Merge tag 'devicetree-for-linus' of git://git.secretlab.ca/git/linux
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
21 */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 cputime_t cputime = secs_to_cputime(rlim_new);
25
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
48 }
49 rcu_read_unlock();
50
51 return error;
52 }
53
54 static inline union cpu_time_count
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 union cpu_time_count ret;
58 ret.sched = 0; /* high half always zero when .cpu used */
59 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
60 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
61 } else {
62 ret.cpu = timespec_to_cputime(tp);
63 }
64 return ret;
65 }
66
67 static void sample_to_timespec(const clockid_t which_clock,
68 union cpu_time_count cpu,
69 struct timespec *tp)
70 {
71 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
72 *tp = ns_to_timespec(cpu.sched);
73 else
74 cputime_to_timespec(cpu.cpu, tp);
75 }
76
77 static inline int cpu_time_before(const clockid_t which_clock,
78 union cpu_time_count now,
79 union cpu_time_count then)
80 {
81 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
82 return now.sched < then.sched;
83 } else {
84 return now.cpu < then.cpu;
85 }
86 }
87 static inline void cpu_time_add(const clockid_t which_clock,
88 union cpu_time_count *acc,
89 union cpu_time_count val)
90 {
91 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
92 acc->sched += val.sched;
93 } else {
94 acc->cpu += val.cpu;
95 }
96 }
97 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
98 union cpu_time_count a,
99 union cpu_time_count b)
100 {
101 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
102 a.sched -= b.sched;
103 } else {
104 a.cpu -= b.cpu;
105 }
106 return a;
107 }
108
109 /*
110 * Update expiry time from increment, and increase overrun count,
111 * given the current clock sample.
112 */
113 static void bump_cpu_timer(struct k_itimer *timer,
114 union cpu_time_count now)
115 {
116 int i;
117
118 if (timer->it.cpu.incr.sched == 0)
119 return;
120
121 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
122 unsigned long long delta, incr;
123
124 if (now.sched < timer->it.cpu.expires.sched)
125 return;
126 incr = timer->it.cpu.incr.sched;
127 delta = now.sched + incr - timer->it.cpu.expires.sched;
128 /* Don't use (incr*2 < delta), incr*2 might overflow. */
129 for (i = 0; incr < delta - incr; i++)
130 incr = incr << 1;
131 for (; i >= 0; incr >>= 1, i--) {
132 if (delta < incr)
133 continue;
134 timer->it.cpu.expires.sched += incr;
135 timer->it_overrun += 1 << i;
136 delta -= incr;
137 }
138 } else {
139 cputime_t delta, incr;
140
141 if (now.cpu < timer->it.cpu.expires.cpu)
142 return;
143 incr = timer->it.cpu.incr.cpu;
144 delta = now.cpu + incr - timer->it.cpu.expires.cpu;
145 /* Don't use (incr*2 < delta), incr*2 might overflow. */
146 for (i = 0; incr < delta - incr; i++)
147 incr += incr;
148 for (; i >= 0; incr = incr >> 1, i--) {
149 if (delta < incr)
150 continue;
151 timer->it.cpu.expires.cpu += incr;
152 timer->it_overrun += 1 << i;
153 delta -= incr;
154 }
155 }
156 }
157
158 /**
159 * task_cputime_zero - Check a task_cputime struct for all zero fields.
160 *
161 * @cputime: The struct to compare.
162 *
163 * Checks @cputime to see if all fields are zero. Returns true if all fields
164 * are zero, false if any field is nonzero.
165 */
166 static inline int task_cputime_zero(const struct task_cputime *cputime)
167 {
168 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
169 return 1;
170 return 0;
171 }
172
173 static inline cputime_t prof_ticks(struct task_struct *p)
174 {
175 cputime_t utime, stime;
176
177 task_cputime(p, &utime, &stime);
178
179 return utime + stime;
180 }
181 static inline cputime_t virt_ticks(struct task_struct *p)
182 {
183 cputime_t utime;
184
185 task_cputime(p, &utime, NULL);
186
187 return utime;
188 }
189
190 static int
191 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
192 {
193 int error = check_clock(which_clock);
194 if (!error) {
195 tp->tv_sec = 0;
196 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
197 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
198 /*
199 * If sched_clock is using a cycle counter, we
200 * don't have any idea of its true resolution
201 * exported, but it is much more than 1s/HZ.
202 */
203 tp->tv_nsec = 1;
204 }
205 }
206 return error;
207 }
208
209 static int
210 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
211 {
212 /*
213 * You can never reset a CPU clock, but we check for other errors
214 * in the call before failing with EPERM.
215 */
216 int error = check_clock(which_clock);
217 if (error == 0) {
218 error = -EPERM;
219 }
220 return error;
221 }
222
223
224 /*
225 * Sample a per-thread clock for the given task.
226 */
227 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
228 union cpu_time_count *cpu)
229 {
230 switch (CPUCLOCK_WHICH(which_clock)) {
231 default:
232 return -EINVAL;
233 case CPUCLOCK_PROF:
234 cpu->cpu = prof_ticks(p);
235 break;
236 case CPUCLOCK_VIRT:
237 cpu->cpu = virt_ticks(p);
238 break;
239 case CPUCLOCK_SCHED:
240 cpu->sched = task_sched_runtime(p);
241 break;
242 }
243 return 0;
244 }
245
246 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
247 {
248 if (b->utime > a->utime)
249 a->utime = b->utime;
250
251 if (b->stime > a->stime)
252 a->stime = b->stime;
253
254 if (b->sum_exec_runtime > a->sum_exec_runtime)
255 a->sum_exec_runtime = b->sum_exec_runtime;
256 }
257
258 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
259 {
260 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
261 struct task_cputime sum;
262 unsigned long flags;
263
264 if (!cputimer->running) {
265 /*
266 * The POSIX timer interface allows for absolute time expiry
267 * values through the TIMER_ABSTIME flag, therefore we have
268 * to synchronize the timer to the clock every time we start
269 * it.
270 */
271 thread_group_cputime(tsk, &sum);
272 raw_spin_lock_irqsave(&cputimer->lock, flags);
273 cputimer->running = 1;
274 update_gt_cputime(&cputimer->cputime, &sum);
275 } else
276 raw_spin_lock_irqsave(&cputimer->lock, flags);
277 *times = cputimer->cputime;
278 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
279 }
280
281 /*
282 * Sample a process (thread group) clock for the given group_leader task.
283 * Must be called with tasklist_lock held for reading.
284 */
285 static int cpu_clock_sample_group(const clockid_t which_clock,
286 struct task_struct *p,
287 union cpu_time_count *cpu)
288 {
289 struct task_cputime cputime;
290
291 switch (CPUCLOCK_WHICH(which_clock)) {
292 default:
293 return -EINVAL;
294 case CPUCLOCK_PROF:
295 thread_group_cputime(p, &cputime);
296 cpu->cpu = cputime.utime + cputime.stime;
297 break;
298 case CPUCLOCK_VIRT:
299 thread_group_cputime(p, &cputime);
300 cpu->cpu = cputime.utime;
301 break;
302 case CPUCLOCK_SCHED:
303 thread_group_cputime(p, &cputime);
304 cpu->sched = cputime.sum_exec_runtime;
305 break;
306 }
307 return 0;
308 }
309
310
311 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
312 {
313 const pid_t pid = CPUCLOCK_PID(which_clock);
314 int error = -EINVAL;
315 union cpu_time_count rtn;
316
317 if (pid == 0) {
318 /*
319 * Special case constant value for our own clocks.
320 * We don't have to do any lookup to find ourselves.
321 */
322 if (CPUCLOCK_PERTHREAD(which_clock)) {
323 /*
324 * Sampling just ourselves we can do with no locking.
325 */
326 error = cpu_clock_sample(which_clock,
327 current, &rtn);
328 } else {
329 read_lock(&tasklist_lock);
330 error = cpu_clock_sample_group(which_clock,
331 current, &rtn);
332 read_unlock(&tasklist_lock);
333 }
334 } else {
335 /*
336 * Find the given PID, and validate that the caller
337 * should be able to see it.
338 */
339 struct task_struct *p;
340 rcu_read_lock();
341 p = find_task_by_vpid(pid);
342 if (p) {
343 if (CPUCLOCK_PERTHREAD(which_clock)) {
344 if (same_thread_group(p, current)) {
345 error = cpu_clock_sample(which_clock,
346 p, &rtn);
347 }
348 } else {
349 read_lock(&tasklist_lock);
350 if (thread_group_leader(p) && p->sighand) {
351 error =
352 cpu_clock_sample_group(which_clock,
353 p, &rtn);
354 }
355 read_unlock(&tasklist_lock);
356 }
357 }
358 rcu_read_unlock();
359 }
360
361 if (error)
362 return error;
363 sample_to_timespec(which_clock, rtn, tp);
364 return 0;
365 }
366
367
368 /*
369 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
370 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
371 * new timer already all-zeros initialized.
372 */
373 static int posix_cpu_timer_create(struct k_itimer *new_timer)
374 {
375 int ret = 0;
376 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
377 struct task_struct *p;
378
379 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
380 return -EINVAL;
381
382 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
383
384 rcu_read_lock();
385 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
386 if (pid == 0) {
387 p = current;
388 } else {
389 p = find_task_by_vpid(pid);
390 if (p && !same_thread_group(p, current))
391 p = NULL;
392 }
393 } else {
394 if (pid == 0) {
395 p = current->group_leader;
396 } else {
397 p = find_task_by_vpid(pid);
398 if (p && !has_group_leader_pid(p))
399 p = NULL;
400 }
401 }
402 new_timer->it.cpu.task = p;
403 if (p) {
404 get_task_struct(p);
405 } else {
406 ret = -EINVAL;
407 }
408 rcu_read_unlock();
409
410 return ret;
411 }
412
413 /*
414 * Clean up a CPU-clock timer that is about to be destroyed.
415 * This is called from timer deletion with the timer already locked.
416 * If we return TIMER_RETRY, it's necessary to release the timer's lock
417 * and try again. (This happens when the timer is in the middle of firing.)
418 */
419 static int posix_cpu_timer_del(struct k_itimer *timer)
420 {
421 struct task_struct *p = timer->it.cpu.task;
422 int ret = 0;
423
424 if (likely(p != NULL)) {
425 read_lock(&tasklist_lock);
426 if (unlikely(p->sighand == NULL)) {
427 /*
428 * We raced with the reaping of the task.
429 * The deletion should have cleared us off the list.
430 */
431 BUG_ON(!list_empty(&timer->it.cpu.entry));
432 } else {
433 spin_lock(&p->sighand->siglock);
434 if (timer->it.cpu.firing)
435 ret = TIMER_RETRY;
436 else
437 list_del(&timer->it.cpu.entry);
438 spin_unlock(&p->sighand->siglock);
439 }
440 read_unlock(&tasklist_lock);
441
442 if (!ret)
443 put_task_struct(p);
444 }
445
446 return ret;
447 }
448
449 /*
450 * Clean out CPU timers still ticking when a thread exited. The task
451 * pointer is cleared, and the expiry time is replaced with the residual
452 * time for later timer_gettime calls to return.
453 * This must be called with the siglock held.
454 */
455 static void cleanup_timers(struct list_head *head,
456 cputime_t utime, cputime_t stime,
457 unsigned long long sum_exec_runtime)
458 {
459 struct cpu_timer_list *timer, *next;
460 cputime_t ptime = utime + stime;
461
462 list_for_each_entry_safe(timer, next, head, entry) {
463 list_del_init(&timer->entry);
464 if (timer->expires.cpu < ptime) {
465 timer->expires.cpu = 0;
466 } else {
467 timer->expires.cpu -= ptime;
468 }
469 }
470
471 ++head;
472 list_for_each_entry_safe(timer, next, head, entry) {
473 list_del_init(&timer->entry);
474 if (timer->expires.cpu < utime) {
475 timer->expires.cpu = 0;
476 } else {
477 timer->expires.cpu -= utime;
478 }
479 }
480
481 ++head;
482 list_for_each_entry_safe(timer, next, head, entry) {
483 list_del_init(&timer->entry);
484 if (timer->expires.sched < sum_exec_runtime) {
485 timer->expires.sched = 0;
486 } else {
487 timer->expires.sched -= sum_exec_runtime;
488 }
489 }
490 }
491
492 /*
493 * These are both called with the siglock held, when the current thread
494 * is being reaped. When the final (leader) thread in the group is reaped,
495 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
496 */
497 void posix_cpu_timers_exit(struct task_struct *tsk)
498 {
499 cputime_t utime, stime;
500
501 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
502 sizeof(unsigned long long));
503 task_cputime(tsk, &utime, &stime);
504 cleanup_timers(tsk->cpu_timers,
505 utime, stime, tsk->se.sum_exec_runtime);
506
507 }
508 void posix_cpu_timers_exit_group(struct task_struct *tsk)
509 {
510 struct signal_struct *const sig = tsk->signal;
511 cputime_t utime, stime;
512
513 task_cputime(tsk, &utime, &stime);
514 cleanup_timers(tsk->signal->cpu_timers,
515 utime + sig->utime, stime + sig->stime,
516 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
517 }
518
519 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
520 {
521 /*
522 * That's all for this thread or process.
523 * We leave our residual in expires to be reported.
524 */
525 put_task_struct(timer->it.cpu.task);
526 timer->it.cpu.task = NULL;
527 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
528 timer->it.cpu.expires,
529 now);
530 }
531
532 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
533 {
534 return expires == 0 || expires > new_exp;
535 }
536
537 /*
538 * Insert the timer on the appropriate list before any timers that
539 * expire later. This must be called with the tasklist_lock held
540 * for reading, interrupts disabled and p->sighand->siglock taken.
541 */
542 static void arm_timer(struct k_itimer *timer)
543 {
544 struct task_struct *p = timer->it.cpu.task;
545 struct list_head *head, *listpos;
546 struct task_cputime *cputime_expires;
547 struct cpu_timer_list *const nt = &timer->it.cpu;
548 struct cpu_timer_list *next;
549
550 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
551 head = p->cpu_timers;
552 cputime_expires = &p->cputime_expires;
553 } else {
554 head = p->signal->cpu_timers;
555 cputime_expires = &p->signal->cputime_expires;
556 }
557 head += CPUCLOCK_WHICH(timer->it_clock);
558
559 listpos = head;
560 list_for_each_entry(next, head, entry) {
561 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
562 break;
563 listpos = &next->entry;
564 }
565 list_add(&nt->entry, listpos);
566
567 if (listpos == head) {
568 union cpu_time_count *exp = &nt->expires;
569
570 /*
571 * We are the new earliest-expiring POSIX 1.b timer, hence
572 * need to update expiration cache. Take into account that
573 * for process timers we share expiration cache with itimers
574 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
575 */
576
577 switch (CPUCLOCK_WHICH(timer->it_clock)) {
578 case CPUCLOCK_PROF:
579 if (expires_gt(cputime_expires->prof_exp, exp->cpu))
580 cputime_expires->prof_exp = exp->cpu;
581 break;
582 case CPUCLOCK_VIRT:
583 if (expires_gt(cputime_expires->virt_exp, exp->cpu))
584 cputime_expires->virt_exp = exp->cpu;
585 break;
586 case CPUCLOCK_SCHED:
587 if (cputime_expires->sched_exp == 0 ||
588 cputime_expires->sched_exp > exp->sched)
589 cputime_expires->sched_exp = exp->sched;
590 break;
591 }
592 }
593 }
594
595 /*
596 * The timer is locked, fire it and arrange for its reload.
597 */
598 static void cpu_timer_fire(struct k_itimer *timer)
599 {
600 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
601 /*
602 * User don't want any signal.
603 */
604 timer->it.cpu.expires.sched = 0;
605 } else if (unlikely(timer->sigq == NULL)) {
606 /*
607 * This a special case for clock_nanosleep,
608 * not a normal timer from sys_timer_create.
609 */
610 wake_up_process(timer->it_process);
611 timer->it.cpu.expires.sched = 0;
612 } else if (timer->it.cpu.incr.sched == 0) {
613 /*
614 * One-shot timer. Clear it as soon as it's fired.
615 */
616 posix_timer_event(timer, 0);
617 timer->it.cpu.expires.sched = 0;
618 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
619 /*
620 * The signal did not get queued because the signal
621 * was ignored, so we won't get any callback to
622 * reload the timer. But we need to keep it
623 * ticking in case the signal is deliverable next time.
624 */
625 posix_cpu_timer_schedule(timer);
626 }
627 }
628
629 /*
630 * Sample a process (thread group) timer for the given group_leader task.
631 * Must be called with tasklist_lock held for reading.
632 */
633 static int cpu_timer_sample_group(const clockid_t which_clock,
634 struct task_struct *p,
635 union cpu_time_count *cpu)
636 {
637 struct task_cputime cputime;
638
639 thread_group_cputimer(p, &cputime);
640 switch (CPUCLOCK_WHICH(which_clock)) {
641 default:
642 return -EINVAL;
643 case CPUCLOCK_PROF:
644 cpu->cpu = cputime.utime + cputime.stime;
645 break;
646 case CPUCLOCK_VIRT:
647 cpu->cpu = cputime.utime;
648 break;
649 case CPUCLOCK_SCHED:
650 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
651 break;
652 }
653 return 0;
654 }
655
656 #ifdef CONFIG_NO_HZ_FULL
657 static void nohz_kick_work_fn(struct work_struct *work)
658 {
659 tick_nohz_full_kick_all();
660 }
661
662 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
663
664 /*
665 * We need the IPIs to be sent from sane process context.
666 * The posix cpu timers are always set with irqs disabled.
667 */
668 static void posix_cpu_timer_kick_nohz(void)
669 {
670 schedule_work(&nohz_kick_work);
671 }
672
673 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
674 {
675 if (!task_cputime_zero(&tsk->cputime_expires))
676 return false;
677
678 if (tsk->signal->cputimer.running)
679 return false;
680
681 return true;
682 }
683 #else
684 static inline void posix_cpu_timer_kick_nohz(void) { }
685 #endif
686
687 /*
688 * Guts of sys_timer_settime for CPU timers.
689 * This is called with the timer locked and interrupts disabled.
690 * If we return TIMER_RETRY, it's necessary to release the timer's lock
691 * and try again. (This happens when the timer is in the middle of firing.)
692 */
693 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
694 struct itimerspec *new, struct itimerspec *old)
695 {
696 struct task_struct *p = timer->it.cpu.task;
697 union cpu_time_count old_expires, new_expires, old_incr, val;
698 int ret;
699
700 if (unlikely(p == NULL)) {
701 /*
702 * Timer refers to a dead task's clock.
703 */
704 return -ESRCH;
705 }
706
707 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
708
709 read_lock(&tasklist_lock);
710 /*
711 * We need the tasklist_lock to protect against reaping that
712 * clears p->sighand. If p has just been reaped, we can no
713 * longer get any information about it at all.
714 */
715 if (unlikely(p->sighand == NULL)) {
716 read_unlock(&tasklist_lock);
717 put_task_struct(p);
718 timer->it.cpu.task = NULL;
719 return -ESRCH;
720 }
721
722 /*
723 * Disarm any old timer after extracting its expiry time.
724 */
725 BUG_ON(!irqs_disabled());
726
727 ret = 0;
728 old_incr = timer->it.cpu.incr;
729 spin_lock(&p->sighand->siglock);
730 old_expires = timer->it.cpu.expires;
731 if (unlikely(timer->it.cpu.firing)) {
732 timer->it.cpu.firing = -1;
733 ret = TIMER_RETRY;
734 } else
735 list_del_init(&timer->it.cpu.entry);
736
737 /*
738 * We need to sample the current value to convert the new
739 * value from to relative and absolute, and to convert the
740 * old value from absolute to relative. To set a process
741 * timer, we need a sample to balance the thread expiry
742 * times (in arm_timer). With an absolute time, we must
743 * check if it's already passed. In short, we need a sample.
744 */
745 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
746 cpu_clock_sample(timer->it_clock, p, &val);
747 } else {
748 cpu_timer_sample_group(timer->it_clock, p, &val);
749 }
750
751 if (old) {
752 if (old_expires.sched == 0) {
753 old->it_value.tv_sec = 0;
754 old->it_value.tv_nsec = 0;
755 } else {
756 /*
757 * Update the timer in case it has
758 * overrun already. If it has,
759 * we'll report it as having overrun
760 * and with the next reloaded timer
761 * already ticking, though we are
762 * swallowing that pending
763 * notification here to install the
764 * new setting.
765 */
766 bump_cpu_timer(timer, val);
767 if (cpu_time_before(timer->it_clock, val,
768 timer->it.cpu.expires)) {
769 old_expires = cpu_time_sub(
770 timer->it_clock,
771 timer->it.cpu.expires, val);
772 sample_to_timespec(timer->it_clock,
773 old_expires,
774 &old->it_value);
775 } else {
776 old->it_value.tv_nsec = 1;
777 old->it_value.tv_sec = 0;
778 }
779 }
780 }
781
782 if (unlikely(ret)) {
783 /*
784 * We are colliding with the timer actually firing.
785 * Punt after filling in the timer's old value, and
786 * disable this firing since we are already reporting
787 * it as an overrun (thanks to bump_cpu_timer above).
788 */
789 spin_unlock(&p->sighand->siglock);
790 read_unlock(&tasklist_lock);
791 goto out;
792 }
793
794 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
795 cpu_time_add(timer->it_clock, &new_expires, val);
796 }
797
798 /*
799 * Install the new expiry time (or zero).
800 * For a timer with no notification action, we don't actually
801 * arm the timer (we'll just fake it for timer_gettime).
802 */
803 timer->it.cpu.expires = new_expires;
804 if (new_expires.sched != 0 &&
805 cpu_time_before(timer->it_clock, val, new_expires)) {
806 arm_timer(timer);
807 }
808
809 spin_unlock(&p->sighand->siglock);
810 read_unlock(&tasklist_lock);
811
812 /*
813 * Install the new reload setting, and
814 * set up the signal and overrun bookkeeping.
815 */
816 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
817 &new->it_interval);
818
819 /*
820 * This acts as a modification timestamp for the timer,
821 * so any automatic reload attempt will punt on seeing
822 * that we have reset the timer manually.
823 */
824 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
825 ~REQUEUE_PENDING;
826 timer->it_overrun_last = 0;
827 timer->it_overrun = -1;
828
829 if (new_expires.sched != 0 &&
830 !cpu_time_before(timer->it_clock, val, new_expires)) {
831 /*
832 * The designated time already passed, so we notify
833 * immediately, even if the thread never runs to
834 * accumulate more time on this clock.
835 */
836 cpu_timer_fire(timer);
837 }
838
839 ret = 0;
840 out:
841 if (old) {
842 sample_to_timespec(timer->it_clock,
843 old_incr, &old->it_interval);
844 }
845 if (!ret)
846 posix_cpu_timer_kick_nohz();
847 return ret;
848 }
849
850 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
851 {
852 union cpu_time_count now;
853 struct task_struct *p = timer->it.cpu.task;
854 int clear_dead;
855
856 /*
857 * Easy part: convert the reload time.
858 */
859 sample_to_timespec(timer->it_clock,
860 timer->it.cpu.incr, &itp->it_interval);
861
862 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
863 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
864 return;
865 }
866
867 if (unlikely(p == NULL)) {
868 /*
869 * This task already died and the timer will never fire.
870 * In this case, expires is actually the dead value.
871 */
872 dead:
873 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
874 &itp->it_value);
875 return;
876 }
877
878 /*
879 * Sample the clock to take the difference with the expiry time.
880 */
881 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
882 cpu_clock_sample(timer->it_clock, p, &now);
883 clear_dead = p->exit_state;
884 } else {
885 read_lock(&tasklist_lock);
886 if (unlikely(p->sighand == NULL)) {
887 /*
888 * The process has been reaped.
889 * We can't even collect a sample any more.
890 * Call the timer disarmed, nothing else to do.
891 */
892 put_task_struct(p);
893 timer->it.cpu.task = NULL;
894 timer->it.cpu.expires.sched = 0;
895 read_unlock(&tasklist_lock);
896 goto dead;
897 } else {
898 cpu_timer_sample_group(timer->it_clock, p, &now);
899 clear_dead = (unlikely(p->exit_state) &&
900 thread_group_empty(p));
901 }
902 read_unlock(&tasklist_lock);
903 }
904
905 if (unlikely(clear_dead)) {
906 /*
907 * We've noticed that the thread is dead, but
908 * not yet reaped. Take this opportunity to
909 * drop our task ref.
910 */
911 clear_dead_task(timer, now);
912 goto dead;
913 }
914
915 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
916 sample_to_timespec(timer->it_clock,
917 cpu_time_sub(timer->it_clock,
918 timer->it.cpu.expires, now),
919 &itp->it_value);
920 } else {
921 /*
922 * The timer should have expired already, but the firing
923 * hasn't taken place yet. Say it's just about to expire.
924 */
925 itp->it_value.tv_nsec = 1;
926 itp->it_value.tv_sec = 0;
927 }
928 }
929
930 /*
931 * Check for any per-thread CPU timers that have fired and move them off
932 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
933 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
934 */
935 static void check_thread_timers(struct task_struct *tsk,
936 struct list_head *firing)
937 {
938 int maxfire;
939 struct list_head *timers = tsk->cpu_timers;
940 struct signal_struct *const sig = tsk->signal;
941 unsigned long soft;
942
943 maxfire = 20;
944 tsk->cputime_expires.prof_exp = 0;
945 while (!list_empty(timers)) {
946 struct cpu_timer_list *t = list_first_entry(timers,
947 struct cpu_timer_list,
948 entry);
949 if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
950 tsk->cputime_expires.prof_exp = t->expires.cpu;
951 break;
952 }
953 t->firing = 1;
954 list_move_tail(&t->entry, firing);
955 }
956
957 ++timers;
958 maxfire = 20;
959 tsk->cputime_expires.virt_exp = 0;
960 while (!list_empty(timers)) {
961 struct cpu_timer_list *t = list_first_entry(timers,
962 struct cpu_timer_list,
963 entry);
964 if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
965 tsk->cputime_expires.virt_exp = t->expires.cpu;
966 break;
967 }
968 t->firing = 1;
969 list_move_tail(&t->entry, firing);
970 }
971
972 ++timers;
973 maxfire = 20;
974 tsk->cputime_expires.sched_exp = 0;
975 while (!list_empty(timers)) {
976 struct cpu_timer_list *t = list_first_entry(timers,
977 struct cpu_timer_list,
978 entry);
979 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
980 tsk->cputime_expires.sched_exp = t->expires.sched;
981 break;
982 }
983 t->firing = 1;
984 list_move_tail(&t->entry, firing);
985 }
986
987 /*
988 * Check for the special case thread timers.
989 */
990 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
991 if (soft != RLIM_INFINITY) {
992 unsigned long hard =
993 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
994
995 if (hard != RLIM_INFINITY &&
996 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
997 /*
998 * At the hard limit, we just die.
999 * No need to calculate anything else now.
1000 */
1001 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1002 return;
1003 }
1004 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
1005 /*
1006 * At the soft limit, send a SIGXCPU every second.
1007 */
1008 if (soft < hard) {
1009 soft += USEC_PER_SEC;
1010 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
1011 }
1012 printk(KERN_INFO
1013 "RT Watchdog Timeout: %s[%d]\n",
1014 tsk->comm, task_pid_nr(tsk));
1015 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1016 }
1017 }
1018 }
1019
1020 static void stop_process_timers(struct signal_struct *sig)
1021 {
1022 struct thread_group_cputimer *cputimer = &sig->cputimer;
1023 unsigned long flags;
1024
1025 raw_spin_lock_irqsave(&cputimer->lock, flags);
1026 cputimer->running = 0;
1027 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
1028 }
1029
1030 static u32 onecputick;
1031
1032 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1033 cputime_t *expires, cputime_t cur_time, int signo)
1034 {
1035 if (!it->expires)
1036 return;
1037
1038 if (cur_time >= it->expires) {
1039 if (it->incr) {
1040 it->expires += it->incr;
1041 it->error += it->incr_error;
1042 if (it->error >= onecputick) {
1043 it->expires -= cputime_one_jiffy;
1044 it->error -= onecputick;
1045 }
1046 } else {
1047 it->expires = 0;
1048 }
1049
1050 trace_itimer_expire(signo == SIGPROF ?
1051 ITIMER_PROF : ITIMER_VIRTUAL,
1052 tsk->signal->leader_pid, cur_time);
1053 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1054 }
1055
1056 if (it->expires && (!*expires || it->expires < *expires)) {
1057 *expires = it->expires;
1058 }
1059 }
1060
1061 /*
1062 * Check for any per-thread CPU timers that have fired and move them
1063 * off the tsk->*_timers list onto the firing list. Per-thread timers
1064 * have already been taken off.
1065 */
1066 static void check_process_timers(struct task_struct *tsk,
1067 struct list_head *firing)
1068 {
1069 int maxfire;
1070 struct signal_struct *const sig = tsk->signal;
1071 cputime_t utime, ptime, virt_expires, prof_expires;
1072 unsigned long long sum_sched_runtime, sched_expires;
1073 struct list_head *timers = sig->cpu_timers;
1074 struct task_cputime cputime;
1075 unsigned long soft;
1076
1077 /*
1078 * Collect the current process totals.
1079 */
1080 thread_group_cputimer(tsk, &cputime);
1081 utime = cputime.utime;
1082 ptime = utime + cputime.stime;
1083 sum_sched_runtime = cputime.sum_exec_runtime;
1084 maxfire = 20;
1085 prof_expires = 0;
1086 while (!list_empty(timers)) {
1087 struct cpu_timer_list *tl = list_first_entry(timers,
1088 struct cpu_timer_list,
1089 entry);
1090 if (!--maxfire || ptime < tl->expires.cpu) {
1091 prof_expires = tl->expires.cpu;
1092 break;
1093 }
1094 tl->firing = 1;
1095 list_move_tail(&tl->entry, firing);
1096 }
1097
1098 ++timers;
1099 maxfire = 20;
1100 virt_expires = 0;
1101 while (!list_empty(timers)) {
1102 struct cpu_timer_list *tl = list_first_entry(timers,
1103 struct cpu_timer_list,
1104 entry);
1105 if (!--maxfire || utime < tl->expires.cpu) {
1106 virt_expires = tl->expires.cpu;
1107 break;
1108 }
1109 tl->firing = 1;
1110 list_move_tail(&tl->entry, firing);
1111 }
1112
1113 ++timers;
1114 maxfire = 20;
1115 sched_expires = 0;
1116 while (!list_empty(timers)) {
1117 struct cpu_timer_list *tl = list_first_entry(timers,
1118 struct cpu_timer_list,
1119 entry);
1120 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1121 sched_expires = tl->expires.sched;
1122 break;
1123 }
1124 tl->firing = 1;
1125 list_move_tail(&tl->entry, firing);
1126 }
1127
1128 /*
1129 * Check for the special case process timers.
1130 */
1131 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1132 SIGPROF);
1133 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1134 SIGVTALRM);
1135 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1136 if (soft != RLIM_INFINITY) {
1137 unsigned long psecs = cputime_to_secs(ptime);
1138 unsigned long hard =
1139 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1140 cputime_t x;
1141 if (psecs >= hard) {
1142 /*
1143 * At the hard limit, we just die.
1144 * No need to calculate anything else now.
1145 */
1146 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1147 return;
1148 }
1149 if (psecs >= soft) {
1150 /*
1151 * At the soft limit, send a SIGXCPU every second.
1152 */
1153 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1154 if (soft < hard) {
1155 soft++;
1156 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1157 }
1158 }
1159 x = secs_to_cputime(soft);
1160 if (!prof_expires || x < prof_expires) {
1161 prof_expires = x;
1162 }
1163 }
1164
1165 sig->cputime_expires.prof_exp = prof_expires;
1166 sig->cputime_expires.virt_exp = virt_expires;
1167 sig->cputime_expires.sched_exp = sched_expires;
1168 if (task_cputime_zero(&sig->cputime_expires))
1169 stop_process_timers(sig);
1170 }
1171
1172 /*
1173 * This is called from the signal code (via do_schedule_next_timer)
1174 * when the last timer signal was delivered and we have to reload the timer.
1175 */
1176 void posix_cpu_timer_schedule(struct k_itimer *timer)
1177 {
1178 struct task_struct *p = timer->it.cpu.task;
1179 union cpu_time_count now;
1180
1181 if (unlikely(p == NULL))
1182 /*
1183 * The task was cleaned up already, no future firings.
1184 */
1185 goto out;
1186
1187 /*
1188 * Fetch the current sample and update the timer's expiry time.
1189 */
1190 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1191 cpu_clock_sample(timer->it_clock, p, &now);
1192 bump_cpu_timer(timer, now);
1193 if (unlikely(p->exit_state)) {
1194 clear_dead_task(timer, now);
1195 goto out;
1196 }
1197 read_lock(&tasklist_lock); /* arm_timer needs it. */
1198 spin_lock(&p->sighand->siglock);
1199 } else {
1200 read_lock(&tasklist_lock);
1201 if (unlikely(p->sighand == NULL)) {
1202 /*
1203 * The process has been reaped.
1204 * We can't even collect a sample any more.
1205 */
1206 put_task_struct(p);
1207 timer->it.cpu.task = p = NULL;
1208 timer->it.cpu.expires.sched = 0;
1209 goto out_unlock;
1210 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1211 /*
1212 * We've noticed that the thread is dead, but
1213 * not yet reaped. Take this opportunity to
1214 * drop our task ref.
1215 */
1216 clear_dead_task(timer, now);
1217 goto out_unlock;
1218 }
1219 spin_lock(&p->sighand->siglock);
1220 cpu_timer_sample_group(timer->it_clock, p, &now);
1221 bump_cpu_timer(timer, now);
1222 /* Leave the tasklist_lock locked for the call below. */
1223 }
1224
1225 /*
1226 * Now re-arm for the new expiry time.
1227 */
1228 BUG_ON(!irqs_disabled());
1229 arm_timer(timer);
1230 spin_unlock(&p->sighand->siglock);
1231
1232 out_unlock:
1233 read_unlock(&tasklist_lock);
1234
1235 out:
1236 timer->it_overrun_last = timer->it_overrun;
1237 timer->it_overrun = -1;
1238 ++timer->it_requeue_pending;
1239 }
1240
1241 /**
1242 * task_cputime_expired - Compare two task_cputime entities.
1243 *
1244 * @sample: The task_cputime structure to be checked for expiration.
1245 * @expires: Expiration times, against which @sample will be checked.
1246 *
1247 * Checks @sample against @expires to see if any field of @sample has expired.
1248 * Returns true if any field of the former is greater than the corresponding
1249 * field of the latter if the latter field is set. Otherwise returns false.
1250 */
1251 static inline int task_cputime_expired(const struct task_cputime *sample,
1252 const struct task_cputime *expires)
1253 {
1254 if (expires->utime && sample->utime >= expires->utime)
1255 return 1;
1256 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1257 return 1;
1258 if (expires->sum_exec_runtime != 0 &&
1259 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1260 return 1;
1261 return 0;
1262 }
1263
1264 /**
1265 * fastpath_timer_check - POSIX CPU timers fast path.
1266 *
1267 * @tsk: The task (thread) being checked.
1268 *
1269 * Check the task and thread group timers. If both are zero (there are no
1270 * timers set) return false. Otherwise snapshot the task and thread group
1271 * timers and compare them with the corresponding expiration times. Return
1272 * true if a timer has expired, else return false.
1273 */
1274 static inline int fastpath_timer_check(struct task_struct *tsk)
1275 {
1276 struct signal_struct *sig;
1277 cputime_t utime, stime;
1278
1279 task_cputime(tsk, &utime, &stime);
1280
1281 if (!task_cputime_zero(&tsk->cputime_expires)) {
1282 struct task_cputime task_sample = {
1283 .utime = utime,
1284 .stime = stime,
1285 .sum_exec_runtime = tsk->se.sum_exec_runtime
1286 };
1287
1288 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1289 return 1;
1290 }
1291
1292 sig = tsk->signal;
1293 if (sig->cputimer.running) {
1294 struct task_cputime group_sample;
1295
1296 raw_spin_lock(&sig->cputimer.lock);
1297 group_sample = sig->cputimer.cputime;
1298 raw_spin_unlock(&sig->cputimer.lock);
1299
1300 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1301 return 1;
1302 }
1303
1304 return 0;
1305 }
1306
1307 /*
1308 * This is called from the timer interrupt handler. The irq handler has
1309 * already updated our counts. We need to check if any timers fire now.
1310 * Interrupts are disabled.
1311 */
1312 void run_posix_cpu_timers(struct task_struct *tsk)
1313 {
1314 LIST_HEAD(firing);
1315 struct k_itimer *timer, *next;
1316 unsigned long flags;
1317
1318 BUG_ON(!irqs_disabled());
1319
1320 /*
1321 * The fast path checks that there are no expired thread or thread
1322 * group timers. If that's so, just return.
1323 */
1324 if (!fastpath_timer_check(tsk))
1325 return;
1326
1327 if (!lock_task_sighand(tsk, &flags))
1328 return;
1329 /*
1330 * Here we take off tsk->signal->cpu_timers[N] and
1331 * tsk->cpu_timers[N] all the timers that are firing, and
1332 * put them on the firing list.
1333 */
1334 check_thread_timers(tsk, &firing);
1335 /*
1336 * If there are any active process wide timers (POSIX 1.b, itimers,
1337 * RLIMIT_CPU) cputimer must be running.
1338 */
1339 if (tsk->signal->cputimer.running)
1340 check_process_timers(tsk, &firing);
1341
1342 /*
1343 * We must release these locks before taking any timer's lock.
1344 * There is a potential race with timer deletion here, as the
1345 * siglock now protects our private firing list. We have set
1346 * the firing flag in each timer, so that a deletion attempt
1347 * that gets the timer lock before we do will give it up and
1348 * spin until we've taken care of that timer below.
1349 */
1350 unlock_task_sighand(tsk, &flags);
1351
1352 /*
1353 * Now that all the timers on our list have the firing flag,
1354 * no one will touch their list entries but us. We'll take
1355 * each timer's lock before clearing its firing flag, so no
1356 * timer call will interfere.
1357 */
1358 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1359 int cpu_firing;
1360
1361 spin_lock(&timer->it_lock);
1362 list_del_init(&timer->it.cpu.entry);
1363 cpu_firing = timer->it.cpu.firing;
1364 timer->it.cpu.firing = 0;
1365 /*
1366 * The firing flag is -1 if we collided with a reset
1367 * of the timer, which already reported this
1368 * almost-firing as an overrun. So don't generate an event.
1369 */
1370 if (likely(cpu_firing >= 0))
1371 cpu_timer_fire(timer);
1372 spin_unlock(&timer->it_lock);
1373 }
1374
1375 /*
1376 * In case some timers were rescheduled after the queue got emptied,
1377 * wake up full dynticks CPUs.
1378 */
1379 if (tsk->signal->cputimer.running)
1380 posix_cpu_timer_kick_nohz();
1381 }
1382
1383 /*
1384 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1385 * The tsk->sighand->siglock must be held by the caller.
1386 */
1387 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1388 cputime_t *newval, cputime_t *oldval)
1389 {
1390 union cpu_time_count now;
1391
1392 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1393 cpu_timer_sample_group(clock_idx, tsk, &now);
1394
1395 if (oldval) {
1396 /*
1397 * We are setting itimer. The *oldval is absolute and we update
1398 * it to be relative, *newval argument is relative and we update
1399 * it to be absolute.
1400 */
1401 if (*oldval) {
1402 if (*oldval <= now.cpu) {
1403 /* Just about to fire. */
1404 *oldval = cputime_one_jiffy;
1405 } else {
1406 *oldval -= now.cpu;
1407 }
1408 }
1409
1410 if (!*newval)
1411 goto out;
1412 *newval += now.cpu;
1413 }
1414
1415 /*
1416 * Update expiration cache if we are the earliest timer, or eventually
1417 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1418 */
1419 switch (clock_idx) {
1420 case CPUCLOCK_PROF:
1421 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1422 tsk->signal->cputime_expires.prof_exp = *newval;
1423 break;
1424 case CPUCLOCK_VIRT:
1425 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1426 tsk->signal->cputime_expires.virt_exp = *newval;
1427 break;
1428 }
1429 out:
1430 posix_cpu_timer_kick_nohz();
1431 }
1432
1433 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1434 struct timespec *rqtp, struct itimerspec *it)
1435 {
1436 struct k_itimer timer;
1437 int error;
1438
1439 /*
1440 * Set up a temporary timer and then wait for it to go off.
1441 */
1442 memset(&timer, 0, sizeof timer);
1443 spin_lock_init(&timer.it_lock);
1444 timer.it_clock = which_clock;
1445 timer.it_overrun = -1;
1446 error = posix_cpu_timer_create(&timer);
1447 timer.it_process = current;
1448 if (!error) {
1449 static struct itimerspec zero_it;
1450
1451 memset(it, 0, sizeof *it);
1452 it->it_value = *rqtp;
1453
1454 spin_lock_irq(&timer.it_lock);
1455 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1456 if (error) {
1457 spin_unlock_irq(&timer.it_lock);
1458 return error;
1459 }
1460
1461 while (!signal_pending(current)) {
1462 if (timer.it.cpu.expires.sched == 0) {
1463 /*
1464 * Our timer fired and was reset, below
1465 * deletion can not fail.
1466 */
1467 posix_cpu_timer_del(&timer);
1468 spin_unlock_irq(&timer.it_lock);
1469 return 0;
1470 }
1471
1472 /*
1473 * Block until cpu_timer_fire (or a signal) wakes us.
1474 */
1475 __set_current_state(TASK_INTERRUPTIBLE);
1476 spin_unlock_irq(&timer.it_lock);
1477 schedule();
1478 spin_lock_irq(&timer.it_lock);
1479 }
1480
1481 /*
1482 * We were interrupted by a signal.
1483 */
1484 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1485 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1486 if (!error) {
1487 /*
1488 * Timer is now unarmed, deletion can not fail.
1489 */
1490 posix_cpu_timer_del(&timer);
1491 }
1492 spin_unlock_irq(&timer.it_lock);
1493
1494 while (error == TIMER_RETRY) {
1495 /*
1496 * We need to handle case when timer was or is in the
1497 * middle of firing. In other cases we already freed
1498 * resources.
1499 */
1500 spin_lock_irq(&timer.it_lock);
1501 error = posix_cpu_timer_del(&timer);
1502 spin_unlock_irq(&timer.it_lock);
1503 }
1504
1505 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1506 /*
1507 * It actually did fire already.
1508 */
1509 return 0;
1510 }
1511
1512 error = -ERESTART_RESTARTBLOCK;
1513 }
1514
1515 return error;
1516 }
1517
1518 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1519
1520 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1521 struct timespec *rqtp, struct timespec __user *rmtp)
1522 {
1523 struct restart_block *restart_block =
1524 &current_thread_info()->restart_block;
1525 struct itimerspec it;
1526 int error;
1527
1528 /*
1529 * Diagnose required errors first.
1530 */
1531 if (CPUCLOCK_PERTHREAD(which_clock) &&
1532 (CPUCLOCK_PID(which_clock) == 0 ||
1533 CPUCLOCK_PID(which_clock) == current->pid))
1534 return -EINVAL;
1535
1536 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1537
1538 if (error == -ERESTART_RESTARTBLOCK) {
1539
1540 if (flags & TIMER_ABSTIME)
1541 return -ERESTARTNOHAND;
1542 /*
1543 * Report back to the user the time still remaining.
1544 */
1545 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1546 return -EFAULT;
1547
1548 restart_block->fn = posix_cpu_nsleep_restart;
1549 restart_block->nanosleep.clockid = which_clock;
1550 restart_block->nanosleep.rmtp = rmtp;
1551 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1552 }
1553 return error;
1554 }
1555
1556 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1557 {
1558 clockid_t which_clock = restart_block->nanosleep.clockid;
1559 struct timespec t;
1560 struct itimerspec it;
1561 int error;
1562
1563 t = ns_to_timespec(restart_block->nanosleep.expires);
1564
1565 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1566
1567 if (error == -ERESTART_RESTARTBLOCK) {
1568 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1569 /*
1570 * Report back to the user the time still remaining.
1571 */
1572 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1573 return -EFAULT;
1574
1575 restart_block->nanosleep.expires = timespec_to_ns(&t);
1576 }
1577 return error;
1578
1579 }
1580
1581 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1582 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1583
1584 static int process_cpu_clock_getres(const clockid_t which_clock,
1585 struct timespec *tp)
1586 {
1587 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1588 }
1589 static int process_cpu_clock_get(const clockid_t which_clock,
1590 struct timespec *tp)
1591 {
1592 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1593 }
1594 static int process_cpu_timer_create(struct k_itimer *timer)
1595 {
1596 timer->it_clock = PROCESS_CLOCK;
1597 return posix_cpu_timer_create(timer);
1598 }
1599 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1600 struct timespec *rqtp,
1601 struct timespec __user *rmtp)
1602 {
1603 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1604 }
1605 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1606 {
1607 return -EINVAL;
1608 }
1609 static int thread_cpu_clock_getres(const clockid_t which_clock,
1610 struct timespec *tp)
1611 {
1612 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1613 }
1614 static int thread_cpu_clock_get(const clockid_t which_clock,
1615 struct timespec *tp)
1616 {
1617 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1618 }
1619 static int thread_cpu_timer_create(struct k_itimer *timer)
1620 {
1621 timer->it_clock = THREAD_CLOCK;
1622 return posix_cpu_timer_create(timer);
1623 }
1624
1625 struct k_clock clock_posix_cpu = {
1626 .clock_getres = posix_cpu_clock_getres,
1627 .clock_set = posix_cpu_clock_set,
1628 .clock_get = posix_cpu_clock_get,
1629 .timer_create = posix_cpu_timer_create,
1630 .nsleep = posix_cpu_nsleep,
1631 .nsleep_restart = posix_cpu_nsleep_restart,
1632 .timer_set = posix_cpu_timer_set,
1633 .timer_del = posix_cpu_timer_del,
1634 .timer_get = posix_cpu_timer_get,
1635 };
1636
1637 static __init int init_posix_cpu_timers(void)
1638 {
1639 struct k_clock process = {
1640 .clock_getres = process_cpu_clock_getres,
1641 .clock_get = process_cpu_clock_get,
1642 .timer_create = process_cpu_timer_create,
1643 .nsleep = process_cpu_nsleep,
1644 .nsleep_restart = process_cpu_nsleep_restart,
1645 };
1646 struct k_clock thread = {
1647 .clock_getres = thread_cpu_clock_getres,
1648 .clock_get = thread_cpu_clock_get,
1649 .timer_create = thread_cpu_timer_create,
1650 };
1651 struct timespec ts;
1652
1653 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1654 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1655
1656 cputime_to_timespec(cputime_one_jiffy, &ts);
1657 onecputick = ts.tv_nsec;
1658 WARN_ON(ts.tv_sec != 0);
1659
1660 return 0;
1661 }
1662 __initcall(init_posix_cpu_timers);