2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
22 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
24 cputime_t cputime
= secs_to_cputime(rlim_new
);
26 spin_lock_irq(&task
->sighand
->siglock
);
27 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &cputime
, NULL
);
28 spin_unlock_irq(&task
->sighand
->siglock
);
31 static int check_clock(const clockid_t which_clock
)
34 struct task_struct
*p
;
35 const pid_t pid
= CPUCLOCK_PID(which_clock
);
37 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
44 p
= find_task_by_vpid(pid
);
45 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
46 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
54 static inline union cpu_time_count
55 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
57 union cpu_time_count ret
;
58 ret
.sched
= 0; /* high half always zero when .cpu used */
59 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
60 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
62 ret
.cpu
= timespec_to_cputime(tp
);
67 static void sample_to_timespec(const clockid_t which_clock
,
68 union cpu_time_count cpu
,
71 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
72 *tp
= ns_to_timespec(cpu
.sched
);
74 cputime_to_timespec(cpu
.cpu
, tp
);
77 static inline int cpu_time_before(const clockid_t which_clock
,
78 union cpu_time_count now
,
79 union cpu_time_count then
)
81 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
82 return now
.sched
< then
.sched
;
84 return now
.cpu
< then
.cpu
;
87 static inline void cpu_time_add(const clockid_t which_clock
,
88 union cpu_time_count
*acc
,
89 union cpu_time_count val
)
91 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
92 acc
->sched
+= val
.sched
;
97 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
98 union cpu_time_count a
,
99 union cpu_time_count b
)
101 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
110 * Update expiry time from increment, and increase overrun count,
111 * given the current clock sample.
113 static void bump_cpu_timer(struct k_itimer
*timer
,
114 union cpu_time_count now
)
118 if (timer
->it
.cpu
.incr
.sched
== 0)
121 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
122 unsigned long long delta
, incr
;
124 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
126 incr
= timer
->it
.cpu
.incr
.sched
;
127 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
128 /* Don't use (incr*2 < delta), incr*2 might overflow. */
129 for (i
= 0; incr
< delta
- incr
; i
++)
131 for (; i
>= 0; incr
>>= 1, i
--) {
134 timer
->it
.cpu
.expires
.sched
+= incr
;
135 timer
->it_overrun
+= 1 << i
;
139 cputime_t delta
, incr
;
141 if (now
.cpu
< timer
->it
.cpu
.expires
.cpu
)
143 incr
= timer
->it
.cpu
.incr
.cpu
;
144 delta
= now
.cpu
+ incr
- timer
->it
.cpu
.expires
.cpu
;
145 /* Don't use (incr*2 < delta), incr*2 might overflow. */
146 for (i
= 0; incr
< delta
- incr
; i
++)
148 for (; i
>= 0; incr
= incr
>> 1, i
--) {
151 timer
->it
.cpu
.expires
.cpu
+= incr
;
152 timer
->it_overrun
+= 1 << i
;
159 * task_cputime_zero - Check a task_cputime struct for all zero fields.
161 * @cputime: The struct to compare.
163 * Checks @cputime to see if all fields are zero. Returns true if all fields
164 * are zero, false if any field is nonzero.
166 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
168 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
173 static inline cputime_t
prof_ticks(struct task_struct
*p
)
175 cputime_t utime
, stime
;
177 task_cputime(p
, &utime
, &stime
);
179 return utime
+ stime
;
181 static inline cputime_t
virt_ticks(struct task_struct
*p
)
185 task_cputime(p
, &utime
, NULL
);
191 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
193 int error
= check_clock(which_clock
);
196 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
197 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
199 * If sched_clock is using a cycle counter, we
200 * don't have any idea of its true resolution
201 * exported, but it is much more than 1s/HZ.
210 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
213 * You can never reset a CPU clock, but we check for other errors
214 * in the call before failing with EPERM.
216 int error
= check_clock(which_clock
);
225 * Sample a per-thread clock for the given task.
227 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
228 union cpu_time_count
*cpu
)
230 switch (CPUCLOCK_WHICH(which_clock
)) {
234 cpu
->cpu
= prof_ticks(p
);
237 cpu
->cpu
= virt_ticks(p
);
240 cpu
->sched
= task_sched_runtime(p
);
246 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
248 if (b
->utime
> a
->utime
)
251 if (b
->stime
> a
->stime
)
254 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
255 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
258 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
260 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
261 struct task_cputime sum
;
264 if (!cputimer
->running
) {
266 * The POSIX timer interface allows for absolute time expiry
267 * values through the TIMER_ABSTIME flag, therefore we have
268 * to synchronize the timer to the clock every time we start
271 thread_group_cputime(tsk
, &sum
);
272 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
273 cputimer
->running
= 1;
274 update_gt_cputime(&cputimer
->cputime
, &sum
);
276 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
277 *times
= cputimer
->cputime
;
278 raw_spin_unlock_irqrestore(&cputimer
->lock
, flags
);
282 * Sample a process (thread group) clock for the given group_leader task.
283 * Must be called with tasklist_lock held for reading.
285 static int cpu_clock_sample_group(const clockid_t which_clock
,
286 struct task_struct
*p
,
287 union cpu_time_count
*cpu
)
289 struct task_cputime cputime
;
291 switch (CPUCLOCK_WHICH(which_clock
)) {
295 thread_group_cputime(p
, &cputime
);
296 cpu
->cpu
= cputime
.utime
+ cputime
.stime
;
299 thread_group_cputime(p
, &cputime
);
300 cpu
->cpu
= cputime
.utime
;
303 thread_group_cputime(p
, &cputime
);
304 cpu
->sched
= cputime
.sum_exec_runtime
;
311 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
313 const pid_t pid
= CPUCLOCK_PID(which_clock
);
315 union cpu_time_count rtn
;
319 * Special case constant value for our own clocks.
320 * We don't have to do any lookup to find ourselves.
322 if (CPUCLOCK_PERTHREAD(which_clock
)) {
324 * Sampling just ourselves we can do with no locking.
326 error
= cpu_clock_sample(which_clock
,
329 read_lock(&tasklist_lock
);
330 error
= cpu_clock_sample_group(which_clock
,
332 read_unlock(&tasklist_lock
);
336 * Find the given PID, and validate that the caller
337 * should be able to see it.
339 struct task_struct
*p
;
341 p
= find_task_by_vpid(pid
);
343 if (CPUCLOCK_PERTHREAD(which_clock
)) {
344 if (same_thread_group(p
, current
)) {
345 error
= cpu_clock_sample(which_clock
,
349 read_lock(&tasklist_lock
);
350 if (thread_group_leader(p
) && p
->sighand
) {
352 cpu_clock_sample_group(which_clock
,
355 read_unlock(&tasklist_lock
);
363 sample_to_timespec(which_clock
, rtn
, tp
);
369 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
370 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
371 * new timer already all-zeros initialized.
373 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
376 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
377 struct task_struct
*p
;
379 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
382 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
385 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
389 p
= find_task_by_vpid(pid
);
390 if (p
&& !same_thread_group(p
, current
))
395 p
= current
->group_leader
;
397 p
= find_task_by_vpid(pid
);
398 if (p
&& !has_group_leader_pid(p
))
402 new_timer
->it
.cpu
.task
= p
;
414 * Clean up a CPU-clock timer that is about to be destroyed.
415 * This is called from timer deletion with the timer already locked.
416 * If we return TIMER_RETRY, it's necessary to release the timer's lock
417 * and try again. (This happens when the timer is in the middle of firing.)
419 static int posix_cpu_timer_del(struct k_itimer
*timer
)
421 struct task_struct
*p
= timer
->it
.cpu
.task
;
424 if (likely(p
!= NULL
)) {
425 read_lock(&tasklist_lock
);
426 if (unlikely(p
->sighand
== NULL
)) {
428 * We raced with the reaping of the task.
429 * The deletion should have cleared us off the list.
431 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
433 spin_lock(&p
->sighand
->siglock
);
434 if (timer
->it
.cpu
.firing
)
437 list_del(&timer
->it
.cpu
.entry
);
438 spin_unlock(&p
->sighand
->siglock
);
440 read_unlock(&tasklist_lock
);
450 * Clean out CPU timers still ticking when a thread exited. The task
451 * pointer is cleared, and the expiry time is replaced with the residual
452 * time for later timer_gettime calls to return.
453 * This must be called with the siglock held.
455 static void cleanup_timers(struct list_head
*head
,
456 cputime_t utime
, cputime_t stime
,
457 unsigned long long sum_exec_runtime
)
459 struct cpu_timer_list
*timer
, *next
;
460 cputime_t ptime
= utime
+ stime
;
462 list_for_each_entry_safe(timer
, next
, head
, entry
) {
463 list_del_init(&timer
->entry
);
464 if (timer
->expires
.cpu
< ptime
) {
465 timer
->expires
.cpu
= 0;
467 timer
->expires
.cpu
-= ptime
;
472 list_for_each_entry_safe(timer
, next
, head
, entry
) {
473 list_del_init(&timer
->entry
);
474 if (timer
->expires
.cpu
< utime
) {
475 timer
->expires
.cpu
= 0;
477 timer
->expires
.cpu
-= utime
;
482 list_for_each_entry_safe(timer
, next
, head
, entry
) {
483 list_del_init(&timer
->entry
);
484 if (timer
->expires
.sched
< sum_exec_runtime
) {
485 timer
->expires
.sched
= 0;
487 timer
->expires
.sched
-= sum_exec_runtime
;
493 * These are both called with the siglock held, when the current thread
494 * is being reaped. When the final (leader) thread in the group is reaped,
495 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
497 void posix_cpu_timers_exit(struct task_struct
*tsk
)
499 cputime_t utime
, stime
;
501 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
502 sizeof(unsigned long long));
503 task_cputime(tsk
, &utime
, &stime
);
504 cleanup_timers(tsk
->cpu_timers
,
505 utime
, stime
, tsk
->se
.sum_exec_runtime
);
508 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
510 struct signal_struct
*const sig
= tsk
->signal
;
511 cputime_t utime
, stime
;
513 task_cputime(tsk
, &utime
, &stime
);
514 cleanup_timers(tsk
->signal
->cpu_timers
,
515 utime
+ sig
->utime
, stime
+ sig
->stime
,
516 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
519 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
522 * That's all for this thread or process.
523 * We leave our residual in expires to be reported.
525 put_task_struct(timer
->it
.cpu
.task
);
526 timer
->it
.cpu
.task
= NULL
;
527 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
528 timer
->it
.cpu
.expires
,
532 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
534 return expires
== 0 || expires
> new_exp
;
538 * Insert the timer on the appropriate list before any timers that
539 * expire later. This must be called with the tasklist_lock held
540 * for reading, interrupts disabled and p->sighand->siglock taken.
542 static void arm_timer(struct k_itimer
*timer
)
544 struct task_struct
*p
= timer
->it
.cpu
.task
;
545 struct list_head
*head
, *listpos
;
546 struct task_cputime
*cputime_expires
;
547 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
548 struct cpu_timer_list
*next
;
550 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
551 head
= p
->cpu_timers
;
552 cputime_expires
= &p
->cputime_expires
;
554 head
= p
->signal
->cpu_timers
;
555 cputime_expires
= &p
->signal
->cputime_expires
;
557 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
560 list_for_each_entry(next
, head
, entry
) {
561 if (cpu_time_before(timer
->it_clock
, nt
->expires
, next
->expires
))
563 listpos
= &next
->entry
;
565 list_add(&nt
->entry
, listpos
);
567 if (listpos
== head
) {
568 union cpu_time_count
*exp
= &nt
->expires
;
571 * We are the new earliest-expiring POSIX 1.b timer, hence
572 * need to update expiration cache. Take into account that
573 * for process timers we share expiration cache with itimers
574 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
577 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
579 if (expires_gt(cputime_expires
->prof_exp
, exp
->cpu
))
580 cputime_expires
->prof_exp
= exp
->cpu
;
583 if (expires_gt(cputime_expires
->virt_exp
, exp
->cpu
))
584 cputime_expires
->virt_exp
= exp
->cpu
;
587 if (cputime_expires
->sched_exp
== 0 ||
588 cputime_expires
->sched_exp
> exp
->sched
)
589 cputime_expires
->sched_exp
= exp
->sched
;
596 * The timer is locked, fire it and arrange for its reload.
598 static void cpu_timer_fire(struct k_itimer
*timer
)
600 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
602 * User don't want any signal.
604 timer
->it
.cpu
.expires
.sched
= 0;
605 } else if (unlikely(timer
->sigq
== NULL
)) {
607 * This a special case for clock_nanosleep,
608 * not a normal timer from sys_timer_create.
610 wake_up_process(timer
->it_process
);
611 timer
->it
.cpu
.expires
.sched
= 0;
612 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
614 * One-shot timer. Clear it as soon as it's fired.
616 posix_timer_event(timer
, 0);
617 timer
->it
.cpu
.expires
.sched
= 0;
618 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
620 * The signal did not get queued because the signal
621 * was ignored, so we won't get any callback to
622 * reload the timer. But we need to keep it
623 * ticking in case the signal is deliverable next time.
625 posix_cpu_timer_schedule(timer
);
630 * Sample a process (thread group) timer for the given group_leader task.
631 * Must be called with tasklist_lock held for reading.
633 static int cpu_timer_sample_group(const clockid_t which_clock
,
634 struct task_struct
*p
,
635 union cpu_time_count
*cpu
)
637 struct task_cputime cputime
;
639 thread_group_cputimer(p
, &cputime
);
640 switch (CPUCLOCK_WHICH(which_clock
)) {
644 cpu
->cpu
= cputime
.utime
+ cputime
.stime
;
647 cpu
->cpu
= cputime
.utime
;
650 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
656 #ifdef CONFIG_NO_HZ_FULL
657 static void nohz_kick_work_fn(struct work_struct
*work
)
659 tick_nohz_full_kick_all();
662 static DECLARE_WORK(nohz_kick_work
, nohz_kick_work_fn
);
665 * We need the IPIs to be sent from sane process context.
666 * The posix cpu timers are always set with irqs disabled.
668 static void posix_cpu_timer_kick_nohz(void)
670 schedule_work(&nohz_kick_work
);
673 bool posix_cpu_timers_can_stop_tick(struct task_struct
*tsk
)
675 if (!task_cputime_zero(&tsk
->cputime_expires
))
678 if (tsk
->signal
->cputimer
.running
)
684 static inline void posix_cpu_timer_kick_nohz(void) { }
688 * Guts of sys_timer_settime for CPU timers.
689 * This is called with the timer locked and interrupts disabled.
690 * If we return TIMER_RETRY, it's necessary to release the timer's lock
691 * and try again. (This happens when the timer is in the middle of firing.)
693 static int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
694 struct itimerspec
*new, struct itimerspec
*old
)
696 struct task_struct
*p
= timer
->it
.cpu
.task
;
697 union cpu_time_count old_expires
, new_expires
, old_incr
, val
;
700 if (unlikely(p
== NULL
)) {
702 * Timer refers to a dead task's clock.
707 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
709 read_lock(&tasklist_lock
);
711 * We need the tasklist_lock to protect against reaping that
712 * clears p->sighand. If p has just been reaped, we can no
713 * longer get any information about it at all.
715 if (unlikely(p
->sighand
== NULL
)) {
716 read_unlock(&tasklist_lock
);
718 timer
->it
.cpu
.task
= NULL
;
723 * Disarm any old timer after extracting its expiry time.
725 BUG_ON(!irqs_disabled());
728 old_incr
= timer
->it
.cpu
.incr
;
729 spin_lock(&p
->sighand
->siglock
);
730 old_expires
= timer
->it
.cpu
.expires
;
731 if (unlikely(timer
->it
.cpu
.firing
)) {
732 timer
->it
.cpu
.firing
= -1;
735 list_del_init(&timer
->it
.cpu
.entry
);
738 * We need to sample the current value to convert the new
739 * value from to relative and absolute, and to convert the
740 * old value from absolute to relative. To set a process
741 * timer, we need a sample to balance the thread expiry
742 * times (in arm_timer). With an absolute time, we must
743 * check if it's already passed. In short, we need a sample.
745 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
746 cpu_clock_sample(timer
->it_clock
, p
, &val
);
748 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
752 if (old_expires
.sched
== 0) {
753 old
->it_value
.tv_sec
= 0;
754 old
->it_value
.tv_nsec
= 0;
757 * Update the timer in case it has
758 * overrun already. If it has,
759 * we'll report it as having overrun
760 * and with the next reloaded timer
761 * already ticking, though we are
762 * swallowing that pending
763 * notification here to install the
766 bump_cpu_timer(timer
, val
);
767 if (cpu_time_before(timer
->it_clock
, val
,
768 timer
->it
.cpu
.expires
)) {
769 old_expires
= cpu_time_sub(
771 timer
->it
.cpu
.expires
, val
);
772 sample_to_timespec(timer
->it_clock
,
776 old
->it_value
.tv_nsec
= 1;
777 old
->it_value
.tv_sec
= 0;
784 * We are colliding with the timer actually firing.
785 * Punt after filling in the timer's old value, and
786 * disable this firing since we are already reporting
787 * it as an overrun (thanks to bump_cpu_timer above).
789 spin_unlock(&p
->sighand
->siglock
);
790 read_unlock(&tasklist_lock
);
794 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
795 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
799 * Install the new expiry time (or zero).
800 * For a timer with no notification action, we don't actually
801 * arm the timer (we'll just fake it for timer_gettime).
803 timer
->it
.cpu
.expires
= new_expires
;
804 if (new_expires
.sched
!= 0 &&
805 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
809 spin_unlock(&p
->sighand
->siglock
);
810 read_unlock(&tasklist_lock
);
813 * Install the new reload setting, and
814 * set up the signal and overrun bookkeeping.
816 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
820 * This acts as a modification timestamp for the timer,
821 * so any automatic reload attempt will punt on seeing
822 * that we have reset the timer manually.
824 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
826 timer
->it_overrun_last
= 0;
827 timer
->it_overrun
= -1;
829 if (new_expires
.sched
!= 0 &&
830 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
832 * The designated time already passed, so we notify
833 * immediately, even if the thread never runs to
834 * accumulate more time on this clock.
836 cpu_timer_fire(timer
);
842 sample_to_timespec(timer
->it_clock
,
843 old_incr
, &old
->it_interval
);
846 posix_cpu_timer_kick_nohz();
850 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
852 union cpu_time_count now
;
853 struct task_struct
*p
= timer
->it
.cpu
.task
;
857 * Easy part: convert the reload time.
859 sample_to_timespec(timer
->it_clock
,
860 timer
->it
.cpu
.incr
, &itp
->it_interval
);
862 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
863 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
867 if (unlikely(p
== NULL
)) {
869 * This task already died and the timer will never fire.
870 * In this case, expires is actually the dead value.
873 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
879 * Sample the clock to take the difference with the expiry time.
881 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
882 cpu_clock_sample(timer
->it_clock
, p
, &now
);
883 clear_dead
= p
->exit_state
;
885 read_lock(&tasklist_lock
);
886 if (unlikely(p
->sighand
== NULL
)) {
888 * The process has been reaped.
889 * We can't even collect a sample any more.
890 * Call the timer disarmed, nothing else to do.
893 timer
->it
.cpu
.task
= NULL
;
894 timer
->it
.cpu
.expires
.sched
= 0;
895 read_unlock(&tasklist_lock
);
898 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
899 clear_dead
= (unlikely(p
->exit_state
) &&
900 thread_group_empty(p
));
902 read_unlock(&tasklist_lock
);
905 if (unlikely(clear_dead
)) {
907 * We've noticed that the thread is dead, but
908 * not yet reaped. Take this opportunity to
911 clear_dead_task(timer
, now
);
915 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
916 sample_to_timespec(timer
->it_clock
,
917 cpu_time_sub(timer
->it_clock
,
918 timer
->it
.cpu
.expires
, now
),
922 * The timer should have expired already, but the firing
923 * hasn't taken place yet. Say it's just about to expire.
925 itp
->it_value
.tv_nsec
= 1;
926 itp
->it_value
.tv_sec
= 0;
931 * Check for any per-thread CPU timers that have fired and move them off
932 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
933 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
935 static void check_thread_timers(struct task_struct
*tsk
,
936 struct list_head
*firing
)
939 struct list_head
*timers
= tsk
->cpu_timers
;
940 struct signal_struct
*const sig
= tsk
->signal
;
944 tsk
->cputime_expires
.prof_exp
= 0;
945 while (!list_empty(timers
)) {
946 struct cpu_timer_list
*t
= list_first_entry(timers
,
947 struct cpu_timer_list
,
949 if (!--maxfire
|| prof_ticks(tsk
) < t
->expires
.cpu
) {
950 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
954 list_move_tail(&t
->entry
, firing
);
959 tsk
->cputime_expires
.virt_exp
= 0;
960 while (!list_empty(timers
)) {
961 struct cpu_timer_list
*t
= list_first_entry(timers
,
962 struct cpu_timer_list
,
964 if (!--maxfire
|| virt_ticks(tsk
) < t
->expires
.cpu
) {
965 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
969 list_move_tail(&t
->entry
, firing
);
974 tsk
->cputime_expires
.sched_exp
= 0;
975 while (!list_empty(timers
)) {
976 struct cpu_timer_list
*t
= list_first_entry(timers
,
977 struct cpu_timer_list
,
979 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
980 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
984 list_move_tail(&t
->entry
, firing
);
988 * Check for the special case thread timers.
990 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
991 if (soft
!= RLIM_INFINITY
) {
993 ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
995 if (hard
!= RLIM_INFINITY
&&
996 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
998 * At the hard limit, we just die.
999 * No need to calculate anything else now.
1001 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1004 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
1006 * At the soft limit, send a SIGXCPU every second.
1009 soft
+= USEC_PER_SEC
;
1010 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
1013 "RT Watchdog Timeout: %s[%d]\n",
1014 tsk
->comm
, task_pid_nr(tsk
));
1015 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1020 static void stop_process_timers(struct signal_struct
*sig
)
1022 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
1023 unsigned long flags
;
1025 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
1026 cputimer
->running
= 0;
1027 raw_spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1030 static u32 onecputick
;
1032 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
1033 cputime_t
*expires
, cputime_t cur_time
, int signo
)
1038 if (cur_time
>= it
->expires
) {
1040 it
->expires
+= it
->incr
;
1041 it
->error
+= it
->incr_error
;
1042 if (it
->error
>= onecputick
) {
1043 it
->expires
-= cputime_one_jiffy
;
1044 it
->error
-= onecputick
;
1050 trace_itimer_expire(signo
== SIGPROF
?
1051 ITIMER_PROF
: ITIMER_VIRTUAL
,
1052 tsk
->signal
->leader_pid
, cur_time
);
1053 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
1056 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
)) {
1057 *expires
= it
->expires
;
1062 * Check for any per-thread CPU timers that have fired and move them
1063 * off the tsk->*_timers list onto the firing list. Per-thread timers
1064 * have already been taken off.
1066 static void check_process_timers(struct task_struct
*tsk
,
1067 struct list_head
*firing
)
1070 struct signal_struct
*const sig
= tsk
->signal
;
1071 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1072 unsigned long long sum_sched_runtime
, sched_expires
;
1073 struct list_head
*timers
= sig
->cpu_timers
;
1074 struct task_cputime cputime
;
1078 * Collect the current process totals.
1080 thread_group_cputimer(tsk
, &cputime
);
1081 utime
= cputime
.utime
;
1082 ptime
= utime
+ cputime
.stime
;
1083 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1086 while (!list_empty(timers
)) {
1087 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1088 struct cpu_timer_list
,
1090 if (!--maxfire
|| ptime
< tl
->expires
.cpu
) {
1091 prof_expires
= tl
->expires
.cpu
;
1095 list_move_tail(&tl
->entry
, firing
);
1101 while (!list_empty(timers
)) {
1102 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1103 struct cpu_timer_list
,
1105 if (!--maxfire
|| utime
< tl
->expires
.cpu
) {
1106 virt_expires
= tl
->expires
.cpu
;
1110 list_move_tail(&tl
->entry
, firing
);
1116 while (!list_empty(timers
)) {
1117 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1118 struct cpu_timer_list
,
1120 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1121 sched_expires
= tl
->expires
.sched
;
1125 list_move_tail(&tl
->entry
, firing
);
1129 * Check for the special case process timers.
1131 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1133 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1135 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1136 if (soft
!= RLIM_INFINITY
) {
1137 unsigned long psecs
= cputime_to_secs(ptime
);
1138 unsigned long hard
=
1139 ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
1141 if (psecs
>= hard
) {
1143 * At the hard limit, we just die.
1144 * No need to calculate anything else now.
1146 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1149 if (psecs
>= soft
) {
1151 * At the soft limit, send a SIGXCPU every second.
1153 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1156 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1159 x
= secs_to_cputime(soft
);
1160 if (!prof_expires
|| x
< prof_expires
) {
1165 sig
->cputime_expires
.prof_exp
= prof_expires
;
1166 sig
->cputime_expires
.virt_exp
= virt_expires
;
1167 sig
->cputime_expires
.sched_exp
= sched_expires
;
1168 if (task_cputime_zero(&sig
->cputime_expires
))
1169 stop_process_timers(sig
);
1173 * This is called from the signal code (via do_schedule_next_timer)
1174 * when the last timer signal was delivered and we have to reload the timer.
1176 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1178 struct task_struct
*p
= timer
->it
.cpu
.task
;
1179 union cpu_time_count now
;
1181 if (unlikely(p
== NULL
))
1183 * The task was cleaned up already, no future firings.
1188 * Fetch the current sample and update the timer's expiry time.
1190 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1191 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1192 bump_cpu_timer(timer
, now
);
1193 if (unlikely(p
->exit_state
)) {
1194 clear_dead_task(timer
, now
);
1197 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1198 spin_lock(&p
->sighand
->siglock
);
1200 read_lock(&tasklist_lock
);
1201 if (unlikely(p
->sighand
== NULL
)) {
1203 * The process has been reaped.
1204 * We can't even collect a sample any more.
1207 timer
->it
.cpu
.task
= p
= NULL
;
1208 timer
->it
.cpu
.expires
.sched
= 0;
1210 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1212 * We've noticed that the thread is dead, but
1213 * not yet reaped. Take this opportunity to
1214 * drop our task ref.
1216 clear_dead_task(timer
, now
);
1219 spin_lock(&p
->sighand
->siglock
);
1220 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1221 bump_cpu_timer(timer
, now
);
1222 /* Leave the tasklist_lock locked for the call below. */
1226 * Now re-arm for the new expiry time.
1228 BUG_ON(!irqs_disabled());
1230 spin_unlock(&p
->sighand
->siglock
);
1233 read_unlock(&tasklist_lock
);
1236 timer
->it_overrun_last
= timer
->it_overrun
;
1237 timer
->it_overrun
= -1;
1238 ++timer
->it_requeue_pending
;
1242 * task_cputime_expired - Compare two task_cputime entities.
1244 * @sample: The task_cputime structure to be checked for expiration.
1245 * @expires: Expiration times, against which @sample will be checked.
1247 * Checks @sample against @expires to see if any field of @sample has expired.
1248 * Returns true if any field of the former is greater than the corresponding
1249 * field of the latter if the latter field is set. Otherwise returns false.
1251 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1252 const struct task_cputime
*expires
)
1254 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1256 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1258 if (expires
->sum_exec_runtime
!= 0 &&
1259 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1265 * fastpath_timer_check - POSIX CPU timers fast path.
1267 * @tsk: The task (thread) being checked.
1269 * Check the task and thread group timers. If both are zero (there are no
1270 * timers set) return false. Otherwise snapshot the task and thread group
1271 * timers and compare them with the corresponding expiration times. Return
1272 * true if a timer has expired, else return false.
1274 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1276 struct signal_struct
*sig
;
1277 cputime_t utime
, stime
;
1279 task_cputime(tsk
, &utime
, &stime
);
1281 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1282 struct task_cputime task_sample
= {
1285 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1288 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1293 if (sig
->cputimer
.running
) {
1294 struct task_cputime group_sample
;
1296 raw_spin_lock(&sig
->cputimer
.lock
);
1297 group_sample
= sig
->cputimer
.cputime
;
1298 raw_spin_unlock(&sig
->cputimer
.lock
);
1300 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1308 * This is called from the timer interrupt handler. The irq handler has
1309 * already updated our counts. We need to check if any timers fire now.
1310 * Interrupts are disabled.
1312 void run_posix_cpu_timers(struct task_struct
*tsk
)
1315 struct k_itimer
*timer
, *next
;
1316 unsigned long flags
;
1318 BUG_ON(!irqs_disabled());
1321 * The fast path checks that there are no expired thread or thread
1322 * group timers. If that's so, just return.
1324 if (!fastpath_timer_check(tsk
))
1327 if (!lock_task_sighand(tsk
, &flags
))
1330 * Here we take off tsk->signal->cpu_timers[N] and
1331 * tsk->cpu_timers[N] all the timers that are firing, and
1332 * put them on the firing list.
1334 check_thread_timers(tsk
, &firing
);
1336 * If there are any active process wide timers (POSIX 1.b, itimers,
1337 * RLIMIT_CPU) cputimer must be running.
1339 if (tsk
->signal
->cputimer
.running
)
1340 check_process_timers(tsk
, &firing
);
1343 * We must release these locks before taking any timer's lock.
1344 * There is a potential race with timer deletion here, as the
1345 * siglock now protects our private firing list. We have set
1346 * the firing flag in each timer, so that a deletion attempt
1347 * that gets the timer lock before we do will give it up and
1348 * spin until we've taken care of that timer below.
1350 unlock_task_sighand(tsk
, &flags
);
1353 * Now that all the timers on our list have the firing flag,
1354 * no one will touch their list entries but us. We'll take
1355 * each timer's lock before clearing its firing flag, so no
1356 * timer call will interfere.
1358 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1361 spin_lock(&timer
->it_lock
);
1362 list_del_init(&timer
->it
.cpu
.entry
);
1363 cpu_firing
= timer
->it
.cpu
.firing
;
1364 timer
->it
.cpu
.firing
= 0;
1366 * The firing flag is -1 if we collided with a reset
1367 * of the timer, which already reported this
1368 * almost-firing as an overrun. So don't generate an event.
1370 if (likely(cpu_firing
>= 0))
1371 cpu_timer_fire(timer
);
1372 spin_unlock(&timer
->it_lock
);
1376 * In case some timers were rescheduled after the queue got emptied,
1377 * wake up full dynticks CPUs.
1379 if (tsk
->signal
->cputimer
.running
)
1380 posix_cpu_timer_kick_nohz();
1384 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1385 * The tsk->sighand->siglock must be held by the caller.
1387 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1388 cputime_t
*newval
, cputime_t
*oldval
)
1390 union cpu_time_count now
;
1392 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1393 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1397 * We are setting itimer. The *oldval is absolute and we update
1398 * it to be relative, *newval argument is relative and we update
1399 * it to be absolute.
1402 if (*oldval
<= now
.cpu
) {
1403 /* Just about to fire. */
1404 *oldval
= cputime_one_jiffy
;
1416 * Update expiration cache if we are the earliest timer, or eventually
1417 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1419 switch (clock_idx
) {
1421 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1422 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1425 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1426 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1430 posix_cpu_timer_kick_nohz();
1433 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1434 struct timespec
*rqtp
, struct itimerspec
*it
)
1436 struct k_itimer timer
;
1440 * Set up a temporary timer and then wait for it to go off.
1442 memset(&timer
, 0, sizeof timer
);
1443 spin_lock_init(&timer
.it_lock
);
1444 timer
.it_clock
= which_clock
;
1445 timer
.it_overrun
= -1;
1446 error
= posix_cpu_timer_create(&timer
);
1447 timer
.it_process
= current
;
1449 static struct itimerspec zero_it
;
1451 memset(it
, 0, sizeof *it
);
1452 it
->it_value
= *rqtp
;
1454 spin_lock_irq(&timer
.it_lock
);
1455 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1457 spin_unlock_irq(&timer
.it_lock
);
1461 while (!signal_pending(current
)) {
1462 if (timer
.it
.cpu
.expires
.sched
== 0) {
1464 * Our timer fired and was reset, below
1465 * deletion can not fail.
1467 posix_cpu_timer_del(&timer
);
1468 spin_unlock_irq(&timer
.it_lock
);
1473 * Block until cpu_timer_fire (or a signal) wakes us.
1475 __set_current_state(TASK_INTERRUPTIBLE
);
1476 spin_unlock_irq(&timer
.it_lock
);
1478 spin_lock_irq(&timer
.it_lock
);
1482 * We were interrupted by a signal.
1484 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1485 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1488 * Timer is now unarmed, deletion can not fail.
1490 posix_cpu_timer_del(&timer
);
1492 spin_unlock_irq(&timer
.it_lock
);
1494 while (error
== TIMER_RETRY
) {
1496 * We need to handle case when timer was or is in the
1497 * middle of firing. In other cases we already freed
1500 spin_lock_irq(&timer
.it_lock
);
1501 error
= posix_cpu_timer_del(&timer
);
1502 spin_unlock_irq(&timer
.it_lock
);
1505 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1507 * It actually did fire already.
1512 error
= -ERESTART_RESTARTBLOCK
;
1518 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1520 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1521 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1523 struct restart_block
*restart_block
=
1524 ¤t_thread_info()->restart_block
;
1525 struct itimerspec it
;
1529 * Diagnose required errors first.
1531 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1532 (CPUCLOCK_PID(which_clock
) == 0 ||
1533 CPUCLOCK_PID(which_clock
) == current
->pid
))
1536 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1538 if (error
== -ERESTART_RESTARTBLOCK
) {
1540 if (flags
& TIMER_ABSTIME
)
1541 return -ERESTARTNOHAND
;
1543 * Report back to the user the time still remaining.
1545 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1548 restart_block
->fn
= posix_cpu_nsleep_restart
;
1549 restart_block
->nanosleep
.clockid
= which_clock
;
1550 restart_block
->nanosleep
.rmtp
= rmtp
;
1551 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1556 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1558 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1560 struct itimerspec it
;
1563 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1565 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1567 if (error
== -ERESTART_RESTARTBLOCK
) {
1568 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1570 * Report back to the user the time still remaining.
1572 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1575 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1581 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1582 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1584 static int process_cpu_clock_getres(const clockid_t which_clock
,
1585 struct timespec
*tp
)
1587 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1589 static int process_cpu_clock_get(const clockid_t which_clock
,
1590 struct timespec
*tp
)
1592 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1594 static int process_cpu_timer_create(struct k_itimer
*timer
)
1596 timer
->it_clock
= PROCESS_CLOCK
;
1597 return posix_cpu_timer_create(timer
);
1599 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1600 struct timespec
*rqtp
,
1601 struct timespec __user
*rmtp
)
1603 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1605 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1609 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1610 struct timespec
*tp
)
1612 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1614 static int thread_cpu_clock_get(const clockid_t which_clock
,
1615 struct timespec
*tp
)
1617 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1619 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1621 timer
->it_clock
= THREAD_CLOCK
;
1622 return posix_cpu_timer_create(timer
);
1625 struct k_clock clock_posix_cpu
= {
1626 .clock_getres
= posix_cpu_clock_getres
,
1627 .clock_set
= posix_cpu_clock_set
,
1628 .clock_get
= posix_cpu_clock_get
,
1629 .timer_create
= posix_cpu_timer_create
,
1630 .nsleep
= posix_cpu_nsleep
,
1631 .nsleep_restart
= posix_cpu_nsleep_restart
,
1632 .timer_set
= posix_cpu_timer_set
,
1633 .timer_del
= posix_cpu_timer_del
,
1634 .timer_get
= posix_cpu_timer_get
,
1637 static __init
int init_posix_cpu_timers(void)
1639 struct k_clock process
= {
1640 .clock_getres
= process_cpu_clock_getres
,
1641 .clock_get
= process_cpu_clock_get
,
1642 .timer_create
= process_cpu_timer_create
,
1643 .nsleep
= process_cpu_nsleep
,
1644 .nsleep_restart
= process_cpu_nsleep_restart
,
1646 struct k_clock thread
= {
1647 .clock_getres
= thread_cpu_clock_getres
,
1648 .clock_get
= thread_cpu_clock_get
,
1649 .timer_create
= thread_cpu_timer_create
,
1653 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1654 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1656 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1657 onecputick
= ts
.tv_nsec
;
1658 WARN_ON(ts
.tv_sec
!= 0);
1662 __initcall(init_posix_cpu_timers
);