Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39
40 #define pid_hashfn(nr, ns) \
41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head *pid_hash;
43 static unsigned int pidhash_shift = 4;
44 struct pid init_struct_pid = INIT_STRUCT_PID;
45
46 int pid_max = PID_MAX_DEFAULT;
47
48 #define RESERVED_PIDS 300
49
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
52
53 #define BITS_PER_PAGE (PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
55
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
58 {
59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64
65 /*
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
70 */
71 struct pid_namespace init_pid_ns = {
72 .kref = {
73 .refcount = ATOMIC_INIT(2),
74 },
75 .pidmap = {
76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 },
78 .last_pid = 0,
79 .level = 0,
80 .child_reaper = &init_task,
81 };
82 EXPORT_SYMBOL_GPL(init_pid_ns);
83
84 int is_container_init(struct task_struct *tsk)
85 {
86 int ret = 0;
87 struct pid *pid;
88
89 rcu_read_lock();
90 pid = task_pid(tsk);
91 if (pid != NULL && pid->numbers[pid->level].nr == 1)
92 ret = 1;
93 rcu_read_unlock();
94
95 return ret;
96 }
97 EXPORT_SYMBOL(is_container_init);
98
99 /*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
112
113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
115 static void free_pidmap(struct upid *upid)
116 {
117 int nr = upid->nr;
118 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119 int offset = nr & BITS_PER_PAGE_MASK;
120
121 clear_bit(offset, map->page);
122 atomic_inc(&map->nr_free);
123 }
124
125 static int alloc_pidmap(struct pid_namespace *pid_ns)
126 {
127 int i, offset, max_scan, pid, last = pid_ns->last_pid;
128 struct pidmap *map;
129
130 pid = last + 1;
131 if (pid >= pid_max)
132 pid = RESERVED_PIDS;
133 offset = pid & BITS_PER_PAGE_MASK;
134 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
135 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
136 for (i = 0; i <= max_scan; ++i) {
137 if (unlikely(!map->page)) {
138 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
139 /*
140 * Free the page if someone raced with us
141 * installing it:
142 */
143 spin_lock_irq(&pidmap_lock);
144 if (!map->page) {
145 map->page = page;
146 page = NULL;
147 }
148 spin_unlock_irq(&pidmap_lock);
149 kfree(page);
150 if (unlikely(!map->page))
151 break;
152 }
153 if (likely(atomic_read(&map->nr_free))) {
154 do {
155 if (!test_and_set_bit(offset, map->page)) {
156 atomic_dec(&map->nr_free);
157 pid_ns->last_pid = pid;
158 return pid;
159 }
160 offset = find_next_offset(map, offset);
161 pid = mk_pid(pid_ns, map, offset);
162 /*
163 * find_next_offset() found a bit, the pid from it
164 * is in-bounds, and if we fell back to the last
165 * bitmap block and the final block was the same
166 * as the starting point, pid is before last_pid.
167 */
168 } while (offset < BITS_PER_PAGE && pid < pid_max &&
169 (i != max_scan || pid < last ||
170 !((last+1) & BITS_PER_PAGE_MASK)));
171 }
172 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
173 ++map;
174 offset = 0;
175 } else {
176 map = &pid_ns->pidmap[0];
177 offset = RESERVED_PIDS;
178 if (unlikely(last == offset))
179 break;
180 }
181 pid = mk_pid(pid_ns, map, offset);
182 }
183 return -1;
184 }
185
186 int next_pidmap(struct pid_namespace *pid_ns, int last)
187 {
188 int offset;
189 struct pidmap *map, *end;
190
191 offset = (last + 1) & BITS_PER_PAGE_MASK;
192 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
193 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
194 for (; map < end; map++, offset = 0) {
195 if (unlikely(!map->page))
196 continue;
197 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
198 if (offset < BITS_PER_PAGE)
199 return mk_pid(pid_ns, map, offset);
200 }
201 return -1;
202 }
203
204 void put_pid(struct pid *pid)
205 {
206 struct pid_namespace *ns;
207
208 if (!pid)
209 return;
210
211 ns = pid->numbers[pid->level].ns;
212 if ((atomic_read(&pid->count) == 1) ||
213 atomic_dec_and_test(&pid->count)) {
214 kmem_cache_free(ns->pid_cachep, pid);
215 put_pid_ns(ns);
216 }
217 }
218 EXPORT_SYMBOL_GPL(put_pid);
219
220 static void delayed_put_pid(struct rcu_head *rhp)
221 {
222 struct pid *pid = container_of(rhp, struct pid, rcu);
223 put_pid(pid);
224 }
225
226 void free_pid(struct pid *pid)
227 {
228 /* We can be called with write_lock_irq(&tasklist_lock) held */
229 int i;
230 unsigned long flags;
231
232 spin_lock_irqsave(&pidmap_lock, flags);
233 for (i = 0; i <= pid->level; i++)
234 hlist_del_rcu(&pid->numbers[i].pid_chain);
235 spin_unlock_irqrestore(&pidmap_lock, flags);
236
237 for (i = 0; i <= pid->level; i++)
238 free_pidmap(pid->numbers + i);
239
240 call_rcu(&pid->rcu, delayed_put_pid);
241 }
242
243 struct pid *alloc_pid(struct pid_namespace *ns)
244 {
245 struct pid *pid;
246 enum pid_type type;
247 int i, nr;
248 struct pid_namespace *tmp;
249 struct upid *upid;
250
251 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
252 if (!pid)
253 goto out;
254
255 tmp = ns;
256 for (i = ns->level; i >= 0; i--) {
257 nr = alloc_pidmap(tmp);
258 if (nr < 0)
259 goto out_free;
260
261 pid->numbers[i].nr = nr;
262 pid->numbers[i].ns = tmp;
263 tmp = tmp->parent;
264 }
265
266 get_pid_ns(ns);
267 pid->level = ns->level;
268 atomic_set(&pid->count, 1);
269 for (type = 0; type < PIDTYPE_MAX; ++type)
270 INIT_HLIST_HEAD(&pid->tasks[type]);
271
272 upid = pid->numbers + ns->level;
273 spin_lock_irq(&pidmap_lock);
274 for ( ; upid >= pid->numbers; --upid)
275 hlist_add_head_rcu(&upid->pid_chain,
276 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
277 spin_unlock_irq(&pidmap_lock);
278
279 out:
280 return pid;
281
282 out_free:
283 while (++i <= ns->level)
284 free_pidmap(pid->numbers + i);
285
286 kmem_cache_free(ns->pid_cachep, pid);
287 pid = NULL;
288 goto out;
289 }
290
291 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
292 {
293 struct hlist_node *elem;
294 struct upid *pnr;
295
296 hlist_for_each_entry_rcu(pnr, elem,
297 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
298 if (pnr->nr == nr && pnr->ns == ns)
299 return container_of(pnr, struct pid,
300 numbers[ns->level]);
301
302 return NULL;
303 }
304 EXPORT_SYMBOL_GPL(find_pid_ns);
305
306 struct pid *find_vpid(int nr)
307 {
308 return find_pid_ns(nr, current->nsproxy->pid_ns);
309 }
310 EXPORT_SYMBOL_GPL(find_vpid);
311
312 /*
313 * attach_pid() must be called with the tasklist_lock write-held.
314 */
315 void attach_pid(struct task_struct *task, enum pid_type type,
316 struct pid *pid)
317 {
318 struct pid_link *link;
319
320 link = &task->pids[type];
321 link->pid = pid;
322 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
323 }
324
325 static void __change_pid(struct task_struct *task, enum pid_type type,
326 struct pid *new)
327 {
328 struct pid_link *link;
329 struct pid *pid;
330 int tmp;
331
332 link = &task->pids[type];
333 pid = link->pid;
334
335 hlist_del_rcu(&link->node);
336 link->pid = new;
337
338 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
339 if (!hlist_empty(&pid->tasks[tmp]))
340 return;
341
342 free_pid(pid);
343 }
344
345 void detach_pid(struct task_struct *task, enum pid_type type)
346 {
347 __change_pid(task, type, NULL);
348 }
349
350 void change_pid(struct task_struct *task, enum pid_type type,
351 struct pid *pid)
352 {
353 __change_pid(task, type, pid);
354 attach_pid(task, type, pid);
355 }
356
357 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
358 void transfer_pid(struct task_struct *old, struct task_struct *new,
359 enum pid_type type)
360 {
361 new->pids[type].pid = old->pids[type].pid;
362 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
363 }
364
365 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
366 {
367 struct task_struct *result = NULL;
368 if (pid) {
369 struct hlist_node *first;
370 first = rcu_dereference_check(pid->tasks[type].first,
371 rcu_read_lock_held() ||
372 lockdep_tasklist_lock_is_held());
373 if (first)
374 result = hlist_entry(first, struct task_struct, pids[(type)].node);
375 }
376 return result;
377 }
378 EXPORT_SYMBOL(pid_task);
379
380 /*
381 * Must be called under rcu_read_lock().
382 */
383 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
384 {
385 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
386 }
387
388 struct task_struct *find_task_by_vpid(pid_t vnr)
389 {
390 return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
391 }
392
393 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
394 {
395 struct pid *pid;
396 rcu_read_lock();
397 if (type != PIDTYPE_PID)
398 task = task->group_leader;
399 pid = get_pid(task->pids[type].pid);
400 rcu_read_unlock();
401 return pid;
402 }
403
404 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
405 {
406 struct task_struct *result;
407 rcu_read_lock();
408 result = pid_task(pid, type);
409 if (result)
410 get_task_struct(result);
411 rcu_read_unlock();
412 return result;
413 }
414
415 struct pid *find_get_pid(pid_t nr)
416 {
417 struct pid *pid;
418
419 rcu_read_lock();
420 pid = get_pid(find_vpid(nr));
421 rcu_read_unlock();
422
423 return pid;
424 }
425 EXPORT_SYMBOL_GPL(find_get_pid);
426
427 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
428 {
429 struct upid *upid;
430 pid_t nr = 0;
431
432 if (pid && ns->level <= pid->level) {
433 upid = &pid->numbers[ns->level];
434 if (upid->ns == ns)
435 nr = upid->nr;
436 }
437 return nr;
438 }
439
440 pid_t pid_vnr(struct pid *pid)
441 {
442 return pid_nr_ns(pid, current->nsproxy->pid_ns);
443 }
444 EXPORT_SYMBOL_GPL(pid_vnr);
445
446 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
447 struct pid_namespace *ns)
448 {
449 pid_t nr = 0;
450
451 rcu_read_lock();
452 if (!ns)
453 ns = current->nsproxy->pid_ns;
454 if (likely(pid_alive(task))) {
455 if (type != PIDTYPE_PID)
456 task = task->group_leader;
457 nr = pid_nr_ns(task->pids[type].pid, ns);
458 }
459 rcu_read_unlock();
460
461 return nr;
462 }
463 EXPORT_SYMBOL(__task_pid_nr_ns);
464
465 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
466 {
467 return pid_nr_ns(task_tgid(tsk), ns);
468 }
469 EXPORT_SYMBOL(task_tgid_nr_ns);
470
471 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
472 {
473 return ns_of_pid(task_pid(tsk));
474 }
475 EXPORT_SYMBOL_GPL(task_active_pid_ns);
476
477 /*
478 * Used by proc to find the first pid that is greater than or equal to nr.
479 *
480 * If there is a pid at nr this function is exactly the same as find_pid_ns.
481 */
482 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
483 {
484 struct pid *pid;
485
486 do {
487 pid = find_pid_ns(nr, ns);
488 if (pid)
489 break;
490 nr = next_pidmap(ns, nr);
491 } while (nr > 0);
492
493 return pid;
494 }
495
496 /*
497 * The pid hash table is scaled according to the amount of memory in the
498 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
499 * more.
500 */
501 void __init pidhash_init(void)
502 {
503 int i, pidhash_size;
504
505 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
506 HASH_EARLY | HASH_SMALL,
507 &pidhash_shift, NULL, 4096);
508 pidhash_size = 1 << pidhash_shift;
509
510 for (i = 0; i < pidhash_size; i++)
511 INIT_HLIST_HEAD(&pid_hash[i]);
512 }
513
514 void __init pidmap_init(void)
515 {
516 /* bump default and minimum pid_max based on number of cpus */
517 pid_max = min(pid_max_max, max_t(int, pid_max,
518 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
519 pid_max_min = max_t(int, pid_max_min,
520 PIDS_PER_CPU_MIN * num_possible_cpus());
521 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
522
523 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
524 /* Reserve PID 0. We never call free_pidmap(0) */
525 set_bit(0, init_pid_ns.pidmap[0].page);
526 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
527
528 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
529 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
530 }