sched: cleanup: refactor normalize_rt_tasks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/module.h>
50
51 /*
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
55 *
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
67 */
68
69 /*
70 * Lets keep our timers in a slab cache :-)
71 */
72 static struct kmem_cache *posix_timers_cache;
73 static struct idr posix_timers_id;
74 static DEFINE_SPINLOCK(idr_lock);
75
76 /*
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
79 */
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83 #endif
84
85
86 /*
87 * The timer ID is turned into a timer address by idr_find().
88 * Verifying a valid ID consists of:
89 *
90 * a) checking that idr_find() returns other than -1.
91 * b) checking that the timer id matches the one in the timer itself.
92 * c) that the timer owner is in the callers thread group.
93 */
94
95 /*
96 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
97 * to implement others. This structure defines the various
98 * clocks and allows the possibility of adding others. We
99 * provide an interface to add clocks to the table and expect
100 * the "arch" code to add at least one clock that is high
101 * resolution. Here we define the standard CLOCK_REALTIME as a
102 * 1/HZ resolution clock.
103 *
104 * RESOLUTION: Clock resolution is used to round up timer and interval
105 * times, NOT to report clock times, which are reported with as
106 * much resolution as the system can muster. In some cases this
107 * resolution may depend on the underlying clock hardware and
108 * may not be quantifiable until run time, and only then is the
109 * necessary code is written. The standard says we should say
110 * something about this issue in the documentation...
111 *
112 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
113 * various clock functions. For clocks that use the standard
114 * system timer code these entries should be NULL. This will
115 * allow dispatch without the overhead of indirect function
116 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
117 * must supply functions here, even if the function just returns
118 * ENOSYS. The standard POSIX timer management code assumes the
119 * following: 1.) The k_itimer struct (sched.h) is used for the
120 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
121 * fields are not modified by timer code.
122 *
123 * At this time all functions EXCEPT clock_nanosleep can be
124 * redirected by the CLOCKS structure. Clock_nanosleep is in
125 * there, but the code ignores it.
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
134
135 static struct k_clock posix_clocks[MAX_CLOCKS];
136
137 /*
138 * These ones are defined below.
139 */
140 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
141 struct timespec __user *rmtp);
142 static void common_timer_get(struct k_itimer *, struct itimerspec *);
143 static int common_timer_set(struct k_itimer *, int,
144 struct itimerspec *, struct itimerspec *);
145 static int common_timer_del(struct k_itimer *timer);
146
147 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
148
149 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150
151 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152 {
153 spin_unlock_irqrestore(&timr->it_lock, flags);
154 }
155
156 /*
157 * Call the k_clock hook function if non-null, or the default function.
158 */
159 #define CLOCK_DISPATCH(clock, call, arglist) \
160 ((clock) < 0 ? posix_cpu_##call arglist : \
161 (posix_clocks[clock].call != NULL \
162 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
163
164 /*
165 * Default clock hook functions when the struct k_clock passed
166 * to register_posix_clock leaves a function pointer null.
167 *
168 * The function common_CALL is the default implementation for
169 * the function pointer CALL in struct k_clock.
170 */
171
172 static inline int common_clock_getres(const clockid_t which_clock,
173 struct timespec *tp)
174 {
175 tp->tv_sec = 0;
176 tp->tv_nsec = posix_clocks[which_clock].res;
177 return 0;
178 }
179
180 /*
181 * Get real time for posix timers
182 */
183 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
184 {
185 ktime_get_real_ts(tp);
186 return 0;
187 }
188
189 static inline int common_clock_set(const clockid_t which_clock,
190 struct timespec *tp)
191 {
192 return do_sys_settimeofday(tp, NULL);
193 }
194
195 static int common_timer_create(struct k_itimer *new_timer)
196 {
197 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
198 return 0;
199 }
200
201 /*
202 * Return nonzero if we know a priori this clockid_t value is bogus.
203 */
204 static inline int invalid_clockid(const clockid_t which_clock)
205 {
206 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
207 return 0;
208 if ((unsigned) which_clock >= MAX_CLOCKS)
209 return 1;
210 if (posix_clocks[which_clock].clock_getres != NULL)
211 return 0;
212 if (posix_clocks[which_clock].res != 0)
213 return 0;
214 return 1;
215 }
216
217 /*
218 * Get monotonic time for posix timers
219 */
220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
221 {
222 ktime_get_ts(tp);
223 return 0;
224 }
225
226 /*
227 * Initialize everything, well, just everything in Posix clocks/timers ;)
228 */
229 static __init int init_posix_timers(void)
230 {
231 struct k_clock clock_realtime = {
232 .clock_getres = hrtimer_get_res,
233 };
234 struct k_clock clock_monotonic = {
235 .clock_getres = hrtimer_get_res,
236 .clock_get = posix_ktime_get_ts,
237 .clock_set = do_posix_clock_nosettime,
238 };
239
240 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
241 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
242
243 posix_timers_cache = kmem_cache_create("posix_timers_cache",
244 sizeof (struct k_itimer), 0, 0, NULL);
245 idr_init(&posix_timers_id);
246 return 0;
247 }
248
249 __initcall(init_posix_timers);
250
251 static void schedule_next_timer(struct k_itimer *timr)
252 {
253 struct hrtimer *timer = &timr->it.real.timer;
254
255 if (timr->it.real.interval.tv64 == 0)
256 return;
257
258 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
259 timr->it.real.interval);
260
261 timr->it_overrun_last = timr->it_overrun;
262 timr->it_overrun = -1;
263 ++timr->it_requeue_pending;
264 hrtimer_restart(timer);
265 }
266
267 /*
268 * This function is exported for use by the signal deliver code. It is
269 * called just prior to the info block being released and passes that
270 * block to us. It's function is to update the overrun entry AND to
271 * restart the timer. It should only be called if the timer is to be
272 * restarted (i.e. we have flagged this in the sys_private entry of the
273 * info block).
274 *
275 * To protect aginst the timer going away while the interrupt is queued,
276 * we require that the it_requeue_pending flag be set.
277 */
278 void do_schedule_next_timer(struct siginfo *info)
279 {
280 struct k_itimer *timr;
281 unsigned long flags;
282
283 timr = lock_timer(info->si_tid, &flags);
284
285 if (timr && timr->it_requeue_pending == info->si_sys_private) {
286 if (timr->it_clock < 0)
287 posix_cpu_timer_schedule(timr);
288 else
289 schedule_next_timer(timr);
290
291 info->si_overrun = timr->it_overrun_last;
292 }
293
294 if (timr)
295 unlock_timer(timr, flags);
296 }
297
298 int posix_timer_event(struct k_itimer *timr,int si_private)
299 {
300 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
301 timr->sigq->info.si_sys_private = si_private;
302 /* Send signal to the process that owns this timer.*/
303
304 timr->sigq->info.si_signo = timr->it_sigev_signo;
305 timr->sigq->info.si_errno = 0;
306 timr->sigq->info.si_code = SI_TIMER;
307 timr->sigq->info.si_tid = timr->it_id;
308 timr->sigq->info.si_value = timr->it_sigev_value;
309
310 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
311 struct task_struct *leader;
312 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
313 timr->it_process);
314
315 if (likely(ret >= 0))
316 return ret;
317
318 timr->it_sigev_notify = SIGEV_SIGNAL;
319 leader = timr->it_process->group_leader;
320 put_task_struct(timr->it_process);
321 timr->it_process = leader;
322 }
323
324 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
325 timr->it_process);
326 }
327 EXPORT_SYMBOL_GPL(posix_timer_event);
328
329 /*
330 * This function gets called when a POSIX.1b interval timer expires. It
331 * is used as a callback from the kernel internal timer. The
332 * run_timer_list code ALWAYS calls with interrupts on.
333
334 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
335 */
336 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
337 {
338 struct k_itimer *timr;
339 unsigned long flags;
340 int si_private = 0;
341 enum hrtimer_restart ret = HRTIMER_NORESTART;
342
343 timr = container_of(timer, struct k_itimer, it.real.timer);
344 spin_lock_irqsave(&timr->it_lock, flags);
345
346 if (timr->it.real.interval.tv64 != 0)
347 si_private = ++timr->it_requeue_pending;
348
349 if (posix_timer_event(timr, si_private)) {
350 /*
351 * signal was not sent because of sig_ignor
352 * we will not get a call back to restart it AND
353 * it should be restarted.
354 */
355 if (timr->it.real.interval.tv64 != 0) {
356 ktime_t now = hrtimer_cb_get_time(timer);
357
358 /*
359 * FIXME: What we really want, is to stop this
360 * timer completely and restart it in case the
361 * SIG_IGN is removed. This is a non trivial
362 * change which involves sighand locking
363 * (sigh !), which we don't want to do late in
364 * the release cycle.
365 *
366 * For now we just let timers with an interval
367 * less than a jiffie expire every jiffie to
368 * avoid softirq starvation in case of SIG_IGN
369 * and a very small interval, which would put
370 * the timer right back on the softirq pending
371 * list. By moving now ahead of time we trick
372 * hrtimer_forward() to expire the timer
373 * later, while we still maintain the overrun
374 * accuracy, but have some inconsistency in
375 * the timer_gettime() case. This is at least
376 * better than a starved softirq. A more
377 * complex fix which solves also another related
378 * inconsistency is already in the pipeline.
379 */
380 #ifdef CONFIG_HIGH_RES_TIMERS
381 {
382 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
383
384 if (timr->it.real.interval.tv64 < kj.tv64)
385 now = ktime_add(now, kj);
386 }
387 #endif
388 timr->it_overrun +=
389 hrtimer_forward(timer, now,
390 timr->it.real.interval);
391 ret = HRTIMER_RESTART;
392 ++timr->it_requeue_pending;
393 }
394 }
395
396 unlock_timer(timr, flags);
397 return ret;
398 }
399
400 static struct task_struct * good_sigevent(sigevent_t * event)
401 {
402 struct task_struct *rtn = current->group_leader;
403
404 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
405 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
406 rtn->tgid != current->tgid ||
407 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
408 return NULL;
409
410 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
411 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
412 return NULL;
413
414 return rtn;
415 }
416
417 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
418 {
419 if ((unsigned) clock_id >= MAX_CLOCKS) {
420 printk("POSIX clock register failed for clock_id %d\n",
421 clock_id);
422 return;
423 }
424
425 posix_clocks[clock_id] = *new_clock;
426 }
427 EXPORT_SYMBOL_GPL(register_posix_clock);
428
429 static struct k_itimer * alloc_posix_timer(void)
430 {
431 struct k_itimer *tmr;
432 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
433 if (!tmr)
434 return tmr;
435 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
436 kmem_cache_free(posix_timers_cache, tmr);
437 tmr = NULL;
438 }
439 return tmr;
440 }
441
442 #define IT_ID_SET 1
443 #define IT_ID_NOT_SET 0
444 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
445 {
446 if (it_id_set) {
447 unsigned long flags;
448 spin_lock_irqsave(&idr_lock, flags);
449 idr_remove(&posix_timers_id, tmr->it_id);
450 spin_unlock_irqrestore(&idr_lock, flags);
451 }
452 sigqueue_free(tmr->sigq);
453 if (unlikely(tmr->it_process) &&
454 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
455 put_task_struct(tmr->it_process);
456 kmem_cache_free(posix_timers_cache, tmr);
457 }
458
459 /* Create a POSIX.1b interval timer. */
460
461 asmlinkage long
462 sys_timer_create(const clockid_t which_clock,
463 struct sigevent __user *timer_event_spec,
464 timer_t __user * created_timer_id)
465 {
466 int error = 0;
467 struct k_itimer *new_timer = NULL;
468 int new_timer_id;
469 struct task_struct *process = NULL;
470 unsigned long flags;
471 sigevent_t event;
472 int it_id_set = IT_ID_NOT_SET;
473
474 if (invalid_clockid(which_clock))
475 return -EINVAL;
476
477 new_timer = alloc_posix_timer();
478 if (unlikely(!new_timer))
479 return -EAGAIN;
480
481 spin_lock_init(&new_timer->it_lock);
482 retry:
483 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
484 error = -EAGAIN;
485 goto out;
486 }
487 spin_lock_irq(&idr_lock);
488 error = idr_get_new(&posix_timers_id, (void *) new_timer,
489 &new_timer_id);
490 spin_unlock_irq(&idr_lock);
491 if (error == -EAGAIN)
492 goto retry;
493 else if (error) {
494 /*
495 * Wierd looking, but we return EAGAIN if the IDR is
496 * full (proper POSIX return value for this)
497 */
498 error = -EAGAIN;
499 goto out;
500 }
501
502 it_id_set = IT_ID_SET;
503 new_timer->it_id = (timer_t) new_timer_id;
504 new_timer->it_clock = which_clock;
505 new_timer->it_overrun = -1;
506 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
507 if (error)
508 goto out;
509
510 /*
511 * return the timer_id now. The next step is hard to
512 * back out if there is an error.
513 */
514 if (copy_to_user(created_timer_id,
515 &new_timer_id, sizeof (new_timer_id))) {
516 error = -EFAULT;
517 goto out;
518 }
519 if (timer_event_spec) {
520 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
521 error = -EFAULT;
522 goto out;
523 }
524 new_timer->it_sigev_notify = event.sigev_notify;
525 new_timer->it_sigev_signo = event.sigev_signo;
526 new_timer->it_sigev_value = event.sigev_value;
527
528 read_lock(&tasklist_lock);
529 if ((process = good_sigevent(&event))) {
530 /*
531 * We may be setting up this process for another
532 * thread. It may be exiting. To catch this
533 * case the we check the PF_EXITING flag. If
534 * the flag is not set, the siglock will catch
535 * him before it is too late (in exit_itimers).
536 *
537 * The exec case is a bit more invloved but easy
538 * to code. If the process is in our thread
539 * group (and it must be or we would not allow
540 * it here) and is doing an exec, it will cause
541 * us to be killed. In this case it will wait
542 * for us to die which means we can finish this
543 * linkage with our last gasp. I.e. no code :)
544 */
545 spin_lock_irqsave(&process->sighand->siglock, flags);
546 if (!(process->flags & PF_EXITING)) {
547 new_timer->it_process = process;
548 list_add(&new_timer->list,
549 &process->signal->posix_timers);
550 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
551 get_task_struct(process);
552 spin_unlock_irqrestore(&process->sighand->siglock, flags);
553 } else {
554 spin_unlock_irqrestore(&process->sighand->siglock, flags);
555 process = NULL;
556 }
557 }
558 read_unlock(&tasklist_lock);
559 if (!process) {
560 error = -EINVAL;
561 goto out;
562 }
563 } else {
564 new_timer->it_sigev_notify = SIGEV_SIGNAL;
565 new_timer->it_sigev_signo = SIGALRM;
566 new_timer->it_sigev_value.sival_int = new_timer->it_id;
567 process = current->group_leader;
568 spin_lock_irqsave(&process->sighand->siglock, flags);
569 new_timer->it_process = process;
570 list_add(&new_timer->list, &process->signal->posix_timers);
571 spin_unlock_irqrestore(&process->sighand->siglock, flags);
572 }
573
574 /*
575 * In the case of the timer belonging to another task, after
576 * the task is unlocked, the timer is owned by the other task
577 * and may cease to exist at any time. Don't use or modify
578 * new_timer after the unlock call.
579 */
580
581 out:
582 if (error)
583 release_posix_timer(new_timer, it_id_set);
584
585 return error;
586 }
587
588 /*
589 * Locking issues: We need to protect the result of the id look up until
590 * we get the timer locked down so it is not deleted under us. The
591 * removal is done under the idr spinlock so we use that here to bridge
592 * the find to the timer lock. To avoid a dead lock, the timer id MUST
593 * be release with out holding the timer lock.
594 */
595 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
596 {
597 struct k_itimer *timr;
598 /*
599 * Watch out here. We do a irqsave on the idr_lock and pass the
600 * flags part over to the timer lock. Must not let interrupts in
601 * while we are moving the lock.
602 */
603
604 spin_lock_irqsave(&idr_lock, *flags);
605 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
606 if (timr) {
607 spin_lock(&timr->it_lock);
608
609 if ((timr->it_id != timer_id) || !(timr->it_process) ||
610 timr->it_process->tgid != current->tgid) {
611 spin_unlock(&timr->it_lock);
612 spin_unlock_irqrestore(&idr_lock, *flags);
613 timr = NULL;
614 } else
615 spin_unlock(&idr_lock);
616 } else
617 spin_unlock_irqrestore(&idr_lock, *flags);
618
619 return timr;
620 }
621
622 /*
623 * Get the time remaining on a POSIX.1b interval timer. This function
624 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
625 * mess with irq.
626 *
627 * We have a couple of messes to clean up here. First there is the case
628 * of a timer that has a requeue pending. These timers should appear to
629 * be in the timer list with an expiry as if we were to requeue them
630 * now.
631 *
632 * The second issue is the SIGEV_NONE timer which may be active but is
633 * not really ever put in the timer list (to save system resources).
634 * This timer may be expired, and if so, we will do it here. Otherwise
635 * it is the same as a requeue pending timer WRT to what we should
636 * report.
637 */
638 static void
639 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
640 {
641 ktime_t now, remaining, iv;
642 struct hrtimer *timer = &timr->it.real.timer;
643
644 memset(cur_setting, 0, sizeof(struct itimerspec));
645
646 iv = timr->it.real.interval;
647
648 /* interval timer ? */
649 if (iv.tv64)
650 cur_setting->it_interval = ktime_to_timespec(iv);
651 else if (!hrtimer_active(timer) &&
652 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
653 return;
654
655 now = timer->base->get_time();
656
657 /*
658 * When a requeue is pending or this is a SIGEV_NONE
659 * timer move the expiry time forward by intervals, so
660 * expiry is > now.
661 */
662 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
663 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
664 timr->it_overrun += hrtimer_forward(timer, now, iv);
665
666 remaining = ktime_sub(timer->expires, now);
667 /* Return 0 only, when the timer is expired and not pending */
668 if (remaining.tv64 <= 0) {
669 /*
670 * A single shot SIGEV_NONE timer must return 0, when
671 * it is expired !
672 */
673 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
674 cur_setting->it_value.tv_nsec = 1;
675 } else
676 cur_setting->it_value = ktime_to_timespec(remaining);
677 }
678
679 /* Get the time remaining on a POSIX.1b interval timer. */
680 asmlinkage long
681 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
682 {
683 struct k_itimer *timr;
684 struct itimerspec cur_setting;
685 unsigned long flags;
686
687 timr = lock_timer(timer_id, &flags);
688 if (!timr)
689 return -EINVAL;
690
691 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
692
693 unlock_timer(timr, flags);
694
695 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
696 return -EFAULT;
697
698 return 0;
699 }
700
701 /*
702 * Get the number of overruns of a POSIX.1b interval timer. This is to
703 * be the overrun of the timer last delivered. At the same time we are
704 * accumulating overruns on the next timer. The overrun is frozen when
705 * the signal is delivered, either at the notify time (if the info block
706 * is not queued) or at the actual delivery time (as we are informed by
707 * the call back to do_schedule_next_timer(). So all we need to do is
708 * to pick up the frozen overrun.
709 */
710 asmlinkage long
711 sys_timer_getoverrun(timer_t timer_id)
712 {
713 struct k_itimer *timr;
714 int overrun;
715 unsigned long flags;
716
717 timr = lock_timer(timer_id, &flags);
718 if (!timr)
719 return -EINVAL;
720
721 overrun = timr->it_overrun_last;
722 unlock_timer(timr, flags);
723
724 return overrun;
725 }
726
727 /* Set a POSIX.1b interval timer. */
728 /* timr->it_lock is taken. */
729 static int
730 common_timer_set(struct k_itimer *timr, int flags,
731 struct itimerspec *new_setting, struct itimerspec *old_setting)
732 {
733 struct hrtimer *timer = &timr->it.real.timer;
734 enum hrtimer_mode mode;
735
736 if (old_setting)
737 common_timer_get(timr, old_setting);
738
739 /* disable the timer */
740 timr->it.real.interval.tv64 = 0;
741 /*
742 * careful here. If smp we could be in the "fire" routine which will
743 * be spinning as we hold the lock. But this is ONLY an SMP issue.
744 */
745 if (hrtimer_try_to_cancel(timer) < 0)
746 return TIMER_RETRY;
747
748 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
749 ~REQUEUE_PENDING;
750 timr->it_overrun_last = 0;
751
752 /* switch off the timer when it_value is zero */
753 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
754 return 0;
755
756 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
757 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
758 timr->it.real.timer.function = posix_timer_fn;
759
760 timer->expires = timespec_to_ktime(new_setting->it_value);
761
762 /* Convert interval */
763 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
764
765 /* SIGEV_NONE timers are not queued ! See common_timer_get */
766 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
767 /* Setup correct expiry time for relative timers */
768 if (mode == HRTIMER_MODE_REL)
769 timer->expires = ktime_add(timer->expires,
770 timer->base->get_time());
771 return 0;
772 }
773
774 hrtimer_start(timer, timer->expires, mode);
775 return 0;
776 }
777
778 /* Set a POSIX.1b interval timer */
779 asmlinkage long
780 sys_timer_settime(timer_t timer_id, int flags,
781 const struct itimerspec __user *new_setting,
782 struct itimerspec __user *old_setting)
783 {
784 struct k_itimer *timr;
785 struct itimerspec new_spec, old_spec;
786 int error = 0;
787 unsigned long flag;
788 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
789
790 if (!new_setting)
791 return -EINVAL;
792
793 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
794 return -EFAULT;
795
796 if (!timespec_valid(&new_spec.it_interval) ||
797 !timespec_valid(&new_spec.it_value))
798 return -EINVAL;
799 retry:
800 timr = lock_timer(timer_id, &flag);
801 if (!timr)
802 return -EINVAL;
803
804 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
805 (timr, flags, &new_spec, rtn));
806
807 unlock_timer(timr, flag);
808 if (error == TIMER_RETRY) {
809 rtn = NULL; // We already got the old time...
810 goto retry;
811 }
812
813 if (old_setting && !error &&
814 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
815 error = -EFAULT;
816
817 return error;
818 }
819
820 static inline int common_timer_del(struct k_itimer *timer)
821 {
822 timer->it.real.interval.tv64 = 0;
823
824 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
825 return TIMER_RETRY;
826 return 0;
827 }
828
829 static inline int timer_delete_hook(struct k_itimer *timer)
830 {
831 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
832 }
833
834 /* Delete a POSIX.1b interval timer. */
835 asmlinkage long
836 sys_timer_delete(timer_t timer_id)
837 {
838 struct k_itimer *timer;
839 unsigned long flags;
840
841 retry_delete:
842 timer = lock_timer(timer_id, &flags);
843 if (!timer)
844 return -EINVAL;
845
846 if (timer_delete_hook(timer) == TIMER_RETRY) {
847 unlock_timer(timer, flags);
848 goto retry_delete;
849 }
850
851 spin_lock(&current->sighand->siglock);
852 list_del(&timer->list);
853 spin_unlock(&current->sighand->siglock);
854 /*
855 * This keeps any tasks waiting on the spin lock from thinking
856 * they got something (see the lock code above).
857 */
858 if (timer->it_process) {
859 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
860 put_task_struct(timer->it_process);
861 timer->it_process = NULL;
862 }
863 unlock_timer(timer, flags);
864 release_posix_timer(timer, IT_ID_SET);
865 return 0;
866 }
867
868 /*
869 * return timer owned by the process, used by exit_itimers
870 */
871 static void itimer_delete(struct k_itimer *timer)
872 {
873 unsigned long flags;
874
875 retry_delete:
876 spin_lock_irqsave(&timer->it_lock, flags);
877
878 if (timer_delete_hook(timer) == TIMER_RETRY) {
879 unlock_timer(timer, flags);
880 goto retry_delete;
881 }
882 list_del(&timer->list);
883 /*
884 * This keeps any tasks waiting on the spin lock from thinking
885 * they got something (see the lock code above).
886 */
887 if (timer->it_process) {
888 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
889 put_task_struct(timer->it_process);
890 timer->it_process = NULL;
891 }
892 unlock_timer(timer, flags);
893 release_posix_timer(timer, IT_ID_SET);
894 }
895
896 /*
897 * This is called by do_exit or de_thread, only when there are no more
898 * references to the shared signal_struct.
899 */
900 void exit_itimers(struct signal_struct *sig)
901 {
902 struct k_itimer *tmr;
903
904 while (!list_empty(&sig->posix_timers)) {
905 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
906 itimer_delete(tmr);
907 }
908 }
909
910 /* Not available / possible... functions */
911 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
912 {
913 return -EINVAL;
914 }
915 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
916
917 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
918 struct timespec *t, struct timespec __user *r)
919 {
920 #ifndef ENOTSUP
921 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
922 #else /* parisc does define it separately. */
923 return -ENOTSUP;
924 #endif
925 }
926 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
927
928 asmlinkage long sys_clock_settime(const clockid_t which_clock,
929 const struct timespec __user *tp)
930 {
931 struct timespec new_tp;
932
933 if (invalid_clockid(which_clock))
934 return -EINVAL;
935 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
936 return -EFAULT;
937
938 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
939 }
940
941 asmlinkage long
942 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
943 {
944 struct timespec kernel_tp;
945 int error;
946
947 if (invalid_clockid(which_clock))
948 return -EINVAL;
949 error = CLOCK_DISPATCH(which_clock, clock_get,
950 (which_clock, &kernel_tp));
951 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
952 error = -EFAULT;
953
954 return error;
955
956 }
957
958 asmlinkage long
959 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
960 {
961 struct timespec rtn_tp;
962 int error;
963
964 if (invalid_clockid(which_clock))
965 return -EINVAL;
966
967 error = CLOCK_DISPATCH(which_clock, clock_getres,
968 (which_clock, &rtn_tp));
969
970 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
971 error = -EFAULT;
972 }
973
974 return error;
975 }
976
977 /*
978 * nanosleep for monotonic and realtime clocks
979 */
980 static int common_nsleep(const clockid_t which_clock, int flags,
981 struct timespec *tsave, struct timespec __user *rmtp)
982 {
983 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
984 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
985 which_clock);
986 }
987
988 asmlinkage long
989 sys_clock_nanosleep(const clockid_t which_clock, int flags,
990 const struct timespec __user *rqtp,
991 struct timespec __user *rmtp)
992 {
993 struct timespec t;
994
995 if (invalid_clockid(which_clock))
996 return -EINVAL;
997
998 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
999 return -EFAULT;
1000
1001 if (!timespec_valid(&t))
1002 return -EINVAL;
1003
1004 return CLOCK_DISPATCH(which_clock, nsleep,
1005 (which_clock, flags, &t, rmtp));
1006 }
1007
1008 /*
1009 * nanosleep_restart for monotonic and realtime clocks
1010 */
1011 static int common_nsleep_restart(struct restart_block *restart_block)
1012 {
1013 return hrtimer_nanosleep_restart(restart_block);
1014 }
1015
1016 /*
1017 * This will restart clock_nanosleep. This is required only by
1018 * compat_clock_nanosleep_restart for now.
1019 */
1020 long
1021 clock_nanosleep_restart(struct restart_block *restart_block)
1022 {
1023 clockid_t which_clock = restart_block->arg0;
1024
1025 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1026 (restart_block));
1027 }