 timr->it_overrun += (unsigned int)
428 hrtimer_forward(timer, now,
429 timr->it.real.interval);
430 ret = HRTIMER_RESTART;
431 ++timr->it_requeue_pending;
432 }
433 }
434
435 unlock_timer(timr, flags);
436 return ret;
437 }
438
439 static struct pid *good_sigevent(sigevent_t * event)
440 {
441 struct task_struct *rtn = current->group_leader;
442
443 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
444 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
445 !same_thread_group(rtn, current) ||
446 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
447 return NULL;
448
449 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
450 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
451 return NULL;
452
453 return task_pid(rtn);
454 }
455
456 void posix_timers_register_clock(const clockid_t clock_id,
457 struct k_clock *new_clock)
458 {
459 if ((unsigned) clock_id >= MAX_CLOCKS) {
460 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
461 clock_id);
462 return;
463 }
464
465 if (!new_clock->clock_get) {
466 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
467 clock_id);
468 return;
469 }
470 if (!new_clock->clock_getres) {
471 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
472 clock_id);
473 return;
474 }
475
476 posix_clocks[clock_id] = *new_clock;
477 }
478 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
479
480 static struct k_itimer * alloc_posix_timer(void)
481 {
482 struct k_itimer *tmr;
483 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
484 if (!tmr)
485 return tmr;
486 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
487 kmem_cache_free(posix_timers_cache, tmr);
488 return NULL;
489 }
490 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
491 return tmr;
492 }
493
494 static void k_itimer_rcu_free(struct rcu_head *head)
495 {
496 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
497
498 kmem_cache_free(posix_timers_cache, tmr);
499 }
500
501 #define IT_ID_SET 1
502 #define IT_ID_NOT_SET 0
503 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
504 {
505 if (it_id_set) {
506 unsigned long flags;
507 spin_lock_irqsave(&idr_lock, flags);
508 idr_remove(&posix_timers_id, tmr->it_id);
509 spin_unlock_irqrestore(&idr_lock, flags);
510 }
511 put_pid(tmr->it_pid);
512 sigqueue_free(tmr->sigq);
513 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
514 }
515
516 static struct k_clock *clockid_to_kclock(const clockid_t id)
517 {
518 if (id < 0)
519 return (id & CLOCKFD_MASK) == CLOCKFD ?
520 &clock_posix_dynamic : &clock_posix_cpu;
521
522 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
523 return NULL;
524 return &posix_clocks[id];
525 }
526
527 static int common_timer_create(struct k_itimer *new_timer)
528 {
529 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
530 return 0;
531 }
532
533 /* Create a POSIX.1b interval timer. */
534
535 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
536 struct sigevent __user *, timer_event_spec,
537 timer_t __user *, created_timer_id)
538 {
539 struct k_clock *kc = clockid_to_kclock(which_clock);
540 struct k_itimer *new_timer;
541 int error, new_timer_id;
542 sigevent_t event;
543 int it_id_set = IT_ID_NOT_SET;
544
545 if (!kc)
546 return -EINVAL;
547 if (!kc->timer_create)
548 return -EOPNOTSUPP;
549
550 new_timer = alloc_posix_timer();
551 if (unlikely(!new_timer))
552 return -EAGAIN;
553
554 spin_lock_init(&new_timer->it_lock);
555
556 idr_preload(GFP_KERNEL);
557 spin_lock_irq(&idr_lock);
558 error = idr_alloc(&posix_timers_id, new_timer, 0, 0, GFP_NOWAIT);
559 spin_unlock_irq(&idr_lock);
560 idr_preload_end();
561 if (error < 0) {
562 /*
563 * Weird looking, but we return EAGAIN if the IDR is
564 * full (proper POSIX return value for this)
565 */
566 if (error == -ENOSPC)
567 error = -EAGAIN;
568 goto out;
569 }
570 new_timer_id = error;
571
572 it_id_set = IT_ID_SET;
573 new_timer->it_id = (timer_t) new_timer_id;
574 new_timer->it_clock = which_clock;
575 new_timer->it_overrun = -1;
576
577 if (timer_event_spec) {
578 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
579 error = -EFAULT;
580 goto out;
581 }
582 rcu_read_lock();
583 new_timer->it_pid = get_pid(good_sigevent(&event));
584 rcu_read_unlock();
585 if (!new_timer->it_pid) {
586 error = -EINVAL;
587 goto out;
588 }
589 } else {
590 event.sigev_notify = SIGEV_SIGNAL;
591 event.sigev_signo = SIGALRM;
592 event.sigev_value.sival_int = new_timer->it_id;
593 new_timer->it_pid = get_pid(task_tgid(current));
594 }
595
596 new_timer->it_sigev_notify = event.sigev_notify;
597 new_timer->sigq->info.si_signo = event.sigev_signo;
598 new_timer->sigq->info.si_value = event.sigev_value;
599 new_timer->sigq->info.si_tid = new_timer->it_id;
600 new_timer->sigq->info.si_code = SI_TIMER;
601
602 if (copy_to_user(created_timer_id,
603 &new_timer_id, sizeof (new_timer_id))) {
604 error = -EFAULT;
605 goto out;
606 }
607
608 error = kc->timer_create(new_timer);
609 if (error)
610 goto out;
611
612 spin_lock_irq(&current->sighand->siglock);
613 new_timer->it_signal = current->signal;
614 list_add(&new_timer->list, &current->signal->posix_timers);
615 spin_unlock_irq(&current->sighand->siglock);
616
617 return 0;
618 /*
619 * In the case of the timer belonging to another task, after
620 * the task is unlocked, the timer is owned by the other task
621 * and may cease to exist at any time. Don't use or modify
622 * new_timer after the unlock call.
623 */
624 out:
625 release_posix_timer(new_timer, it_id_set);
626 return error;
627 }
628
629 /*
630 * Locking issues: We need to protect the result of the id look up until
631 * we get the timer locked down so it is not deleted under us. The
632 * removal is done under the idr spinlock so we use that here to bridge
633 * the find to the timer lock. To avoid a dead lock, the timer id MUST
634 * be release with out holding the timer lock.
635 */
636 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
637 {
638 struct k_itimer *timr;
639
640 /*
641 * timer_t could be any type >= int and we want to make sure any
642 * @timer_id outside positive int range fails lookup.
643 */
644 if ((unsigned long long)timer_id > INT_MAX)
645 return NULL;
646
647 rcu_read_lock();
648 timr = idr_find(&posix_timers_id, (int)timer_id);
649 if (timr) {
650 spin_lock_irqsave(&timr->it_lock, *flags);
651 if (timr->it_signal == current->signal) {
652 rcu_read_unlock();
653 return timr;
654 }
655 spin_unlock_irqrestore(&timr->it_lock, *flags);
656 }
657 rcu_read_unlock();
658
659 return NULL;
660 }
661
662 /*
663 * Get the time remaining on a POSIX.1b interval timer. This function
664 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
665 * mess with irq.
666 *
667 * We have a couple of messes to clean up here. First there is the case
668 * of a timer that has a requeue pending. These timers should appear to
669 * be in the timer list with an expiry as if we were to requeue them
670 * now.
671 *
672 * The second issue is the SIGEV_NONE timer which may be active but is
673 * not really ever put in the timer list (to save system resources).
674 * This timer may be expired, and if so, we will do it here. Otherwise
675 * it is the same as a requeue pending timer WRT to what we should
676 * report.
677 */
678 static void
679 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
680 {
681 ktime_t now, remaining, iv;
682 struct hrtimer *timer = &timr->it.real.timer;
683
684 memset(cur_setting, 0, sizeof(struct itimerspec));
685
686 iv = timr->it.real.interval;
687
688 /* interval timer ? */
689 if (iv.tv64)
690 cur_setting->it_interval = ktime_to_timespec(iv);
691 else if (!hrtimer_active(timer) &&
692 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
693 return;
694
695 now = timer->base->get_time();
696
697 /*
698 * When a requeue is pending or this is a SIGEV_NONE
699 * timer move the expiry time forward by intervals, so
700 * expiry is > now.
701 */
702 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
703 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
704 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
705
706 remaining = ktime_sub(hrtimer_get_expires(timer), now);
707 /* Return 0 only, when the timer is expired and not pending */
708 if (remaining.tv64 <= 0) {
709 /*
710 * A single shot SIGEV_NONE timer must return 0, when
711 * it is expired !
712 */
713 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
714 cur_setting->it_value.tv_nsec = 1;
715 } else
716 cur_setting->it_value = ktime_to_timespec(remaining);
717 }
718
719 /* Get the time remaining on a POSIX.1b interval timer. */
720 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
721 struct itimerspec __user *, setting)
722 {
723 struct itimerspec cur_setting;
724 struct k_itimer *timr;
725 struct k_clock *kc;
726 unsigned long flags;
727 int ret = 0;
728
729 timr = lock_timer(timer_id, &flags);
730 if (!timr)
731 return -EINVAL;
732
733 kc = clockid_to_kclock(timr->it_clock);
734 if (WARN_ON_ONCE(!kc || !kc->timer_get))
735 ret = -EINVAL;
736 else
737 kc->timer_get(timr, &cur_setting);
738
739 unlock_timer(timr, flags);
740
741 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
742 return -EFAULT;
743
744 return ret;
745 }
746
747 /*
748 * Get the number of overruns of a POSIX.1b interval timer. This is to
749 * be the overrun of the timer last delivered. At the same time we are
750 * accumulating overruns on the next timer. The overrun is frozen when
751 * the signal is delivered, either at the notify time (if the info block
752 * is not queued) or at the actual delivery time (as we are informed by
753 * the call back to do_schedule_next_timer(). So all we need to do is
754 * to pick up the frozen overrun.
755 */
756 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
757 {
758 struct k_itimer *timr;
759 int overrun;
760 unsigned long flags;
761
762 timr = lock_timer(timer_id, &flags);
763 if (!timr)
764 return -EINVAL;
765
766 overrun = timr->it_overrun_last;
767 unlock_timer(timr, flags);
768
769 return overrun;
770 }
771
772 /* Set a POSIX.1b interval timer. */
773 /* timr->it_lock is taken. */
774 static int
775 common_timer_set(struct k_itimer *timr, int flags,
776 struct itimerspec *new_setting, struct itimerspec *old_setting)
777 {
778 struct hrtimer *timer = &timr->it.real.timer;
779 enum hrtimer_mode mode;
780
781 if (old_setting)
782 common_timer_get(timr, old_setting);
783
784 /* disable the timer */
785 timr->it.real.interval.tv64 = 0;
786 /*
787 * careful here. If smp we could be in the "fire" routine which will
788 * be spinning as we hold the lock. But this is ONLY an SMP issue.
789 */
790 if (hrtimer_try_to_cancel(timer) < 0)
791 return TIMER_RETRY;
792
793 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
794 ~REQUEUE_PENDING;
795 timr->it_overrun_last = 0;
796
797 /* switch off the timer when it_value is zero */
798 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
799 return 0;
800
801 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
802 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
803 timr->it.real.timer.function = posix_timer_fn;
804
805 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
806
807 /* Convert interval */
808 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
809
810 /* SIGEV_NONE timers are not queued ! See common_timer_get */
811 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
812 /* Setup correct expiry time for relative timers */
813 if (mode == HRTIMER_MODE_REL) {
814 hrtimer_add_expires(timer, timer->base->get_time());
815 }
816 return 0;
817 }
818
819 hrtimer_start_expires(timer, mode);
820 return 0;
821 }
822
823 /* Set a POSIX.1b interval timer */
824 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
825 const struct itimerspec __user *, new_setting,
826 struct itimerspec __user *, old_setting)
827 {
828 struct k_itimer *timr;
829 struct itimerspec new_spec, old_spec;
830 int error = 0;
831 unsigned long flag;
832 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
833 struct k_clock *kc;
834
835 if (!new_setting)
836 return -EINVAL;
837
838 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
839 return -EFAULT;
840
841 if (!timespec_valid(&new_spec.it_interval) ||
842 !timespec_valid(&new_spec.it_value))
843 return -EINVAL;
844 retry:
845 timr = lock_timer(timer_id, &flag);
846 if (!timr)
847 return -EINVAL;
848
849 kc = clockid_to_kclock(timr->it_clock);
850 if (WARN_ON_ONCE(!kc || !kc->timer_set))
851 error = -EINVAL;
852 else
853 error = kc->timer_set(timr, flags, &new_spec, rtn);
854
855 unlock_timer(timr, flag);
856 if (error == TIMER_RETRY) {
857 rtn = NULL; // We already got the old time...
858 goto retry;
859 }
860
861 if (old_setting && !error &&
862 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
863 error = -EFAULT;
864
865 return error;
866 }
867
868 static int common_timer_del(struct k_itimer *timer)
869 {
870 timer->it.real.interval.tv64 = 0;
871
872 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
873 return TIMER_RETRY;
874 return 0;
875 }
876
877 static inline int timer_delete_hook(struct k_itimer *timer)
878 {
879 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
880
881 if (WARN_ON_ONCE(!kc || !kc->timer_del))
882 return -EINVAL;
883 return kc->timer_del(timer);
884 }
885
886 /* Delete a POSIX.1b interval timer. */
887 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
888 {
889 struct k_itimer *timer;
890 unsigned long flags;
891
892 retry_delete:
893 timer = lock_timer(timer_id, &flags);
894 if (!timer)
895 return -EINVAL;
896
897 if (timer_delete_hook(timer) == TIMER_RETRY) {
898 unlock_timer(timer, flags);
899 goto retry_delete;
900 }
901
902 spin_lock(&current->sighand->siglock);
903 list_del(&timer->list);
904 spin_unlock(&current->sighand->siglock);
905 /*
906 * This keeps any tasks waiting on the spin lock from thinking
907 * they got something (see the lock code above).
908 */
909 timer->it_signal = NULL;
910
911 unlock_timer(timer, flags);
912 release_posix_timer(timer, IT_ID_SET);
913 return 0;
914 }
915
916 /*
917 * return timer owned by the process, used by exit_itimers
918 */
919 static void itimer_delete(struct k_itimer *timer)
920 {
921 unsigned long flags;
922
923 retry_delete:
924 spin_lock_irqsave(&timer->it_lock, flags);
925
926 if (timer_delete_hook(timer) == TIMER_RETRY) {
927 unlock_timer(timer, flags);
928 goto retry_delete;
929 }
930 list_del(&timer->list);
931 /*
932 * This keeps any tasks waiting on the spin lock from thinking
933 * they got something (see the lock code above).
934 */
935 timer->it_signal = NULL;
936
937 unlock_timer(timer, flags);
938 release_posix_timer(timer, IT_ID_SET);
939 }
940
941 /*
942 * This is called by do_exit or de_thread, only when there are no more
943 * references to the shared signal_struct.
944 */
945 void exit_itimers(struct signal_struct *sig)
946 {
947 struct k_itimer *tmr;
948
949 while (!list_empty(&sig->posix_timers)) {
950 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
951 itimer_delete(tmr);
952 }
953 }
954
955 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
956 const struct timespec __user *, tp)
957 {
958 struct k_clock *kc = clockid_to_kclock(which_clock);
959 struct timespec new_tp;
960
961 if (!kc || !kc->clock_set)
962 return -EINVAL;
963
964 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
965 return -EFAULT;
966
967 return kc->clock_set(which_clock, &new_tp);
968 }
969
970 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
971 struct timespec __user *,tp)
972 {
973 struct k_clock *kc = clockid_to_kclock(which_clock);
974 struct timespec kernel_tp;
975 int error;
976
977 if (!kc)
978 return -EINVAL;
979
980 error = kc->clock_get(which_clock, &kernel_tp);
981
982 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
983 error = -EFAULT;
984
985 return error;
986 }
987
988 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
989 struct timex __user *, utx)
990 {
991 struct k_clock *kc = clockid_to_kclock(which_clock);
992 struct timex ktx;
993 int err;
994
995 if (!kc)
996 return -EINVAL;
997 if (!kc->clock_adj)
998 return -EOPNOTSUPP;
999
1000 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1001 return -EFAULT;
1002
1003 err = kc->clock_adj(which_clock, &ktx);
1004
1005 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1006 return -EFAULT;
1007
1008 return err;
1009 }
1010
1011 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1012 struct timespec __user *, tp)
1013 {
1014 struct k_clock *kc = clockid_to_kclock(which_clock);
1015 struct timespec rtn_tp;
1016 int error;
1017
1018 if (!kc)
1019 return -EINVAL;
1020
1021 error = kc->clock_getres(which_clock, &rtn_tp);
1022
1023 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1024 error = -EFAULT;
1025
1026 return error;
1027 }
1028
1029 /*
1030 * nanosleep for monotonic and realtime clocks
1031 */
1032 static int common_nsleep(const clockid_t which_clock, int flags,
1033 struct timespec *tsave, struct timespec __user *rmtp)
1034 {
1035 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1036 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1037 which_clock);
1038 }
1039
1040 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1041 const struct timespec __user *, rqtp,
1042 struct timespec __user *, rmtp)
1043 {
1044 struct k_clock *kc = clockid_to_kclock(which_clock);
1045 struct timespec t;
1046
1047 if (!kc)
1048 return -EINVAL;
1049 if (!kc->nsleep)
1050 return -ENANOSLEEP_NOTSUP;
1051
1052 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1053 return -EFAULT;
1054
1055 if (!timespec_valid(&t))
1056 return -EINVAL;
1057
1058 return kc->nsleep(which_clock, flags, &t, rmtp);
1059 }
1060
1061 /*
1062 * This will restart clock_nanosleep. This is required only by
1063 * compat_clock_nanosleep_restart for now.
1064 */
1065 long clock_nanosleep_restart(struct restart_block *restart_block)
1066 {
1067 clockid_t which_clock = restart_block->nanosleep.clockid;
1068 struct k_clock *kc = clockid_to_kclock(which_clock);
1069
1070 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1071 return -EINVAL;
1072
1073 return kc->nsleep_restart(restart_block);
1074 }