pid namespaces: create a slab-cache for 'struct pid_namespace'
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34 #include <linux/hash.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/init_task.h>
37
38 #define pid_hashfn(nr, ns) \
39 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
40 static struct hlist_head *pid_hash;
41 static int pidhash_shift;
42 struct pid init_struct_pid = INIT_STRUCT_PID;
43 static struct kmem_cache *pid_ns_cachep;
44
45 int pid_max = PID_MAX_DEFAULT;
46
47 #define RESERVED_PIDS 300
48
49 int pid_max_min = RESERVED_PIDS + 1;
50 int pid_max_max = PID_MAX_LIMIT;
51
52 #define BITS_PER_PAGE (PAGE_SIZE*8)
53 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
54
55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 struct pidmap *map, int off)
57 {
58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59 }
60
61 #define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63
64 /*
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
69 */
70 struct pid_namespace init_pid_ns = {
71 .kref = {
72 .refcount = ATOMIC_INIT(2),
73 },
74 .pidmap = {
75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
76 },
77 .last_pid = 0,
78 .level = 0,
79 .child_reaper = &init_task,
80 };
81 EXPORT_SYMBOL_GPL(init_pid_ns);
82
83 int is_container_init(struct task_struct *tsk)
84 {
85 int ret = 0;
86 struct pid *pid;
87
88 rcu_read_lock();
89 pid = task_pid(tsk);
90 if (pid != NULL && pid->numbers[pid->level].nr == 1)
91 ret = 1;
92 rcu_read_unlock();
93
94 return ret;
95 }
96 EXPORT_SYMBOL(is_container_init);
97
98 /*
99 * Note: disable interrupts while the pidmap_lock is held as an
100 * interrupt might come in and do read_lock(&tasklist_lock).
101 *
102 * If we don't disable interrupts there is a nasty deadlock between
103 * detach_pid()->free_pid() and another cpu that does
104 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
105 * read_lock(&tasklist_lock);
106 *
107 * After we clean up the tasklist_lock and know there are no
108 * irq handlers that take it we can leave the interrupts enabled.
109 * For now it is easier to be safe than to prove it can't happen.
110 */
111
112 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
113
114 static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
115 {
116 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
117 int offset = pid & BITS_PER_PAGE_MASK;
118
119 clear_bit(offset, map->page);
120 atomic_inc(&map->nr_free);
121 }
122
123 static int alloc_pidmap(struct pid_namespace *pid_ns)
124 {
125 int i, offset, max_scan, pid, last = pid_ns->last_pid;
126 struct pidmap *map;
127
128 pid = last + 1;
129 if (pid >= pid_max)
130 pid = RESERVED_PIDS;
131 offset = pid & BITS_PER_PAGE_MASK;
132 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
133 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
134 for (i = 0; i <= max_scan; ++i) {
135 if (unlikely(!map->page)) {
136 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
137 /*
138 * Free the page if someone raced with us
139 * installing it:
140 */
141 spin_lock_irq(&pidmap_lock);
142 if (map->page)
143 kfree(page);
144 else
145 map->page = page;
146 spin_unlock_irq(&pidmap_lock);
147 if (unlikely(!map->page))
148 break;
149 }
150 if (likely(atomic_read(&map->nr_free))) {
151 do {
152 if (!test_and_set_bit(offset, map->page)) {
153 atomic_dec(&map->nr_free);
154 pid_ns->last_pid = pid;
155 return pid;
156 }
157 offset = find_next_offset(map, offset);
158 pid = mk_pid(pid_ns, map, offset);
159 /*
160 * find_next_offset() found a bit, the pid from it
161 * is in-bounds, and if we fell back to the last
162 * bitmap block and the final block was the same
163 * as the starting point, pid is before last_pid.
164 */
165 } while (offset < BITS_PER_PAGE && pid < pid_max &&
166 (i != max_scan || pid < last ||
167 !((last+1) & BITS_PER_PAGE_MASK)));
168 }
169 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
170 ++map;
171 offset = 0;
172 } else {
173 map = &pid_ns->pidmap[0];
174 offset = RESERVED_PIDS;
175 if (unlikely(last == offset))
176 break;
177 }
178 pid = mk_pid(pid_ns, map, offset);
179 }
180 return -1;
181 }
182
183 static int next_pidmap(struct pid_namespace *pid_ns, int last)
184 {
185 int offset;
186 struct pidmap *map, *end;
187
188 offset = (last + 1) & BITS_PER_PAGE_MASK;
189 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
190 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
191 for (; map < end; map++, offset = 0) {
192 if (unlikely(!map->page))
193 continue;
194 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
195 if (offset < BITS_PER_PAGE)
196 return mk_pid(pid_ns, map, offset);
197 }
198 return -1;
199 }
200
201 fastcall void put_pid(struct pid *pid)
202 {
203 struct pid_namespace *ns;
204
205 if (!pid)
206 return;
207
208 ns = pid->numbers[pid->level].ns;
209 if ((atomic_read(&pid->count) == 1) ||
210 atomic_dec_and_test(&pid->count)) {
211 kmem_cache_free(ns->pid_cachep, pid);
212 put_pid_ns(ns);
213 }
214 }
215 EXPORT_SYMBOL_GPL(put_pid);
216
217 static void delayed_put_pid(struct rcu_head *rhp)
218 {
219 struct pid *pid = container_of(rhp, struct pid, rcu);
220 put_pid(pid);
221 }
222
223 fastcall void free_pid(struct pid *pid)
224 {
225 /* We can be called with write_lock_irq(&tasklist_lock) held */
226 int i;
227 unsigned long flags;
228
229 spin_lock_irqsave(&pidmap_lock, flags);
230 for (i = 0; i <= pid->level; i++)
231 hlist_del_rcu(&pid->numbers[i].pid_chain);
232 spin_unlock_irqrestore(&pidmap_lock, flags);
233
234 for (i = 0; i <= pid->level; i++)
235 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
236
237 call_rcu(&pid->rcu, delayed_put_pid);
238 }
239
240 struct pid *alloc_pid(struct pid_namespace *ns)
241 {
242 struct pid *pid;
243 enum pid_type type;
244 int i, nr;
245 struct pid_namespace *tmp;
246 struct upid *upid;
247
248 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
249 if (!pid)
250 goto out;
251
252 tmp = ns;
253 for (i = ns->level; i >= 0; i--) {
254 nr = alloc_pidmap(tmp);
255 if (nr < 0)
256 goto out_free;
257
258 pid->numbers[i].nr = nr;
259 pid->numbers[i].ns = tmp;
260 tmp = tmp->parent;
261 }
262
263 get_pid_ns(ns);
264 pid->level = ns->level;
265 pid->nr = pid->numbers[0].nr;
266 atomic_set(&pid->count, 1);
267 for (type = 0; type < PIDTYPE_MAX; ++type)
268 INIT_HLIST_HEAD(&pid->tasks[type]);
269
270 spin_lock_irq(&pidmap_lock);
271 for (i = ns->level; i >= 0; i--) {
272 upid = &pid->numbers[i];
273 hlist_add_head_rcu(&upid->pid_chain,
274 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
275 }
276 spin_unlock_irq(&pidmap_lock);
277
278 out:
279 return pid;
280
281 out_free:
282 for (i++; i <= ns->level; i++)
283 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
284
285 kmem_cache_free(ns->pid_cachep, pid);
286 pid = NULL;
287 goto out;
288 }
289
290 struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
291 {
292 struct hlist_node *elem;
293 struct upid *pnr;
294
295 hlist_for_each_entry_rcu(pnr, elem,
296 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
297 if (pnr->nr == nr && pnr->ns == ns)
298 return container_of(pnr, struct pid,
299 numbers[ns->level]);
300
301 return NULL;
302 }
303 EXPORT_SYMBOL_GPL(find_pid_ns);
304
305 /*
306 * attach_pid() must be called with the tasklist_lock write-held.
307 */
308 int fastcall attach_pid(struct task_struct *task, enum pid_type type,
309 struct pid *pid)
310 {
311 struct pid_link *link;
312
313 link = &task->pids[type];
314 link->pid = pid;
315 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
316
317 return 0;
318 }
319
320 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
321 {
322 struct pid_link *link;
323 struct pid *pid;
324 int tmp;
325
326 link = &task->pids[type];
327 pid = link->pid;
328
329 hlist_del_rcu(&link->node);
330 link->pid = NULL;
331
332 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
333 if (!hlist_empty(&pid->tasks[tmp]))
334 return;
335
336 free_pid(pid);
337 }
338
339 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
340 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
341 enum pid_type type)
342 {
343 new->pids[type].pid = old->pids[type].pid;
344 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
345 old->pids[type].pid = NULL;
346 }
347
348 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
349 {
350 struct task_struct *result = NULL;
351 if (pid) {
352 struct hlist_node *first;
353 first = rcu_dereference(pid->tasks[type].first);
354 if (first)
355 result = hlist_entry(first, struct task_struct, pids[(type)].node);
356 }
357 return result;
358 }
359
360 /*
361 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
362 */
363 struct task_struct *find_task_by_pid_type_ns(int type, int nr,
364 struct pid_namespace *ns)
365 {
366 return pid_task(find_pid_ns(nr, ns), type);
367 }
368
369 EXPORT_SYMBOL(find_task_by_pid_type_ns);
370
371 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
372 {
373 struct pid *pid;
374 rcu_read_lock();
375 pid = get_pid(task->pids[type].pid);
376 rcu_read_unlock();
377 return pid;
378 }
379
380 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
381 {
382 struct task_struct *result;
383 rcu_read_lock();
384 result = pid_task(pid, type);
385 if (result)
386 get_task_struct(result);
387 rcu_read_unlock();
388 return result;
389 }
390
391 struct pid *find_get_pid(pid_t nr)
392 {
393 struct pid *pid;
394
395 rcu_read_lock();
396 pid = get_pid(find_vpid(nr));
397 rcu_read_unlock();
398
399 return pid;
400 }
401
402 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
403 {
404 struct upid *upid;
405 pid_t nr = 0;
406
407 if (pid && ns->level <= pid->level) {
408 upid = &pid->numbers[ns->level];
409 if (upid->ns == ns)
410 nr = upid->nr;
411 }
412 return nr;
413 }
414
415 /*
416 * Used by proc to find the first pid that is greater then or equal to nr.
417 *
418 * If there is a pid at nr this function is exactly the same as find_pid.
419 */
420 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
421 {
422 struct pid *pid;
423
424 do {
425 pid = find_pid_ns(nr, ns);
426 if (pid)
427 break;
428 nr = next_pidmap(ns, nr);
429 } while (nr > 0);
430
431 return pid;
432 }
433 EXPORT_SYMBOL_GPL(find_get_pid);
434
435 struct pid_cache {
436 int nr_ids;
437 char name[16];
438 struct kmem_cache *cachep;
439 struct list_head list;
440 };
441
442 static LIST_HEAD(pid_caches_lh);
443 static DEFINE_MUTEX(pid_caches_mutex);
444
445 /*
446 * creates the kmem cache to allocate pids from.
447 * @nr_ids: the number of numerical ids this pid will have to carry
448 */
449
450 static struct kmem_cache *create_pid_cachep(int nr_ids)
451 {
452 struct pid_cache *pcache;
453 struct kmem_cache *cachep;
454
455 mutex_lock(&pid_caches_mutex);
456 list_for_each_entry (pcache, &pid_caches_lh, list)
457 if (pcache->nr_ids == nr_ids)
458 goto out;
459
460 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
461 if (pcache == NULL)
462 goto err_alloc;
463
464 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
465 cachep = kmem_cache_create(pcache->name,
466 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
467 0, SLAB_HWCACHE_ALIGN, NULL);
468 if (cachep == NULL)
469 goto err_cachep;
470
471 pcache->nr_ids = nr_ids;
472 pcache->cachep = cachep;
473 list_add(&pcache->list, &pid_caches_lh);
474 out:
475 mutex_unlock(&pid_caches_mutex);
476 return pcache->cachep;
477
478 err_cachep:
479 kfree(pcache);
480 err_alloc:
481 mutex_unlock(&pid_caches_mutex);
482 return NULL;
483 }
484
485 static struct pid_namespace *create_pid_namespace(int level)
486 {
487 struct pid_namespace *ns;
488 int i;
489
490 ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
491 if (ns == NULL)
492 goto out;
493
494 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
495 if (!ns->pidmap[0].page)
496 goto out_free;
497
498 ns->pid_cachep = create_pid_cachep(level + 1);
499 if (ns->pid_cachep == NULL)
500 goto out_free_map;
501
502 kref_init(&ns->kref);
503 ns->last_pid = 0;
504 ns->child_reaper = NULL;
505 ns->level = level;
506
507 set_bit(0, ns->pidmap[0].page);
508 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
509
510 for (i = 1; i < PIDMAP_ENTRIES; i++) {
511 ns->pidmap[i].page = 0;
512 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
513 }
514
515 return ns;
516
517 out_free_map:
518 kfree(ns->pidmap[0].page);
519 out_free:
520 kmem_cache_free(pid_ns_cachep, ns);
521 out:
522 return ERR_PTR(-ENOMEM);
523 }
524
525 static void destroy_pid_namespace(struct pid_namespace *ns)
526 {
527 int i;
528
529 for (i = 0; i < PIDMAP_ENTRIES; i++)
530 kfree(ns->pidmap[i].page);
531 kmem_cache_free(pid_ns_cachep, ns);
532 }
533
534 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
535 {
536 struct pid_namespace *new_ns;
537
538 BUG_ON(!old_ns);
539 new_ns = get_pid_ns(old_ns);
540 if (!(flags & CLONE_NEWPID))
541 goto out;
542
543 new_ns = ERR_PTR(-EINVAL);
544 if (flags & CLONE_THREAD)
545 goto out_put;
546
547 new_ns = create_pid_namespace(old_ns->level + 1);
548 if (!IS_ERR(new_ns))
549 new_ns->parent = get_pid_ns(old_ns);
550
551 out_put:
552 put_pid_ns(old_ns);
553 out:
554 return new_ns;
555 }
556
557 void free_pid_ns(struct kref *kref)
558 {
559 struct pid_namespace *ns, *parent;
560
561 ns = container_of(kref, struct pid_namespace, kref);
562
563 parent = ns->parent;
564 destroy_pid_namespace(ns);
565
566 if (parent != NULL)
567 put_pid_ns(parent);
568 }
569
570 /*
571 * The pid hash table is scaled according to the amount of memory in the
572 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
573 * more.
574 */
575 void __init pidhash_init(void)
576 {
577 int i, pidhash_size;
578 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
579
580 pidhash_shift = max(4, fls(megabytes * 4));
581 pidhash_shift = min(12, pidhash_shift);
582 pidhash_size = 1 << pidhash_shift;
583
584 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
585 pidhash_size, pidhash_shift,
586 pidhash_size * sizeof(struct hlist_head));
587
588 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
589 if (!pid_hash)
590 panic("Could not alloc pidhash!\n");
591 for (i = 0; i < pidhash_size; i++)
592 INIT_HLIST_HEAD(&pid_hash[i]);
593 }
594
595 void __init pidmap_init(void)
596 {
597 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
598 /* Reserve PID 0. We never call free_pidmap(0) */
599 set_bit(0, init_pid_ns.pidmap[0].page);
600 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
601
602 init_pid_ns.pid_cachep = create_pid_cachep(1);
603 if (init_pid_ns.pid_cachep == NULL)
604 panic("Can't create pid_1 cachep\n");
605
606 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
607 }