Merge 4.9.312 into android-4.9
[GitHub/LineageOS/G12/android_kernel_amlogic_linux-4.9.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 #include <linux/anon_inodes.h>
42
43 #define pid_hashfn(nr, ns) \
44 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
45 static struct hlist_head *pid_hash;
46 static unsigned int pidhash_shift = 4;
47 struct pid init_struct_pid = INIT_STRUCT_PID;
48
49 int pid_max = PID_MAX_DEFAULT;
50
51 #define RESERVED_PIDS 300
52
53 int pid_max_min = RESERVED_PIDS + 1;
54 int pid_max_max = PID_MAX_LIMIT;
55
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
58 {
59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64
65 /*
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
70 */
71 struct pid_namespace init_pid_ns = {
72 .kref = KREF_INIT(2),
73 .pidmap = {
74 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
75 },
76 .last_pid = 0,
77 .nr_hashed = PIDNS_HASH_ADDING,
78 .level = 0,
79 .child_reaper = &init_task,
80 .user_ns = &init_user_ns,
81 .ns.inum = PROC_PID_INIT_INO,
82 #ifdef CONFIG_PID_NS
83 .ns.ops = &pidns_operations,
84 #endif
85 };
86 EXPORT_SYMBOL_GPL(init_pid_ns);
87
88 /*
89 * Note: disable interrupts while the pidmap_lock is held as an
90 * interrupt might come in and do read_lock(&tasklist_lock).
91 *
92 * If we don't disable interrupts there is a nasty deadlock between
93 * detach_pid()->free_pid() and another cpu that does
94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
95 * read_lock(&tasklist_lock);
96 *
97 * After we clean up the tasklist_lock and know there are no
98 * irq handlers that take it we can leave the interrupts enabled.
99 * For now it is easier to be safe than to prove it can't happen.
100 */
101
102 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103
104 static void free_pidmap(struct upid *upid)
105 {
106 int nr = upid->nr;
107 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
108 int offset = nr & BITS_PER_PAGE_MASK;
109
110 clear_bit(offset, map->page);
111 atomic_inc(&map->nr_free);
112 }
113
114 /*
115 * If we started walking pids at 'base', is 'a' seen before 'b'?
116 */
117 static int pid_before(int base, int a, int b)
118 {
119 /*
120 * This is the same as saying
121 *
122 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
123 * and that mapping orders 'a' and 'b' with respect to 'base'.
124 */
125 return (unsigned)(a - base) < (unsigned)(b - base);
126 }
127
128 /*
129 * We might be racing with someone else trying to set pid_ns->last_pid
130 * at the pid allocation time (there's also a sysctl for this, but racing
131 * with this one is OK, see comment in kernel/pid_namespace.c about it).
132 * We want the winner to have the "later" value, because if the
133 * "earlier" value prevails, then a pid may get reused immediately.
134 *
135 * Since pids rollover, it is not sufficient to just pick the bigger
136 * value. We have to consider where we started counting from.
137 *
138 * 'base' is the value of pid_ns->last_pid that we observed when
139 * we started looking for a pid.
140 *
141 * 'pid' is the pid that we eventually found.
142 */
143 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
144 {
145 int prev;
146 int last_write = base;
147 do {
148 prev = last_write;
149 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
150 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
151 }
152
153 static int alloc_pidmap(struct pid_namespace *pid_ns)
154 {
155 int i, offset, max_scan, pid, last = pid_ns->last_pid;
156 struct pidmap *map;
157
158 pid = last + 1;
159 if (pid >= pid_max)
160 pid = RESERVED_PIDS;
161 offset = pid & BITS_PER_PAGE_MASK;
162 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
163 /*
164 * If last_pid points into the middle of the map->page we
165 * want to scan this bitmap block twice, the second time
166 * we start with offset == 0 (or RESERVED_PIDS).
167 */
168 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
169 for (i = 0; i <= max_scan; ++i) {
170 if (unlikely(!map->page)) {
171 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
172 /*
173 * Free the page if someone raced with us
174 * installing it:
175 */
176 spin_lock_irq(&pidmap_lock);
177 if (!map->page) {
178 map->page = page;
179 page = NULL;
180 }
181 spin_unlock_irq(&pidmap_lock);
182 kfree(page);
183 if (unlikely(!map->page))
184 return -ENOMEM;
185 }
186 if (likely(atomic_read(&map->nr_free))) {
187 for ( ; ; ) {
188 if (!test_and_set_bit(offset, map->page)) {
189 atomic_dec(&map->nr_free);
190 set_last_pid(pid_ns, last, pid);
191 return pid;
192 }
193 offset = find_next_offset(map, offset);
194 if (offset >= BITS_PER_PAGE)
195 break;
196 pid = mk_pid(pid_ns, map, offset);
197 if (pid >= pid_max)
198 break;
199 }
200 }
201 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
202 ++map;
203 offset = 0;
204 } else {
205 map = &pid_ns->pidmap[0];
206 offset = RESERVED_PIDS;
207 if (unlikely(last == offset))
208 break;
209 }
210 pid = mk_pid(pid_ns, map, offset);
211 }
212 return -EAGAIN;
213 }
214
215 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
216 {
217 int offset;
218 struct pidmap *map, *end;
219
220 if (last >= PID_MAX_LIMIT)
221 return -1;
222
223 offset = (last + 1) & BITS_PER_PAGE_MASK;
224 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
225 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
226 for (; map < end; map++, offset = 0) {
227 if (unlikely(!map->page))
228 continue;
229 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
230 if (offset < BITS_PER_PAGE)
231 return mk_pid(pid_ns, map, offset);
232 }
233 return -1;
234 }
235
236 void put_pid(struct pid *pid)
237 {
238 struct pid_namespace *ns;
239
240 if (!pid)
241 return;
242
243 ns = pid->numbers[pid->level].ns;
244 if ((atomic_read(&pid->count) == 1) ||
245 atomic_dec_and_test(&pid->count)) {
246 kmem_cache_free(ns->pid_cachep, pid);
247 put_pid_ns(ns);
248 }
249 }
250 EXPORT_SYMBOL_GPL(put_pid);
251
252 static void delayed_put_pid(struct rcu_head *rhp)
253 {
254 struct pid *pid = container_of(rhp, struct pid, rcu);
255 put_pid(pid);
256 }
257
258 void free_pid(struct pid *pid)
259 {
260 /* We can be called with write_lock_irq(&tasklist_lock) held */
261 int i;
262 unsigned long flags;
263
264 spin_lock_irqsave(&pidmap_lock, flags);
265 for (i = 0; i <= pid->level; i++) {
266 struct upid *upid = pid->numbers + i;
267 struct pid_namespace *ns = upid->ns;
268 hlist_del_rcu(&upid->pid_chain);
269 switch(--ns->nr_hashed) {
270 case 2:
271 case 1:
272 /* When all that is left in the pid namespace
273 * is the reaper wake up the reaper. The reaper
274 * may be sleeping in zap_pid_ns_processes().
275 */
276 wake_up_process(ns->child_reaper);
277 break;
278 case PIDNS_HASH_ADDING:
279 /* Handle a fork failure of the first process */
280 WARN_ON(ns->child_reaper);
281 ns->nr_hashed = 0;
282 /* fall through */
283 case 0:
284 schedule_work(&ns->proc_work);
285 break;
286 }
287 }
288 spin_unlock_irqrestore(&pidmap_lock, flags);
289
290 for (i = 0; i <= pid->level; i++)
291 free_pidmap(pid->numbers + i);
292
293 call_rcu(&pid->rcu, delayed_put_pid);
294 }
295
296 struct pid *alloc_pid(struct pid_namespace *ns)
297 {
298 struct pid *pid;
299 enum pid_type type;
300 int i, nr;
301 struct pid_namespace *tmp;
302 struct upid *upid;
303 int retval = -ENOMEM;
304
305 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
306 if (!pid)
307 return ERR_PTR(retval);
308
309 tmp = ns;
310 pid->level = ns->level;
311 for (i = ns->level; i >= 0; i--) {
312 nr = alloc_pidmap(tmp);
313 if (nr < 0) {
314 retval = nr;
315 goto out_free;
316 }
317
318 pid->numbers[i].nr = nr;
319 pid->numbers[i].ns = tmp;
320 tmp = tmp->parent;
321 }
322
323 if (unlikely(is_child_reaper(pid))) {
324 if (pid_ns_prepare_proc(ns)) {
325 disable_pid_allocation(ns);
326 goto out_free;
327 }
328 }
329
330 get_pid_ns(ns);
331 atomic_set(&pid->count, 1);
332 for (type = 0; type < PIDTYPE_MAX; ++type)
333 INIT_HLIST_HEAD(&pid->tasks[type]);
334
335 init_waitqueue_head(&pid->wait_pidfd);
336
337 upid = pid->numbers + ns->level;
338 spin_lock_irq(&pidmap_lock);
339 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
340 goto out_unlock;
341 for ( ; upid >= pid->numbers; --upid) {
342 hlist_add_head_rcu(&upid->pid_chain,
343 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
344 upid->ns->nr_hashed++;
345 }
346 spin_unlock_irq(&pidmap_lock);
347
348 return pid;
349
350 out_unlock:
351 spin_unlock_irq(&pidmap_lock);
352 put_pid_ns(ns);
353
354 out_free:
355 while (++i <= ns->level)
356 free_pidmap(pid->numbers + i);
357
358 kmem_cache_free(ns->pid_cachep, pid);
359 return ERR_PTR(retval);
360 }
361
362 void disable_pid_allocation(struct pid_namespace *ns)
363 {
364 spin_lock_irq(&pidmap_lock);
365 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
366 spin_unlock_irq(&pidmap_lock);
367 }
368
369 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
370 {
371 struct upid *pnr;
372
373 hlist_for_each_entry_rcu(pnr,
374 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
375 if (pnr->nr == nr && pnr->ns == ns)
376 return container_of(pnr, struct pid,
377 numbers[ns->level]);
378
379 return NULL;
380 }
381 EXPORT_SYMBOL_GPL(find_pid_ns);
382
383 struct pid *find_vpid(int nr)
384 {
385 return find_pid_ns(nr, task_active_pid_ns(current));
386 }
387 EXPORT_SYMBOL_GPL(find_vpid);
388
389 /*
390 * attach_pid() must be called with the tasklist_lock write-held.
391 */
392 void attach_pid(struct task_struct *task, enum pid_type type)
393 {
394 struct pid_link *link = &task->pids[type];
395 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
396 }
397
398 static void __change_pid(struct task_struct *task, enum pid_type type,
399 struct pid *new)
400 {
401 struct pid_link *link;
402 struct pid *pid;
403 int tmp;
404
405 link = &task->pids[type];
406 pid = link->pid;
407
408 hlist_del_rcu(&link->node);
409 link->pid = new;
410
411 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
412 if (!hlist_empty(&pid->tasks[tmp]))
413 return;
414
415 free_pid(pid);
416 }
417
418 void detach_pid(struct task_struct *task, enum pid_type type)
419 {
420 __change_pid(task, type, NULL);
421 }
422
423 void change_pid(struct task_struct *task, enum pid_type type,
424 struct pid *pid)
425 {
426 __change_pid(task, type, pid);
427 attach_pid(task, type);
428 }
429
430 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
431 void transfer_pid(struct task_struct *old, struct task_struct *new,
432 enum pid_type type)
433 {
434 new->pids[type].pid = old->pids[type].pid;
435 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
436 }
437
438 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
439 {
440 struct task_struct *result = NULL;
441 if (pid) {
442 struct hlist_node *first;
443 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
444 lockdep_tasklist_lock_is_held());
445 if (first)
446 result = hlist_entry(first, struct task_struct, pids[(type)].node);
447 }
448 return result;
449 }
450 EXPORT_SYMBOL(pid_task);
451
452 /*
453 * Must be called under rcu_read_lock().
454 */
455 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
456 {
457 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
458 "find_task_by_pid_ns() needs rcu_read_lock() protection");
459 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
460 }
461
462 struct task_struct *find_task_by_vpid(pid_t vnr)
463 {
464 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
465 }
466
467 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
468 {
469 struct pid *pid;
470 rcu_read_lock();
471 if (type != PIDTYPE_PID)
472 task = task->group_leader;
473 pid = get_pid(rcu_dereference(task->pids[type].pid));
474 rcu_read_unlock();
475 return pid;
476 }
477 EXPORT_SYMBOL_GPL(get_task_pid);
478
479 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
480 {
481 struct task_struct *result;
482 rcu_read_lock();
483 result = pid_task(pid, type);
484 if (result)
485 get_task_struct(result);
486 rcu_read_unlock();
487 return result;
488 }
489 EXPORT_SYMBOL_GPL(get_pid_task);
490
491 struct pid *find_get_pid(pid_t nr)
492 {
493 struct pid *pid;
494
495 rcu_read_lock();
496 pid = get_pid(find_vpid(nr));
497 rcu_read_unlock();
498
499 return pid;
500 }
501 EXPORT_SYMBOL_GPL(find_get_pid);
502
503 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
504 {
505 struct upid *upid;
506 pid_t nr = 0;
507
508 if (pid && ns->level <= pid->level) {
509 upid = &pid->numbers[ns->level];
510 if (upid->ns == ns)
511 nr = upid->nr;
512 }
513 return nr;
514 }
515 EXPORT_SYMBOL_GPL(pid_nr_ns);
516
517 pid_t pid_vnr(struct pid *pid)
518 {
519 return pid_nr_ns(pid, task_active_pid_ns(current));
520 }
521 EXPORT_SYMBOL_GPL(pid_vnr);
522
523 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
524 struct pid_namespace *ns)
525 {
526 pid_t nr = 0;
527
528 rcu_read_lock();
529 if (!ns)
530 ns = task_active_pid_ns(current);
531 if (likely(pid_alive(task))) {
532 if (type != PIDTYPE_PID) {
533 if (type == __PIDTYPE_TGID)
534 type = PIDTYPE_PID;
535 task = task->group_leader;
536 }
537 nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
538 }
539 rcu_read_unlock();
540
541 return nr;
542 }
543 EXPORT_SYMBOL(__task_pid_nr_ns);
544
545 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
546 {
547 return ns_of_pid(task_pid(tsk));
548 }
549 EXPORT_SYMBOL_GPL(task_active_pid_ns);
550
551 /*
552 * Used by proc to find the first pid that is greater than or equal to nr.
553 *
554 * If there is a pid at nr this function is exactly the same as find_pid_ns.
555 */
556 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
557 {
558 struct pid *pid;
559
560 do {
561 pid = find_pid_ns(nr, ns);
562 if (pid)
563 break;
564 nr = next_pidmap(ns, nr);
565 } while (nr > 0);
566
567 return pid;
568 }
569
570 /**
571 * pidfd_create() - Create a new pid file descriptor.
572 *
573 * @pid: struct pid that the pidfd will reference
574 *
575 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
576 *
577 * Note, that this function can only be called after the fd table has
578 * been unshared to avoid leaking the pidfd to the new process.
579 *
580 * Return: On success, a cloexec pidfd is returned.
581 * On error, a negative errno number will be returned.
582 */
583 static int pidfd_create(struct pid *pid)
584 {
585 int fd;
586
587 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
588 O_RDWR | O_CLOEXEC);
589 if (fd < 0)
590 put_pid(pid);
591
592 return fd;
593 }
594
595 /**
596 * pidfd_open() - Open new pid file descriptor.
597 *
598 * @pid: pid for which to retrieve a pidfd
599 * @flags: flags to pass
600 *
601 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
602 * the process identified by @pid. Currently, the process identified by
603 * @pid must be a thread-group leader. This restriction currently exists
604 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
605 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
606 * leaders).
607 *
608 * Return: On success, a cloexec pidfd is returned.
609 * On error, a negative errno number will be returned.
610 */
611 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
612 {
613 int fd, ret;
614 struct pid *p;
615 struct task_struct *tsk;
616
617 if (flags)
618 return -EINVAL;
619
620 if (pid <= 0)
621 return -EINVAL;
622
623 p = find_get_pid(pid);
624 if (!p)
625 return -ESRCH;
626
627 ret = 0;
628 rcu_read_lock();
629 tsk = pid_task(p, PIDTYPE_PID);
630 /* Check that pid belongs to a group leader task */
631 if (!tsk || !thread_group_leader(tsk))
632 ret = -EINVAL;
633 rcu_read_unlock();
634
635 fd = ret ?: pidfd_create(p);
636 put_pid(p);
637 return fd;
638 }
639
640 /*
641 * The pid hash table is scaled according to the amount of memory in the
642 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
643 * more.
644 */
645 void __init pidhash_init(void)
646 {
647 unsigned int i, pidhash_size;
648
649 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
650 HASH_EARLY | HASH_SMALL,
651 &pidhash_shift, NULL,
652 0, 4096);
653 pidhash_size = 1U << pidhash_shift;
654
655 for (i = 0; i < pidhash_size; i++)
656 INIT_HLIST_HEAD(&pid_hash[i]);
657 }
658
659 void __init pidmap_init(void)
660 {
661 /* Verify no one has done anything silly: */
662 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
663
664 /* bump default and minimum pid_max based on number of cpus */
665 pid_max = min(pid_max_max, max_t(int, pid_max,
666 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
667 pid_max_min = max_t(int, pid_max_min,
668 PIDS_PER_CPU_MIN * num_possible_cpus());
669 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
670
671 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
672 /* Reserve PID 0. We never call free_pidmap(0) */
673 set_bit(0, init_pid_ns.pidmap[0].page);
674 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
675
676 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
677 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
678 }