NFSv4: Don't clear the machine cred when client establish returns EACCES
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13
14 /*
15 * Called after updating RLIMIT_CPU to run cpu timer and update
16 * tsk->signal->cputime_expires expiration cache if necessary. Needs
17 * siglock protection since other code may update expiration cache as
18 * well.
19 */
20 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
21 {
22 cputime_t cputime = secs_to_cputime(rlim_new);
23
24 spin_lock_irq(&task->sighand->siglock);
25 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
26 spin_unlock_irq(&task->sighand->siglock);
27 }
28
29 static int check_clock(const clockid_t which_clock)
30 {
31 int error = 0;
32 struct task_struct *p;
33 const pid_t pid = CPUCLOCK_PID(which_clock);
34
35 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
36 return -EINVAL;
37
38 if (pid == 0)
39 return 0;
40
41 rcu_read_lock();
42 p = find_task_by_vpid(pid);
43 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
44 same_thread_group(p, current) : has_group_leader_pid(p))) {
45 error = -EINVAL;
46 }
47 rcu_read_unlock();
48
49 return error;
50 }
51
52 static inline union cpu_time_count
53 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
54 {
55 union cpu_time_count ret;
56 ret.sched = 0; /* high half always zero when .cpu used */
57 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
58 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
59 } else {
60 ret.cpu = timespec_to_cputime(tp);
61 }
62 return ret;
63 }
64
65 static void sample_to_timespec(const clockid_t which_clock,
66 union cpu_time_count cpu,
67 struct timespec *tp)
68 {
69 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
70 *tp = ns_to_timespec(cpu.sched);
71 else
72 cputime_to_timespec(cpu.cpu, tp);
73 }
74
75 static inline int cpu_time_before(const clockid_t which_clock,
76 union cpu_time_count now,
77 union cpu_time_count then)
78 {
79 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
80 return now.sched < then.sched;
81 } else {
82 return now.cpu < then.cpu;
83 }
84 }
85 static inline void cpu_time_add(const clockid_t which_clock,
86 union cpu_time_count *acc,
87 union cpu_time_count val)
88 {
89 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
90 acc->sched += val.sched;
91 } else {
92 acc->cpu += val.cpu;
93 }
94 }
95 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
96 union cpu_time_count a,
97 union cpu_time_count b)
98 {
99 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
100 a.sched -= b.sched;
101 } else {
102 a.cpu -= b.cpu;
103 }
104 return a;
105 }
106
107 /*
108 * Update expiry time from increment, and increase overrun count,
109 * given the current clock sample.
110 */
111 static void bump_cpu_timer(struct k_itimer *timer,
112 union cpu_time_count now)
113 {
114 int i;
115
116 if (timer->it.cpu.incr.sched == 0)
117 return;
118
119 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
120 unsigned long long delta, incr;
121
122 if (now.sched < timer->it.cpu.expires.sched)
123 return;
124 incr = timer->it.cpu.incr.sched;
125 delta = now.sched + incr - timer->it.cpu.expires.sched;
126 /* Don't use (incr*2 < delta), incr*2 might overflow. */
127 for (i = 0; incr < delta - incr; i++)
128 incr = incr << 1;
129 for (; i >= 0; incr >>= 1, i--) {
130 if (delta < incr)
131 continue;
132 timer->it.cpu.expires.sched += incr;
133 timer->it_overrun += 1 << i;
134 delta -= incr;
135 }
136 } else {
137 cputime_t delta, incr;
138
139 if (now.cpu < timer->it.cpu.expires.cpu)
140 return;
141 incr = timer->it.cpu.incr.cpu;
142 delta = now.cpu + incr - timer->it.cpu.expires.cpu;
143 /* Don't use (incr*2 < delta), incr*2 might overflow. */
144 for (i = 0; incr < delta - incr; i++)
145 incr += incr;
146 for (; i >= 0; incr = incr >> 1, i--) {
147 if (delta < incr)
148 continue;
149 timer->it.cpu.expires.cpu += incr;
150 timer->it_overrun += 1 << i;
151 delta -= incr;
152 }
153 }
154 }
155
156 static inline cputime_t prof_ticks(struct task_struct *p)
157 {
158 cputime_t utime, stime;
159
160 task_cputime(p, &utime, &stime);
161
162 return utime + stime;
163 }
164 static inline cputime_t virt_ticks(struct task_struct *p)
165 {
166 cputime_t utime;
167
168 task_cputime(p, &utime, NULL);
169
170 return utime;
171 }
172
173 static int
174 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
175 {
176 int error = check_clock(which_clock);
177 if (!error) {
178 tp->tv_sec = 0;
179 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
180 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
181 /*
182 * If sched_clock is using a cycle counter, we
183 * don't have any idea of its true resolution
184 * exported, but it is much more than 1s/HZ.
185 */
186 tp->tv_nsec = 1;
187 }
188 }
189 return error;
190 }
191
192 static int
193 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
194 {
195 /*
196 * You can never reset a CPU clock, but we check for other errors
197 * in the call before failing with EPERM.
198 */
199 int error = check_clock(which_clock);
200 if (error == 0) {
201 error = -EPERM;
202 }
203 return error;
204 }
205
206
207 /*
208 * Sample a per-thread clock for the given task.
209 */
210 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
211 union cpu_time_count *cpu)
212 {
213 switch (CPUCLOCK_WHICH(which_clock)) {
214 default:
215 return -EINVAL;
216 case CPUCLOCK_PROF:
217 cpu->cpu = prof_ticks(p);
218 break;
219 case CPUCLOCK_VIRT:
220 cpu->cpu = virt_ticks(p);
221 break;
222 case CPUCLOCK_SCHED:
223 cpu->sched = task_sched_runtime(p);
224 break;
225 }
226 return 0;
227 }
228
229 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
230 {
231 if (b->utime > a->utime)
232 a->utime = b->utime;
233
234 if (b->stime > a->stime)
235 a->stime = b->stime;
236
237 if (b->sum_exec_runtime > a->sum_exec_runtime)
238 a->sum_exec_runtime = b->sum_exec_runtime;
239 }
240
241 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
242 {
243 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
244 struct task_cputime sum;
245 unsigned long flags;
246
247 if (!cputimer->running) {
248 /*
249 * The POSIX timer interface allows for absolute time expiry
250 * values through the TIMER_ABSTIME flag, therefore we have
251 * to synchronize the timer to the clock every time we start
252 * it.
253 */
254 thread_group_cputime(tsk, &sum);
255 raw_spin_lock_irqsave(&cputimer->lock, flags);
256 cputimer->running = 1;
257 update_gt_cputime(&cputimer->cputime, &sum);
258 } else
259 raw_spin_lock_irqsave(&cputimer->lock, flags);
260 *times = cputimer->cputime;
261 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
262 }
263
264 /*
265 * Sample a process (thread group) clock for the given group_leader task.
266 * Must be called with tasklist_lock held for reading.
267 */
268 static int cpu_clock_sample_group(const clockid_t which_clock,
269 struct task_struct *p,
270 union cpu_time_count *cpu)
271 {
272 struct task_cputime cputime;
273
274 switch (CPUCLOCK_WHICH(which_clock)) {
275 default:
276 return -EINVAL;
277 case CPUCLOCK_PROF:
278 thread_group_cputime(p, &cputime);
279 cpu->cpu = cputime.utime + cputime.stime;
280 break;
281 case CPUCLOCK_VIRT:
282 thread_group_cputime(p, &cputime);
283 cpu->cpu = cputime.utime;
284 break;
285 case CPUCLOCK_SCHED:
286 thread_group_cputime(p, &cputime);
287 cpu->sched = cputime.sum_exec_runtime;
288 break;
289 }
290 return 0;
291 }
292
293
294 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
295 {
296 const pid_t pid = CPUCLOCK_PID(which_clock);
297 int error = -EINVAL;
298 union cpu_time_count rtn;
299
300 if (pid == 0) {
301 /*
302 * Special case constant value for our own clocks.
303 * We don't have to do any lookup to find ourselves.
304 */
305 if (CPUCLOCK_PERTHREAD(which_clock)) {
306 /*
307 * Sampling just ourselves we can do with no locking.
308 */
309 error = cpu_clock_sample(which_clock,
310 current, &rtn);
311 } else {
312 read_lock(&tasklist_lock);
313 error = cpu_clock_sample_group(which_clock,
314 current, &rtn);
315 read_unlock(&tasklist_lock);
316 }
317 } else {
318 /*
319 * Find the given PID, and validate that the caller
320 * should be able to see it.
321 */
322 struct task_struct *p;
323 rcu_read_lock();
324 p = find_task_by_vpid(pid);
325 if (p) {
326 if (CPUCLOCK_PERTHREAD(which_clock)) {
327 if (same_thread_group(p, current)) {
328 error = cpu_clock_sample(which_clock,
329 p, &rtn);
330 }
331 } else {
332 read_lock(&tasklist_lock);
333 if (thread_group_leader(p) && p->sighand) {
334 error =
335 cpu_clock_sample_group(which_clock,
336 p, &rtn);
337 }
338 read_unlock(&tasklist_lock);
339 }
340 }
341 rcu_read_unlock();
342 }
343
344 if (error)
345 return error;
346 sample_to_timespec(which_clock, rtn, tp);
347 return 0;
348 }
349
350
351 /*
352 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
353 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
354 * new timer already all-zeros initialized.
355 */
356 static int posix_cpu_timer_create(struct k_itimer *new_timer)
357 {
358 int ret = 0;
359 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
360 struct task_struct *p;
361
362 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
363 return -EINVAL;
364
365 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
366
367 rcu_read_lock();
368 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
369 if (pid == 0) {
370 p = current;
371 } else {
372 p = find_task_by_vpid(pid);
373 if (p && !same_thread_group(p, current))
374 p = NULL;
375 }
376 } else {
377 if (pid == 0) {
378 p = current->group_leader;
379 } else {
380 p = find_task_by_vpid(pid);
381 if (p && !has_group_leader_pid(p))
382 p = NULL;
383 }
384 }
385 new_timer->it.cpu.task = p;
386 if (p) {
387 get_task_struct(p);
388 } else {
389 ret = -EINVAL;
390 }
391 rcu_read_unlock();
392
393 return ret;
394 }
395
396 /*
397 * Clean up a CPU-clock timer that is about to be destroyed.
398 * This is called from timer deletion with the timer already locked.
399 * If we return TIMER_RETRY, it's necessary to release the timer's lock
400 * and try again. (This happens when the timer is in the middle of firing.)
401 */
402 static int posix_cpu_timer_del(struct k_itimer *timer)
403 {
404 struct task_struct *p = timer->it.cpu.task;
405 int ret = 0;
406
407 if (likely(p != NULL)) {
408 read_lock(&tasklist_lock);
409 if (unlikely(p->sighand == NULL)) {
410 /*
411 * We raced with the reaping of the task.
412 * The deletion should have cleared us off the list.
413 */
414 BUG_ON(!list_empty(&timer->it.cpu.entry));
415 } else {
416 spin_lock(&p->sighand->siglock);
417 if (timer->it.cpu.firing)
418 ret = TIMER_RETRY;
419 else
420 list_del(&timer->it.cpu.entry);
421 spin_unlock(&p->sighand->siglock);
422 }
423 read_unlock(&tasklist_lock);
424
425 if (!ret)
426 put_task_struct(p);
427 }
428
429 return ret;
430 }
431
432 /*
433 * Clean out CPU timers still ticking when a thread exited. The task
434 * pointer is cleared, and the expiry time is replaced with the residual
435 * time for later timer_gettime calls to return.
436 * This must be called with the siglock held.
437 */
438 static void cleanup_timers(struct list_head *head,
439 cputime_t utime, cputime_t stime,
440 unsigned long long sum_exec_runtime)
441 {
442 struct cpu_timer_list *timer, *next;
443 cputime_t ptime = utime + stime;
444
445 list_for_each_entry_safe(timer, next, head, entry) {
446 list_del_init(&timer->entry);
447 if (timer->expires.cpu < ptime) {
448 timer->expires.cpu = 0;
449 } else {
450 timer->expires.cpu -= ptime;
451 }
452 }
453
454 ++head;
455 list_for_each_entry_safe(timer, next, head, entry) {
456 list_del_init(&timer->entry);
457 if (timer->expires.cpu < utime) {
458 timer->expires.cpu = 0;
459 } else {
460 timer->expires.cpu -= utime;
461 }
462 }
463
464 ++head;
465 list_for_each_entry_safe(timer, next, head, entry) {
466 list_del_init(&timer->entry);
467 if (timer->expires.sched < sum_exec_runtime) {
468 timer->expires.sched = 0;
469 } else {
470 timer->expires.sched -= sum_exec_runtime;
471 }
472 }
473 }
474
475 /*
476 * These are both called with the siglock held, when the current thread
477 * is being reaped. When the final (leader) thread in the group is reaped,
478 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
479 */
480 void posix_cpu_timers_exit(struct task_struct *tsk)
481 {
482 cputime_t utime, stime;
483
484 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
485 sizeof(unsigned long long));
486 task_cputime(tsk, &utime, &stime);
487 cleanup_timers(tsk->cpu_timers,
488 utime, stime, tsk->se.sum_exec_runtime);
489
490 }
491 void posix_cpu_timers_exit_group(struct task_struct *tsk)
492 {
493 struct signal_struct *const sig = tsk->signal;
494 cputime_t utime, stime;
495
496 task_cputime(tsk, &utime, &stime);
497 cleanup_timers(tsk->signal->cpu_timers,
498 utime + sig->utime, stime + sig->stime,
499 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
500 }
501
502 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
503 {
504 /*
505 * That's all for this thread or process.
506 * We leave our residual in expires to be reported.
507 */
508 put_task_struct(timer->it.cpu.task);
509 timer->it.cpu.task = NULL;
510 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
511 timer->it.cpu.expires,
512 now);
513 }
514
515 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
516 {
517 return expires == 0 || expires > new_exp;
518 }
519
520 /*
521 * Insert the timer on the appropriate list before any timers that
522 * expire later. This must be called with the tasklist_lock held
523 * for reading, interrupts disabled and p->sighand->siglock taken.
524 */
525 static void arm_timer(struct k_itimer *timer)
526 {
527 struct task_struct *p = timer->it.cpu.task;
528 struct list_head *head, *listpos;
529 struct task_cputime *cputime_expires;
530 struct cpu_timer_list *const nt = &timer->it.cpu;
531 struct cpu_timer_list *next;
532
533 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
534 head = p->cpu_timers;
535 cputime_expires = &p->cputime_expires;
536 } else {
537 head = p->signal->cpu_timers;
538 cputime_expires = &p->signal->cputime_expires;
539 }
540 head += CPUCLOCK_WHICH(timer->it_clock);
541
542 listpos = head;
543 list_for_each_entry(next, head, entry) {
544 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
545 break;
546 listpos = &next->entry;
547 }
548 list_add(&nt->entry, listpos);
549
550 if (listpos == head) {
551 union cpu_time_count *exp = &nt->expires;
552
553 /*
554 * We are the new earliest-expiring POSIX 1.b timer, hence
555 * need to update expiration cache. Take into account that
556 * for process timers we share expiration cache with itimers
557 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
558 */
559
560 switch (CPUCLOCK_WHICH(timer->it_clock)) {
561 case CPUCLOCK_PROF:
562 if (expires_gt(cputime_expires->prof_exp, exp->cpu))
563 cputime_expires->prof_exp = exp->cpu;
564 break;
565 case CPUCLOCK_VIRT:
566 if (expires_gt(cputime_expires->virt_exp, exp->cpu))
567 cputime_expires->virt_exp = exp->cpu;
568 break;
569 case CPUCLOCK_SCHED:
570 if (cputime_expires->sched_exp == 0 ||
571 cputime_expires->sched_exp > exp->sched)
572 cputime_expires->sched_exp = exp->sched;
573 break;
574 }
575 }
576 }
577
578 /*
579 * The timer is locked, fire it and arrange for its reload.
580 */
581 static void cpu_timer_fire(struct k_itimer *timer)
582 {
583 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
584 /*
585 * User don't want any signal.
586 */
587 timer->it.cpu.expires.sched = 0;
588 } else if (unlikely(timer->sigq == NULL)) {
589 /*
590 * This a special case for clock_nanosleep,
591 * not a normal timer from sys_timer_create.
592 */
593 wake_up_process(timer->it_process);
594 timer->it.cpu.expires.sched = 0;
595 } else if (timer->it.cpu.incr.sched == 0) {
596 /*
597 * One-shot timer. Clear it as soon as it's fired.
598 */
599 posix_timer_event(timer, 0);
600 timer->it.cpu.expires.sched = 0;
601 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
602 /*
603 * The signal did not get queued because the signal
604 * was ignored, so we won't get any callback to
605 * reload the timer. But we need to keep it
606 * ticking in case the signal is deliverable next time.
607 */
608 posix_cpu_timer_schedule(timer);
609 }
610 }
611
612 /*
613 * Sample a process (thread group) timer for the given group_leader task.
614 * Must be called with tasklist_lock held for reading.
615 */
616 static int cpu_timer_sample_group(const clockid_t which_clock,
617 struct task_struct *p,
618 union cpu_time_count *cpu)
619 {
620 struct task_cputime cputime;
621
622 thread_group_cputimer(p, &cputime);
623 switch (CPUCLOCK_WHICH(which_clock)) {
624 default:
625 return -EINVAL;
626 case CPUCLOCK_PROF:
627 cpu->cpu = cputime.utime + cputime.stime;
628 break;
629 case CPUCLOCK_VIRT:
630 cpu->cpu = cputime.utime;
631 break;
632 case CPUCLOCK_SCHED:
633 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
634 break;
635 }
636 return 0;
637 }
638
639 /*
640 * Guts of sys_timer_settime for CPU timers.
641 * This is called with the timer locked and interrupts disabled.
642 * If we return TIMER_RETRY, it's necessary to release the timer's lock
643 * and try again. (This happens when the timer is in the middle of firing.)
644 */
645 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
646 struct itimerspec *new, struct itimerspec *old)
647 {
648 struct task_struct *p = timer->it.cpu.task;
649 union cpu_time_count old_expires, new_expires, old_incr, val;
650 int ret;
651
652 if (unlikely(p == NULL)) {
653 /*
654 * Timer refers to a dead task's clock.
655 */
656 return -ESRCH;
657 }
658
659 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
660
661 read_lock(&tasklist_lock);
662 /*
663 * We need the tasklist_lock to protect against reaping that
664 * clears p->sighand. If p has just been reaped, we can no
665 * longer get any information about it at all.
666 */
667 if (unlikely(p->sighand == NULL)) {
668 read_unlock(&tasklist_lock);
669 put_task_struct(p);
670 timer->it.cpu.task = NULL;
671 return -ESRCH;
672 }
673
674 /*
675 * Disarm any old timer after extracting its expiry time.
676 */
677 BUG_ON(!irqs_disabled());
678
679 ret = 0;
680 old_incr = timer->it.cpu.incr;
681 spin_lock(&p->sighand->siglock);
682 old_expires = timer->it.cpu.expires;
683 if (unlikely(timer->it.cpu.firing)) {
684 timer->it.cpu.firing = -1;
685 ret = TIMER_RETRY;
686 } else
687 list_del_init(&timer->it.cpu.entry);
688
689 /*
690 * We need to sample the current value to convert the new
691 * value from to relative and absolute, and to convert the
692 * old value from absolute to relative. To set a process
693 * timer, we need a sample to balance the thread expiry
694 * times (in arm_timer). With an absolute time, we must
695 * check if it's already passed. In short, we need a sample.
696 */
697 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
698 cpu_clock_sample(timer->it_clock, p, &val);
699 } else {
700 cpu_timer_sample_group(timer->it_clock, p, &val);
701 }
702
703 if (old) {
704 if (old_expires.sched == 0) {
705 old->it_value.tv_sec = 0;
706 old->it_value.tv_nsec = 0;
707 } else {
708 /*
709 * Update the timer in case it has
710 * overrun already. If it has,
711 * we'll report it as having overrun
712 * and with the next reloaded timer
713 * already ticking, though we are
714 * swallowing that pending
715 * notification here to install the
716 * new setting.
717 */
718 bump_cpu_timer(timer, val);
719 if (cpu_time_before(timer->it_clock, val,
720 timer->it.cpu.expires)) {
721 old_expires = cpu_time_sub(
722 timer->it_clock,
723 timer->it.cpu.expires, val);
724 sample_to_timespec(timer->it_clock,
725 old_expires,
726 &old->it_value);
727 } else {
728 old->it_value.tv_nsec = 1;
729 old->it_value.tv_sec = 0;
730 }
731 }
732 }
733
734 if (unlikely(ret)) {
735 /*
736 * We are colliding with the timer actually firing.
737 * Punt after filling in the timer's old value, and
738 * disable this firing since we are already reporting
739 * it as an overrun (thanks to bump_cpu_timer above).
740 */
741 spin_unlock(&p->sighand->siglock);
742 read_unlock(&tasklist_lock);
743 goto out;
744 }
745
746 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
747 cpu_time_add(timer->it_clock, &new_expires, val);
748 }
749
750 /*
751 * Install the new expiry time (or zero).
752 * For a timer with no notification action, we don't actually
753 * arm the timer (we'll just fake it for timer_gettime).
754 */
755 timer->it.cpu.expires = new_expires;
756 if (new_expires.sched != 0 &&
757 cpu_time_before(timer->it_clock, val, new_expires)) {
758 arm_timer(timer);
759 }
760
761 spin_unlock(&p->sighand->siglock);
762 read_unlock(&tasklist_lock);
763
764 /*
765 * Install the new reload setting, and
766 * set up the signal and overrun bookkeeping.
767 */
768 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
769 &new->it_interval);
770
771 /*
772 * This acts as a modification timestamp for the timer,
773 * so any automatic reload attempt will punt on seeing
774 * that we have reset the timer manually.
775 */
776 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
777 ~REQUEUE_PENDING;
778 timer->it_overrun_last = 0;
779 timer->it_overrun = -1;
780
781 if (new_expires.sched != 0 &&
782 !cpu_time_before(timer->it_clock, val, new_expires)) {
783 /*
784 * The designated time already passed, so we notify
785 * immediately, even if the thread never runs to
786 * accumulate more time on this clock.
787 */
788 cpu_timer_fire(timer);
789 }
790
791 ret = 0;
792 out:
793 if (old) {
794 sample_to_timespec(timer->it_clock,
795 old_incr, &old->it_interval);
796 }
797 return ret;
798 }
799
800 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
801 {
802 union cpu_time_count now;
803 struct task_struct *p = timer->it.cpu.task;
804 int clear_dead;
805
806 /*
807 * Easy part: convert the reload time.
808 */
809 sample_to_timespec(timer->it_clock,
810 timer->it.cpu.incr, &itp->it_interval);
811
812 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
813 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
814 return;
815 }
816
817 if (unlikely(p == NULL)) {
818 /*
819 * This task already died and the timer will never fire.
820 * In this case, expires is actually the dead value.
821 */
822 dead:
823 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
824 &itp->it_value);
825 return;
826 }
827
828 /*
829 * Sample the clock to take the difference with the expiry time.
830 */
831 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
832 cpu_clock_sample(timer->it_clock, p, &now);
833 clear_dead = p->exit_state;
834 } else {
835 read_lock(&tasklist_lock);
836 if (unlikely(p->sighand == NULL)) {
837 /*
838 * The process has been reaped.
839 * We can't even collect a sample any more.
840 * Call the timer disarmed, nothing else to do.
841 */
842 put_task_struct(p);
843 timer->it.cpu.task = NULL;
844 timer->it.cpu.expires.sched = 0;
845 read_unlock(&tasklist_lock);
846 goto dead;
847 } else {
848 cpu_timer_sample_group(timer->it_clock, p, &now);
849 clear_dead = (unlikely(p->exit_state) &&
850 thread_group_empty(p));
851 }
852 read_unlock(&tasklist_lock);
853 }
854
855 if (unlikely(clear_dead)) {
856 /*
857 * We've noticed that the thread is dead, but
858 * not yet reaped. Take this opportunity to
859 * drop our task ref.
860 */
861 clear_dead_task(timer, now);
862 goto dead;
863 }
864
865 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
866 sample_to_timespec(timer->it_clock,
867 cpu_time_sub(timer->it_clock,
868 timer->it.cpu.expires, now),
869 &itp->it_value);
870 } else {
871 /*
872 * The timer should have expired already, but the firing
873 * hasn't taken place yet. Say it's just about to expire.
874 */
875 itp->it_value.tv_nsec = 1;
876 itp->it_value.tv_sec = 0;
877 }
878 }
879
880 /*
881 * Check for any per-thread CPU timers that have fired and move them off
882 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
883 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
884 */
885 static void check_thread_timers(struct task_struct *tsk,
886 struct list_head *firing)
887 {
888 int maxfire;
889 struct list_head *timers = tsk->cpu_timers;
890 struct signal_struct *const sig = tsk->signal;
891 unsigned long soft;
892
893 maxfire = 20;
894 tsk->cputime_expires.prof_exp = 0;
895 while (!list_empty(timers)) {
896 struct cpu_timer_list *t = list_first_entry(timers,
897 struct cpu_timer_list,
898 entry);
899 if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
900 tsk->cputime_expires.prof_exp = t->expires.cpu;
901 break;
902 }
903 t->firing = 1;
904 list_move_tail(&t->entry, firing);
905 }
906
907 ++timers;
908 maxfire = 20;
909 tsk->cputime_expires.virt_exp = 0;
910 while (!list_empty(timers)) {
911 struct cpu_timer_list *t = list_first_entry(timers,
912 struct cpu_timer_list,
913 entry);
914 if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
915 tsk->cputime_expires.virt_exp = t->expires.cpu;
916 break;
917 }
918 t->firing = 1;
919 list_move_tail(&t->entry, firing);
920 }
921
922 ++timers;
923 maxfire = 20;
924 tsk->cputime_expires.sched_exp = 0;
925 while (!list_empty(timers)) {
926 struct cpu_timer_list *t = list_first_entry(timers,
927 struct cpu_timer_list,
928 entry);
929 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
930 tsk->cputime_expires.sched_exp = t->expires.sched;
931 break;
932 }
933 t->firing = 1;
934 list_move_tail(&t->entry, firing);
935 }
936
937 /*
938 * Check for the special case thread timers.
939 */
940 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
941 if (soft != RLIM_INFINITY) {
942 unsigned long hard =
943 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
944
945 if (hard != RLIM_INFINITY &&
946 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
947 /*
948 * At the hard limit, we just die.
949 * No need to calculate anything else now.
950 */
951 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
952 return;
953 }
954 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
955 /*
956 * At the soft limit, send a SIGXCPU every second.
957 */
958 if (soft < hard) {
959 soft += USEC_PER_SEC;
960 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
961 }
962 printk(KERN_INFO
963 "RT Watchdog Timeout: %s[%d]\n",
964 tsk->comm, task_pid_nr(tsk));
965 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
966 }
967 }
968 }
969
970 static void stop_process_timers(struct signal_struct *sig)
971 {
972 struct thread_group_cputimer *cputimer = &sig->cputimer;
973 unsigned long flags;
974
975 raw_spin_lock_irqsave(&cputimer->lock, flags);
976 cputimer->running = 0;
977 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
978 }
979
980 static u32 onecputick;
981
982 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
983 cputime_t *expires, cputime_t cur_time, int signo)
984 {
985 if (!it->expires)
986 return;
987
988 if (cur_time >= it->expires) {
989 if (it->incr) {
990 it->expires += it->incr;
991 it->error += it->incr_error;
992 if (it->error >= onecputick) {
993 it->expires -= cputime_one_jiffy;
994 it->error -= onecputick;
995 }
996 } else {
997 it->expires = 0;
998 }
999
1000 trace_itimer_expire(signo == SIGPROF ?
1001 ITIMER_PROF : ITIMER_VIRTUAL,
1002 tsk->signal->leader_pid, cur_time);
1003 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1004 }
1005
1006 if (it->expires && (!*expires || it->expires < *expires)) {
1007 *expires = it->expires;
1008 }
1009 }
1010
1011 /**
1012 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1013 *
1014 * @cputime: The struct to compare.
1015 *
1016 * Checks @cputime to see if all fields are zero. Returns true if all fields
1017 * are zero, false if any field is nonzero.
1018 */
1019 static inline int task_cputime_zero(const struct task_cputime *cputime)
1020 {
1021 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
1022 return 1;
1023 return 0;
1024 }
1025
1026 /*
1027 * Check for any per-thread CPU timers that have fired and move them
1028 * off the tsk->*_timers list onto the firing list. Per-thread timers
1029 * have already been taken off.
1030 */
1031 static void check_process_timers(struct task_struct *tsk,
1032 struct list_head *firing)
1033 {
1034 int maxfire;
1035 struct signal_struct *const sig = tsk->signal;
1036 cputime_t utime, ptime, virt_expires, prof_expires;
1037 unsigned long long sum_sched_runtime, sched_expires;
1038 struct list_head *timers = sig->cpu_timers;
1039 struct task_cputime cputime;
1040 unsigned long soft;
1041
1042 /*
1043 * Collect the current process totals.
1044 */
1045 thread_group_cputimer(tsk, &cputime);
1046 utime = cputime.utime;
1047 ptime = utime + cputime.stime;
1048 sum_sched_runtime = cputime.sum_exec_runtime;
1049 maxfire = 20;
1050 prof_expires = 0;
1051 while (!list_empty(timers)) {
1052 struct cpu_timer_list *tl = list_first_entry(timers,
1053 struct cpu_timer_list,
1054 entry);
1055 if (!--maxfire || ptime < tl->expires.cpu) {
1056 prof_expires = tl->expires.cpu;
1057 break;
1058 }
1059 tl->firing = 1;
1060 list_move_tail(&tl->entry, firing);
1061 }
1062
1063 ++timers;
1064 maxfire = 20;
1065 virt_expires = 0;
1066 while (!list_empty(timers)) {
1067 struct cpu_timer_list *tl = list_first_entry(timers,
1068 struct cpu_timer_list,
1069 entry);
1070 if (!--maxfire || utime < tl->expires.cpu) {
1071 virt_expires = tl->expires.cpu;
1072 break;
1073 }
1074 tl->firing = 1;
1075 list_move_tail(&tl->entry, firing);
1076 }
1077
1078 ++timers;
1079 maxfire = 20;
1080 sched_expires = 0;
1081 while (!list_empty(timers)) {
1082 struct cpu_timer_list *tl = list_first_entry(timers,
1083 struct cpu_timer_list,
1084 entry);
1085 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1086 sched_expires = tl->expires.sched;
1087 break;
1088 }
1089 tl->firing = 1;
1090 list_move_tail(&tl->entry, firing);
1091 }
1092
1093 /*
1094 * Check for the special case process timers.
1095 */
1096 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1097 SIGPROF);
1098 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1099 SIGVTALRM);
1100 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1101 if (soft != RLIM_INFINITY) {
1102 unsigned long psecs = cputime_to_secs(ptime);
1103 unsigned long hard =
1104 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1105 cputime_t x;
1106 if (psecs >= hard) {
1107 /*
1108 * At the hard limit, we just die.
1109 * No need to calculate anything else now.
1110 */
1111 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1112 return;
1113 }
1114 if (psecs >= soft) {
1115 /*
1116 * At the soft limit, send a SIGXCPU every second.
1117 */
1118 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1119 if (soft < hard) {
1120 soft++;
1121 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1122 }
1123 }
1124 x = secs_to_cputime(soft);
1125 if (!prof_expires || x < prof_expires) {
1126 prof_expires = x;
1127 }
1128 }
1129
1130 sig->cputime_expires.prof_exp = prof_expires;
1131 sig->cputime_expires.virt_exp = virt_expires;
1132 sig->cputime_expires.sched_exp = sched_expires;
1133 if (task_cputime_zero(&sig->cputime_expires))
1134 stop_process_timers(sig);
1135 }
1136
1137 /*
1138 * This is called from the signal code (via do_schedule_next_timer)
1139 * when the last timer signal was delivered and we have to reload the timer.
1140 */
1141 void posix_cpu_timer_schedule(struct k_itimer *timer)
1142 {
1143 struct task_struct *p = timer->it.cpu.task;
1144 union cpu_time_count now;
1145
1146 if (unlikely(p == NULL))
1147 /*
1148 * The task was cleaned up already, no future firings.
1149 */
1150 goto out;
1151
1152 /*
1153 * Fetch the current sample and update the timer's expiry time.
1154 */
1155 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1156 cpu_clock_sample(timer->it_clock, p, &now);
1157 bump_cpu_timer(timer, now);
1158 if (unlikely(p->exit_state)) {
1159 clear_dead_task(timer, now);
1160 goto out;
1161 }
1162 read_lock(&tasklist_lock); /* arm_timer needs it. */
1163 spin_lock(&p->sighand->siglock);
1164 } else {
1165 read_lock(&tasklist_lock);
1166 if (unlikely(p->sighand == NULL)) {
1167 /*
1168 * The process has been reaped.
1169 * We can't even collect a sample any more.
1170 */
1171 put_task_struct(p);
1172 timer->it.cpu.task = p = NULL;
1173 timer->it.cpu.expires.sched = 0;
1174 goto out_unlock;
1175 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1176 /*
1177 * We've noticed that the thread is dead, but
1178 * not yet reaped. Take this opportunity to
1179 * drop our task ref.
1180 */
1181 clear_dead_task(timer, now);
1182 goto out_unlock;
1183 }
1184 spin_lock(&p->sighand->siglock);
1185 cpu_timer_sample_group(timer->it_clock, p, &now);
1186 bump_cpu_timer(timer, now);
1187 /* Leave the tasklist_lock locked for the call below. */
1188 }
1189
1190 /*
1191 * Now re-arm for the new expiry time.
1192 */
1193 BUG_ON(!irqs_disabled());
1194 arm_timer(timer);
1195 spin_unlock(&p->sighand->siglock);
1196
1197 out_unlock:
1198 read_unlock(&tasklist_lock);
1199
1200 out:
1201 timer->it_overrun_last = timer->it_overrun;
1202 timer->it_overrun = -1;
1203 ++timer->it_requeue_pending;
1204 }
1205
1206 /**
1207 * task_cputime_expired - Compare two task_cputime entities.
1208 *
1209 * @sample: The task_cputime structure to be checked for expiration.
1210 * @expires: Expiration times, against which @sample will be checked.
1211 *
1212 * Checks @sample against @expires to see if any field of @sample has expired.
1213 * Returns true if any field of the former is greater than the corresponding
1214 * field of the latter if the latter field is set. Otherwise returns false.
1215 */
1216 static inline int task_cputime_expired(const struct task_cputime *sample,
1217 const struct task_cputime *expires)
1218 {
1219 if (expires->utime && sample->utime >= expires->utime)
1220 return 1;
1221 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1222 return 1;
1223 if (expires->sum_exec_runtime != 0 &&
1224 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1225 return 1;
1226 return 0;
1227 }
1228
1229 /**
1230 * fastpath_timer_check - POSIX CPU timers fast path.
1231 *
1232 * @tsk: The task (thread) being checked.
1233 *
1234 * Check the task and thread group timers. If both are zero (there are no
1235 * timers set) return false. Otherwise snapshot the task and thread group
1236 * timers and compare them with the corresponding expiration times. Return
1237 * true if a timer has expired, else return false.
1238 */
1239 static inline int fastpath_timer_check(struct task_struct *tsk)
1240 {
1241 struct signal_struct *sig;
1242 cputime_t utime, stime;
1243
1244 task_cputime(tsk, &utime, &stime);
1245
1246 if (!task_cputime_zero(&tsk->cputime_expires)) {
1247 struct task_cputime task_sample = {
1248 .utime = utime,
1249 .stime = stime,
1250 .sum_exec_runtime = tsk->se.sum_exec_runtime
1251 };
1252
1253 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1254 return 1;
1255 }
1256
1257 sig = tsk->signal;
1258 if (sig->cputimer.running) {
1259 struct task_cputime group_sample;
1260
1261 raw_spin_lock(&sig->cputimer.lock);
1262 group_sample = sig->cputimer.cputime;
1263 raw_spin_unlock(&sig->cputimer.lock);
1264
1265 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1266 return 1;
1267 }
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * This is called from the timer interrupt handler. The irq handler has
1274 * already updated our counts. We need to check if any timers fire now.
1275 * Interrupts are disabled.
1276 */
1277 void run_posix_cpu_timers(struct task_struct *tsk)
1278 {
1279 LIST_HEAD(firing);
1280 struct k_itimer *timer, *next;
1281 unsigned long flags;
1282
1283 BUG_ON(!irqs_disabled());
1284
1285 /*
1286 * The fast path checks that there are no expired thread or thread
1287 * group timers. If that's so, just return.
1288 */
1289 if (!fastpath_timer_check(tsk))
1290 return;
1291
1292 if (!lock_task_sighand(tsk, &flags))
1293 return;
1294 /*
1295 * Here we take off tsk->signal->cpu_timers[N] and
1296 * tsk->cpu_timers[N] all the timers that are firing, and
1297 * put them on the firing list.
1298 */
1299 check_thread_timers(tsk, &firing);
1300 /*
1301 * If there are any active process wide timers (POSIX 1.b, itimers,
1302 * RLIMIT_CPU) cputimer must be running.
1303 */
1304 if (tsk->signal->cputimer.running)
1305 check_process_timers(tsk, &firing);
1306
1307 /*
1308 * We must release these locks before taking any timer's lock.
1309 * There is a potential race with timer deletion here, as the
1310 * siglock now protects our private firing list. We have set
1311 * the firing flag in each timer, so that a deletion attempt
1312 * that gets the timer lock before we do will give it up and
1313 * spin until we've taken care of that timer below.
1314 */
1315 unlock_task_sighand(tsk, &flags);
1316
1317 /*
1318 * Now that all the timers on our list have the firing flag,
1319 * no one will touch their list entries but us. We'll take
1320 * each timer's lock before clearing its firing flag, so no
1321 * timer call will interfere.
1322 */
1323 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1324 int cpu_firing;
1325
1326 spin_lock(&timer->it_lock);
1327 list_del_init(&timer->it.cpu.entry);
1328 cpu_firing = timer->it.cpu.firing;
1329 timer->it.cpu.firing = 0;
1330 /*
1331 * The firing flag is -1 if we collided with a reset
1332 * of the timer, which already reported this
1333 * almost-firing as an overrun. So don't generate an event.
1334 */
1335 if (likely(cpu_firing >= 0))
1336 cpu_timer_fire(timer);
1337 spin_unlock(&timer->it_lock);
1338 }
1339 }
1340
1341 /*
1342 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1343 * The tsk->sighand->siglock must be held by the caller.
1344 */
1345 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1346 cputime_t *newval, cputime_t *oldval)
1347 {
1348 union cpu_time_count now;
1349
1350 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1351 cpu_timer_sample_group(clock_idx, tsk, &now);
1352
1353 if (oldval) {
1354 /*
1355 * We are setting itimer. The *oldval is absolute and we update
1356 * it to be relative, *newval argument is relative and we update
1357 * it to be absolute.
1358 */
1359 if (*oldval) {
1360 if (*oldval <= now.cpu) {
1361 /* Just about to fire. */
1362 *oldval = cputime_one_jiffy;
1363 } else {
1364 *oldval -= now.cpu;
1365 }
1366 }
1367
1368 if (!*newval)
1369 return;
1370 *newval += now.cpu;
1371 }
1372
1373 /*
1374 * Update expiration cache if we are the earliest timer, or eventually
1375 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1376 */
1377 switch (clock_idx) {
1378 case CPUCLOCK_PROF:
1379 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1380 tsk->signal->cputime_expires.prof_exp = *newval;
1381 break;
1382 case CPUCLOCK_VIRT:
1383 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1384 tsk->signal->cputime_expires.virt_exp = *newval;
1385 break;
1386 }
1387 }
1388
1389 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1390 struct timespec *rqtp, struct itimerspec *it)
1391 {
1392 struct k_itimer timer;
1393 int error;
1394
1395 /*
1396 * Set up a temporary timer and then wait for it to go off.
1397 */
1398 memset(&timer, 0, sizeof timer);
1399 spin_lock_init(&timer.it_lock);
1400 timer.it_clock = which_clock;
1401 timer.it_overrun = -1;
1402 error = posix_cpu_timer_create(&timer);
1403 timer.it_process = current;
1404 if (!error) {
1405 static struct itimerspec zero_it;
1406
1407 memset(it, 0, sizeof *it);
1408 it->it_value = *rqtp;
1409
1410 spin_lock_irq(&timer.it_lock);
1411 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1412 if (error) {
1413 spin_unlock_irq(&timer.it_lock);
1414 return error;
1415 }
1416
1417 while (!signal_pending(current)) {
1418 if (timer.it.cpu.expires.sched == 0) {
1419 /*
1420 * Our timer fired and was reset, below
1421 * deletion can not fail.
1422 */
1423 posix_cpu_timer_del(&timer);
1424 spin_unlock_irq(&timer.it_lock);
1425 return 0;
1426 }
1427
1428 /*
1429 * Block until cpu_timer_fire (or a signal) wakes us.
1430 */
1431 __set_current_state(TASK_INTERRUPTIBLE);
1432 spin_unlock_irq(&timer.it_lock);
1433 schedule();
1434 spin_lock_irq(&timer.it_lock);
1435 }
1436
1437 /*
1438 * We were interrupted by a signal.
1439 */
1440 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1441 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1442 if (!error) {
1443 /*
1444 * Timer is now unarmed, deletion can not fail.
1445 */
1446 posix_cpu_timer_del(&timer);
1447 }
1448 spin_unlock_irq(&timer.it_lock);
1449
1450 while (error == TIMER_RETRY) {
1451 /*
1452 * We need to handle case when timer was or is in the
1453 * middle of firing. In other cases we already freed
1454 * resources.
1455 */
1456 spin_lock_irq(&timer.it_lock);
1457 error = posix_cpu_timer_del(&timer);
1458 spin_unlock_irq(&timer.it_lock);
1459 }
1460
1461 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1462 /*
1463 * It actually did fire already.
1464 */
1465 return 0;
1466 }
1467
1468 error = -ERESTART_RESTARTBLOCK;
1469 }
1470
1471 return error;
1472 }
1473
1474 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1475
1476 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1477 struct timespec *rqtp, struct timespec __user *rmtp)
1478 {
1479 struct restart_block *restart_block =
1480 &current_thread_info()->restart_block;
1481 struct itimerspec it;
1482 int error;
1483
1484 /*
1485 * Diagnose required errors first.
1486 */
1487 if (CPUCLOCK_PERTHREAD(which_clock) &&
1488 (CPUCLOCK_PID(which_clock) == 0 ||
1489 CPUCLOCK_PID(which_clock) == current->pid))
1490 return -EINVAL;
1491
1492 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1493
1494 if (error == -ERESTART_RESTARTBLOCK) {
1495
1496 if (flags & TIMER_ABSTIME)
1497 return -ERESTARTNOHAND;
1498 /*
1499 * Report back to the user the time still remaining.
1500 */
1501 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1502 return -EFAULT;
1503
1504 restart_block->fn = posix_cpu_nsleep_restart;
1505 restart_block->nanosleep.clockid = which_clock;
1506 restart_block->nanosleep.rmtp = rmtp;
1507 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1508 }
1509 return error;
1510 }
1511
1512 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1513 {
1514 clockid_t which_clock = restart_block->nanosleep.clockid;
1515 struct timespec t;
1516 struct itimerspec it;
1517 int error;
1518
1519 t = ns_to_timespec(restart_block->nanosleep.expires);
1520
1521 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1522
1523 if (error == -ERESTART_RESTARTBLOCK) {
1524 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1525 /*
1526 * Report back to the user the time still remaining.
1527 */
1528 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1529 return -EFAULT;
1530
1531 restart_block->nanosleep.expires = timespec_to_ns(&t);
1532 }
1533 return error;
1534
1535 }
1536
1537 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1538 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1539
1540 static int process_cpu_clock_getres(const clockid_t which_clock,
1541 struct timespec *tp)
1542 {
1543 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1544 }
1545 static int process_cpu_clock_get(const clockid_t which_clock,
1546 struct timespec *tp)
1547 {
1548 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1549 }
1550 static int process_cpu_timer_create(struct k_itimer *timer)
1551 {
1552 timer->it_clock = PROCESS_CLOCK;
1553 return posix_cpu_timer_create(timer);
1554 }
1555 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1556 struct timespec *rqtp,
1557 struct timespec __user *rmtp)
1558 {
1559 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1560 }
1561 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1562 {
1563 return -EINVAL;
1564 }
1565 static int thread_cpu_clock_getres(const clockid_t which_clock,
1566 struct timespec *tp)
1567 {
1568 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1569 }
1570 static int thread_cpu_clock_get(const clockid_t which_clock,
1571 struct timespec *tp)
1572 {
1573 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1574 }
1575 static int thread_cpu_timer_create(struct k_itimer *timer)
1576 {
1577 timer->it_clock = THREAD_CLOCK;
1578 return posix_cpu_timer_create(timer);
1579 }
1580
1581 struct k_clock clock_posix_cpu = {
1582 .clock_getres = posix_cpu_clock_getres,
1583 .clock_set = posix_cpu_clock_set,
1584 .clock_get = posix_cpu_clock_get,
1585 .timer_create = posix_cpu_timer_create,
1586 .nsleep = posix_cpu_nsleep,
1587 .nsleep_restart = posix_cpu_nsleep_restart,
1588 .timer_set = posix_cpu_timer_set,
1589 .timer_del = posix_cpu_timer_del,
1590 .timer_get = posix_cpu_timer_get,
1591 };
1592
1593 static __init int init_posix_cpu_timers(void)
1594 {
1595 struct k_clock process = {
1596 .clock_getres = process_cpu_clock_getres,
1597 .clock_get = process_cpu_clock_get,
1598 .timer_create = process_cpu_timer_create,
1599 .nsleep = process_cpu_nsleep,
1600 .nsleep_restart = process_cpu_nsleep_restart,
1601 };
1602 struct k_clock thread = {
1603 .clock_getres = thread_cpu_clock_getres,
1604 .clock_get = thread_cpu_clock_get,
1605 .timer_create = thread_cpu_timer_create,
1606 };
1607 struct timespec ts;
1608
1609 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1610 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1611
1612 cputime_to_timespec(cputime_one_jiffy, &ts);
1613 onecputick = ts.tv_nsec;
1614 WARN_ON(ts.tv_sec != 0);
1615
1616 return 0;
1617 }
1618 __initcall(init_posix_cpu_timers);