pid namespaces: make alloc_pid(), free_pid() and put_pid() work with struct upid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 */
22
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/bootmem.h>
28 #include <linux/hash.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/init_task.h>
31
32 #define pid_hashfn(nr, ns) \
33 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
34 static struct hlist_head *pid_hash;
35 static int pidhash_shift;
36 struct pid init_struct_pid = INIT_STRUCT_PID;
37
38 int pid_max = PID_MAX_DEFAULT;
39
40 #define RESERVED_PIDS 300
41
42 int pid_max_min = RESERVED_PIDS + 1;
43 int pid_max_max = PID_MAX_LIMIT;
44
45 #define BITS_PER_PAGE (PAGE_SIZE*8)
46 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
47
48 static inline int mk_pid(struct pid_namespace *pid_ns,
49 struct pidmap *map, int off)
50 {
51 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
52 }
53
54 #define find_next_offset(map, off) \
55 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
56
57 /*
58 * PID-map pages start out as NULL, they get allocated upon
59 * first use and are never deallocated. This way a low pid_max
60 * value does not cause lots of bitmaps to be allocated, but
61 * the scheme scales to up to 4 million PIDs, runtime.
62 */
63 struct pid_namespace init_pid_ns = {
64 .kref = {
65 .refcount = ATOMIC_INIT(2),
66 },
67 .pidmap = {
68 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
69 },
70 .last_pid = 0,
71 .level = 0,
72 .child_reaper = &init_task,
73 };
74
75 int is_global_init(struct task_struct *tsk)
76 {
77 return tsk == init_pid_ns.child_reaper;
78 }
79
80 /*
81 * Note: disable interrupts while the pidmap_lock is held as an
82 * interrupt might come in and do read_lock(&tasklist_lock).
83 *
84 * If we don't disable interrupts there is a nasty deadlock between
85 * detach_pid()->free_pid() and another cpu that does
86 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
87 * read_lock(&tasklist_lock);
88 *
89 * After we clean up the tasklist_lock and know there are no
90 * irq handlers that take it we can leave the interrupts enabled.
91 * For now it is easier to be safe than to prove it can't happen.
92 */
93
94 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
95
96 static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
97 {
98 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
99 int offset = pid & BITS_PER_PAGE_MASK;
100
101 clear_bit(offset, map->page);
102 atomic_inc(&map->nr_free);
103 }
104
105 static int alloc_pidmap(struct pid_namespace *pid_ns)
106 {
107 int i, offset, max_scan, pid, last = pid_ns->last_pid;
108 struct pidmap *map;
109
110 pid = last + 1;
111 if (pid >= pid_max)
112 pid = RESERVED_PIDS;
113 offset = pid & BITS_PER_PAGE_MASK;
114 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
115 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
116 for (i = 0; i <= max_scan; ++i) {
117 if (unlikely(!map->page)) {
118 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
119 /*
120 * Free the page if someone raced with us
121 * installing it:
122 */
123 spin_lock_irq(&pidmap_lock);
124 if (map->page)
125 kfree(page);
126 else
127 map->page = page;
128 spin_unlock_irq(&pidmap_lock);
129 if (unlikely(!map->page))
130 break;
131 }
132 if (likely(atomic_read(&map->nr_free))) {
133 do {
134 if (!test_and_set_bit(offset, map->page)) {
135 atomic_dec(&map->nr_free);
136 pid_ns->last_pid = pid;
137 return pid;
138 }
139 offset = find_next_offset(map, offset);
140 pid = mk_pid(pid_ns, map, offset);
141 /*
142 * find_next_offset() found a bit, the pid from it
143 * is in-bounds, and if we fell back to the last
144 * bitmap block and the final block was the same
145 * as the starting point, pid is before last_pid.
146 */
147 } while (offset < BITS_PER_PAGE && pid < pid_max &&
148 (i != max_scan || pid < last ||
149 !((last+1) & BITS_PER_PAGE_MASK)));
150 }
151 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
152 ++map;
153 offset = 0;
154 } else {
155 map = &pid_ns->pidmap[0];
156 offset = RESERVED_PIDS;
157 if (unlikely(last == offset))
158 break;
159 }
160 pid = mk_pid(pid_ns, map, offset);
161 }
162 return -1;
163 }
164
165 static int next_pidmap(struct pid_namespace *pid_ns, int last)
166 {
167 int offset;
168 struct pidmap *map, *end;
169
170 offset = (last + 1) & BITS_PER_PAGE_MASK;
171 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
172 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
173 for (; map < end; map++, offset = 0) {
174 if (unlikely(!map->page))
175 continue;
176 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
177 if (offset < BITS_PER_PAGE)
178 return mk_pid(pid_ns, map, offset);
179 }
180 return -1;
181 }
182
183 fastcall void put_pid(struct pid *pid)
184 {
185 struct pid_namespace *ns;
186
187 if (!pid)
188 return;
189
190 ns = pid->numbers[pid->level].ns;
191 if ((atomic_read(&pid->count) == 1) ||
192 atomic_dec_and_test(&pid->count)) {
193 kmem_cache_free(ns->pid_cachep, pid);
194 if (ns != &init_pid_ns)
195 put_pid_ns(ns);
196 }
197 }
198 EXPORT_SYMBOL_GPL(put_pid);
199
200 static void delayed_put_pid(struct rcu_head *rhp)
201 {
202 struct pid *pid = container_of(rhp, struct pid, rcu);
203 put_pid(pid);
204 }
205
206 fastcall void free_pid(struct pid *pid)
207 {
208 /* We can be called with write_lock_irq(&tasklist_lock) held */
209 int i;
210 unsigned long flags;
211
212 spin_lock_irqsave(&pidmap_lock, flags);
213 hlist_del_rcu(&pid->pid_chain);
214 spin_unlock_irqrestore(&pidmap_lock, flags);
215
216 for (i = 0; i <= pid->level; i++)
217 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
218
219 call_rcu(&pid->rcu, delayed_put_pid);
220 }
221
222 struct pid *alloc_pid(struct pid_namespace *ns)
223 {
224 struct pid *pid;
225 enum pid_type type;
226 int i, nr;
227 struct pid_namespace *tmp;
228
229 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
230 if (!pid)
231 goto out;
232
233 tmp = ns;
234 for (i = ns->level; i >= 0; i--) {
235 nr = alloc_pidmap(tmp);
236 if (nr < 0)
237 goto out_free;
238
239 pid->numbers[i].nr = nr;
240 pid->numbers[i].ns = tmp;
241 tmp = tmp->parent;
242 }
243
244 if (ns != &init_pid_ns)
245 get_pid_ns(ns);
246
247 pid->level = ns->level;
248 pid->nr = pid->numbers[0].nr;
249 atomic_set(&pid->count, 1);
250 for (type = 0; type < PIDTYPE_MAX; ++type)
251 INIT_HLIST_HEAD(&pid->tasks[type]);
252
253 spin_lock_irq(&pidmap_lock);
254 hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr, ns)]);
255 spin_unlock_irq(&pidmap_lock);
256
257 out:
258 return pid;
259
260 out_free:
261 for (i++; i <= ns->level; i++)
262 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
263
264 kmem_cache_free(ns->pid_cachep, pid);
265 pid = NULL;
266 goto out;
267 }
268
269 struct pid * fastcall find_pid(int nr)
270 {
271 struct hlist_node *elem;
272 struct pid *pid;
273
274 hlist_for_each_entry_rcu(pid, elem,
275 &pid_hash[pid_hashfn(nr, &init_pid_ns)], pid_chain) {
276 if (pid->nr == nr)
277 return pid;
278 }
279 return NULL;
280 }
281 EXPORT_SYMBOL_GPL(find_pid);
282
283 /*
284 * attach_pid() must be called with the tasklist_lock write-held.
285 */
286 int fastcall attach_pid(struct task_struct *task, enum pid_type type,
287 struct pid *pid)
288 {
289 struct pid_link *link;
290
291 link = &task->pids[type];
292 link->pid = pid;
293 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
294
295 return 0;
296 }
297
298 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
299 {
300 struct pid_link *link;
301 struct pid *pid;
302 int tmp;
303
304 link = &task->pids[type];
305 pid = link->pid;
306
307 hlist_del_rcu(&link->node);
308 link->pid = NULL;
309
310 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
311 if (!hlist_empty(&pid->tasks[tmp]))
312 return;
313
314 free_pid(pid);
315 }
316
317 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
318 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
319 enum pid_type type)
320 {
321 new->pids[type].pid = old->pids[type].pid;
322 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
323 old->pids[type].pid = NULL;
324 }
325
326 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
327 {
328 struct task_struct *result = NULL;
329 if (pid) {
330 struct hlist_node *first;
331 first = rcu_dereference(pid->tasks[type].first);
332 if (first)
333 result = hlist_entry(first, struct task_struct, pids[(type)].node);
334 }
335 return result;
336 }
337
338 /*
339 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
340 */
341 struct task_struct *find_task_by_pid_type(int type, int nr)
342 {
343 return pid_task(find_pid(nr), type);
344 }
345
346 EXPORT_SYMBOL(find_task_by_pid_type);
347
348 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
349 {
350 struct pid *pid;
351 rcu_read_lock();
352 pid = get_pid(task->pids[type].pid);
353 rcu_read_unlock();
354 return pid;
355 }
356
357 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
358 {
359 struct task_struct *result;
360 rcu_read_lock();
361 result = pid_task(pid, type);
362 if (result)
363 get_task_struct(result);
364 rcu_read_unlock();
365 return result;
366 }
367
368 struct pid *find_get_pid(pid_t nr)
369 {
370 struct pid *pid;
371
372 rcu_read_lock();
373 pid = get_pid(find_pid(nr));
374 rcu_read_unlock();
375
376 return pid;
377 }
378
379 /*
380 * Used by proc to find the first pid that is greater then or equal to nr.
381 *
382 * If there is a pid at nr this function is exactly the same as find_pid.
383 */
384 struct pid *find_ge_pid(int nr)
385 {
386 struct pid *pid;
387
388 do {
389 pid = find_pid(nr);
390 if (pid)
391 break;
392 nr = next_pidmap(task_active_pid_ns(current), nr);
393 } while (nr > 0);
394
395 return pid;
396 }
397 EXPORT_SYMBOL_GPL(find_get_pid);
398
399 struct pid_cache {
400 int nr_ids;
401 char name[16];
402 struct kmem_cache *cachep;
403 struct list_head list;
404 };
405
406 static LIST_HEAD(pid_caches_lh);
407 static DEFINE_MUTEX(pid_caches_mutex);
408
409 /*
410 * creates the kmem cache to allocate pids from.
411 * @nr_ids: the number of numerical ids this pid will have to carry
412 */
413
414 static struct kmem_cache *create_pid_cachep(int nr_ids)
415 {
416 struct pid_cache *pcache;
417 struct kmem_cache *cachep;
418
419 mutex_lock(&pid_caches_mutex);
420 list_for_each_entry (pcache, &pid_caches_lh, list)
421 if (pcache->nr_ids == nr_ids)
422 goto out;
423
424 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
425 if (pcache == NULL)
426 goto err_alloc;
427
428 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
429 cachep = kmem_cache_create(pcache->name,
430 /* FIXME add numerical ids here */
431 sizeof(struct pid), 0, SLAB_HWCACHE_ALIGN, NULL);
432 if (cachep == NULL)
433 goto err_cachep;
434
435 pcache->nr_ids = nr_ids;
436 pcache->cachep = cachep;
437 list_add(&pcache->list, &pid_caches_lh);
438 out:
439 mutex_unlock(&pid_caches_mutex);
440 return pcache->cachep;
441
442 err_cachep:
443 kfree(pcache);
444 err_alloc:
445 mutex_unlock(&pid_caches_mutex);
446 return NULL;
447 }
448
449 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
450 {
451 BUG_ON(!old_ns);
452 get_pid_ns(old_ns);
453 return old_ns;
454 }
455
456 void free_pid_ns(struct kref *kref)
457 {
458 struct pid_namespace *ns;
459
460 ns = container_of(kref, struct pid_namespace, kref);
461 kfree(ns);
462 }
463
464 /*
465 * The pid hash table is scaled according to the amount of memory in the
466 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
467 * more.
468 */
469 void __init pidhash_init(void)
470 {
471 int i, pidhash_size;
472 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
473
474 pidhash_shift = max(4, fls(megabytes * 4));
475 pidhash_shift = min(12, pidhash_shift);
476 pidhash_size = 1 << pidhash_shift;
477
478 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
479 pidhash_size, pidhash_shift,
480 pidhash_size * sizeof(struct hlist_head));
481
482 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
483 if (!pid_hash)
484 panic("Could not alloc pidhash!\n");
485 for (i = 0; i < pidhash_size; i++)
486 INIT_HLIST_HEAD(&pid_hash[i]);
487 }
488
489 void __init pidmap_init(void)
490 {
491 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
492 /* Reserve PID 0. We never call free_pidmap(0) */
493 set_bit(0, init_pid_ns.pidmap[0].page);
494 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
495
496 init_pid_ns.pid_cachep = create_pid_cachep(1);
497 if (init_pid_ns.pid_cachep == NULL)
498 panic("Can't create pid_1 cachep\n");
499 }