pid namespaces: destroy pid namespace on init's death
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34 #include <linux/hash.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/init_task.h>
37 #include <linux/syscalls.h>
38
39 #define pid_hashfn(nr, ns) \
40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
41 static struct hlist_head *pid_hash;
42 static int pidhash_shift;
43 struct pid init_struct_pid = INIT_STRUCT_PID;
44 static struct kmem_cache *pid_ns_cachep;
45
46 int pid_max = PID_MAX_DEFAULT;
47
48 #define RESERVED_PIDS 300
49
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
52
53 #define BITS_PER_PAGE (PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
55
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
58 {
59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64
65 /*
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
70 */
71 struct pid_namespace init_pid_ns = {
72 .kref = {
73 .refcount = ATOMIC_INIT(2),
74 },
75 .pidmap = {
76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 },
78 .last_pid = 0,
79 .level = 0,
80 .child_reaper = &init_task,
81 };
82 EXPORT_SYMBOL_GPL(init_pid_ns);
83
84 int is_container_init(struct task_struct *tsk)
85 {
86 int ret = 0;
87 struct pid *pid;
88
89 rcu_read_lock();
90 pid = task_pid(tsk);
91 if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 ret = 1;
93 rcu_read_unlock();
94
95 return ret;
96 }
97 EXPORT_SYMBOL(is_container_init);
98
99 /*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
112
113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
115 static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
116 {
117 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
118 int offset = pid & BITS_PER_PAGE_MASK;
119
120 clear_bit(offset, map->page);
121 atomic_inc(&map->nr_free);
122 }
123
124 static int alloc_pidmap(struct pid_namespace *pid_ns)
125 {
126 int i, offset, max_scan, pid, last = pid_ns->last_pid;
127 struct pidmap *map;
128
129 pid = last + 1;
130 if (pid >= pid_max)
131 pid = RESERVED_PIDS;
132 offset = pid & BITS_PER_PAGE_MASK;
133 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
134 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
135 for (i = 0; i <= max_scan; ++i) {
136 if (unlikely(!map->page)) {
137 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
138 /*
139 * Free the page if someone raced with us
140 * installing it:
141 */
142 spin_lock_irq(&pidmap_lock);
143 if (map->page)
144 kfree(page);
145 else
146 map->page = page;
147 spin_unlock_irq(&pidmap_lock);
148 if (unlikely(!map->page))
149 break;
150 }
151 if (likely(atomic_read(&map->nr_free))) {
152 do {
153 if (!test_and_set_bit(offset, map->page)) {
154 atomic_dec(&map->nr_free);
155 pid_ns->last_pid = pid;
156 return pid;
157 }
158 offset = find_next_offset(map, offset);
159 pid = mk_pid(pid_ns, map, offset);
160 /*
161 * find_next_offset() found a bit, the pid from it
162 * is in-bounds, and if we fell back to the last
163 * bitmap block and the final block was the same
164 * as the starting point, pid is before last_pid.
165 */
166 } while (offset < BITS_PER_PAGE && pid < pid_max &&
167 (i != max_scan || pid < last ||
168 !((last+1) & BITS_PER_PAGE_MASK)));
169 }
170 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
171 ++map;
172 offset = 0;
173 } else {
174 map = &pid_ns->pidmap[0];
175 offset = RESERVED_PIDS;
176 if (unlikely(last == offset))
177 break;
178 }
179 pid = mk_pid(pid_ns, map, offset);
180 }
181 return -1;
182 }
183
184 static int next_pidmap(struct pid_namespace *pid_ns, int last)
185 {
186 int offset;
187 struct pidmap *map, *end;
188
189 offset = (last + 1) & BITS_PER_PAGE_MASK;
190 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
191 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
192 for (; map < end; map++, offset = 0) {
193 if (unlikely(!map->page))
194 continue;
195 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
196 if (offset < BITS_PER_PAGE)
197 return mk_pid(pid_ns, map, offset);
198 }
199 return -1;
200 }
201
202 fastcall void put_pid(struct pid *pid)
203 {
204 struct pid_namespace *ns;
205
206 if (!pid)
207 return;
208
209 ns = pid->numbers[pid->level].ns;
210 if ((atomic_read(&pid->count) == 1) ||
211 atomic_dec_and_test(&pid->count)) {
212 kmem_cache_free(ns->pid_cachep, pid);
213 put_pid_ns(ns);
214 }
215 }
216 EXPORT_SYMBOL_GPL(put_pid);
217
218 static void delayed_put_pid(struct rcu_head *rhp)
219 {
220 struct pid *pid = container_of(rhp, struct pid, rcu);
221 put_pid(pid);
222 }
223
224 fastcall void free_pid(struct pid *pid)
225 {
226 /* We can be called with write_lock_irq(&tasklist_lock) held */
227 int i;
228 unsigned long flags;
229
230 spin_lock_irqsave(&pidmap_lock, flags);
231 for (i = 0; i <= pid->level; i++)
232 hlist_del_rcu(&pid->numbers[i].pid_chain);
233 spin_unlock_irqrestore(&pidmap_lock, flags);
234
235 for (i = 0; i <= pid->level; i++)
236 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
237
238 call_rcu(&pid->rcu, delayed_put_pid);
239 }
240
241 struct pid *alloc_pid(struct pid_namespace *ns)
242 {
243 struct pid *pid;
244 enum pid_type type;
245 int i, nr;
246 struct pid_namespace *tmp;
247 struct upid *upid;
248
249 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
250 if (!pid)
251 goto out;
252
253 tmp = ns;
254 for (i = ns->level; i >= 0; i--) {
255 nr = alloc_pidmap(tmp);
256 if (nr < 0)
257 goto out_free;
258
259 pid->numbers[i].nr = nr;
260 pid->numbers[i].ns = tmp;
261 tmp = tmp->parent;
262 }
263
264 get_pid_ns(ns);
265 pid->level = ns->level;
266 pid->nr = pid->numbers[0].nr;
267 atomic_set(&pid->count, 1);
268 for (type = 0; type < PIDTYPE_MAX; ++type)
269 INIT_HLIST_HEAD(&pid->tasks[type]);
270
271 spin_lock_irq(&pidmap_lock);
272 for (i = ns->level; i >= 0; i--) {
273 upid = &pid->numbers[i];
274 hlist_add_head_rcu(&upid->pid_chain,
275 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
276 }
277 spin_unlock_irq(&pidmap_lock);
278
279 out:
280 return pid;
281
282 out_free:
283 for (i++; i <= ns->level; i++)
284 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
285
286 kmem_cache_free(ns->pid_cachep, pid);
287 pid = NULL;
288 goto out;
289 }
290
291 struct pid * fastcall find_pid_ns(int nr, struct pid_namespace *ns)
292 {
293 struct hlist_node *elem;
294 struct upid *pnr;
295
296 hlist_for_each_entry_rcu(pnr, elem,
297 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
298 if (pnr->nr == nr && pnr->ns == ns)
299 return container_of(pnr, struct pid,
300 numbers[ns->level]);
301
302 return NULL;
303 }
304 EXPORT_SYMBOL_GPL(find_pid_ns);
305
306 /*
307 * attach_pid() must be called with the tasklist_lock write-held.
308 */
309 int fastcall attach_pid(struct task_struct *task, enum pid_type type,
310 struct pid *pid)
311 {
312 struct pid_link *link;
313
314 link = &task->pids[type];
315 link->pid = pid;
316 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
317
318 return 0;
319 }
320
321 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
322 {
323 struct pid_link *link;
324 struct pid *pid;
325 int tmp;
326
327 link = &task->pids[type];
328 pid = link->pid;
329
330 hlist_del_rcu(&link->node);
331 link->pid = NULL;
332
333 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
334 if (!hlist_empty(&pid->tasks[tmp]))
335 return;
336
337 free_pid(pid);
338 }
339
340 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
341 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
342 enum pid_type type)
343 {
344 new->pids[type].pid = old->pids[type].pid;
345 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
346 old->pids[type].pid = NULL;
347 }
348
349 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
350 {
351 struct task_struct *result = NULL;
352 if (pid) {
353 struct hlist_node *first;
354 first = rcu_dereference(pid->tasks[type].first);
355 if (first)
356 result = hlist_entry(first, struct task_struct, pids[(type)].node);
357 }
358 return result;
359 }
360
361 /*
362 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
363 */
364 struct task_struct *find_task_by_pid_type_ns(int type, int nr,
365 struct pid_namespace *ns)
366 {
367 return pid_task(find_pid_ns(nr, ns), type);
368 }
369
370 EXPORT_SYMBOL(find_task_by_pid_type_ns);
371
372 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
373 {
374 struct pid *pid;
375 rcu_read_lock();
376 pid = get_pid(task->pids[type].pid);
377 rcu_read_unlock();
378 return pid;
379 }
380
381 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
382 {
383 struct task_struct *result;
384 rcu_read_lock();
385 result = pid_task(pid, type);
386 if (result)
387 get_task_struct(result);
388 rcu_read_unlock();
389 return result;
390 }
391
392 struct pid *find_get_pid(pid_t nr)
393 {
394 struct pid *pid;
395
396 rcu_read_lock();
397 pid = get_pid(find_vpid(nr));
398 rcu_read_unlock();
399
400 return pid;
401 }
402
403 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
404 {
405 struct upid *upid;
406 pid_t nr = 0;
407
408 if (pid && ns->level <= pid->level) {
409 upid = &pid->numbers[ns->level];
410 if (upid->ns == ns)
411 nr = upid->nr;
412 }
413 return nr;
414 }
415
416 /*
417 * Used by proc to find the first pid that is greater then or equal to nr.
418 *
419 * If there is a pid at nr this function is exactly the same as find_pid.
420 */
421 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
422 {
423 struct pid *pid;
424
425 do {
426 pid = find_pid_ns(nr, ns);
427 if (pid)
428 break;
429 nr = next_pidmap(ns, nr);
430 } while (nr > 0);
431
432 return pid;
433 }
434 EXPORT_SYMBOL_GPL(find_get_pid);
435
436 struct pid_cache {
437 int nr_ids;
438 char name[16];
439 struct kmem_cache *cachep;
440 struct list_head list;
441 };
442
443 static LIST_HEAD(pid_caches_lh);
444 static DEFINE_MUTEX(pid_caches_mutex);
445
446 /*
447 * creates the kmem cache to allocate pids from.
448 * @nr_ids: the number of numerical ids this pid will have to carry
449 */
450
451 static struct kmem_cache *create_pid_cachep(int nr_ids)
452 {
453 struct pid_cache *pcache;
454 struct kmem_cache *cachep;
455
456 mutex_lock(&pid_caches_mutex);
457 list_for_each_entry (pcache, &pid_caches_lh, list)
458 if (pcache->nr_ids == nr_ids)
459 goto out;
460
461 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
462 if (pcache == NULL)
463 goto err_alloc;
464
465 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
466 cachep = kmem_cache_create(pcache->name,
467 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
468 0, SLAB_HWCACHE_ALIGN, NULL);
469 if (cachep == NULL)
470 goto err_cachep;
471
472 pcache->nr_ids = nr_ids;
473 pcache->cachep = cachep;
474 list_add(&pcache->list, &pid_caches_lh);
475 out:
476 mutex_unlock(&pid_caches_mutex);
477 return pcache->cachep;
478
479 err_cachep:
480 kfree(pcache);
481 err_alloc:
482 mutex_unlock(&pid_caches_mutex);
483 return NULL;
484 }
485
486 static struct pid_namespace *create_pid_namespace(int level)
487 {
488 struct pid_namespace *ns;
489 int i;
490
491 ns = kmem_cache_alloc(pid_ns_cachep, GFP_KERNEL);
492 if (ns == NULL)
493 goto out;
494
495 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
496 if (!ns->pidmap[0].page)
497 goto out_free;
498
499 ns->pid_cachep = create_pid_cachep(level + 1);
500 if (ns->pid_cachep == NULL)
501 goto out_free_map;
502
503 kref_init(&ns->kref);
504 ns->last_pid = 0;
505 ns->child_reaper = NULL;
506 ns->level = level;
507
508 set_bit(0, ns->pidmap[0].page);
509 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
510
511 for (i = 1; i < PIDMAP_ENTRIES; i++) {
512 ns->pidmap[i].page = 0;
513 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
514 }
515
516 return ns;
517
518 out_free_map:
519 kfree(ns->pidmap[0].page);
520 out_free:
521 kmem_cache_free(pid_ns_cachep, ns);
522 out:
523 return ERR_PTR(-ENOMEM);
524 }
525
526 static void destroy_pid_namespace(struct pid_namespace *ns)
527 {
528 int i;
529
530 for (i = 0; i < PIDMAP_ENTRIES; i++)
531 kfree(ns->pidmap[i].page);
532 kmem_cache_free(pid_ns_cachep, ns);
533 }
534
535 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
536 {
537 struct pid_namespace *new_ns;
538
539 BUG_ON(!old_ns);
540 new_ns = get_pid_ns(old_ns);
541 if (!(flags & CLONE_NEWPID))
542 goto out;
543
544 new_ns = ERR_PTR(-EINVAL);
545 if (flags & CLONE_THREAD)
546 goto out_put;
547
548 new_ns = create_pid_namespace(old_ns->level + 1);
549 if (!IS_ERR(new_ns))
550 new_ns->parent = get_pid_ns(old_ns);
551
552 out_put:
553 put_pid_ns(old_ns);
554 out:
555 return new_ns;
556 }
557
558 void free_pid_ns(struct kref *kref)
559 {
560 struct pid_namespace *ns, *parent;
561
562 ns = container_of(kref, struct pid_namespace, kref);
563
564 parent = ns->parent;
565 destroy_pid_namespace(ns);
566
567 if (parent != NULL)
568 put_pid_ns(parent);
569 }
570
571 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
572 {
573 int nr;
574 int rc;
575
576 /*
577 * The last thread in the cgroup-init thread group is terminating.
578 * Find remaining pid_ts in the namespace, signal and wait for them
579 * to exit.
580 *
581 * Note: This signals each threads in the namespace - even those that
582 * belong to the same thread group, To avoid this, we would have
583 * to walk the entire tasklist looking a processes in this
584 * namespace, but that could be unnecessarily expensive if the
585 * pid namespace has just a few processes. Or we need to
586 * maintain a tasklist for each pid namespace.
587 *
588 */
589 read_lock(&tasklist_lock);
590 nr = next_pidmap(pid_ns, 1);
591 while (nr > 0) {
592 kill_proc_info(SIGKILL, SEND_SIG_PRIV, nr);
593 nr = next_pidmap(pid_ns, nr);
594 }
595 read_unlock(&tasklist_lock);
596
597 do {
598 clear_thread_flag(TIF_SIGPENDING);
599 rc = sys_wait4(-1, NULL, __WALL, NULL);
600 } while (rc != -ECHILD);
601
602
603 /* Child reaper for the pid namespace is going away */
604 pid_ns->child_reaper = NULL;
605 return;
606 }
607
608 /*
609 * The pid hash table is scaled according to the amount of memory in the
610 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
611 * more.
612 */
613 void __init pidhash_init(void)
614 {
615 int i, pidhash_size;
616 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
617
618 pidhash_shift = max(4, fls(megabytes * 4));
619 pidhash_shift = min(12, pidhash_shift);
620 pidhash_size = 1 << pidhash_shift;
621
622 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
623 pidhash_size, pidhash_shift,
624 pidhash_size * sizeof(struct hlist_head));
625
626 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
627 if (!pid_hash)
628 panic("Could not alloc pidhash!\n");
629 for (i = 0; i < pidhash_size; i++)
630 INIT_HLIST_HEAD(&pid_hash[i]);
631 }
632
633 void __init pidmap_init(void)
634 {
635 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
636 /* Reserve PID 0. We never call free_pidmap(0) */
637 set_bit(0, init_pid_ns.pidmap[0].page);
638 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
639
640 init_pid_ns.pid_cachep = create_pid_cachep(1);
641 if (init_pid_ns.pid_cachep == NULL)
642 panic("Can't create pid_1 cachep\n");
643
644 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
645 }