Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
49
50 /*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68 /*
69 * Lets keep our timers in a slab cache :-)
70 */
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
74
75 /*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
83
84
85 /*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94 /*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134 static struct k_clock posix_clocks[MAX_CLOCKS];
135
136 /*
137 * These ones are defined below.
138 */
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
145
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
147
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151 {
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153 }
154
155 /*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163 /*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
173 {
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177 }
178
179 /*
180 * Get real time for posix timers
181 */
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
183 {
184 ktime_get_real_ts(tp);
185 return 0;
186 }
187
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
190 {
191 return do_sys_settimeofday(tp, NULL);
192 }
193
194 static int common_timer_create(struct k_itimer *new_timer)
195 {
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
198 }
199
200 /*
201 * Return nonzero if we know a priori this clockid_t value is bogus.
202 */
203 static inline int invalid_clockid(const clockid_t which_clock)
204 {
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
213 return 1;
214 }
215
216 /*
217 * Get monotonic time for posix timers
218 */
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220 {
221 ktime_get_ts(tp);
222 return 0;
223 }
224
225 /*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228 static __init int init_posix_timers(void)
229 {
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
232 };
233 struct k_clock clock_monotonic = {
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime,
237 };
238
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
241
242 posix_timers_cache = kmem_cache_create("posix_timers_cache",
243 sizeof (struct k_itimer), 0, SLAB_PANIC,
244 NULL);
245 idr_init(&posix_timers_id);
246 return 0;
247 }
248
249 __initcall(init_posix_timers);
250
251 static void schedule_next_timer(struct k_itimer *timr)
252 {
253 struct hrtimer *timer = &timr->it.real.timer;
254
255 if (timr->it.real.interval.tv64 == 0)
256 return;
257
258 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
259 timer->base->get_time(),
260 timr->it.real.interval);
261
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
265 hrtimer_restart(timer);
266 }
267
268 /*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279 void do_schedule_next_timer(struct siginfo *info)
280 {
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
291
292 info->si_overrun += timr->it_overrun_last;
293 }
294
295 if (timr)
296 unlock_timer(timr, flags);
297 }
298
299 int posix_timer_event(struct k_itimer *timr, int si_private)
300 {
301 /*
302 * FIXME: if ->sigq is queued we can race with
303 * dequeue_signal()->do_schedule_next_timer().
304 *
305 * If dequeue_signal() sees the "right" value of
306 * si_sys_private it calls do_schedule_next_timer().
307 * We re-queue ->sigq and drop ->it_lock().
308 * do_schedule_next_timer() locks the timer
309 * and re-schedules it while ->sigq is pending.
310 * Not really bad, but not that we want.
311 */
312 timr->sigq->info.si_sys_private = si_private;
313
314 timr->sigq->info.si_signo = timr->it_sigev_signo;
315 timr->sigq->info.si_code = SI_TIMER;
316 timr->sigq->info.si_tid = timr->it_id;
317 timr->sigq->info.si_value = timr->it_sigev_value;
318
319 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
320 struct task_struct *leader;
321 int ret = send_sigqueue(timr->sigq, timr->it_process, 0);
322
323 if (likely(ret >= 0))
324 return ret;
325
326 timr->it_sigev_notify = SIGEV_SIGNAL;
327 leader = timr->it_process->group_leader;
328 put_task_struct(timr->it_process);
329 timr->it_process = leader;
330 }
331
332 return send_sigqueue(timr->sigq, timr->it_process, 1);
333 }
334 EXPORT_SYMBOL_GPL(posix_timer_event);
335
336 /*
337 * This function gets called when a POSIX.1b interval timer expires. It
338 * is used as a callback from the kernel internal timer. The
339 * run_timer_list code ALWAYS calls with interrupts on.
340
341 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
342 */
343 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
344 {
345 struct k_itimer *timr;
346 unsigned long flags;
347 int si_private = 0;
348 enum hrtimer_restart ret = HRTIMER_NORESTART;
349
350 timr = container_of(timer, struct k_itimer, it.real.timer);
351 spin_lock_irqsave(&timr->it_lock, flags);
352
353 if (timr->it.real.interval.tv64 != 0)
354 si_private = ++timr->it_requeue_pending;
355
356 if (posix_timer_event(timr, si_private)) {
357 /*
358 * signal was not sent because of sig_ignor
359 * we will not get a call back to restart it AND
360 * it should be restarted.
361 */
362 if (timr->it.real.interval.tv64 != 0) {
363 ktime_t now = hrtimer_cb_get_time(timer);
364
365 /*
366 * FIXME: What we really want, is to stop this
367 * timer completely and restart it in case the
368 * SIG_IGN is removed. This is a non trivial
369 * change which involves sighand locking
370 * (sigh !), which we don't want to do late in
371 * the release cycle.
372 *
373 * For now we just let timers with an interval
374 * less than a jiffie expire every jiffie to
375 * avoid softirq starvation in case of SIG_IGN
376 * and a very small interval, which would put
377 * the timer right back on the softirq pending
378 * list. By moving now ahead of time we trick
379 * hrtimer_forward() to expire the timer
380 * later, while we still maintain the overrun
381 * accuracy, but have some inconsistency in
382 * the timer_gettime() case. This is at least
383 * better than a starved softirq. A more
384 * complex fix which solves also another related
385 * inconsistency is already in the pipeline.
386 */
387 #ifdef CONFIG_HIGH_RES_TIMERS
388 {
389 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
390
391 if (timr->it.real.interval.tv64 < kj.tv64)
392 now = ktime_add(now, kj);
393 }
394 #endif
395 timr->it_overrun += (unsigned int)
396 hrtimer_forward(timer, now,
397 timr->it.real.interval);
398 ret = HRTIMER_RESTART;
399 ++timr->it_requeue_pending;
400 }
401 }
402
403 unlock_timer(timr, flags);
404 return ret;
405 }
406
407 static struct task_struct * good_sigevent(sigevent_t * event)
408 {
409 struct task_struct *rtn = current->group_leader;
410
411 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
412 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
413 !same_thread_group(rtn, current) ||
414 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
415 return NULL;
416
417 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
418 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
419 return NULL;
420
421 return rtn;
422 }
423
424 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
425 {
426 if ((unsigned) clock_id >= MAX_CLOCKS) {
427 printk("POSIX clock register failed for clock_id %d\n",
428 clock_id);
429 return;
430 }
431
432 posix_clocks[clock_id] = *new_clock;
433 }
434 EXPORT_SYMBOL_GPL(register_posix_clock);
435
436 static struct k_itimer * alloc_posix_timer(void)
437 {
438 struct k_itimer *tmr;
439 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
440 if (!tmr)
441 return tmr;
442 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
443 kmem_cache_free(posix_timers_cache, tmr);
444 return NULL;
445 }
446 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
447 return tmr;
448 }
449
450 #define IT_ID_SET 1
451 #define IT_ID_NOT_SET 0
452 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
453 {
454 if (it_id_set) {
455 unsigned long flags;
456 spin_lock_irqsave(&idr_lock, flags);
457 idr_remove(&posix_timers_id, tmr->it_id);
458 spin_unlock_irqrestore(&idr_lock, flags);
459 }
460 sigqueue_free(tmr->sigq);
461 kmem_cache_free(posix_timers_cache, tmr);
462 }
463
464 /* Create a POSIX.1b interval timer. */
465
466 asmlinkage long
467 sys_timer_create(const clockid_t which_clock,
468 struct sigevent __user *timer_event_spec,
469 timer_t __user * created_timer_id)
470 {
471 int error = 0;
472 struct k_itimer *new_timer = NULL;
473 int new_timer_id;
474 struct task_struct *process = NULL;
475 unsigned long flags;
476 sigevent_t event;
477 int it_id_set = IT_ID_NOT_SET;
478
479 if (invalid_clockid(which_clock))
480 return -EINVAL;
481
482 new_timer = alloc_posix_timer();
483 if (unlikely(!new_timer))
484 return -EAGAIN;
485
486 spin_lock_init(&new_timer->it_lock);
487 retry:
488 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
489 error = -EAGAIN;
490 goto out;
491 }
492 spin_lock_irq(&idr_lock);
493 error = idr_get_new(&posix_timers_id, (void *) new_timer,
494 &new_timer_id);
495 spin_unlock_irq(&idr_lock);
496 if (error == -EAGAIN)
497 goto retry;
498 else if (error) {
499 /*
500 * Weird looking, but we return EAGAIN if the IDR is
501 * full (proper POSIX return value for this)
502 */
503 error = -EAGAIN;
504 goto out;
505 }
506
507 it_id_set = IT_ID_SET;
508 new_timer->it_id = (timer_t) new_timer_id;
509 new_timer->it_clock = which_clock;
510 new_timer->it_overrun = -1;
511 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
512 if (error)
513 goto out;
514
515 /*
516 * return the timer_id now. The next step is hard to
517 * back out if there is an error.
518 */
519 if (copy_to_user(created_timer_id,
520 &new_timer_id, sizeof (new_timer_id))) {
521 error = -EFAULT;
522 goto out;
523 }
524 if (timer_event_spec) {
525 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
526 error = -EFAULT;
527 goto out;
528 }
529 new_timer->it_sigev_notify = event.sigev_notify;
530 new_timer->it_sigev_signo = event.sigev_signo;
531 new_timer->it_sigev_value = event.sigev_value;
532
533 read_lock(&tasklist_lock);
534 if ((process = good_sigevent(&event))) {
535 /*
536 * We may be setting up this process for another
537 * thread. It may be exiting. To catch this
538 * case the we check the PF_EXITING flag. If
539 * the flag is not set, the siglock will catch
540 * him before it is too late (in exit_itimers).
541 *
542 * The exec case is a bit more invloved but easy
543 * to code. If the process is in our thread
544 * group (and it must be or we would not allow
545 * it here) and is doing an exec, it will cause
546 * us to be killed. In this case it will wait
547 * for us to die which means we can finish this
548 * linkage with our last gasp. I.e. no code :)
549 */
550 spin_lock_irqsave(&process->sighand->siglock, flags);
551 if (!(process->flags & PF_EXITING)) {
552 new_timer->it_process = process;
553 list_add(&new_timer->list,
554 &process->signal->posix_timers);
555 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
556 get_task_struct(process);
557 spin_unlock_irqrestore(&process->sighand->siglock, flags);
558 } else {
559 spin_unlock_irqrestore(&process->sighand->siglock, flags);
560 process = NULL;
561 }
562 }
563 read_unlock(&tasklist_lock);
564 if (!process) {
565 error = -EINVAL;
566 goto out;
567 }
568 } else {
569 new_timer->it_sigev_notify = SIGEV_SIGNAL;
570 new_timer->it_sigev_signo = SIGALRM;
571 new_timer->it_sigev_value.sival_int = new_timer->it_id;
572 process = current->group_leader;
573 spin_lock_irqsave(&process->sighand->siglock, flags);
574 new_timer->it_process = process;
575 list_add(&new_timer->list, &process->signal->posix_timers);
576 spin_unlock_irqrestore(&process->sighand->siglock, flags);
577 }
578
579 /*
580 * In the case of the timer belonging to another task, after
581 * the task is unlocked, the timer is owned by the other task
582 * and may cease to exist at any time. Don't use or modify
583 * new_timer after the unlock call.
584 */
585
586 out:
587 if (error)
588 release_posix_timer(new_timer, it_id_set);
589
590 return error;
591 }
592
593 /*
594 * Locking issues: We need to protect the result of the id look up until
595 * we get the timer locked down so it is not deleted under us. The
596 * removal is done under the idr spinlock so we use that here to bridge
597 * the find to the timer lock. To avoid a dead lock, the timer id MUST
598 * be release with out holding the timer lock.
599 */
600 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
601 {
602 struct k_itimer *timr;
603 /*
604 * Watch out here. We do a irqsave on the idr_lock and pass the
605 * flags part over to the timer lock. Must not let interrupts in
606 * while we are moving the lock.
607 */
608
609 spin_lock_irqsave(&idr_lock, *flags);
610 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
611 if (timr) {
612 spin_lock(&timr->it_lock);
613
614 if ((timr->it_id != timer_id) || !(timr->it_process) ||
615 !same_thread_group(timr->it_process, current)) {
616 spin_unlock(&timr->it_lock);
617 spin_unlock_irqrestore(&idr_lock, *flags);
618 timr = NULL;
619 } else
620 spin_unlock(&idr_lock);
621 } else
622 spin_unlock_irqrestore(&idr_lock, *flags);
623
624 return timr;
625 }
626
627 /*
628 * Get the time remaining on a POSIX.1b interval timer. This function
629 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
630 * mess with irq.
631 *
632 * We have a couple of messes to clean up here. First there is the case
633 * of a timer that has a requeue pending. These timers should appear to
634 * be in the timer list with an expiry as if we were to requeue them
635 * now.
636 *
637 * The second issue is the SIGEV_NONE timer which may be active but is
638 * not really ever put in the timer list (to save system resources).
639 * This timer may be expired, and if so, we will do it here. Otherwise
640 * it is the same as a requeue pending timer WRT to what we should
641 * report.
642 */
643 static void
644 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
645 {
646 ktime_t now, remaining, iv;
647 struct hrtimer *timer = &timr->it.real.timer;
648
649 memset(cur_setting, 0, sizeof(struct itimerspec));
650
651 iv = timr->it.real.interval;
652
653 /* interval timer ? */
654 if (iv.tv64)
655 cur_setting->it_interval = ktime_to_timespec(iv);
656 else if (!hrtimer_active(timer) &&
657 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
658 return;
659
660 now = timer->base->get_time();
661
662 /*
663 * When a requeue is pending or this is a SIGEV_NONE
664 * timer move the expiry time forward by intervals, so
665 * expiry is > now.
666 */
667 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
668 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
669 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
670
671 remaining = ktime_sub(timer->expires, now);
672 /* Return 0 only, when the timer is expired and not pending */
673 if (remaining.tv64 <= 0) {
674 /*
675 * A single shot SIGEV_NONE timer must return 0, when
676 * it is expired !
677 */
678 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
679 cur_setting->it_value.tv_nsec = 1;
680 } else
681 cur_setting->it_value = ktime_to_timespec(remaining);
682 }
683
684 /* Get the time remaining on a POSIX.1b interval timer. */
685 asmlinkage long
686 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
687 {
688 struct k_itimer *timr;
689 struct itimerspec cur_setting;
690 unsigned long flags;
691
692 timr = lock_timer(timer_id, &flags);
693 if (!timr)
694 return -EINVAL;
695
696 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
697
698 unlock_timer(timr, flags);
699
700 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
701 return -EFAULT;
702
703 return 0;
704 }
705
706 /*
707 * Get the number of overruns of a POSIX.1b interval timer. This is to
708 * be the overrun of the timer last delivered. At the same time we are
709 * accumulating overruns on the next timer. The overrun is frozen when
710 * the signal is delivered, either at the notify time (if the info block
711 * is not queued) or at the actual delivery time (as we are informed by
712 * the call back to do_schedule_next_timer(). So all we need to do is
713 * to pick up the frozen overrun.
714 */
715 asmlinkage long
716 sys_timer_getoverrun(timer_t timer_id)
717 {
718 struct k_itimer *timr;
719 int overrun;
720 unsigned long flags;
721
722 timr = lock_timer(timer_id, &flags);
723 if (!timr)
724 return -EINVAL;
725
726 overrun = timr->it_overrun_last;
727 unlock_timer(timr, flags);
728
729 return overrun;
730 }
731
732 /* Set a POSIX.1b interval timer. */
733 /* timr->it_lock is taken. */
734 static int
735 common_timer_set(struct k_itimer *timr, int flags,
736 struct itimerspec *new_setting, struct itimerspec *old_setting)
737 {
738 struct hrtimer *timer = &timr->it.real.timer;
739 enum hrtimer_mode mode;
740
741 if (old_setting)
742 common_timer_get(timr, old_setting);
743
744 /* disable the timer */
745 timr->it.real.interval.tv64 = 0;
746 /*
747 * careful here. If smp we could be in the "fire" routine which will
748 * be spinning as we hold the lock. But this is ONLY an SMP issue.
749 */
750 if (hrtimer_try_to_cancel(timer) < 0)
751 return TIMER_RETRY;
752
753 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
754 ~REQUEUE_PENDING;
755 timr->it_overrun_last = 0;
756
757 /* switch off the timer when it_value is zero */
758 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
759 return 0;
760
761 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
762 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
763 timr->it.real.timer.function = posix_timer_fn;
764
765 timer->expires = timespec_to_ktime(new_setting->it_value);
766
767 /* Convert interval */
768 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
769
770 /* SIGEV_NONE timers are not queued ! See common_timer_get */
771 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
772 /* Setup correct expiry time for relative timers */
773 if (mode == HRTIMER_MODE_REL) {
774 timer->expires =
775 ktime_add_safe(timer->expires,
776 timer->base->get_time());
777 }
778 return 0;
779 }
780
781 hrtimer_start(timer, timer->expires, mode);
782 return 0;
783 }
784
785 /* Set a POSIX.1b interval timer */
786 asmlinkage long
787 sys_timer_settime(timer_t timer_id, int flags,
788 const struct itimerspec __user *new_setting,
789 struct itimerspec __user *old_setting)
790 {
791 struct k_itimer *timr;
792 struct itimerspec new_spec, old_spec;
793 int error = 0;
794 unsigned long flag;
795 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
796
797 if (!new_setting)
798 return -EINVAL;
799
800 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
801 return -EFAULT;
802
803 if (!timespec_valid(&new_spec.it_interval) ||
804 !timespec_valid(&new_spec.it_value))
805 return -EINVAL;
806 retry:
807 timr = lock_timer(timer_id, &flag);
808 if (!timr)
809 return -EINVAL;
810
811 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
812 (timr, flags, &new_spec, rtn));
813
814 unlock_timer(timr, flag);
815 if (error == TIMER_RETRY) {
816 rtn = NULL; // We already got the old time...
817 goto retry;
818 }
819
820 if (old_setting && !error &&
821 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
822 error = -EFAULT;
823
824 return error;
825 }
826
827 static inline int common_timer_del(struct k_itimer *timer)
828 {
829 timer->it.real.interval.tv64 = 0;
830
831 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
832 return TIMER_RETRY;
833 return 0;
834 }
835
836 static inline int timer_delete_hook(struct k_itimer *timer)
837 {
838 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
839 }
840
841 /* Delete a POSIX.1b interval timer. */
842 asmlinkage long
843 sys_timer_delete(timer_t timer_id)
844 {
845 struct k_itimer *timer;
846 unsigned long flags;
847
848 retry_delete:
849 timer = lock_timer(timer_id, &flags);
850 if (!timer)
851 return -EINVAL;
852
853 if (timer_delete_hook(timer) == TIMER_RETRY) {
854 unlock_timer(timer, flags);
855 goto retry_delete;
856 }
857
858 spin_lock(&current->sighand->siglock);
859 list_del(&timer->list);
860 spin_unlock(&current->sighand->siglock);
861 /*
862 * This keeps any tasks waiting on the spin lock from thinking
863 * they got something (see the lock code above).
864 */
865 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
866 put_task_struct(timer->it_process);
867 timer->it_process = NULL;
868
869 unlock_timer(timer, flags);
870 release_posix_timer(timer, IT_ID_SET);
871 return 0;
872 }
873
874 /*
875 * return timer owned by the process, used by exit_itimers
876 */
877 static void itimer_delete(struct k_itimer *timer)
878 {
879 unsigned long flags;
880
881 retry_delete:
882 spin_lock_irqsave(&timer->it_lock, flags);
883
884 if (timer_delete_hook(timer) == TIMER_RETRY) {
885 unlock_timer(timer, flags);
886 goto retry_delete;
887 }
888 list_del(&timer->list);
889 /*
890 * This keeps any tasks waiting on the spin lock from thinking
891 * they got something (see the lock code above).
892 */
893 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
894 put_task_struct(timer->it_process);
895 timer->it_process = NULL;
896
897 unlock_timer(timer, flags);
898 release_posix_timer(timer, IT_ID_SET);
899 }
900
901 /*
902 * This is called by do_exit or de_thread, only when there are no more
903 * references to the shared signal_struct.
904 */
905 void exit_itimers(struct signal_struct *sig)
906 {
907 struct k_itimer *tmr;
908
909 while (!list_empty(&sig->posix_timers)) {
910 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
911 itimer_delete(tmr);
912 }
913 }
914
915 /* Not available / possible... functions */
916 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
917 {
918 return -EINVAL;
919 }
920 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
921
922 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
923 struct timespec *t, struct timespec __user *r)
924 {
925 #ifndef ENOTSUP
926 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
927 #else /* parisc does define it separately. */
928 return -ENOTSUP;
929 #endif
930 }
931 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
932
933 asmlinkage long sys_clock_settime(const clockid_t which_clock,
934 const struct timespec __user *tp)
935 {
936 struct timespec new_tp;
937
938 if (invalid_clockid(which_clock))
939 return -EINVAL;
940 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
941 return -EFAULT;
942
943 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
944 }
945
946 asmlinkage long
947 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
948 {
949 struct timespec kernel_tp;
950 int error;
951
952 if (invalid_clockid(which_clock))
953 return -EINVAL;
954 error = CLOCK_DISPATCH(which_clock, clock_get,
955 (which_clock, &kernel_tp));
956 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
957 error = -EFAULT;
958
959 return error;
960
961 }
962
963 asmlinkage long
964 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
965 {
966 struct timespec rtn_tp;
967 int error;
968
969 if (invalid_clockid(which_clock))
970 return -EINVAL;
971
972 error = CLOCK_DISPATCH(which_clock, clock_getres,
973 (which_clock, &rtn_tp));
974
975 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
976 error = -EFAULT;
977 }
978
979 return error;
980 }
981
982 /*
983 * nanosleep for monotonic and realtime clocks
984 */
985 static int common_nsleep(const clockid_t which_clock, int flags,
986 struct timespec *tsave, struct timespec __user *rmtp)
987 {
988 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
989 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
990 which_clock);
991 }
992
993 asmlinkage long
994 sys_clock_nanosleep(const clockid_t which_clock, int flags,
995 const struct timespec __user *rqtp,
996 struct timespec __user *rmtp)
997 {
998 struct timespec t;
999
1000 if (invalid_clockid(which_clock))
1001 return -EINVAL;
1002
1003 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1004 return -EFAULT;
1005
1006 if (!timespec_valid(&t))
1007 return -EINVAL;
1008
1009 return CLOCK_DISPATCH(which_clock, nsleep,
1010 (which_clock, flags, &t, rmtp));
1011 }
1012
1013 /*
1014 * nanosleep_restart for monotonic and realtime clocks
1015 */
1016 static int common_nsleep_restart(struct restart_block *restart_block)
1017 {
1018 return hrtimer_nanosleep_restart(restart_block);
1019 }
1020
1021 /*
1022 * This will restart clock_nanosleep. This is required only by
1023 * compat_clock_nanosleep_restart for now.
1024 */
1025 long
1026 clock_nanosleep_restart(struct restart_block *restart_block)
1027 {
1028 clockid_t which_clock = restart_block->arg0;
1029
1030 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1031 (restart_block));
1032 }