Merge commit '317f394160e9beb97d19a84c39b7e5eb3d7815a8'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39
40 #define pid_hashfn(nr, ns) \
41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head *pid_hash;
43 static unsigned int pidhash_shift = 4;
44 struct pid init_struct_pid = INIT_STRUCT_PID;
45
46 int pid_max = PID_MAX_DEFAULT;
47
48 #define RESERVED_PIDS 300
49
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
52
53 #define BITS_PER_PAGE (PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
55
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
58 {
59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64
65 /*
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
70 */
71 struct pid_namespace init_pid_ns = {
72 .kref = {
73 .refcount = ATOMIC_INIT(2),
74 },
75 .pidmap = {
76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 },
78 .last_pid = 0,
79 .level = 0,
80 .child_reaper = &init_task,
81 };
82 EXPORT_SYMBOL_GPL(init_pid_ns);
83
84 int is_container_init(struct task_struct *tsk)
85 {
86 int ret = 0;
87 struct pid *pid;
88
89 rcu_read_lock();
90 pid = task_pid(tsk);
91 if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 ret = 1;
93 rcu_read_unlock();
94
95 return ret;
96 }
97 EXPORT_SYMBOL(is_container_init);
98
99 /*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
112
113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
115 static void free_pidmap(struct upid *upid)
116 {
117 int nr = upid->nr;
118 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119 int offset = nr & BITS_PER_PAGE_MASK;
120
121 clear_bit(offset, map->page);
122 atomic_inc(&map->nr_free);
123 }
124
125 /*
126 * If we started walking pids at 'base', is 'a' seen before 'b'?
127 */
128 static int pid_before(int base, int a, int b)
129 {
130 /*
131 * This is the same as saying
132 *
133 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
134 * and that mapping orders 'a' and 'b' with respect to 'base'.
135 */
136 return (unsigned)(a - base) < (unsigned)(b - base);
137 }
138
139 /*
140 * We might be racing with someone else trying to set pid_ns->last_pid.
141 * We want the winner to have the "later" value, because if the
142 * "earlier" value prevails, then a pid may get reused immediately.
143 *
144 * Since pids rollover, it is not sufficient to just pick the bigger
145 * value. We have to consider where we started counting from.
146 *
147 * 'base' is the value of pid_ns->last_pid that we observed when
148 * we started looking for a pid.
149 *
150 * 'pid' is the pid that we eventually found.
151 */
152 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
153 {
154 int prev;
155 int last_write = base;
156 do {
157 prev = last_write;
158 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
159 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
160 }
161
162 static int alloc_pidmap(struct pid_namespace *pid_ns)
163 {
164 int i, offset, max_scan, pid, last = pid_ns->last_pid;
165 struct pidmap *map;
166
167 pid = last + 1;
168 if (pid >= pid_max)
169 pid = RESERVED_PIDS;
170 offset = pid & BITS_PER_PAGE_MASK;
171 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
172 /*
173 * If last_pid points into the middle of the map->page we
174 * want to scan this bitmap block twice, the second time
175 * we start with offset == 0 (or RESERVED_PIDS).
176 */
177 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
178 for (i = 0; i <= max_scan; ++i) {
179 if (unlikely(!map->page)) {
180 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
181 /*
182 * Free the page if someone raced with us
183 * installing it:
184 */
185 spin_lock_irq(&pidmap_lock);
186 if (!map->page) {
187 map->page = page;
188 page = NULL;
189 }
190 spin_unlock_irq(&pidmap_lock);
191 kfree(page);
192 if (unlikely(!map->page))
193 break;
194 }
195 if (likely(atomic_read(&map->nr_free))) {
196 do {
197 if (!test_and_set_bit(offset, map->page)) {
198 atomic_dec(&map->nr_free);
199 set_last_pid(pid_ns, last, pid);
200 return pid;
201 }
202 offset = find_next_offset(map, offset);
203 pid = mk_pid(pid_ns, map, offset);
204 } while (offset < BITS_PER_PAGE && pid < pid_max);
205 }
206 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
207 ++map;
208 offset = 0;
209 } else {
210 map = &pid_ns->pidmap[0];
211 offset = RESERVED_PIDS;
212 if (unlikely(last == offset))
213 break;
214 }
215 pid = mk_pid(pid_ns, map, offset);
216 }
217 return -1;
218 }
219
220 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
221 {
222 int offset;
223 struct pidmap *map, *end;
224
225 if (last >= PID_MAX_LIMIT)
226 return -1;
227
228 offset = (last + 1) & BITS_PER_PAGE_MASK;
229 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
230 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
231 for (; map < end; map++, offset = 0) {
232 if (unlikely(!map->page))
233 continue;
234 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
235 if (offset < BITS_PER_PAGE)
236 return mk_pid(pid_ns, map, offset);
237 }
238 return -1;
239 }
240
241 void put_pid(struct pid *pid)
242 {
243 struct pid_namespace *ns;
244
245 if (!pid)
246 return;
247
248 ns = pid->numbers[pid->level].ns;
249 if ((atomic_read(&pid->count) == 1) ||
250 atomic_dec_and_test(&pid->count)) {
251 kmem_cache_free(ns->pid_cachep, pid);
252 put_pid_ns(ns);
253 }
254 }
255 EXPORT_SYMBOL_GPL(put_pid);
256
257 static void delayed_put_pid(struct rcu_head *rhp)
258 {
259 struct pid *pid = container_of(rhp, struct pid, rcu);
260 put_pid(pid);
261 }
262
263 void free_pid(struct pid *pid)
264 {
265 /* We can be called with write_lock_irq(&tasklist_lock) held */
266 int i;
267 unsigned long flags;
268
269 spin_lock_irqsave(&pidmap_lock, flags);
270 for (i = 0; i <= pid->level; i++)
271 hlist_del_rcu(&pid->numbers[i].pid_chain);
272 spin_unlock_irqrestore(&pidmap_lock, flags);
273
274 for (i = 0; i <= pid->level; i++)
275 free_pidmap(pid->numbers + i);
276
277 call_rcu(&pid->rcu, delayed_put_pid);
278 }
279
280 struct pid *alloc_pid(struct pid_namespace *ns)
281 {
282 struct pid *pid;
283 enum pid_type type;
284 int i, nr;
285 struct pid_namespace *tmp;
286 struct upid *upid;
287
288 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
289 if (!pid)
290 goto out;
291
292 tmp = ns;
293 for (i = ns->level; i >= 0; i--) {
294 nr = alloc_pidmap(tmp);
295 if (nr < 0)
296 goto out_free;
297
298 pid->numbers[i].nr = nr;
299 pid->numbers[i].ns = tmp;
300 tmp = tmp->parent;
301 }
302
303 get_pid_ns(ns);
304 pid->level = ns->level;
305 atomic_set(&pid->count, 1);
306 for (type = 0; type < PIDTYPE_MAX; ++type)
307 INIT_HLIST_HEAD(&pid->tasks[type]);
308
309 upid = pid->numbers + ns->level;
310 spin_lock_irq(&pidmap_lock);
311 for ( ; upid >= pid->numbers; --upid)
312 hlist_add_head_rcu(&upid->pid_chain,
313 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
314 spin_unlock_irq(&pidmap_lock);
315
316 out:
317 return pid;
318
319 out_free:
320 while (++i <= ns->level)
321 free_pidmap(pid->numbers + i);
322
323 kmem_cache_free(ns->pid_cachep, pid);
324 pid = NULL;
325 goto out;
326 }
327
328 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
329 {
330 struct hlist_node *elem;
331 struct upid *pnr;
332
333 hlist_for_each_entry_rcu(pnr, elem,
334 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
335 if (pnr->nr == nr && pnr->ns == ns)
336 return container_of(pnr, struct pid,
337 numbers[ns->level]);
338
339 return NULL;
340 }
341 EXPORT_SYMBOL_GPL(find_pid_ns);
342
343 struct pid *find_vpid(int nr)
344 {
345 return find_pid_ns(nr, current->nsproxy->pid_ns);
346 }
347 EXPORT_SYMBOL_GPL(find_vpid);
348
349 /*
350 * attach_pid() must be called with the tasklist_lock write-held.
351 */
352 void attach_pid(struct task_struct *task, enum pid_type type,
353 struct pid *pid)
354 {
355 struct pid_link *link;
356
357 link = &task->pids[type];
358 link->pid = pid;
359 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
360 }
361
362 static void __change_pid(struct task_struct *task, enum pid_type type,
363 struct pid *new)
364 {
365 struct pid_link *link;
366 struct pid *pid;
367 int tmp;
368
369 link = &task->pids[type];
370 pid = link->pid;
371
372 hlist_del_rcu(&link->node);
373 link->pid = new;
374
375 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
376 if (!hlist_empty(&pid->tasks[tmp]))
377 return;
378
379 free_pid(pid);
380 }
381
382 void detach_pid(struct task_struct *task, enum pid_type type)
383 {
384 __change_pid(task, type, NULL);
385 }
386
387 void change_pid(struct task_struct *task, enum pid_type type,
388 struct pid *pid)
389 {
390 __change_pid(task, type, pid);
391 attach_pid(task, type, pid);
392 }
393
394 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
395 void transfer_pid(struct task_struct *old, struct task_struct *new,
396 enum pid_type type)
397 {
398 new->pids[type].pid = old->pids[type].pid;
399 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
400 }
401
402 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
403 {
404 struct task_struct *result = NULL;
405 if (pid) {
406 struct hlist_node *first;
407 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
408 rcu_read_lock_held() ||
409 lockdep_tasklist_lock_is_held());
410 if (first)
411 result = hlist_entry(first, struct task_struct, pids[(type)].node);
412 }
413 return result;
414 }
415 EXPORT_SYMBOL(pid_task);
416
417 /*
418 * Must be called under rcu_read_lock().
419 */
420 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
421 {
422 rcu_lockdep_assert(rcu_read_lock_held());
423 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
424 }
425
426 struct task_struct *find_task_by_vpid(pid_t vnr)
427 {
428 return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
429 }
430
431 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
432 {
433 struct pid *pid;
434 rcu_read_lock();
435 if (type != PIDTYPE_PID)
436 task = task->group_leader;
437 pid = get_pid(task->pids[type].pid);
438 rcu_read_unlock();
439 return pid;
440 }
441 EXPORT_SYMBOL_GPL(get_task_pid);
442
443 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
444 {
445 struct task_struct *result;
446 rcu_read_lock();
447 result = pid_task(pid, type);
448 if (result)
449 get_task_struct(result);
450 rcu_read_unlock();
451 return result;
452 }
453 EXPORT_SYMBOL_GPL(get_pid_task);
454
455 struct pid *find_get_pid(pid_t nr)
456 {
457 struct pid *pid;
458
459 rcu_read_lock();
460 pid = get_pid(find_vpid(nr));
461 rcu_read_unlock();
462
463 return pid;
464 }
465 EXPORT_SYMBOL_GPL(find_get_pid);
466
467 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
468 {
469 struct upid *upid;
470 pid_t nr = 0;
471
472 if (pid && ns->level <= pid->level) {
473 upid = &pid->numbers[ns->level];
474 if (upid->ns == ns)
475 nr = upid->nr;
476 }
477 return nr;
478 }
479
480 pid_t pid_vnr(struct pid *pid)
481 {
482 return pid_nr_ns(pid, current->nsproxy->pid_ns);
483 }
484 EXPORT_SYMBOL_GPL(pid_vnr);
485
486 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
487 struct pid_namespace *ns)
488 {
489 pid_t nr = 0;
490
491 rcu_read_lock();
492 if (!ns)
493 ns = current->nsproxy->pid_ns;
494 if (likely(pid_alive(task))) {
495 if (type != PIDTYPE_PID)
496 task = task->group_leader;
497 nr = pid_nr_ns(task->pids[type].pid, ns);
498 }
499 rcu_read_unlock();
500
501 return nr;
502 }
503 EXPORT_SYMBOL(__task_pid_nr_ns);
504
505 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
506 {
507 return pid_nr_ns(task_tgid(tsk), ns);
508 }
509 EXPORT_SYMBOL(task_tgid_nr_ns);
510
511 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
512 {
513 return ns_of_pid(task_pid(tsk));
514 }
515 EXPORT_SYMBOL_GPL(task_active_pid_ns);
516
517 /*
518 * Used by proc to find the first pid that is greater than or equal to nr.
519 *
520 * If there is a pid at nr this function is exactly the same as find_pid_ns.
521 */
522 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
523 {
524 struct pid *pid;
525
526 do {
527 pid = find_pid_ns(nr, ns);
528 if (pid)
529 break;
530 nr = next_pidmap(ns, nr);
531 } while (nr > 0);
532
533 return pid;
534 }
535
536 /*
537 * The pid hash table is scaled according to the amount of memory in the
538 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
539 * more.
540 */
541 void __init pidhash_init(void)
542 {
543 int i, pidhash_size;
544
545 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
546 HASH_EARLY | HASH_SMALL,
547 &pidhash_shift, NULL, 4096);
548 pidhash_size = 1 << pidhash_shift;
549
550 for (i = 0; i < pidhash_size; i++)
551 INIT_HLIST_HEAD(&pid_hash[i]);
552 }
553
554 void __init pidmap_init(void)
555 {
556 /* bump default and minimum pid_max based on number of cpus */
557 pid_max = min(pid_max_max, max_t(int, pid_max,
558 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
559 pid_max_min = max_t(int, pid_max_min,
560 PIDS_PER_CPU_MIN * num_possible_cpus());
561 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
562
563 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
564 /* Reserve PID 0. We never call free_pidmap(0) */
565 set_bit(0, init_pid_ns.pidmap[0].page);
566 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
567
568 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
569 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
570 }