Merge branch 'linus' into perf/urgent
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39 * Each CPU has a list of per CPU events:
40 */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64 * max perf event sample rate
65 */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76 * Architecture provided APIs - weak aliases:
77 */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80 return NULL;
81 }
82
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
85
86 void __weak perf_event_print_debug(void) { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132 }
133
134 /*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146 }
147
148 /*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185 }
186
187 /*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202 return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207 unsigned long flags;
208
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217 return local_clock();
218 }
219
220 /*
221 * Update the record of the current time in a context.
222 */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229 }
230
231 /*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234 static void update_event_times(struct perf_event *event)
235 {
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261 static void update_group_times(struct perf_event *leader)
262 {
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277 }
278
279 /*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287 event->attach_state |= PERF_ATTACH_CONTEXT;
288
289 /*
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
293 */
294 if (event->group_leader == event) {
295 struct list_head *list;
296
297 if (is_software_event(event))
298 event->group_flags |= PERF_GROUP_SOFTWARE;
299
300 list = ctx_group_list(event, ctx);
301 list_add_tail(&event->group_entry, list);
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312 struct perf_event *group_leader = event->group_leader;
313
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
316
317 if (group_leader == event)
318 return;
319
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
326 }
327
328 /*
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
331 */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335 /*
336 * We can have double detach due to exit/hot-unplug + close.
337 */
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
340
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
346
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
351
352 update_group_times(event);
353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
369
370 /*
371 * We can have double detach due to exit/hot-unplug + close.
372 */
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
375
376 event->attach_state &= ~PERF_ATTACH_GROUP;
377
378 /*
379 * If this is a sibling, remove it from its group.
380 */
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
385 }
386
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
389
390 /*
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
394 */
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
399
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
402 }
403 }
404
405 static void
406 event_sched_out(struct perf_event *event,
407 struct perf_cpu_context *cpuctx,
408 struct perf_event_context *ctx)
409 {
410 if (event->state != PERF_EVENT_STATE_ACTIVE)
411 return;
412
413 event->state = PERF_EVENT_STATE_INACTIVE;
414 if (event->pending_disable) {
415 event->pending_disable = 0;
416 event->state = PERF_EVENT_STATE_OFF;
417 }
418 event->tstamp_stopped = ctx->time;
419 event->pmu->disable(event);
420 event->oncpu = -1;
421
422 if (!is_software_event(event))
423 cpuctx->active_oncpu--;
424 ctx->nr_active--;
425 if (event->attr.exclusive || !cpuctx->active_oncpu)
426 cpuctx->exclusive = 0;
427 }
428
429 static void
430 group_sched_out(struct perf_event *group_event,
431 struct perf_cpu_context *cpuctx,
432 struct perf_event_context *ctx)
433 {
434 struct perf_event *event;
435
436 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 return;
438
439 event_sched_out(group_event, cpuctx, ctx);
440
441 /*
442 * Schedule out siblings (if any):
443 */
444 list_for_each_entry(event, &group_event->sibling_list, group_entry)
445 event_sched_out(event, cpuctx, ctx);
446
447 if (group_event->attr.exclusive)
448 cpuctx->exclusive = 0;
449 }
450
451 /*
452 * Cross CPU call to remove a performance event
453 *
454 * We disable the event on the hardware level first. After that we
455 * remove it from the context list.
456 */
457 static void __perf_event_remove_from_context(void *info)
458 {
459 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 struct perf_event *event = info;
461 struct perf_event_context *ctx = event->ctx;
462
463 /*
464 * If this is a task context, we need to check whether it is
465 * the current task context of this cpu. If not it has been
466 * scheduled out before the smp call arrived.
467 */
468 if (ctx->task && cpuctx->task_ctx != ctx)
469 return;
470
471 raw_spin_lock(&ctx->lock);
472 /*
473 * Protect the list operation against NMI by disabling the
474 * events on a global level.
475 */
476 perf_disable();
477
478 event_sched_out(event, cpuctx, ctx);
479
480 list_del_event(event, ctx);
481
482 if (!ctx->task) {
483 /*
484 * Allow more per task events with respect to the
485 * reservation:
486 */
487 cpuctx->max_pertask =
488 min(perf_max_events - ctx->nr_events,
489 perf_max_events - perf_reserved_percpu);
490 }
491
492 perf_enable();
493 raw_spin_unlock(&ctx->lock);
494 }
495
496
497 /*
498 * Remove the event from a task's (or a CPU's) list of events.
499 *
500 * Must be called with ctx->mutex held.
501 *
502 * CPU events are removed with a smp call. For task events we only
503 * call when the task is on a CPU.
504 *
505 * If event->ctx is a cloned context, callers must make sure that
506 * every task struct that event->ctx->task could possibly point to
507 * remains valid. This is OK when called from perf_release since
508 * that only calls us on the top-level context, which can't be a clone.
509 * When called from perf_event_exit_task, it's OK because the
510 * context has been detached from its task.
511 */
512 static void perf_event_remove_from_context(struct perf_event *event)
513 {
514 struct perf_event_context *ctx = event->ctx;
515 struct task_struct *task = ctx->task;
516
517 if (!task) {
518 /*
519 * Per cpu events are removed via an smp call and
520 * the removal is always successful.
521 */
522 smp_call_function_single(event->cpu,
523 __perf_event_remove_from_context,
524 event, 1);
525 return;
526 }
527
528 retry:
529 task_oncpu_function_call(task, __perf_event_remove_from_context,
530 event);
531
532 raw_spin_lock_irq(&ctx->lock);
533 /*
534 * If the context is active we need to retry the smp call.
535 */
536 if (ctx->nr_active && !list_empty(&event->group_entry)) {
537 raw_spin_unlock_irq(&ctx->lock);
538 goto retry;
539 }
540
541 /*
542 * The lock prevents that this context is scheduled in so we
543 * can remove the event safely, if the call above did not
544 * succeed.
545 */
546 if (!list_empty(&event->group_entry))
547 list_del_event(event, ctx);
548 raw_spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552 * Cross CPU call to disable a performance event
553 */
554 static void __perf_event_disable(void *info)
555 {
556 struct perf_event *event = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_event_context *ctx = event->ctx;
559
560 /*
561 * If this is a per-task event, need to check whether this
562 * event's task is the current task on this cpu.
563 */
564 if (ctx->task && cpuctx->task_ctx != ctx)
565 return;
566
567 raw_spin_lock(&ctx->lock);
568
569 /*
570 * If the event is on, turn it off.
571 * If it is in error state, leave it in error state.
572 */
573 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574 update_context_time(ctx);
575 update_group_times(event);
576 if (event == event->group_leader)
577 group_sched_out(event, cpuctx, ctx);
578 else
579 event_sched_out(event, cpuctx, ctx);
580 event->state = PERF_EVENT_STATE_OFF;
581 }
582
583 raw_spin_unlock(&ctx->lock);
584 }
585
586 /*
587 * Disable a event.
588 *
589 * If event->ctx is a cloned context, callers must make sure that
590 * every task struct that event->ctx->task could possibly point to
591 * remains valid. This condition is satisifed when called through
592 * perf_event_for_each_child or perf_event_for_each because they
593 * hold the top-level event's child_mutex, so any descendant that
594 * goes to exit will block in sync_child_event.
595 * When called from perf_pending_event it's OK because event->ctx
596 * is the current context on this CPU and preemption is disabled,
597 * hence we can't get into perf_event_task_sched_out for this context.
598 */
599 void perf_event_disable(struct perf_event *event)
600 {
601 struct perf_event_context *ctx = event->ctx;
602 struct task_struct *task = ctx->task;
603
604 if (!task) {
605 /*
606 * Disable the event on the cpu that it's on
607 */
608 smp_call_function_single(event->cpu, __perf_event_disable,
609 event, 1);
610 return;
611 }
612
613 retry:
614 task_oncpu_function_call(task, __perf_event_disable, event);
615
616 raw_spin_lock_irq(&ctx->lock);
617 /*
618 * If the event is still active, we need to retry the cross-call.
619 */
620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
621 raw_spin_unlock_irq(&ctx->lock);
622 goto retry;
623 }
624
625 /*
626 * Since we have the lock this context can't be scheduled
627 * in, so we can change the state safely.
628 */
629 if (event->state == PERF_EVENT_STATE_INACTIVE) {
630 update_group_times(event);
631 event->state = PERF_EVENT_STATE_OFF;
632 }
633
634 raw_spin_unlock_irq(&ctx->lock);
635 }
636
637 static int
638 event_sched_in(struct perf_event *event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
641 {
642 if (event->state <= PERF_EVENT_STATE_OFF)
643 return 0;
644
645 event->state = PERF_EVENT_STATE_ACTIVE;
646 event->oncpu = smp_processor_id();
647 /*
648 * The new state must be visible before we turn it on in the hardware:
649 */
650 smp_wmb();
651
652 if (event->pmu->enable(event)) {
653 event->state = PERF_EVENT_STATE_INACTIVE;
654 event->oncpu = -1;
655 return -EAGAIN;
656 }
657
658 event->tstamp_running += ctx->time - event->tstamp_stopped;
659
660 if (!is_software_event(event))
661 cpuctx->active_oncpu++;
662 ctx->nr_active++;
663
664 if (event->attr.exclusive)
665 cpuctx->exclusive = 1;
666
667 return 0;
668 }
669
670 static int
671 group_sched_in(struct perf_event *group_event,
672 struct perf_cpu_context *cpuctx,
673 struct perf_event_context *ctx)
674 {
675 struct perf_event *event, *partial_group = NULL;
676 const struct pmu *pmu = group_event->pmu;
677 bool txn = false;
678
679 if (group_event->state == PERF_EVENT_STATE_OFF)
680 return 0;
681
682 /* Check if group transaction availabe */
683 if (pmu->start_txn)
684 txn = true;
685
686 if (txn)
687 pmu->start_txn(pmu);
688
689 if (event_sched_in(group_event, cpuctx, ctx)) {
690 if (txn)
691 pmu->cancel_txn(pmu);
692 return -EAGAIN;
693 }
694
695 /*
696 * Schedule in siblings as one group (if any):
697 */
698 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699 if (event_sched_in(event, cpuctx, ctx)) {
700 partial_group = event;
701 goto group_error;
702 }
703 }
704
705 if (!txn || !pmu->commit_txn(pmu))
706 return 0;
707
708 group_error:
709 /*
710 * Groups can be scheduled in as one unit only, so undo any
711 * partial group before returning:
712 */
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event == partial_group)
715 break;
716 event_sched_out(event, cpuctx, ctx);
717 }
718 event_sched_out(group_event, cpuctx, ctx);
719
720 if (txn)
721 pmu->cancel_txn(pmu);
722
723 return -EAGAIN;
724 }
725
726 /*
727 * Work out whether we can put this event group on the CPU now.
728 */
729 static int group_can_go_on(struct perf_event *event,
730 struct perf_cpu_context *cpuctx,
731 int can_add_hw)
732 {
733 /*
734 * Groups consisting entirely of software events can always go on.
735 */
736 if (event->group_flags & PERF_GROUP_SOFTWARE)
737 return 1;
738 /*
739 * If an exclusive group is already on, no other hardware
740 * events can go on.
741 */
742 if (cpuctx->exclusive)
743 return 0;
744 /*
745 * If this group is exclusive and there are already
746 * events on the CPU, it can't go on.
747 */
748 if (event->attr.exclusive && cpuctx->active_oncpu)
749 return 0;
750 /*
751 * Otherwise, try to add it if all previous groups were able
752 * to go on.
753 */
754 return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758 struct perf_event_context *ctx)
759 {
760 list_add_event(event, ctx);
761 perf_group_attach(event);
762 event->tstamp_enabled = ctx->time;
763 event->tstamp_running = ctx->time;
764 event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768 * Cross CPU call to install and enable a performance event
769 *
770 * Must be called with ctx->mutex held
771 */
772 static void __perf_install_in_context(void *info)
773 {
774 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775 struct perf_event *event = info;
776 struct perf_event_context *ctx = event->ctx;
777 struct perf_event *leader = event->group_leader;
778 int err;
779
780 /*
781 * If this is a task context, we need to check whether it is
782 * the current task context of this cpu. If not it has been
783 * scheduled out before the smp call arrived.
784 * Or possibly this is the right context but it isn't
785 * on this cpu because it had no events.
786 */
787 if (ctx->task && cpuctx->task_ctx != ctx) {
788 if (cpuctx->task_ctx || ctx->task != current)
789 return;
790 cpuctx->task_ctx = ctx;
791 }
792
793 raw_spin_lock(&ctx->lock);
794 ctx->is_active = 1;
795 update_context_time(ctx);
796
797 /*
798 * Protect the list operation against NMI by disabling the
799 * events on a global level. NOP for non NMI based events.
800 */
801 perf_disable();
802
803 add_event_to_ctx(event, ctx);
804
805 if (event->cpu != -1 && event->cpu != smp_processor_id())
806 goto unlock;
807
808 /*
809 * Don't put the event on if it is disabled or if
810 * it is in a group and the group isn't on.
811 */
812 if (event->state != PERF_EVENT_STATE_INACTIVE ||
813 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
814 goto unlock;
815
816 /*
817 * An exclusive event can't go on if there are already active
818 * hardware events, and no hardware event can go on if there
819 * is already an exclusive event on.
820 */
821 if (!group_can_go_on(event, cpuctx, 1))
822 err = -EEXIST;
823 else
824 err = event_sched_in(event, cpuctx, ctx);
825
826 if (err) {
827 /*
828 * This event couldn't go on. If it is in a group
829 * then we have to pull the whole group off.
830 * If the event group is pinned then put it in error state.
831 */
832 if (leader != event)
833 group_sched_out(leader, cpuctx, ctx);
834 if (leader->attr.pinned) {
835 update_group_times(leader);
836 leader->state = PERF_EVENT_STATE_ERROR;
837 }
838 }
839
840 if (!err && !ctx->task && cpuctx->max_pertask)
841 cpuctx->max_pertask--;
842
843 unlock:
844 perf_enable();
845
846 raw_spin_unlock(&ctx->lock);
847 }
848
849 /*
850 * Attach a performance event to a context
851 *
852 * First we add the event to the list with the hardware enable bit
853 * in event->hw_config cleared.
854 *
855 * If the event is attached to a task which is on a CPU we use a smp
856 * call to enable it in the task context. The task might have been
857 * scheduled away, but we check this in the smp call again.
858 *
859 * Must be called with ctx->mutex held.
860 */
861 static void
862 perf_install_in_context(struct perf_event_context *ctx,
863 struct perf_event *event,
864 int cpu)
865 {
866 struct task_struct *task = ctx->task;
867
868 if (!task) {
869 /*
870 * Per cpu events are installed via an smp call and
871 * the install is always successful.
872 */
873 smp_call_function_single(cpu, __perf_install_in_context,
874 event, 1);
875 return;
876 }
877
878 retry:
879 task_oncpu_function_call(task, __perf_install_in_context,
880 event);
881
882 raw_spin_lock_irq(&ctx->lock);
883 /*
884 * we need to retry the smp call.
885 */
886 if (ctx->is_active && list_empty(&event->group_entry)) {
887 raw_spin_unlock_irq(&ctx->lock);
888 goto retry;
889 }
890
891 /*
892 * The lock prevents that this context is scheduled in so we
893 * can add the event safely, if it the call above did not
894 * succeed.
895 */
896 if (list_empty(&event->group_entry))
897 add_event_to_ctx(event, ctx);
898 raw_spin_unlock_irq(&ctx->lock);
899 }
900
901 /*
902 * Put a event into inactive state and update time fields.
903 * Enabling the leader of a group effectively enables all
904 * the group members that aren't explicitly disabled, so we
905 * have to update their ->tstamp_enabled also.
906 * Note: this works for group members as well as group leaders
907 * since the non-leader members' sibling_lists will be empty.
908 */
909 static void __perf_event_mark_enabled(struct perf_event *event,
910 struct perf_event_context *ctx)
911 {
912 struct perf_event *sub;
913
914 event->state = PERF_EVENT_STATE_INACTIVE;
915 event->tstamp_enabled = ctx->time - event->total_time_enabled;
916 list_for_each_entry(sub, &event->sibling_list, group_entry)
917 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
918 sub->tstamp_enabled =
919 ctx->time - sub->total_time_enabled;
920 }
921
922 /*
923 * Cross CPU call to enable a performance event
924 */
925 static void __perf_event_enable(void *info)
926 {
927 struct perf_event *event = info;
928 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
929 struct perf_event_context *ctx = event->ctx;
930 struct perf_event *leader = event->group_leader;
931 int err;
932
933 /*
934 * If this is a per-task event, need to check whether this
935 * event's task is the current task on this cpu.
936 */
937 if (ctx->task && cpuctx->task_ctx != ctx) {
938 if (cpuctx->task_ctx || ctx->task != current)
939 return;
940 cpuctx->task_ctx = ctx;
941 }
942
943 raw_spin_lock(&ctx->lock);
944 ctx->is_active = 1;
945 update_context_time(ctx);
946
947 if (event->state >= PERF_EVENT_STATE_INACTIVE)
948 goto unlock;
949 __perf_event_mark_enabled(event, ctx);
950
951 if (event->cpu != -1 && event->cpu != smp_processor_id())
952 goto unlock;
953
954 /*
955 * If the event is in a group and isn't the group leader,
956 * then don't put it on unless the group is on.
957 */
958 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
959 goto unlock;
960
961 if (!group_can_go_on(event, cpuctx, 1)) {
962 err = -EEXIST;
963 } else {
964 perf_disable();
965 if (event == leader)
966 err = group_sched_in(event, cpuctx, ctx);
967 else
968 err = event_sched_in(event, cpuctx, ctx);
969 perf_enable();
970 }
971
972 if (err) {
973 /*
974 * If this event can't go on and it's part of a
975 * group, then the whole group has to come off.
976 */
977 if (leader != event)
978 group_sched_out(leader, cpuctx, ctx);
979 if (leader->attr.pinned) {
980 update_group_times(leader);
981 leader->state = PERF_EVENT_STATE_ERROR;
982 }
983 }
984
985 unlock:
986 raw_spin_unlock(&ctx->lock);
987 }
988
989 /*
990 * Enable a event.
991 *
992 * If event->ctx is a cloned context, callers must make sure that
993 * every task struct that event->ctx->task could possibly point to
994 * remains valid. This condition is satisfied when called through
995 * perf_event_for_each_child or perf_event_for_each as described
996 * for perf_event_disable.
997 */
998 void perf_event_enable(struct perf_event *event)
999 {
1000 struct perf_event_context *ctx = event->ctx;
1001 struct task_struct *task = ctx->task;
1002
1003 if (!task) {
1004 /*
1005 * Enable the event on the cpu that it's on
1006 */
1007 smp_call_function_single(event->cpu, __perf_event_enable,
1008 event, 1);
1009 return;
1010 }
1011
1012 raw_spin_lock_irq(&ctx->lock);
1013 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014 goto out;
1015
1016 /*
1017 * If the event is in error state, clear that first.
1018 * That way, if we see the event in error state below, we
1019 * know that it has gone back into error state, as distinct
1020 * from the task having been scheduled away before the
1021 * cross-call arrived.
1022 */
1023 if (event->state == PERF_EVENT_STATE_ERROR)
1024 event->state = PERF_EVENT_STATE_OFF;
1025
1026 retry:
1027 raw_spin_unlock_irq(&ctx->lock);
1028 task_oncpu_function_call(task, __perf_event_enable, event);
1029
1030 raw_spin_lock_irq(&ctx->lock);
1031
1032 /*
1033 * If the context is active and the event is still off,
1034 * we need to retry the cross-call.
1035 */
1036 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037 goto retry;
1038
1039 /*
1040 * Since we have the lock this context can't be scheduled
1041 * in, so we can change the state safely.
1042 */
1043 if (event->state == PERF_EVENT_STATE_OFF)
1044 __perf_event_mark_enabled(event, ctx);
1045
1046 out:
1047 raw_spin_unlock_irq(&ctx->lock);
1048 }
1049
1050 static int perf_event_refresh(struct perf_event *event, int refresh)
1051 {
1052 /*
1053 * not supported on inherited events
1054 */
1055 if (event->attr.inherit)
1056 return -EINVAL;
1057
1058 atomic_add(refresh, &event->event_limit);
1059 perf_event_enable(event);
1060
1061 return 0;
1062 }
1063
1064 enum event_type_t {
1065 EVENT_FLEXIBLE = 0x1,
1066 EVENT_PINNED = 0x2,
1067 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1068 };
1069
1070 static void ctx_sched_out(struct perf_event_context *ctx,
1071 struct perf_cpu_context *cpuctx,
1072 enum event_type_t event_type)
1073 {
1074 struct perf_event *event;
1075
1076 raw_spin_lock(&ctx->lock);
1077 ctx->is_active = 0;
1078 if (likely(!ctx->nr_events))
1079 goto out;
1080 update_context_time(ctx);
1081
1082 perf_disable();
1083 if (!ctx->nr_active)
1084 goto out_enable;
1085
1086 if (event_type & EVENT_PINNED)
1087 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1088 group_sched_out(event, cpuctx, ctx);
1089
1090 if (event_type & EVENT_FLEXIBLE)
1091 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1092 group_sched_out(event, cpuctx, ctx);
1093
1094 out_enable:
1095 perf_enable();
1096 out:
1097 raw_spin_unlock(&ctx->lock);
1098 }
1099
1100 /*
1101 * Test whether two contexts are equivalent, i.e. whether they
1102 * have both been cloned from the same version of the same context
1103 * and they both have the same number of enabled events.
1104 * If the number of enabled events is the same, then the set
1105 * of enabled events should be the same, because these are both
1106 * inherited contexts, therefore we can't access individual events
1107 * in them directly with an fd; we can only enable/disable all
1108 * events via prctl, or enable/disable all events in a family
1109 * via ioctl, which will have the same effect on both contexts.
1110 */
1111 static int context_equiv(struct perf_event_context *ctx1,
1112 struct perf_event_context *ctx2)
1113 {
1114 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115 && ctx1->parent_gen == ctx2->parent_gen
1116 && !ctx1->pin_count && !ctx2->pin_count;
1117 }
1118
1119 static void __perf_event_sync_stat(struct perf_event *event,
1120 struct perf_event *next_event)
1121 {
1122 u64 value;
1123
1124 if (!event->attr.inherit_stat)
1125 return;
1126
1127 /*
1128 * Update the event value, we cannot use perf_event_read()
1129 * because we're in the middle of a context switch and have IRQs
1130 * disabled, which upsets smp_call_function_single(), however
1131 * we know the event must be on the current CPU, therefore we
1132 * don't need to use it.
1133 */
1134 switch (event->state) {
1135 case PERF_EVENT_STATE_ACTIVE:
1136 event->pmu->read(event);
1137 /* fall-through */
1138
1139 case PERF_EVENT_STATE_INACTIVE:
1140 update_event_times(event);
1141 break;
1142
1143 default:
1144 break;
1145 }
1146
1147 /*
1148 * In order to keep per-task stats reliable we need to flip the event
1149 * values when we flip the contexts.
1150 */
1151 value = local64_read(&next_event->count);
1152 value = local64_xchg(&event->count, value);
1153 local64_set(&next_event->count, value);
1154
1155 swap(event->total_time_enabled, next_event->total_time_enabled);
1156 swap(event->total_time_running, next_event->total_time_running);
1157
1158 /*
1159 * Since we swizzled the values, update the user visible data too.
1160 */
1161 perf_event_update_userpage(event);
1162 perf_event_update_userpage(next_event);
1163 }
1164
1165 #define list_next_entry(pos, member) \
1166 list_entry(pos->member.next, typeof(*pos), member)
1167
1168 static void perf_event_sync_stat(struct perf_event_context *ctx,
1169 struct perf_event_context *next_ctx)
1170 {
1171 struct perf_event *event, *next_event;
1172
1173 if (!ctx->nr_stat)
1174 return;
1175
1176 update_context_time(ctx);
1177
1178 event = list_first_entry(&ctx->event_list,
1179 struct perf_event, event_entry);
1180
1181 next_event = list_first_entry(&next_ctx->event_list,
1182 struct perf_event, event_entry);
1183
1184 while (&event->event_entry != &ctx->event_list &&
1185 &next_event->event_entry != &next_ctx->event_list) {
1186
1187 __perf_event_sync_stat(event, next_event);
1188
1189 event = list_next_entry(event, event_entry);
1190 next_event = list_next_entry(next_event, event_entry);
1191 }
1192 }
1193
1194 /*
1195 * Called from scheduler to remove the events of the current task,
1196 * with interrupts disabled.
1197 *
1198 * We stop each event and update the event value in event->count.
1199 *
1200 * This does not protect us against NMI, but disable()
1201 * sets the disabled bit in the control field of event _before_
1202 * accessing the event control register. If a NMI hits, then it will
1203 * not restart the event.
1204 */
1205 void perf_event_task_sched_out(struct task_struct *task,
1206 struct task_struct *next)
1207 {
1208 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1209 struct perf_event_context *ctx = task->perf_event_ctxp;
1210 struct perf_event_context *next_ctx;
1211 struct perf_event_context *parent;
1212 int do_switch = 1;
1213
1214 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1215
1216 if (likely(!ctx || !cpuctx->task_ctx))
1217 return;
1218
1219 rcu_read_lock();
1220 parent = rcu_dereference(ctx->parent_ctx);
1221 next_ctx = next->perf_event_ctxp;
1222 if (parent && next_ctx &&
1223 rcu_dereference(next_ctx->parent_ctx) == parent) {
1224 /*
1225 * Looks like the two contexts are clones, so we might be
1226 * able to optimize the context switch. We lock both
1227 * contexts and check that they are clones under the
1228 * lock (including re-checking that neither has been
1229 * uncloned in the meantime). It doesn't matter which
1230 * order we take the locks because no other cpu could
1231 * be trying to lock both of these tasks.
1232 */
1233 raw_spin_lock(&ctx->lock);
1234 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1235 if (context_equiv(ctx, next_ctx)) {
1236 /*
1237 * XXX do we need a memory barrier of sorts
1238 * wrt to rcu_dereference() of perf_event_ctxp
1239 */
1240 task->perf_event_ctxp = next_ctx;
1241 next->perf_event_ctxp = ctx;
1242 ctx->task = next;
1243 next_ctx->task = task;
1244 do_switch = 0;
1245
1246 perf_event_sync_stat(ctx, next_ctx);
1247 }
1248 raw_spin_unlock(&next_ctx->lock);
1249 raw_spin_unlock(&ctx->lock);
1250 }
1251 rcu_read_unlock();
1252
1253 if (do_switch) {
1254 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1255 cpuctx->task_ctx = NULL;
1256 }
1257 }
1258
1259 static void task_ctx_sched_out(struct perf_event_context *ctx,
1260 enum event_type_t event_type)
1261 {
1262 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1263
1264 if (!cpuctx->task_ctx)
1265 return;
1266
1267 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1268 return;
1269
1270 ctx_sched_out(ctx, cpuctx, event_type);
1271 cpuctx->task_ctx = NULL;
1272 }
1273
1274 /*
1275 * Called with IRQs disabled
1276 */
1277 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1278 {
1279 task_ctx_sched_out(ctx, EVENT_ALL);
1280 }
1281
1282 /*
1283 * Called with IRQs disabled
1284 */
1285 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1286 enum event_type_t event_type)
1287 {
1288 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1289 }
1290
1291 static void
1292 ctx_pinned_sched_in(struct perf_event_context *ctx,
1293 struct perf_cpu_context *cpuctx)
1294 {
1295 struct perf_event *event;
1296
1297 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1298 if (event->state <= PERF_EVENT_STATE_OFF)
1299 continue;
1300 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301 continue;
1302
1303 if (group_can_go_on(event, cpuctx, 1))
1304 group_sched_in(event, cpuctx, ctx);
1305
1306 /*
1307 * If this pinned group hasn't been scheduled,
1308 * put it in error state.
1309 */
1310 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1311 update_group_times(event);
1312 event->state = PERF_EVENT_STATE_ERROR;
1313 }
1314 }
1315 }
1316
1317 static void
1318 ctx_flexible_sched_in(struct perf_event_context *ctx,
1319 struct perf_cpu_context *cpuctx)
1320 {
1321 struct perf_event *event;
1322 int can_add_hw = 1;
1323
1324 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1325 /* Ignore events in OFF or ERROR state */
1326 if (event->state <= PERF_EVENT_STATE_OFF)
1327 continue;
1328 /*
1329 * Listen to the 'cpu' scheduling filter constraint
1330 * of events:
1331 */
1332 if (event->cpu != -1 && event->cpu != smp_processor_id())
1333 continue;
1334
1335 if (group_can_go_on(event, cpuctx, can_add_hw))
1336 if (group_sched_in(event, cpuctx, ctx))
1337 can_add_hw = 0;
1338 }
1339 }
1340
1341 static void
1342 ctx_sched_in(struct perf_event_context *ctx,
1343 struct perf_cpu_context *cpuctx,
1344 enum event_type_t event_type)
1345 {
1346 raw_spin_lock(&ctx->lock);
1347 ctx->is_active = 1;
1348 if (likely(!ctx->nr_events))
1349 goto out;
1350
1351 ctx->timestamp = perf_clock();
1352
1353 perf_disable();
1354
1355 /*
1356 * First go through the list and put on any pinned groups
1357 * in order to give them the best chance of going on.
1358 */
1359 if (event_type & EVENT_PINNED)
1360 ctx_pinned_sched_in(ctx, cpuctx);
1361
1362 /* Then walk through the lower prio flexible groups */
1363 if (event_type & EVENT_FLEXIBLE)
1364 ctx_flexible_sched_in(ctx, cpuctx);
1365
1366 perf_enable();
1367 out:
1368 raw_spin_unlock(&ctx->lock);
1369 }
1370
1371 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1372 enum event_type_t event_type)
1373 {
1374 struct perf_event_context *ctx = &cpuctx->ctx;
1375
1376 ctx_sched_in(ctx, cpuctx, event_type);
1377 }
1378
1379 static void task_ctx_sched_in(struct task_struct *task,
1380 enum event_type_t event_type)
1381 {
1382 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1383 struct perf_event_context *ctx = task->perf_event_ctxp;
1384
1385 if (likely(!ctx))
1386 return;
1387 if (cpuctx->task_ctx == ctx)
1388 return;
1389 ctx_sched_in(ctx, cpuctx, event_type);
1390 cpuctx->task_ctx = ctx;
1391 }
1392 /*
1393 * Called from scheduler to add the events of the current task
1394 * with interrupts disabled.
1395 *
1396 * We restore the event value and then enable it.
1397 *
1398 * This does not protect us against NMI, but enable()
1399 * sets the enabled bit in the control field of event _before_
1400 * accessing the event control register. If a NMI hits, then it will
1401 * keep the event running.
1402 */
1403 void perf_event_task_sched_in(struct task_struct *task)
1404 {
1405 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1406 struct perf_event_context *ctx = task->perf_event_ctxp;
1407
1408 if (likely(!ctx))
1409 return;
1410
1411 if (cpuctx->task_ctx == ctx)
1412 return;
1413
1414 perf_disable();
1415
1416 /*
1417 * We want to keep the following priority order:
1418 * cpu pinned (that don't need to move), task pinned,
1419 * cpu flexible, task flexible.
1420 */
1421 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1422
1423 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1424 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1425 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1426
1427 cpuctx->task_ctx = ctx;
1428
1429 perf_enable();
1430 }
1431
1432 #define MAX_INTERRUPTS (~0ULL)
1433
1434 static void perf_log_throttle(struct perf_event *event, int enable);
1435
1436 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1437 {
1438 u64 frequency = event->attr.sample_freq;
1439 u64 sec = NSEC_PER_SEC;
1440 u64 divisor, dividend;
1441
1442 int count_fls, nsec_fls, frequency_fls, sec_fls;
1443
1444 count_fls = fls64(count);
1445 nsec_fls = fls64(nsec);
1446 frequency_fls = fls64(frequency);
1447 sec_fls = 30;
1448
1449 /*
1450 * We got @count in @nsec, with a target of sample_freq HZ
1451 * the target period becomes:
1452 *
1453 * @count * 10^9
1454 * period = -------------------
1455 * @nsec * sample_freq
1456 *
1457 */
1458
1459 /*
1460 * Reduce accuracy by one bit such that @a and @b converge
1461 * to a similar magnitude.
1462 */
1463 #define REDUCE_FLS(a, b) \
1464 do { \
1465 if (a##_fls > b##_fls) { \
1466 a >>= 1; \
1467 a##_fls--; \
1468 } else { \
1469 b >>= 1; \
1470 b##_fls--; \
1471 } \
1472 } while (0)
1473
1474 /*
1475 * Reduce accuracy until either term fits in a u64, then proceed with
1476 * the other, so that finally we can do a u64/u64 division.
1477 */
1478 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1479 REDUCE_FLS(nsec, frequency);
1480 REDUCE_FLS(sec, count);
1481 }
1482
1483 if (count_fls + sec_fls > 64) {
1484 divisor = nsec * frequency;
1485
1486 while (count_fls + sec_fls > 64) {
1487 REDUCE_FLS(count, sec);
1488 divisor >>= 1;
1489 }
1490
1491 dividend = count * sec;
1492 } else {
1493 dividend = count * sec;
1494
1495 while (nsec_fls + frequency_fls > 64) {
1496 REDUCE_FLS(nsec, frequency);
1497 dividend >>= 1;
1498 }
1499
1500 divisor = nsec * frequency;
1501 }
1502
1503 if (!divisor)
1504 return dividend;
1505
1506 return div64_u64(dividend, divisor);
1507 }
1508
1509 static void perf_event_stop(struct perf_event *event)
1510 {
1511 if (!event->pmu->stop)
1512 return event->pmu->disable(event);
1513
1514 return event->pmu->stop(event);
1515 }
1516
1517 static int perf_event_start(struct perf_event *event)
1518 {
1519 if (!event->pmu->start)
1520 return event->pmu->enable(event);
1521
1522 return event->pmu->start(event);
1523 }
1524
1525 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526 {
1527 struct hw_perf_event *hwc = &event->hw;
1528 s64 period, sample_period;
1529 s64 delta;
1530
1531 period = perf_calculate_period(event, nsec, count);
1532
1533 delta = (s64)(period - hwc->sample_period);
1534 delta = (delta + 7) / 8; /* low pass filter */
1535
1536 sample_period = hwc->sample_period + delta;
1537
1538 if (!sample_period)
1539 sample_period = 1;
1540
1541 hwc->sample_period = sample_period;
1542
1543 if (local64_read(&hwc->period_left) > 8*sample_period) {
1544 perf_disable();
1545 perf_event_stop(event);
1546 local64_set(&hwc->period_left, 0);
1547 perf_event_start(event);
1548 perf_enable();
1549 }
1550 }
1551
1552 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1553 {
1554 struct perf_event *event;
1555 struct hw_perf_event *hwc;
1556 u64 interrupts, now;
1557 s64 delta;
1558
1559 raw_spin_lock(&ctx->lock);
1560 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1561 if (event->state != PERF_EVENT_STATE_ACTIVE)
1562 continue;
1563
1564 if (event->cpu != -1 && event->cpu != smp_processor_id())
1565 continue;
1566
1567 hwc = &event->hw;
1568
1569 interrupts = hwc->interrupts;
1570 hwc->interrupts = 0;
1571
1572 /*
1573 * unthrottle events on the tick
1574 */
1575 if (interrupts == MAX_INTERRUPTS) {
1576 perf_log_throttle(event, 1);
1577 perf_disable();
1578 event->pmu->unthrottle(event);
1579 perf_enable();
1580 }
1581
1582 if (!event->attr.freq || !event->attr.sample_freq)
1583 continue;
1584
1585 perf_disable();
1586 event->pmu->read(event);
1587 now = local64_read(&event->count);
1588 delta = now - hwc->freq_count_stamp;
1589 hwc->freq_count_stamp = now;
1590
1591 if (delta > 0)
1592 perf_adjust_period(event, TICK_NSEC, delta);
1593 perf_enable();
1594 }
1595 raw_spin_unlock(&ctx->lock);
1596 }
1597
1598 /*
1599 * Round-robin a context's events:
1600 */
1601 static void rotate_ctx(struct perf_event_context *ctx)
1602 {
1603 raw_spin_lock(&ctx->lock);
1604
1605 /* Rotate the first entry last of non-pinned groups */
1606 list_rotate_left(&ctx->flexible_groups);
1607
1608 raw_spin_unlock(&ctx->lock);
1609 }
1610
1611 void perf_event_task_tick(struct task_struct *curr)
1612 {
1613 struct perf_cpu_context *cpuctx;
1614 struct perf_event_context *ctx;
1615 int rotate = 0;
1616
1617 if (!atomic_read(&nr_events))
1618 return;
1619
1620 cpuctx = &__get_cpu_var(perf_cpu_context);
1621 if (cpuctx->ctx.nr_events &&
1622 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1623 rotate = 1;
1624
1625 ctx = curr->perf_event_ctxp;
1626 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1627 rotate = 1;
1628
1629 perf_ctx_adjust_freq(&cpuctx->ctx);
1630 if (ctx)
1631 perf_ctx_adjust_freq(ctx);
1632
1633 if (!rotate)
1634 return;
1635
1636 perf_disable();
1637 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1638 if (ctx)
1639 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1640
1641 rotate_ctx(&cpuctx->ctx);
1642 if (ctx)
1643 rotate_ctx(ctx);
1644
1645 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1646 if (ctx)
1647 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1648 perf_enable();
1649 }
1650
1651 static int event_enable_on_exec(struct perf_event *event,
1652 struct perf_event_context *ctx)
1653 {
1654 if (!event->attr.enable_on_exec)
1655 return 0;
1656
1657 event->attr.enable_on_exec = 0;
1658 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1659 return 0;
1660
1661 __perf_event_mark_enabled(event, ctx);
1662
1663 return 1;
1664 }
1665
1666 /*
1667 * Enable all of a task's events that have been marked enable-on-exec.
1668 * This expects task == current.
1669 */
1670 static void perf_event_enable_on_exec(struct task_struct *task)
1671 {
1672 struct perf_event_context *ctx;
1673 struct perf_event *event;
1674 unsigned long flags;
1675 int enabled = 0;
1676 int ret;
1677
1678 local_irq_save(flags);
1679 ctx = task->perf_event_ctxp;
1680 if (!ctx || !ctx->nr_events)
1681 goto out;
1682
1683 __perf_event_task_sched_out(ctx);
1684
1685 raw_spin_lock(&ctx->lock);
1686
1687 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1688 ret = event_enable_on_exec(event, ctx);
1689 if (ret)
1690 enabled = 1;
1691 }
1692
1693 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1694 ret = event_enable_on_exec(event, ctx);
1695 if (ret)
1696 enabled = 1;
1697 }
1698
1699 /*
1700 * Unclone this context if we enabled any event.
1701 */
1702 if (enabled)
1703 unclone_ctx(ctx);
1704
1705 raw_spin_unlock(&ctx->lock);
1706
1707 perf_event_task_sched_in(task);
1708 out:
1709 local_irq_restore(flags);
1710 }
1711
1712 /*
1713 * Cross CPU call to read the hardware event
1714 */
1715 static void __perf_event_read(void *info)
1716 {
1717 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1718 struct perf_event *event = info;
1719 struct perf_event_context *ctx = event->ctx;
1720
1721 /*
1722 * If this is a task context, we need to check whether it is
1723 * the current task context of this cpu. If not it has been
1724 * scheduled out before the smp call arrived. In that case
1725 * event->count would have been updated to a recent sample
1726 * when the event was scheduled out.
1727 */
1728 if (ctx->task && cpuctx->task_ctx != ctx)
1729 return;
1730
1731 raw_spin_lock(&ctx->lock);
1732 update_context_time(ctx);
1733 update_event_times(event);
1734 raw_spin_unlock(&ctx->lock);
1735
1736 event->pmu->read(event);
1737 }
1738
1739 static inline u64 perf_event_count(struct perf_event *event)
1740 {
1741 return local64_read(&event->count) + atomic64_read(&event->child_count);
1742 }
1743
1744 static u64 perf_event_read(struct perf_event *event)
1745 {
1746 /*
1747 * If event is enabled and currently active on a CPU, update the
1748 * value in the event structure:
1749 */
1750 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1751 smp_call_function_single(event->oncpu,
1752 __perf_event_read, event, 1);
1753 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1754 struct perf_event_context *ctx = event->ctx;
1755 unsigned long flags;
1756
1757 raw_spin_lock_irqsave(&ctx->lock, flags);
1758 update_context_time(ctx);
1759 update_event_times(event);
1760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1761 }
1762
1763 return perf_event_count(event);
1764 }
1765
1766 /*
1767 * Initialize the perf_event context in a task_struct:
1768 */
1769 static void
1770 __perf_event_init_context(struct perf_event_context *ctx,
1771 struct task_struct *task)
1772 {
1773 raw_spin_lock_init(&ctx->lock);
1774 mutex_init(&ctx->mutex);
1775 INIT_LIST_HEAD(&ctx->pinned_groups);
1776 INIT_LIST_HEAD(&ctx->flexible_groups);
1777 INIT_LIST_HEAD(&ctx->event_list);
1778 atomic_set(&ctx->refcount, 1);
1779 ctx->task = task;
1780 }
1781
1782 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1783 {
1784 struct perf_event_context *ctx;
1785 struct perf_cpu_context *cpuctx;
1786 struct task_struct *task;
1787 unsigned long flags;
1788 int err;
1789
1790 if (pid == -1 && cpu != -1) {
1791 /* Must be root to operate on a CPU event: */
1792 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1793 return ERR_PTR(-EACCES);
1794
1795 if (cpu < 0 || cpu >= nr_cpumask_bits)
1796 return ERR_PTR(-EINVAL);
1797
1798 /*
1799 * We could be clever and allow to attach a event to an
1800 * offline CPU and activate it when the CPU comes up, but
1801 * that's for later.
1802 */
1803 if (!cpu_online(cpu))
1804 return ERR_PTR(-ENODEV);
1805
1806 cpuctx = &per_cpu(perf_cpu_context, cpu);
1807 ctx = &cpuctx->ctx;
1808 get_ctx(ctx);
1809
1810 return ctx;
1811 }
1812
1813 rcu_read_lock();
1814 if (!pid)
1815 task = current;
1816 else
1817 task = find_task_by_vpid(pid);
1818 if (task)
1819 get_task_struct(task);
1820 rcu_read_unlock();
1821
1822 if (!task)
1823 return ERR_PTR(-ESRCH);
1824
1825 /*
1826 * Can't attach events to a dying task.
1827 */
1828 err = -ESRCH;
1829 if (task->flags & PF_EXITING)
1830 goto errout;
1831
1832 /* Reuse ptrace permission checks for now. */
1833 err = -EACCES;
1834 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1835 goto errout;
1836
1837 retry:
1838 ctx = perf_lock_task_context(task, &flags);
1839 if (ctx) {
1840 unclone_ctx(ctx);
1841 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1842 }
1843
1844 if (!ctx) {
1845 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1846 err = -ENOMEM;
1847 if (!ctx)
1848 goto errout;
1849 __perf_event_init_context(ctx, task);
1850 get_ctx(ctx);
1851 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1852 /*
1853 * We raced with some other task; use
1854 * the context they set.
1855 */
1856 kfree(ctx);
1857 goto retry;
1858 }
1859 get_task_struct(task);
1860 }
1861
1862 put_task_struct(task);
1863 return ctx;
1864
1865 errout:
1866 put_task_struct(task);
1867 return ERR_PTR(err);
1868 }
1869
1870 static void perf_event_free_filter(struct perf_event *event);
1871
1872 static void free_event_rcu(struct rcu_head *head)
1873 {
1874 struct perf_event *event;
1875
1876 event = container_of(head, struct perf_event, rcu_head);
1877 if (event->ns)
1878 put_pid_ns(event->ns);
1879 perf_event_free_filter(event);
1880 kfree(event);
1881 }
1882
1883 static void perf_pending_sync(struct perf_event *event);
1884 static void perf_buffer_put(struct perf_buffer *buffer);
1885
1886 static void free_event(struct perf_event *event)
1887 {
1888 perf_pending_sync(event);
1889
1890 if (!event->parent) {
1891 atomic_dec(&nr_events);
1892 if (event->attr.mmap || event->attr.mmap_data)
1893 atomic_dec(&nr_mmap_events);
1894 if (event->attr.comm)
1895 atomic_dec(&nr_comm_events);
1896 if (event->attr.task)
1897 atomic_dec(&nr_task_events);
1898 }
1899
1900 if (event->buffer) {
1901 perf_buffer_put(event->buffer);
1902 event->buffer = NULL;
1903 }
1904
1905 if (event->destroy)
1906 event->destroy(event);
1907
1908 put_ctx(event->ctx);
1909 call_rcu(&event->rcu_head, free_event_rcu);
1910 }
1911
1912 int perf_event_release_kernel(struct perf_event *event)
1913 {
1914 struct perf_event_context *ctx = event->ctx;
1915
1916 /*
1917 * Remove from the PMU, can't get re-enabled since we got
1918 * here because the last ref went.
1919 */
1920 perf_event_disable(event);
1921
1922 WARN_ON_ONCE(ctx->parent_ctx);
1923 /*
1924 * There are two ways this annotation is useful:
1925 *
1926 * 1) there is a lock recursion from perf_event_exit_task
1927 * see the comment there.
1928 *
1929 * 2) there is a lock-inversion with mmap_sem through
1930 * perf_event_read_group(), which takes faults while
1931 * holding ctx->mutex, however this is called after
1932 * the last filedesc died, so there is no possibility
1933 * to trigger the AB-BA case.
1934 */
1935 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1936 raw_spin_lock_irq(&ctx->lock);
1937 perf_group_detach(event);
1938 list_del_event(event, ctx);
1939 raw_spin_unlock_irq(&ctx->lock);
1940 mutex_unlock(&ctx->mutex);
1941
1942 mutex_lock(&event->owner->perf_event_mutex);
1943 list_del_init(&event->owner_entry);
1944 mutex_unlock(&event->owner->perf_event_mutex);
1945 put_task_struct(event->owner);
1946
1947 free_event(event);
1948
1949 return 0;
1950 }
1951 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1952
1953 /*
1954 * Called when the last reference to the file is gone.
1955 */
1956 static int perf_release(struct inode *inode, struct file *file)
1957 {
1958 struct perf_event *event = file->private_data;
1959
1960 file->private_data = NULL;
1961
1962 return perf_event_release_kernel(event);
1963 }
1964
1965 static int perf_event_read_size(struct perf_event *event)
1966 {
1967 int entry = sizeof(u64); /* value */
1968 int size = 0;
1969 int nr = 1;
1970
1971 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1972 size += sizeof(u64);
1973
1974 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1975 size += sizeof(u64);
1976
1977 if (event->attr.read_format & PERF_FORMAT_ID)
1978 entry += sizeof(u64);
1979
1980 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1981 nr += event->group_leader->nr_siblings;
1982 size += sizeof(u64);
1983 }
1984
1985 size += entry * nr;
1986
1987 return size;
1988 }
1989
1990 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1991 {
1992 struct perf_event *child;
1993 u64 total = 0;
1994
1995 *enabled = 0;
1996 *running = 0;
1997
1998 mutex_lock(&event->child_mutex);
1999 total += perf_event_read(event);
2000 *enabled += event->total_time_enabled +
2001 atomic64_read(&event->child_total_time_enabled);
2002 *running += event->total_time_running +
2003 atomic64_read(&event->child_total_time_running);
2004
2005 list_for_each_entry(child, &event->child_list, child_list) {
2006 total += perf_event_read(child);
2007 *enabled += child->total_time_enabled;
2008 *running += child->total_time_running;
2009 }
2010 mutex_unlock(&event->child_mutex);
2011
2012 return total;
2013 }
2014 EXPORT_SYMBOL_GPL(perf_event_read_value);
2015
2016 static int perf_event_read_group(struct perf_event *event,
2017 u64 read_format, char __user *buf)
2018 {
2019 struct perf_event *leader = event->group_leader, *sub;
2020 int n = 0, size = 0, ret = -EFAULT;
2021 struct perf_event_context *ctx = leader->ctx;
2022 u64 values[5];
2023 u64 count, enabled, running;
2024
2025 mutex_lock(&ctx->mutex);
2026 count = perf_event_read_value(leader, &enabled, &running);
2027
2028 values[n++] = 1 + leader->nr_siblings;
2029 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2030 values[n++] = enabled;
2031 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2032 values[n++] = running;
2033 values[n++] = count;
2034 if (read_format & PERF_FORMAT_ID)
2035 values[n++] = primary_event_id(leader);
2036
2037 size = n * sizeof(u64);
2038
2039 if (copy_to_user(buf, values, size))
2040 goto unlock;
2041
2042 ret = size;
2043
2044 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2045 n = 0;
2046
2047 values[n++] = perf_event_read_value(sub, &enabled, &running);
2048 if (read_format & PERF_FORMAT_ID)
2049 values[n++] = primary_event_id(sub);
2050
2051 size = n * sizeof(u64);
2052
2053 if (copy_to_user(buf + ret, values, size)) {
2054 ret = -EFAULT;
2055 goto unlock;
2056 }
2057
2058 ret += size;
2059 }
2060 unlock:
2061 mutex_unlock(&ctx->mutex);
2062
2063 return ret;
2064 }
2065
2066 static int perf_event_read_one(struct perf_event *event,
2067 u64 read_format, char __user *buf)
2068 {
2069 u64 enabled, running;
2070 u64 values[4];
2071 int n = 0;
2072
2073 values[n++] = perf_event_read_value(event, &enabled, &running);
2074 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2075 values[n++] = enabled;
2076 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2077 values[n++] = running;
2078 if (read_format & PERF_FORMAT_ID)
2079 values[n++] = primary_event_id(event);
2080
2081 if (copy_to_user(buf, values, n * sizeof(u64)))
2082 return -EFAULT;
2083
2084 return n * sizeof(u64);
2085 }
2086
2087 /*
2088 * Read the performance event - simple non blocking version for now
2089 */
2090 static ssize_t
2091 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2092 {
2093 u64 read_format = event->attr.read_format;
2094 int ret;
2095
2096 /*
2097 * Return end-of-file for a read on a event that is in
2098 * error state (i.e. because it was pinned but it couldn't be
2099 * scheduled on to the CPU at some point).
2100 */
2101 if (event->state == PERF_EVENT_STATE_ERROR)
2102 return 0;
2103
2104 if (count < perf_event_read_size(event))
2105 return -ENOSPC;
2106
2107 WARN_ON_ONCE(event->ctx->parent_ctx);
2108 if (read_format & PERF_FORMAT_GROUP)
2109 ret = perf_event_read_group(event, read_format, buf);
2110 else
2111 ret = perf_event_read_one(event, read_format, buf);
2112
2113 return ret;
2114 }
2115
2116 static ssize_t
2117 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2118 {
2119 struct perf_event *event = file->private_data;
2120
2121 return perf_read_hw(event, buf, count);
2122 }
2123
2124 static unsigned int perf_poll(struct file *file, poll_table *wait)
2125 {
2126 struct perf_event *event = file->private_data;
2127 struct perf_buffer *buffer;
2128 unsigned int events = POLL_HUP;
2129
2130 rcu_read_lock();
2131 buffer = rcu_dereference(event->buffer);
2132 if (buffer)
2133 events = atomic_xchg(&buffer->poll, 0);
2134 rcu_read_unlock();
2135
2136 poll_wait(file, &event->waitq, wait);
2137
2138 return events;
2139 }
2140
2141 static void perf_event_reset(struct perf_event *event)
2142 {
2143 (void)perf_event_read(event);
2144 local64_set(&event->count, 0);
2145 perf_event_update_userpage(event);
2146 }
2147
2148 /*
2149 * Holding the top-level event's child_mutex means that any
2150 * descendant process that has inherited this event will block
2151 * in sync_child_event if it goes to exit, thus satisfying the
2152 * task existence requirements of perf_event_enable/disable.
2153 */
2154 static void perf_event_for_each_child(struct perf_event *event,
2155 void (*func)(struct perf_event *))
2156 {
2157 struct perf_event *child;
2158
2159 WARN_ON_ONCE(event->ctx->parent_ctx);
2160 mutex_lock(&event->child_mutex);
2161 func(event);
2162 list_for_each_entry(child, &event->child_list, child_list)
2163 func(child);
2164 mutex_unlock(&event->child_mutex);
2165 }
2166
2167 static void perf_event_for_each(struct perf_event *event,
2168 void (*func)(struct perf_event *))
2169 {
2170 struct perf_event_context *ctx = event->ctx;
2171 struct perf_event *sibling;
2172
2173 WARN_ON_ONCE(ctx->parent_ctx);
2174 mutex_lock(&ctx->mutex);
2175 event = event->group_leader;
2176
2177 perf_event_for_each_child(event, func);
2178 func(event);
2179 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2180 perf_event_for_each_child(event, func);
2181 mutex_unlock(&ctx->mutex);
2182 }
2183
2184 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2185 {
2186 struct perf_event_context *ctx = event->ctx;
2187 unsigned long size;
2188 int ret = 0;
2189 u64 value;
2190
2191 if (!event->attr.sample_period)
2192 return -EINVAL;
2193
2194 size = copy_from_user(&value, arg, sizeof(value));
2195 if (size != sizeof(value))
2196 return -EFAULT;
2197
2198 if (!value)
2199 return -EINVAL;
2200
2201 raw_spin_lock_irq(&ctx->lock);
2202 if (event->attr.freq) {
2203 if (value > sysctl_perf_event_sample_rate) {
2204 ret = -EINVAL;
2205 goto unlock;
2206 }
2207
2208 event->attr.sample_freq = value;
2209 } else {
2210 event->attr.sample_period = value;
2211 event->hw.sample_period = value;
2212 }
2213 unlock:
2214 raw_spin_unlock_irq(&ctx->lock);
2215
2216 return ret;
2217 }
2218
2219 static const struct file_operations perf_fops;
2220
2221 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2222 {
2223 struct file *file;
2224
2225 file = fget_light(fd, fput_needed);
2226 if (!file)
2227 return ERR_PTR(-EBADF);
2228
2229 if (file->f_op != &perf_fops) {
2230 fput_light(file, *fput_needed);
2231 *fput_needed = 0;
2232 return ERR_PTR(-EBADF);
2233 }
2234
2235 return file->private_data;
2236 }
2237
2238 static int perf_event_set_output(struct perf_event *event,
2239 struct perf_event *output_event);
2240 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2241
2242 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2243 {
2244 struct perf_event *event = file->private_data;
2245 void (*func)(struct perf_event *);
2246 u32 flags = arg;
2247
2248 switch (cmd) {
2249 case PERF_EVENT_IOC_ENABLE:
2250 func = perf_event_enable;
2251 break;
2252 case PERF_EVENT_IOC_DISABLE:
2253 func = perf_event_disable;
2254 break;
2255 case PERF_EVENT_IOC_RESET:
2256 func = perf_event_reset;
2257 break;
2258
2259 case PERF_EVENT_IOC_REFRESH:
2260 return perf_event_refresh(event, arg);
2261
2262 case PERF_EVENT_IOC_PERIOD:
2263 return perf_event_period(event, (u64 __user *)arg);
2264
2265 case PERF_EVENT_IOC_SET_OUTPUT:
2266 {
2267 struct perf_event *output_event = NULL;
2268 int fput_needed = 0;
2269 int ret;
2270
2271 if (arg != -1) {
2272 output_event = perf_fget_light(arg, &fput_needed);
2273 if (IS_ERR(output_event))
2274 return PTR_ERR(output_event);
2275 }
2276
2277 ret = perf_event_set_output(event, output_event);
2278 if (output_event)
2279 fput_light(output_event->filp, fput_needed);
2280
2281 return ret;
2282 }
2283
2284 case PERF_EVENT_IOC_SET_FILTER:
2285 return perf_event_set_filter(event, (void __user *)arg);
2286
2287 default:
2288 return -ENOTTY;
2289 }
2290
2291 if (flags & PERF_IOC_FLAG_GROUP)
2292 perf_event_for_each(event, func);
2293 else
2294 perf_event_for_each_child(event, func);
2295
2296 return 0;
2297 }
2298
2299 int perf_event_task_enable(void)
2300 {
2301 struct perf_event *event;
2302
2303 mutex_lock(&current->perf_event_mutex);
2304 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2305 perf_event_for_each_child(event, perf_event_enable);
2306 mutex_unlock(&current->perf_event_mutex);
2307
2308 return 0;
2309 }
2310
2311 int perf_event_task_disable(void)
2312 {
2313 struct perf_event *event;
2314
2315 mutex_lock(&current->perf_event_mutex);
2316 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2317 perf_event_for_each_child(event, perf_event_disable);
2318 mutex_unlock(&current->perf_event_mutex);
2319
2320 return 0;
2321 }
2322
2323 #ifndef PERF_EVENT_INDEX_OFFSET
2324 # define PERF_EVENT_INDEX_OFFSET 0
2325 #endif
2326
2327 static int perf_event_index(struct perf_event *event)
2328 {
2329 if (event->state != PERF_EVENT_STATE_ACTIVE)
2330 return 0;
2331
2332 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2333 }
2334
2335 /*
2336 * Callers need to ensure there can be no nesting of this function, otherwise
2337 * the seqlock logic goes bad. We can not serialize this because the arch
2338 * code calls this from NMI context.
2339 */
2340 void perf_event_update_userpage(struct perf_event *event)
2341 {
2342 struct perf_event_mmap_page *userpg;
2343 struct perf_buffer *buffer;
2344
2345 rcu_read_lock();
2346 buffer = rcu_dereference(event->buffer);
2347 if (!buffer)
2348 goto unlock;
2349
2350 userpg = buffer->user_page;
2351
2352 /*
2353 * Disable preemption so as to not let the corresponding user-space
2354 * spin too long if we get preempted.
2355 */
2356 preempt_disable();
2357 ++userpg->lock;
2358 barrier();
2359 userpg->index = perf_event_index(event);
2360 userpg->offset = perf_event_count(event);
2361 if (event->state == PERF_EVENT_STATE_ACTIVE)
2362 userpg->offset -= local64_read(&event->hw.prev_count);
2363
2364 userpg->time_enabled = event->total_time_enabled +
2365 atomic64_read(&event->child_total_time_enabled);
2366
2367 userpg->time_running = event->total_time_running +
2368 atomic64_read(&event->child_total_time_running);
2369
2370 barrier();
2371 ++userpg->lock;
2372 preempt_enable();
2373 unlock:
2374 rcu_read_unlock();
2375 }
2376
2377 static unsigned long perf_data_size(struct perf_buffer *buffer);
2378
2379 static void
2380 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2381 {
2382 long max_size = perf_data_size(buffer);
2383
2384 if (watermark)
2385 buffer->watermark = min(max_size, watermark);
2386
2387 if (!buffer->watermark)
2388 buffer->watermark = max_size / 2;
2389
2390 if (flags & PERF_BUFFER_WRITABLE)
2391 buffer->writable = 1;
2392
2393 atomic_set(&buffer->refcount, 1);
2394 }
2395
2396 #ifndef CONFIG_PERF_USE_VMALLOC
2397
2398 /*
2399 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2400 */
2401
2402 static struct page *
2403 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2404 {
2405 if (pgoff > buffer->nr_pages)
2406 return NULL;
2407
2408 if (pgoff == 0)
2409 return virt_to_page(buffer->user_page);
2410
2411 return virt_to_page(buffer->data_pages[pgoff - 1]);
2412 }
2413
2414 static void *perf_mmap_alloc_page(int cpu)
2415 {
2416 struct page *page;
2417 int node;
2418
2419 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2420 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2421 if (!page)
2422 return NULL;
2423
2424 return page_address(page);
2425 }
2426
2427 static struct perf_buffer *
2428 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2429 {
2430 struct perf_buffer *buffer;
2431 unsigned long size;
2432 int i;
2433
2434 size = sizeof(struct perf_buffer);
2435 size += nr_pages * sizeof(void *);
2436
2437 buffer = kzalloc(size, GFP_KERNEL);
2438 if (!buffer)
2439 goto fail;
2440
2441 buffer->user_page = perf_mmap_alloc_page(cpu);
2442 if (!buffer->user_page)
2443 goto fail_user_page;
2444
2445 for (i = 0; i < nr_pages; i++) {
2446 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2447 if (!buffer->data_pages[i])
2448 goto fail_data_pages;
2449 }
2450
2451 buffer->nr_pages = nr_pages;
2452
2453 perf_buffer_init(buffer, watermark, flags);
2454
2455 return buffer;
2456
2457 fail_data_pages:
2458 for (i--; i >= 0; i--)
2459 free_page((unsigned long)buffer->data_pages[i]);
2460
2461 free_page((unsigned long)buffer->user_page);
2462
2463 fail_user_page:
2464 kfree(buffer);
2465
2466 fail:
2467 return NULL;
2468 }
2469
2470 static void perf_mmap_free_page(unsigned long addr)
2471 {
2472 struct page *page = virt_to_page((void *)addr);
2473
2474 page->mapping = NULL;
2475 __free_page(page);
2476 }
2477
2478 static void perf_buffer_free(struct perf_buffer *buffer)
2479 {
2480 int i;
2481
2482 perf_mmap_free_page((unsigned long)buffer->user_page);
2483 for (i = 0; i < buffer->nr_pages; i++)
2484 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2485 kfree(buffer);
2486 }
2487
2488 static inline int page_order(struct perf_buffer *buffer)
2489 {
2490 return 0;
2491 }
2492
2493 #else
2494
2495 /*
2496 * Back perf_mmap() with vmalloc memory.
2497 *
2498 * Required for architectures that have d-cache aliasing issues.
2499 */
2500
2501 static inline int page_order(struct perf_buffer *buffer)
2502 {
2503 return buffer->page_order;
2504 }
2505
2506 static struct page *
2507 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2508 {
2509 if (pgoff > (1UL << page_order(buffer)))
2510 return NULL;
2511
2512 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2513 }
2514
2515 static void perf_mmap_unmark_page(void *addr)
2516 {
2517 struct page *page = vmalloc_to_page(addr);
2518
2519 page->mapping = NULL;
2520 }
2521
2522 static void perf_buffer_free_work(struct work_struct *work)
2523 {
2524 struct perf_buffer *buffer;
2525 void *base;
2526 int i, nr;
2527
2528 buffer = container_of(work, struct perf_buffer, work);
2529 nr = 1 << page_order(buffer);
2530
2531 base = buffer->user_page;
2532 for (i = 0; i < nr + 1; i++)
2533 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2534
2535 vfree(base);
2536 kfree(buffer);
2537 }
2538
2539 static void perf_buffer_free(struct perf_buffer *buffer)
2540 {
2541 schedule_work(&buffer->work);
2542 }
2543
2544 static struct perf_buffer *
2545 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2546 {
2547 struct perf_buffer *buffer;
2548 unsigned long size;
2549 void *all_buf;
2550
2551 size = sizeof(struct perf_buffer);
2552 size += sizeof(void *);
2553
2554 buffer = kzalloc(size, GFP_KERNEL);
2555 if (!buffer)
2556 goto fail;
2557
2558 INIT_WORK(&buffer->work, perf_buffer_free_work);
2559
2560 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2561 if (!all_buf)
2562 goto fail_all_buf;
2563
2564 buffer->user_page = all_buf;
2565 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2566 buffer->page_order = ilog2(nr_pages);
2567 buffer->nr_pages = 1;
2568
2569 perf_buffer_init(buffer, watermark, flags);
2570
2571 return buffer;
2572
2573 fail_all_buf:
2574 kfree(buffer);
2575
2576 fail:
2577 return NULL;
2578 }
2579
2580 #endif
2581
2582 static unsigned long perf_data_size(struct perf_buffer *buffer)
2583 {
2584 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2585 }
2586
2587 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2588 {
2589 struct perf_event *event = vma->vm_file->private_data;
2590 struct perf_buffer *buffer;
2591 int ret = VM_FAULT_SIGBUS;
2592
2593 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2594 if (vmf->pgoff == 0)
2595 ret = 0;
2596 return ret;
2597 }
2598
2599 rcu_read_lock();
2600 buffer = rcu_dereference(event->buffer);
2601 if (!buffer)
2602 goto unlock;
2603
2604 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2605 goto unlock;
2606
2607 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2608 if (!vmf->page)
2609 goto unlock;
2610
2611 get_page(vmf->page);
2612 vmf->page->mapping = vma->vm_file->f_mapping;
2613 vmf->page->index = vmf->pgoff;
2614
2615 ret = 0;
2616 unlock:
2617 rcu_read_unlock();
2618
2619 return ret;
2620 }
2621
2622 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2623 {
2624 struct perf_buffer *buffer;
2625
2626 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2627 perf_buffer_free(buffer);
2628 }
2629
2630 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2631 {
2632 struct perf_buffer *buffer;
2633
2634 rcu_read_lock();
2635 buffer = rcu_dereference(event->buffer);
2636 if (buffer) {
2637 if (!atomic_inc_not_zero(&buffer->refcount))
2638 buffer = NULL;
2639 }
2640 rcu_read_unlock();
2641
2642 return buffer;
2643 }
2644
2645 static void perf_buffer_put(struct perf_buffer *buffer)
2646 {
2647 if (!atomic_dec_and_test(&buffer->refcount))
2648 return;
2649
2650 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2651 }
2652
2653 static void perf_mmap_open(struct vm_area_struct *vma)
2654 {
2655 struct perf_event *event = vma->vm_file->private_data;
2656
2657 atomic_inc(&event->mmap_count);
2658 }
2659
2660 static void perf_mmap_close(struct vm_area_struct *vma)
2661 {
2662 struct perf_event *event = vma->vm_file->private_data;
2663
2664 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2665 unsigned long size = perf_data_size(event->buffer);
2666 struct user_struct *user = event->mmap_user;
2667 struct perf_buffer *buffer = event->buffer;
2668
2669 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2670 vma->vm_mm->locked_vm -= event->mmap_locked;
2671 rcu_assign_pointer(event->buffer, NULL);
2672 mutex_unlock(&event->mmap_mutex);
2673
2674 perf_buffer_put(buffer);
2675 free_uid(user);
2676 }
2677 }
2678
2679 static const struct vm_operations_struct perf_mmap_vmops = {
2680 .open = perf_mmap_open,
2681 .close = perf_mmap_close,
2682 .fault = perf_mmap_fault,
2683 .page_mkwrite = perf_mmap_fault,
2684 };
2685
2686 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2687 {
2688 struct perf_event *event = file->private_data;
2689 unsigned long user_locked, user_lock_limit;
2690 struct user_struct *user = current_user();
2691 unsigned long locked, lock_limit;
2692 struct perf_buffer *buffer;
2693 unsigned long vma_size;
2694 unsigned long nr_pages;
2695 long user_extra, extra;
2696 int ret = 0, flags = 0;
2697
2698 /*
2699 * Don't allow mmap() of inherited per-task counters. This would
2700 * create a performance issue due to all children writing to the
2701 * same buffer.
2702 */
2703 if (event->cpu == -1 && event->attr.inherit)
2704 return -EINVAL;
2705
2706 if (!(vma->vm_flags & VM_SHARED))
2707 return -EINVAL;
2708
2709 vma_size = vma->vm_end - vma->vm_start;
2710 nr_pages = (vma_size / PAGE_SIZE) - 1;
2711
2712 /*
2713 * If we have buffer pages ensure they're a power-of-two number, so we
2714 * can do bitmasks instead of modulo.
2715 */
2716 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2717 return -EINVAL;
2718
2719 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2720 return -EINVAL;
2721
2722 if (vma->vm_pgoff != 0)
2723 return -EINVAL;
2724
2725 WARN_ON_ONCE(event->ctx->parent_ctx);
2726 mutex_lock(&event->mmap_mutex);
2727 if (event->buffer) {
2728 if (event->buffer->nr_pages == nr_pages)
2729 atomic_inc(&event->buffer->refcount);
2730 else
2731 ret = -EINVAL;
2732 goto unlock;
2733 }
2734
2735 user_extra = nr_pages + 1;
2736 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2737
2738 /*
2739 * Increase the limit linearly with more CPUs:
2740 */
2741 user_lock_limit *= num_online_cpus();
2742
2743 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2744
2745 extra = 0;
2746 if (user_locked > user_lock_limit)
2747 extra = user_locked - user_lock_limit;
2748
2749 lock_limit = rlimit(RLIMIT_MEMLOCK);
2750 lock_limit >>= PAGE_SHIFT;
2751 locked = vma->vm_mm->locked_vm + extra;
2752
2753 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2754 !capable(CAP_IPC_LOCK)) {
2755 ret = -EPERM;
2756 goto unlock;
2757 }
2758
2759 WARN_ON(event->buffer);
2760
2761 if (vma->vm_flags & VM_WRITE)
2762 flags |= PERF_BUFFER_WRITABLE;
2763
2764 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2765 event->cpu, flags);
2766 if (!buffer) {
2767 ret = -ENOMEM;
2768 goto unlock;
2769 }
2770 rcu_assign_pointer(event->buffer, buffer);
2771
2772 atomic_long_add(user_extra, &user->locked_vm);
2773 event->mmap_locked = extra;
2774 event->mmap_user = get_current_user();
2775 vma->vm_mm->locked_vm += event->mmap_locked;
2776
2777 unlock:
2778 if (!ret)
2779 atomic_inc(&event->mmap_count);
2780 mutex_unlock(&event->mmap_mutex);
2781
2782 vma->vm_flags |= VM_RESERVED;
2783 vma->vm_ops = &perf_mmap_vmops;
2784
2785 return ret;
2786 }
2787
2788 static int perf_fasync(int fd, struct file *filp, int on)
2789 {
2790 struct inode *inode = filp->f_path.dentry->d_inode;
2791 struct perf_event *event = filp->private_data;
2792 int retval;
2793
2794 mutex_lock(&inode->i_mutex);
2795 retval = fasync_helper(fd, filp, on, &event->fasync);
2796 mutex_unlock(&inode->i_mutex);
2797
2798 if (retval < 0)
2799 return retval;
2800
2801 return 0;
2802 }
2803
2804 static const struct file_operations perf_fops = {
2805 .llseek = no_llseek,
2806 .release = perf_release,
2807 .read = perf_read,
2808 .poll = perf_poll,
2809 .unlocked_ioctl = perf_ioctl,
2810 .compat_ioctl = perf_ioctl,
2811 .mmap = perf_mmap,
2812 .fasync = perf_fasync,
2813 };
2814
2815 /*
2816 * Perf event wakeup
2817 *
2818 * If there's data, ensure we set the poll() state and publish everything
2819 * to user-space before waking everybody up.
2820 */
2821
2822 void perf_event_wakeup(struct perf_event *event)
2823 {
2824 wake_up_all(&event->waitq);
2825
2826 if (event->pending_kill) {
2827 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2828 event->pending_kill = 0;
2829 }
2830 }
2831
2832 /*
2833 * Pending wakeups
2834 *
2835 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2836 *
2837 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2838 * single linked list and use cmpxchg() to add entries lockless.
2839 */
2840
2841 static void perf_pending_event(struct perf_pending_entry *entry)
2842 {
2843 struct perf_event *event = container_of(entry,
2844 struct perf_event, pending);
2845
2846 if (event->pending_disable) {
2847 event->pending_disable = 0;
2848 __perf_event_disable(event);
2849 }
2850
2851 if (event->pending_wakeup) {
2852 event->pending_wakeup = 0;
2853 perf_event_wakeup(event);
2854 }
2855 }
2856
2857 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2858
2859 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2860 PENDING_TAIL,
2861 };
2862
2863 static void perf_pending_queue(struct perf_pending_entry *entry,
2864 void (*func)(struct perf_pending_entry *))
2865 {
2866 struct perf_pending_entry **head;
2867
2868 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2869 return;
2870
2871 entry->func = func;
2872
2873 head = &get_cpu_var(perf_pending_head);
2874
2875 do {
2876 entry->next = *head;
2877 } while (cmpxchg(head, entry->next, entry) != entry->next);
2878
2879 set_perf_event_pending();
2880
2881 put_cpu_var(perf_pending_head);
2882 }
2883
2884 static int __perf_pending_run(void)
2885 {
2886 struct perf_pending_entry *list;
2887 int nr = 0;
2888
2889 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2890 while (list != PENDING_TAIL) {
2891 void (*func)(struct perf_pending_entry *);
2892 struct perf_pending_entry *entry = list;
2893
2894 list = list->next;
2895
2896 func = entry->func;
2897 entry->next = NULL;
2898 /*
2899 * Ensure we observe the unqueue before we issue the wakeup,
2900 * so that we won't be waiting forever.
2901 * -- see perf_not_pending().
2902 */
2903 smp_wmb();
2904
2905 func(entry);
2906 nr++;
2907 }
2908
2909 return nr;
2910 }
2911
2912 static inline int perf_not_pending(struct perf_event *event)
2913 {
2914 /*
2915 * If we flush on whatever cpu we run, there is a chance we don't
2916 * need to wait.
2917 */
2918 get_cpu();
2919 __perf_pending_run();
2920 put_cpu();
2921
2922 /*
2923 * Ensure we see the proper queue state before going to sleep
2924 * so that we do not miss the wakeup. -- see perf_pending_handle()
2925 */
2926 smp_rmb();
2927 return event->pending.next == NULL;
2928 }
2929
2930 static void perf_pending_sync(struct perf_event *event)
2931 {
2932 wait_event(event->waitq, perf_not_pending(event));
2933 }
2934
2935 void perf_event_do_pending(void)
2936 {
2937 __perf_pending_run();
2938 }
2939
2940 /*
2941 * Callchain support -- arch specific
2942 */
2943
2944 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2945 {
2946 return NULL;
2947 }
2948
2949
2950 /*
2951 * We assume there is only KVM supporting the callbacks.
2952 * Later on, we might change it to a list if there is
2953 * another virtualization implementation supporting the callbacks.
2954 */
2955 struct perf_guest_info_callbacks *perf_guest_cbs;
2956
2957 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2958 {
2959 perf_guest_cbs = cbs;
2960 return 0;
2961 }
2962 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2963
2964 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2965 {
2966 perf_guest_cbs = NULL;
2967 return 0;
2968 }
2969 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2970
2971 /*
2972 * Output
2973 */
2974 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2975 unsigned long offset, unsigned long head)
2976 {
2977 unsigned long mask;
2978
2979 if (!buffer->writable)
2980 return true;
2981
2982 mask = perf_data_size(buffer) - 1;
2983
2984 offset = (offset - tail) & mask;
2985 head = (head - tail) & mask;
2986
2987 if ((int)(head - offset) < 0)
2988 return false;
2989
2990 return true;
2991 }
2992
2993 static void perf_output_wakeup(struct perf_output_handle *handle)
2994 {
2995 atomic_set(&handle->buffer->poll, POLL_IN);
2996
2997 if (handle->nmi) {
2998 handle->event->pending_wakeup = 1;
2999 perf_pending_queue(&handle->event->pending,
3000 perf_pending_event);
3001 } else
3002 perf_event_wakeup(handle->event);
3003 }
3004
3005 /*
3006 * We need to ensure a later event_id doesn't publish a head when a former
3007 * event isn't done writing. However since we need to deal with NMIs we
3008 * cannot fully serialize things.
3009 *
3010 * We only publish the head (and generate a wakeup) when the outer-most
3011 * event completes.
3012 */
3013 static void perf_output_get_handle(struct perf_output_handle *handle)
3014 {
3015 struct perf_buffer *buffer = handle->buffer;
3016
3017 preempt_disable();
3018 local_inc(&buffer->nest);
3019 handle->wakeup = local_read(&buffer->wakeup);
3020 }
3021
3022 static void perf_output_put_handle(struct perf_output_handle *handle)
3023 {
3024 struct perf_buffer *buffer = handle->buffer;
3025 unsigned long head;
3026
3027 again:
3028 head = local_read(&buffer->head);
3029
3030 /*
3031 * IRQ/NMI can happen here, which means we can miss a head update.
3032 */
3033
3034 if (!local_dec_and_test(&buffer->nest))
3035 goto out;
3036
3037 /*
3038 * Publish the known good head. Rely on the full barrier implied
3039 * by atomic_dec_and_test() order the buffer->head read and this
3040 * write.
3041 */
3042 buffer->user_page->data_head = head;
3043
3044 /*
3045 * Now check if we missed an update, rely on the (compiler)
3046 * barrier in atomic_dec_and_test() to re-read buffer->head.
3047 */
3048 if (unlikely(head != local_read(&buffer->head))) {
3049 local_inc(&buffer->nest);
3050 goto again;
3051 }
3052
3053 if (handle->wakeup != local_read(&buffer->wakeup))
3054 perf_output_wakeup(handle);
3055
3056 out:
3057 preempt_enable();
3058 }
3059
3060 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3061 const void *buf, unsigned int len)
3062 {
3063 do {
3064 unsigned long size = min_t(unsigned long, handle->size, len);
3065
3066 memcpy(handle->addr, buf, size);
3067
3068 len -= size;
3069 handle->addr += size;
3070 buf += size;
3071 handle->size -= size;
3072 if (!handle->size) {
3073 struct perf_buffer *buffer = handle->buffer;
3074
3075 handle->page++;
3076 handle->page &= buffer->nr_pages - 1;
3077 handle->addr = buffer->data_pages[handle->page];
3078 handle->size = PAGE_SIZE << page_order(buffer);
3079 }
3080 } while (len);
3081 }
3082
3083 int perf_output_begin(struct perf_output_handle *handle,
3084 struct perf_event *event, unsigned int size,
3085 int nmi, int sample)
3086 {
3087 struct perf_buffer *buffer;
3088 unsigned long tail, offset, head;
3089 int have_lost;
3090 struct {
3091 struct perf_event_header header;
3092 u64 id;
3093 u64 lost;
3094 } lost_event;
3095
3096 rcu_read_lock();
3097 /*
3098 * For inherited events we send all the output towards the parent.
3099 */
3100 if (event->parent)
3101 event = event->parent;
3102
3103 buffer = rcu_dereference(event->buffer);
3104 if (!buffer)
3105 goto out;
3106
3107 handle->buffer = buffer;
3108 handle->event = event;
3109 handle->nmi = nmi;
3110 handle->sample = sample;
3111
3112 if (!buffer->nr_pages)
3113 goto out;
3114
3115 have_lost = local_read(&buffer->lost);
3116 if (have_lost)
3117 size += sizeof(lost_event);
3118
3119 perf_output_get_handle(handle);
3120
3121 do {
3122 /*
3123 * Userspace could choose to issue a mb() before updating the
3124 * tail pointer. So that all reads will be completed before the
3125 * write is issued.
3126 */
3127 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3128 smp_rmb();
3129 offset = head = local_read(&buffer->head);
3130 head += size;
3131 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3132 goto fail;
3133 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3134
3135 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3136 local_add(buffer->watermark, &buffer->wakeup);
3137
3138 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3139 handle->page &= buffer->nr_pages - 1;
3140 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3141 handle->addr = buffer->data_pages[handle->page];
3142 handle->addr += handle->size;
3143 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3144
3145 if (have_lost) {
3146 lost_event.header.type = PERF_RECORD_LOST;
3147 lost_event.header.misc = 0;
3148 lost_event.header.size = sizeof(lost_event);
3149 lost_event.id = event->id;
3150 lost_event.lost = local_xchg(&buffer->lost, 0);
3151
3152 perf_output_put(handle, lost_event);
3153 }
3154
3155 return 0;
3156
3157 fail:
3158 local_inc(&buffer->lost);
3159 perf_output_put_handle(handle);
3160 out:
3161 rcu_read_unlock();
3162
3163 return -ENOSPC;
3164 }
3165
3166 void perf_output_end(struct perf_output_handle *handle)
3167 {
3168 struct perf_event *event = handle->event;
3169 struct perf_buffer *buffer = handle->buffer;
3170
3171 int wakeup_events = event->attr.wakeup_events;
3172
3173 if (handle->sample && wakeup_events) {
3174 int events = local_inc_return(&buffer->events);
3175 if (events >= wakeup_events) {
3176 local_sub(wakeup_events, &buffer->events);
3177 local_inc(&buffer->wakeup);
3178 }
3179 }
3180
3181 perf_output_put_handle(handle);
3182 rcu_read_unlock();
3183 }
3184
3185 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3186 {
3187 /*
3188 * only top level events have the pid namespace they were created in
3189 */
3190 if (event->parent)
3191 event = event->parent;
3192
3193 return task_tgid_nr_ns(p, event->ns);
3194 }
3195
3196 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3197 {
3198 /*
3199 * only top level events have the pid namespace they were created in
3200 */
3201 if (event->parent)
3202 event = event->parent;
3203
3204 return task_pid_nr_ns(p, event->ns);
3205 }
3206
3207 static void perf_output_read_one(struct perf_output_handle *handle,
3208 struct perf_event *event)
3209 {
3210 u64 read_format = event->attr.read_format;
3211 u64 values[4];
3212 int n = 0;
3213
3214 values[n++] = perf_event_count(event);
3215 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3216 values[n++] = event->total_time_enabled +
3217 atomic64_read(&event->child_total_time_enabled);
3218 }
3219 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3220 values[n++] = event->total_time_running +
3221 atomic64_read(&event->child_total_time_running);
3222 }
3223 if (read_format & PERF_FORMAT_ID)
3224 values[n++] = primary_event_id(event);
3225
3226 perf_output_copy(handle, values, n * sizeof(u64));
3227 }
3228
3229 /*
3230 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3231 */
3232 static void perf_output_read_group(struct perf_output_handle *handle,
3233 struct perf_event *event)
3234 {
3235 struct perf_event *leader = event->group_leader, *sub;
3236 u64 read_format = event->attr.read_format;
3237 u64 values[5];
3238 int n = 0;
3239
3240 values[n++] = 1 + leader->nr_siblings;
3241
3242 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3243 values[n++] = leader->total_time_enabled;
3244
3245 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3246 values[n++] = leader->total_time_running;
3247
3248 if (leader != event)
3249 leader->pmu->read(leader);
3250
3251 values[n++] = perf_event_count(leader);
3252 if (read_format & PERF_FORMAT_ID)
3253 values[n++] = primary_event_id(leader);
3254
3255 perf_output_copy(handle, values, n * sizeof(u64));
3256
3257 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3258 n = 0;
3259
3260 if (sub != event)
3261 sub->pmu->read(sub);
3262
3263 values[n++] = perf_event_count(sub);
3264 if (read_format & PERF_FORMAT_ID)
3265 values[n++] = primary_event_id(sub);
3266
3267 perf_output_copy(handle, values, n * sizeof(u64));
3268 }
3269 }
3270
3271 static void perf_output_read(struct perf_output_handle *handle,
3272 struct perf_event *event)
3273 {
3274 if (event->attr.read_format & PERF_FORMAT_GROUP)
3275 perf_output_read_group(handle, event);
3276 else
3277 perf_output_read_one(handle, event);
3278 }
3279
3280 void perf_output_sample(struct perf_output_handle *handle,
3281 struct perf_event_header *header,
3282 struct perf_sample_data *data,
3283 struct perf_event *event)
3284 {
3285 u64 sample_type = data->type;
3286
3287 perf_output_put(handle, *header);
3288
3289 if (sample_type & PERF_SAMPLE_IP)
3290 perf_output_put(handle, data->ip);
3291
3292 if (sample_type & PERF_SAMPLE_TID)
3293 perf_output_put(handle, data->tid_entry);
3294
3295 if (sample_type & PERF_SAMPLE_TIME)
3296 perf_output_put(handle, data->time);
3297
3298 if (sample_type & PERF_SAMPLE_ADDR)
3299 perf_output_put(handle, data->addr);
3300
3301 if (sample_type & PERF_SAMPLE_ID)
3302 perf_output_put(handle, data->id);
3303
3304 if (sample_type & PERF_SAMPLE_STREAM_ID)
3305 perf_output_put(handle, data->stream_id);
3306
3307 if (sample_type & PERF_SAMPLE_CPU)
3308 perf_output_put(handle, data->cpu_entry);
3309
3310 if (sample_type & PERF_SAMPLE_PERIOD)
3311 perf_output_put(handle, data->period);
3312
3313 if (sample_type & PERF_SAMPLE_READ)
3314 perf_output_read(handle, event);
3315
3316 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3317 if (data->callchain) {
3318 int size = 1;
3319
3320 if (data->callchain)
3321 size += data->callchain->nr;
3322
3323 size *= sizeof(u64);
3324
3325 perf_output_copy(handle, data->callchain, size);
3326 } else {
3327 u64 nr = 0;
3328 perf_output_put(handle, nr);
3329 }
3330 }
3331
3332 if (sample_type & PERF_SAMPLE_RAW) {
3333 if (data->raw) {
3334 perf_output_put(handle, data->raw->size);
3335 perf_output_copy(handle, data->raw->data,
3336 data->raw->size);
3337 } else {
3338 struct {
3339 u32 size;
3340 u32 data;
3341 } raw = {
3342 .size = sizeof(u32),
3343 .data = 0,
3344 };
3345 perf_output_put(handle, raw);
3346 }
3347 }
3348 }
3349
3350 void perf_prepare_sample(struct perf_event_header *header,
3351 struct perf_sample_data *data,
3352 struct perf_event *event,
3353 struct pt_regs *regs)
3354 {
3355 u64 sample_type = event->attr.sample_type;
3356
3357 data->type = sample_type;
3358
3359 header->type = PERF_RECORD_SAMPLE;
3360 header->size = sizeof(*header);
3361
3362 header->misc = 0;
3363 header->misc |= perf_misc_flags(regs);
3364
3365 if (sample_type & PERF_SAMPLE_IP) {
3366 data->ip = perf_instruction_pointer(regs);
3367
3368 header->size += sizeof(data->ip);
3369 }
3370
3371 if (sample_type & PERF_SAMPLE_TID) {
3372 /* namespace issues */
3373 data->tid_entry.pid = perf_event_pid(event, current);
3374 data->tid_entry.tid = perf_event_tid(event, current);
3375
3376 header->size += sizeof(data->tid_entry);
3377 }
3378
3379 if (sample_type & PERF_SAMPLE_TIME) {
3380 data->time = perf_clock();
3381
3382 header->size += sizeof(data->time);
3383 }
3384
3385 if (sample_type & PERF_SAMPLE_ADDR)
3386 header->size += sizeof(data->addr);
3387
3388 if (sample_type & PERF_SAMPLE_ID) {
3389 data->id = primary_event_id(event);
3390
3391 header->size += sizeof(data->id);
3392 }
3393
3394 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3395 data->stream_id = event->id;
3396
3397 header->size += sizeof(data->stream_id);
3398 }
3399
3400 if (sample_type & PERF_SAMPLE_CPU) {
3401 data->cpu_entry.cpu = raw_smp_processor_id();
3402 data->cpu_entry.reserved = 0;
3403
3404 header->size += sizeof(data->cpu_entry);
3405 }
3406
3407 if (sample_type & PERF_SAMPLE_PERIOD)
3408 header->size += sizeof(data->period);
3409
3410 if (sample_type & PERF_SAMPLE_READ)
3411 header->size += perf_event_read_size(event);
3412
3413 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3414 int size = 1;
3415
3416 data->callchain = perf_callchain(regs);
3417
3418 if (data->callchain)
3419 size += data->callchain->nr;
3420
3421 header->size += size * sizeof(u64);
3422 }
3423
3424 if (sample_type & PERF_SAMPLE_RAW) {
3425 int size = sizeof(u32);
3426
3427 if (data->raw)
3428 size += data->raw->size;
3429 else
3430 size += sizeof(u32);
3431
3432 WARN_ON_ONCE(size & (sizeof(u64)-1));
3433 header->size += size;
3434 }
3435 }
3436
3437 static void perf_event_output(struct perf_event *event, int nmi,
3438 struct perf_sample_data *data,
3439 struct pt_regs *regs)
3440 {
3441 struct perf_output_handle handle;
3442 struct perf_event_header header;
3443
3444 perf_prepare_sample(&header, data, event, regs);
3445
3446 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3447 return;
3448
3449 perf_output_sample(&handle, &header, data, event);
3450
3451 perf_output_end(&handle);
3452 }
3453
3454 /*
3455 * read event_id
3456 */
3457
3458 struct perf_read_event {
3459 struct perf_event_header header;
3460
3461 u32 pid;
3462 u32 tid;
3463 };
3464
3465 static void
3466 perf_event_read_event(struct perf_event *event,
3467 struct task_struct *task)
3468 {
3469 struct perf_output_handle handle;
3470 struct perf_read_event read_event = {
3471 .header = {
3472 .type = PERF_RECORD_READ,
3473 .misc = 0,
3474 .size = sizeof(read_event) + perf_event_read_size(event),
3475 },
3476 .pid = perf_event_pid(event, task),
3477 .tid = perf_event_tid(event, task),
3478 };
3479 int ret;
3480
3481 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3482 if (ret)
3483 return;
3484
3485 perf_output_put(&handle, read_event);
3486 perf_output_read(&handle, event);
3487
3488 perf_output_end(&handle);
3489 }
3490
3491 /*
3492 * task tracking -- fork/exit
3493 *
3494 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3495 */
3496
3497 struct perf_task_event {
3498 struct task_struct *task;
3499 struct perf_event_context *task_ctx;
3500
3501 struct {
3502 struct perf_event_header header;
3503
3504 u32 pid;
3505 u32 ppid;
3506 u32 tid;
3507 u32 ptid;
3508 u64 time;
3509 } event_id;
3510 };
3511
3512 static void perf_event_task_output(struct perf_event *event,
3513 struct perf_task_event *task_event)
3514 {
3515 struct perf_output_handle handle;
3516 struct task_struct *task = task_event->task;
3517 int size, ret;
3518
3519 size = task_event->event_id.header.size;
3520 ret = perf_output_begin(&handle, event, size, 0, 0);
3521
3522 if (ret)
3523 return;
3524
3525 task_event->event_id.pid = perf_event_pid(event, task);
3526 task_event->event_id.ppid = perf_event_pid(event, current);
3527
3528 task_event->event_id.tid = perf_event_tid(event, task);
3529 task_event->event_id.ptid = perf_event_tid(event, current);
3530
3531 perf_output_put(&handle, task_event->event_id);
3532
3533 perf_output_end(&handle);
3534 }
3535
3536 static int perf_event_task_match(struct perf_event *event)
3537 {
3538 if (event->state < PERF_EVENT_STATE_INACTIVE)
3539 return 0;
3540
3541 if (event->cpu != -1 && event->cpu != smp_processor_id())
3542 return 0;
3543
3544 if (event->attr.comm || event->attr.mmap ||
3545 event->attr.mmap_data || event->attr.task)
3546 return 1;
3547
3548 return 0;
3549 }
3550
3551 static void perf_event_task_ctx(struct perf_event_context *ctx,
3552 struct perf_task_event *task_event)
3553 {
3554 struct perf_event *event;
3555
3556 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3557 if (perf_event_task_match(event))
3558 perf_event_task_output(event, task_event);
3559 }
3560 }
3561
3562 static void perf_event_task_event(struct perf_task_event *task_event)
3563 {
3564 struct perf_cpu_context *cpuctx;
3565 struct perf_event_context *ctx = task_event->task_ctx;
3566
3567 rcu_read_lock();
3568 cpuctx = &get_cpu_var(perf_cpu_context);
3569 perf_event_task_ctx(&cpuctx->ctx, task_event);
3570 if (!ctx)
3571 ctx = rcu_dereference(current->perf_event_ctxp);
3572 if (ctx)
3573 perf_event_task_ctx(ctx, task_event);
3574 put_cpu_var(perf_cpu_context);
3575 rcu_read_unlock();
3576 }
3577
3578 static void perf_event_task(struct task_struct *task,
3579 struct perf_event_context *task_ctx,
3580 int new)
3581 {
3582 struct perf_task_event task_event;
3583
3584 if (!atomic_read(&nr_comm_events) &&
3585 !atomic_read(&nr_mmap_events) &&
3586 !atomic_read(&nr_task_events))
3587 return;
3588
3589 task_event = (struct perf_task_event){
3590 .task = task,
3591 .task_ctx = task_ctx,
3592 .event_id = {
3593 .header = {
3594 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3595 .misc = 0,
3596 .size = sizeof(task_event.event_id),
3597 },
3598 /* .pid */
3599 /* .ppid */
3600 /* .tid */
3601 /* .ptid */
3602 .time = perf_clock(),
3603 },
3604 };
3605
3606 perf_event_task_event(&task_event);
3607 }
3608
3609 void perf_event_fork(struct task_struct *task)
3610 {
3611 perf_event_task(task, NULL, 1);
3612 }
3613
3614 /*
3615 * comm tracking
3616 */
3617
3618 struct perf_comm_event {
3619 struct task_struct *task;
3620 char *comm;
3621 int comm_size;
3622
3623 struct {
3624 struct perf_event_header header;
3625
3626 u32 pid;
3627 u32 tid;
3628 } event_id;
3629 };
3630
3631 static void perf_event_comm_output(struct perf_event *event,
3632 struct perf_comm_event *comm_event)
3633 {
3634 struct perf_output_handle handle;
3635 int size = comm_event->event_id.header.size;
3636 int ret = perf_output_begin(&handle, event, size, 0, 0);
3637
3638 if (ret)
3639 return;
3640
3641 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3642 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3643
3644 perf_output_put(&handle, comm_event->event_id);
3645 perf_output_copy(&handle, comm_event->comm,
3646 comm_event->comm_size);
3647 perf_output_end(&handle);
3648 }
3649
3650 static int perf_event_comm_match(struct perf_event *event)
3651 {
3652 if (event->state < PERF_EVENT_STATE_INACTIVE)
3653 return 0;
3654
3655 if (event->cpu != -1 && event->cpu != smp_processor_id())
3656 return 0;
3657
3658 if (event->attr.comm)
3659 return 1;
3660
3661 return 0;
3662 }
3663
3664 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3665 struct perf_comm_event *comm_event)
3666 {
3667 struct perf_event *event;
3668
3669 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3670 if (perf_event_comm_match(event))
3671 perf_event_comm_output(event, comm_event);
3672 }
3673 }
3674
3675 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3676 {
3677 struct perf_cpu_context *cpuctx;
3678 struct perf_event_context *ctx;
3679 unsigned int size;
3680 char comm[TASK_COMM_LEN];
3681
3682 memset(comm, 0, sizeof(comm));
3683 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3684 size = ALIGN(strlen(comm)+1, sizeof(u64));
3685
3686 comm_event->comm = comm;
3687 comm_event->comm_size = size;
3688
3689 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3690
3691 rcu_read_lock();
3692 cpuctx = &get_cpu_var(perf_cpu_context);
3693 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3694 ctx = rcu_dereference(current->perf_event_ctxp);
3695 if (ctx)
3696 perf_event_comm_ctx(ctx, comm_event);
3697 put_cpu_var(perf_cpu_context);
3698 rcu_read_unlock();
3699 }
3700
3701 void perf_event_comm(struct task_struct *task)
3702 {
3703 struct perf_comm_event comm_event;
3704
3705 if (task->perf_event_ctxp)
3706 perf_event_enable_on_exec(task);
3707
3708 if (!atomic_read(&nr_comm_events))
3709 return;
3710
3711 comm_event = (struct perf_comm_event){
3712 .task = task,
3713 /* .comm */
3714 /* .comm_size */
3715 .event_id = {
3716 .header = {
3717 .type = PERF_RECORD_COMM,
3718 .misc = 0,
3719 /* .size */
3720 },
3721 /* .pid */
3722 /* .tid */
3723 },
3724 };
3725
3726 perf_event_comm_event(&comm_event);
3727 }
3728
3729 /*
3730 * mmap tracking
3731 */
3732
3733 struct perf_mmap_event {
3734 struct vm_area_struct *vma;
3735
3736 const char *file_name;
3737 int file_size;
3738
3739 struct {
3740 struct perf_event_header header;
3741
3742 u32 pid;
3743 u32 tid;
3744 u64 start;
3745 u64 len;
3746 u64 pgoff;
3747 } event_id;
3748 };
3749
3750 static void perf_event_mmap_output(struct perf_event *event,
3751 struct perf_mmap_event *mmap_event)
3752 {
3753 struct perf_output_handle handle;
3754 int size = mmap_event->event_id.header.size;
3755 int ret = perf_output_begin(&handle, event, size, 0, 0);
3756
3757 if (ret)
3758 return;
3759
3760 mmap_event->event_id.pid = perf_event_pid(event, current);
3761 mmap_event->event_id.tid = perf_event_tid(event, current);
3762
3763 perf_output_put(&handle, mmap_event->event_id);
3764 perf_output_copy(&handle, mmap_event->file_name,
3765 mmap_event->file_size);
3766 perf_output_end(&handle);
3767 }
3768
3769 static int perf_event_mmap_match(struct perf_event *event,
3770 struct perf_mmap_event *mmap_event,
3771 int executable)
3772 {
3773 if (event->state < PERF_EVENT_STATE_INACTIVE)
3774 return 0;
3775
3776 if (event->cpu != -1 && event->cpu != smp_processor_id())
3777 return 0;
3778
3779 if ((!executable && event->attr.mmap_data) ||
3780 (executable && event->attr.mmap))
3781 return 1;
3782
3783 return 0;
3784 }
3785
3786 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3787 struct perf_mmap_event *mmap_event,
3788 int executable)
3789 {
3790 struct perf_event *event;
3791
3792 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3793 if (perf_event_mmap_match(event, mmap_event, executable))
3794 perf_event_mmap_output(event, mmap_event);
3795 }
3796 }
3797
3798 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3799 {
3800 struct perf_cpu_context *cpuctx;
3801 struct perf_event_context *ctx;
3802 struct vm_area_struct *vma = mmap_event->vma;
3803 struct file *file = vma->vm_file;
3804 unsigned int size;
3805 char tmp[16];
3806 char *buf = NULL;
3807 const char *name;
3808
3809 memset(tmp, 0, sizeof(tmp));
3810
3811 if (file) {
3812 /*
3813 * d_path works from the end of the buffer backwards, so we
3814 * need to add enough zero bytes after the string to handle
3815 * the 64bit alignment we do later.
3816 */
3817 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3818 if (!buf) {
3819 name = strncpy(tmp, "//enomem", sizeof(tmp));
3820 goto got_name;
3821 }
3822 name = d_path(&file->f_path, buf, PATH_MAX);
3823 if (IS_ERR(name)) {
3824 name = strncpy(tmp, "//toolong", sizeof(tmp));
3825 goto got_name;
3826 }
3827 } else {
3828 if (arch_vma_name(mmap_event->vma)) {
3829 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3830 sizeof(tmp));
3831 goto got_name;
3832 }
3833
3834 if (!vma->vm_mm) {
3835 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3836 goto got_name;
3837 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3838 vma->vm_end >= vma->vm_mm->brk) {
3839 name = strncpy(tmp, "[heap]", sizeof(tmp));
3840 goto got_name;
3841 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3842 vma->vm_end >= vma->vm_mm->start_stack) {
3843 name = strncpy(tmp, "[stack]", sizeof(tmp));
3844 goto got_name;
3845 }
3846
3847 name = strncpy(tmp, "//anon", sizeof(tmp));
3848 goto got_name;
3849 }
3850
3851 got_name:
3852 size = ALIGN(strlen(name)+1, sizeof(u64));
3853
3854 mmap_event->file_name = name;
3855 mmap_event->file_size = size;
3856
3857 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3858
3859 rcu_read_lock();
3860 cpuctx = &get_cpu_var(perf_cpu_context);
3861 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3862 ctx = rcu_dereference(current->perf_event_ctxp);
3863 if (ctx)
3864 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3865 put_cpu_var(perf_cpu_context);
3866 rcu_read_unlock();
3867
3868 kfree(buf);
3869 }
3870
3871 void perf_event_mmap(struct vm_area_struct *vma)
3872 {
3873 struct perf_mmap_event mmap_event;
3874
3875 if (!atomic_read(&nr_mmap_events))
3876 return;
3877
3878 mmap_event = (struct perf_mmap_event){
3879 .vma = vma,
3880 /* .file_name */
3881 /* .file_size */
3882 .event_id = {
3883 .header = {
3884 .type = PERF_RECORD_MMAP,
3885 .misc = PERF_RECORD_MISC_USER,
3886 /* .size */
3887 },
3888 /* .pid */
3889 /* .tid */
3890 .start = vma->vm_start,
3891 .len = vma->vm_end - vma->vm_start,
3892 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3893 },
3894 };
3895
3896 perf_event_mmap_event(&mmap_event);
3897 }
3898
3899 /*
3900 * IRQ throttle logging
3901 */
3902
3903 static void perf_log_throttle(struct perf_event *event, int enable)
3904 {
3905 struct perf_output_handle handle;
3906 int ret;
3907
3908 struct {
3909 struct perf_event_header header;
3910 u64 time;
3911 u64 id;
3912 u64 stream_id;
3913 } throttle_event = {
3914 .header = {
3915 .type = PERF_RECORD_THROTTLE,
3916 .misc = 0,
3917 .size = sizeof(throttle_event),
3918 },
3919 .time = perf_clock(),
3920 .id = primary_event_id(event),
3921 .stream_id = event->id,
3922 };
3923
3924 if (enable)
3925 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3926
3927 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3928 if (ret)
3929 return;
3930
3931 perf_output_put(&handle, throttle_event);
3932 perf_output_end(&handle);
3933 }
3934
3935 /*
3936 * Generic event overflow handling, sampling.
3937 */
3938
3939 static int __perf_event_overflow(struct perf_event *event, int nmi,
3940 int throttle, struct perf_sample_data *data,
3941 struct pt_regs *regs)
3942 {
3943 int events = atomic_read(&event->event_limit);
3944 struct hw_perf_event *hwc = &event->hw;
3945 int ret = 0;
3946
3947 throttle = (throttle && event->pmu->unthrottle != NULL);
3948
3949 if (!throttle) {
3950 hwc->interrupts++;
3951 } else {
3952 if (hwc->interrupts != MAX_INTERRUPTS) {
3953 hwc->interrupts++;
3954 if (HZ * hwc->interrupts >
3955 (u64)sysctl_perf_event_sample_rate) {
3956 hwc->interrupts = MAX_INTERRUPTS;
3957 perf_log_throttle(event, 0);
3958 ret = 1;
3959 }
3960 } else {
3961 /*
3962 * Keep re-disabling events even though on the previous
3963 * pass we disabled it - just in case we raced with a
3964 * sched-in and the event got enabled again:
3965 */
3966 ret = 1;
3967 }
3968 }
3969
3970 if (event->attr.freq) {
3971 u64 now = perf_clock();
3972 s64 delta = now - hwc->freq_time_stamp;
3973
3974 hwc->freq_time_stamp = now;
3975
3976 if (delta > 0 && delta < 2*TICK_NSEC)
3977 perf_adjust_period(event, delta, hwc->last_period);
3978 }
3979
3980 /*
3981 * XXX event_limit might not quite work as expected on inherited
3982 * events
3983 */
3984
3985 event->pending_kill = POLL_IN;
3986 if (events && atomic_dec_and_test(&event->event_limit)) {
3987 ret = 1;
3988 event->pending_kill = POLL_HUP;
3989 if (nmi) {
3990 event->pending_disable = 1;
3991 perf_pending_queue(&event->pending,
3992 perf_pending_event);
3993 } else
3994 perf_event_disable(event);
3995 }
3996
3997 if (event->overflow_handler)
3998 event->overflow_handler(event, nmi, data, regs);
3999 else
4000 perf_event_output(event, nmi, data, regs);
4001
4002 return ret;
4003 }
4004
4005 int perf_event_overflow(struct perf_event *event, int nmi,
4006 struct perf_sample_data *data,
4007 struct pt_regs *regs)
4008 {
4009 return __perf_event_overflow(event, nmi, 1, data, regs);
4010 }
4011
4012 /*
4013 * Generic software event infrastructure
4014 */
4015
4016 /*
4017 * We directly increment event->count and keep a second value in
4018 * event->hw.period_left to count intervals. This period event
4019 * is kept in the range [-sample_period, 0] so that we can use the
4020 * sign as trigger.
4021 */
4022
4023 static u64 perf_swevent_set_period(struct perf_event *event)
4024 {
4025 struct hw_perf_event *hwc = &event->hw;
4026 u64 period = hwc->last_period;
4027 u64 nr, offset;
4028 s64 old, val;
4029
4030 hwc->last_period = hwc->sample_period;
4031
4032 again:
4033 old = val = local64_read(&hwc->period_left);
4034 if (val < 0)
4035 return 0;
4036
4037 nr = div64_u64(period + val, period);
4038 offset = nr * period;
4039 val -= offset;
4040 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4041 goto again;
4042
4043 return nr;
4044 }
4045
4046 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4047 int nmi, struct perf_sample_data *data,
4048 struct pt_regs *regs)
4049 {
4050 struct hw_perf_event *hwc = &event->hw;
4051 int throttle = 0;
4052
4053 data->period = event->hw.last_period;
4054 if (!overflow)
4055 overflow = perf_swevent_set_period(event);
4056
4057 if (hwc->interrupts == MAX_INTERRUPTS)
4058 return;
4059
4060 for (; overflow; overflow--) {
4061 if (__perf_event_overflow(event, nmi, throttle,
4062 data, regs)) {
4063 /*
4064 * We inhibit the overflow from happening when
4065 * hwc->interrupts == MAX_INTERRUPTS.
4066 */
4067 break;
4068 }
4069 throttle = 1;
4070 }
4071 }
4072
4073 static void perf_swevent_add(struct perf_event *event, u64 nr,
4074 int nmi, struct perf_sample_data *data,
4075 struct pt_regs *regs)
4076 {
4077 struct hw_perf_event *hwc = &event->hw;
4078
4079 local64_add(nr, &event->count);
4080
4081 if (!regs)
4082 return;
4083
4084 if (!hwc->sample_period)
4085 return;
4086
4087 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4088 return perf_swevent_overflow(event, 1, nmi, data, regs);
4089
4090 if (local64_add_negative(nr, &hwc->period_left))
4091 return;
4092
4093 perf_swevent_overflow(event, 0, nmi, data, regs);
4094 }
4095
4096 static int perf_exclude_event(struct perf_event *event,
4097 struct pt_regs *regs)
4098 {
4099 if (regs) {
4100 if (event->attr.exclude_user && user_mode(regs))
4101 return 1;
4102
4103 if (event->attr.exclude_kernel && !user_mode(regs))
4104 return 1;
4105 }
4106
4107 return 0;
4108 }
4109
4110 static int perf_swevent_match(struct perf_event *event,
4111 enum perf_type_id type,
4112 u32 event_id,
4113 struct perf_sample_data *data,
4114 struct pt_regs *regs)
4115 {
4116 if (event->attr.type != type)
4117 return 0;
4118
4119 if (event->attr.config != event_id)
4120 return 0;
4121
4122 if (perf_exclude_event(event, regs))
4123 return 0;
4124
4125 return 1;
4126 }
4127
4128 static inline u64 swevent_hash(u64 type, u32 event_id)
4129 {
4130 u64 val = event_id | (type << 32);
4131
4132 return hash_64(val, SWEVENT_HLIST_BITS);
4133 }
4134
4135 static inline struct hlist_head *
4136 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4137 {
4138 u64 hash = swevent_hash(type, event_id);
4139
4140 return &hlist->heads[hash];
4141 }
4142
4143 /* For the read side: events when they trigger */
4144 static inline struct hlist_head *
4145 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4146 {
4147 struct swevent_hlist *hlist;
4148
4149 hlist = rcu_dereference(ctx->swevent_hlist);
4150 if (!hlist)
4151 return NULL;
4152
4153 return __find_swevent_head(hlist, type, event_id);
4154 }
4155
4156 /* For the event head insertion and removal in the hlist */
4157 static inline struct hlist_head *
4158 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4159 {
4160 struct swevent_hlist *hlist;
4161 u32 event_id = event->attr.config;
4162 u64 type = event->attr.type;
4163
4164 /*
4165 * Event scheduling is always serialized against hlist allocation
4166 * and release. Which makes the protected version suitable here.
4167 * The context lock guarantees that.
4168 */
4169 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4170 lockdep_is_held(&event->ctx->lock));
4171 if (!hlist)
4172 return NULL;
4173
4174 return __find_swevent_head(hlist, type, event_id);
4175 }
4176
4177 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4178 u64 nr, int nmi,
4179 struct perf_sample_data *data,
4180 struct pt_regs *regs)
4181 {
4182 struct perf_cpu_context *cpuctx;
4183 struct perf_event *event;
4184 struct hlist_node *node;
4185 struct hlist_head *head;
4186
4187 cpuctx = &__get_cpu_var(perf_cpu_context);
4188
4189 rcu_read_lock();
4190
4191 head = find_swevent_head_rcu(cpuctx, type, event_id);
4192
4193 if (!head)
4194 goto end;
4195
4196 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4197 if (perf_swevent_match(event, type, event_id, data, regs))
4198 perf_swevent_add(event, nr, nmi, data, regs);
4199 }
4200 end:
4201 rcu_read_unlock();
4202 }
4203
4204 int perf_swevent_get_recursion_context(void)
4205 {
4206 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4207 int rctx;
4208
4209 if (in_nmi())
4210 rctx = 3;
4211 else if (in_irq())
4212 rctx = 2;
4213 else if (in_softirq())
4214 rctx = 1;
4215 else
4216 rctx = 0;
4217
4218 if (cpuctx->recursion[rctx])
4219 return -1;
4220
4221 cpuctx->recursion[rctx]++;
4222 barrier();
4223
4224 return rctx;
4225 }
4226 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4227
4228 void inline perf_swevent_put_recursion_context(int rctx)
4229 {
4230 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4231 barrier();
4232 cpuctx->recursion[rctx]--;
4233 }
4234
4235 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4236 struct pt_regs *regs, u64 addr)
4237 {
4238 struct perf_sample_data data;
4239 int rctx;
4240
4241 preempt_disable_notrace();
4242 rctx = perf_swevent_get_recursion_context();
4243 if (rctx < 0)
4244 return;
4245
4246 perf_sample_data_init(&data, addr);
4247
4248 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4249
4250 perf_swevent_put_recursion_context(rctx);
4251 preempt_enable_notrace();
4252 }
4253
4254 static void perf_swevent_read(struct perf_event *event)
4255 {
4256 }
4257
4258 static int perf_swevent_enable(struct perf_event *event)
4259 {
4260 struct hw_perf_event *hwc = &event->hw;
4261 struct perf_cpu_context *cpuctx;
4262 struct hlist_head *head;
4263
4264 cpuctx = &__get_cpu_var(perf_cpu_context);
4265
4266 if (hwc->sample_period) {
4267 hwc->last_period = hwc->sample_period;
4268 perf_swevent_set_period(event);
4269 }
4270
4271 head = find_swevent_head(cpuctx, event);
4272 if (WARN_ON_ONCE(!head))
4273 return -EINVAL;
4274
4275 hlist_add_head_rcu(&event->hlist_entry, head);
4276
4277 return 0;
4278 }
4279
4280 static void perf_swevent_disable(struct perf_event *event)
4281 {
4282 hlist_del_rcu(&event->hlist_entry);
4283 }
4284
4285 static void perf_swevent_void(struct perf_event *event)
4286 {
4287 }
4288
4289 static int perf_swevent_int(struct perf_event *event)
4290 {
4291 return 0;
4292 }
4293
4294 static const struct pmu perf_ops_generic = {
4295 .enable = perf_swevent_enable,
4296 .disable = perf_swevent_disable,
4297 .start = perf_swevent_int,
4298 .stop = perf_swevent_void,
4299 .read = perf_swevent_read,
4300 .unthrottle = perf_swevent_void, /* hwc->interrupts already reset */
4301 };
4302
4303 /*
4304 * hrtimer based swevent callback
4305 */
4306
4307 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4308 {
4309 enum hrtimer_restart ret = HRTIMER_RESTART;
4310 struct perf_sample_data data;
4311 struct pt_regs *regs;
4312 struct perf_event *event;
4313 u64 period;
4314
4315 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4316 event->pmu->read(event);
4317
4318 perf_sample_data_init(&data, 0);
4319 data.period = event->hw.last_period;
4320 regs = get_irq_regs();
4321
4322 if (regs && !perf_exclude_event(event, regs)) {
4323 if (!(event->attr.exclude_idle && current->pid == 0))
4324 if (perf_event_overflow(event, 0, &data, regs))
4325 ret = HRTIMER_NORESTART;
4326 }
4327
4328 period = max_t(u64, 10000, event->hw.sample_period);
4329 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4330
4331 return ret;
4332 }
4333
4334 static void perf_swevent_start_hrtimer(struct perf_event *event)
4335 {
4336 struct hw_perf_event *hwc = &event->hw;
4337
4338 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4339 hwc->hrtimer.function = perf_swevent_hrtimer;
4340 if (hwc->sample_period) {
4341 u64 period;
4342
4343 if (hwc->remaining) {
4344 if (hwc->remaining < 0)
4345 period = 10000;
4346 else
4347 period = hwc->remaining;
4348 hwc->remaining = 0;
4349 } else {
4350 period = max_t(u64, 10000, hwc->sample_period);
4351 }
4352 __hrtimer_start_range_ns(&hwc->hrtimer,
4353 ns_to_ktime(period), 0,
4354 HRTIMER_MODE_REL, 0);
4355 }
4356 }
4357
4358 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4359 {
4360 struct hw_perf_event *hwc = &event->hw;
4361
4362 if (hwc->sample_period) {
4363 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4364 hwc->remaining = ktime_to_ns(remaining);
4365
4366 hrtimer_cancel(&hwc->hrtimer);
4367 }
4368 }
4369
4370 /*
4371 * Software event: cpu wall time clock
4372 */
4373
4374 static void cpu_clock_perf_event_update(struct perf_event *event)
4375 {
4376 int cpu = raw_smp_processor_id();
4377 s64 prev;
4378 u64 now;
4379
4380 now = cpu_clock(cpu);
4381 prev = local64_xchg(&event->hw.prev_count, now);
4382 local64_add(now - prev, &event->count);
4383 }
4384
4385 static int cpu_clock_perf_event_enable(struct perf_event *event)
4386 {
4387 struct hw_perf_event *hwc = &event->hw;
4388 int cpu = raw_smp_processor_id();
4389
4390 local64_set(&hwc->prev_count, cpu_clock(cpu));
4391 perf_swevent_start_hrtimer(event);
4392
4393 return 0;
4394 }
4395
4396 static void cpu_clock_perf_event_disable(struct perf_event *event)
4397 {
4398 perf_swevent_cancel_hrtimer(event);
4399 cpu_clock_perf_event_update(event);
4400 }
4401
4402 static void cpu_clock_perf_event_read(struct perf_event *event)
4403 {
4404 cpu_clock_perf_event_update(event);
4405 }
4406
4407 static const struct pmu perf_ops_cpu_clock = {
4408 .enable = cpu_clock_perf_event_enable,
4409 .disable = cpu_clock_perf_event_disable,
4410 .read = cpu_clock_perf_event_read,
4411 };
4412
4413 /*
4414 * Software event: task time clock
4415 */
4416
4417 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4418 {
4419 u64 prev;
4420 s64 delta;
4421
4422 prev = local64_xchg(&event->hw.prev_count, now);
4423 delta = now - prev;
4424 local64_add(delta, &event->count);
4425 }
4426
4427 static int task_clock_perf_event_enable(struct perf_event *event)
4428 {
4429 struct hw_perf_event *hwc = &event->hw;
4430 u64 now;
4431
4432 now = event->ctx->time;
4433
4434 local64_set(&hwc->prev_count, now);
4435
4436 perf_swevent_start_hrtimer(event);
4437
4438 return 0;
4439 }
4440
4441 static void task_clock_perf_event_disable(struct perf_event *event)
4442 {
4443 perf_swevent_cancel_hrtimer(event);
4444 task_clock_perf_event_update(event, event->ctx->time);
4445
4446 }
4447
4448 static void task_clock_perf_event_read(struct perf_event *event)
4449 {
4450 u64 time;
4451
4452 if (!in_nmi()) {
4453 update_context_time(event->ctx);
4454 time = event->ctx->time;
4455 } else {
4456 u64 now = perf_clock();
4457 u64 delta = now - event->ctx->timestamp;
4458 time = event->ctx->time + delta;
4459 }
4460
4461 task_clock_perf_event_update(event, time);
4462 }
4463
4464 static const struct pmu perf_ops_task_clock = {
4465 .enable = task_clock_perf_event_enable,
4466 .disable = task_clock_perf_event_disable,
4467 .read = task_clock_perf_event_read,
4468 };
4469
4470 /* Deref the hlist from the update side */
4471 static inline struct swevent_hlist *
4472 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4473 {
4474 return rcu_dereference_protected(cpuctx->swevent_hlist,
4475 lockdep_is_held(&cpuctx->hlist_mutex));
4476 }
4477
4478 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4479 {
4480 struct swevent_hlist *hlist;
4481
4482 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4483 kfree(hlist);
4484 }
4485
4486 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4487 {
4488 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4489
4490 if (!hlist)
4491 return;
4492
4493 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4494 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4495 }
4496
4497 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4498 {
4499 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4500
4501 mutex_lock(&cpuctx->hlist_mutex);
4502
4503 if (!--cpuctx->hlist_refcount)
4504 swevent_hlist_release(cpuctx);
4505
4506 mutex_unlock(&cpuctx->hlist_mutex);
4507 }
4508
4509 static void swevent_hlist_put(struct perf_event *event)
4510 {
4511 int cpu;
4512
4513 if (event->cpu != -1) {
4514 swevent_hlist_put_cpu(event, event->cpu);
4515 return;
4516 }
4517
4518 for_each_possible_cpu(cpu)
4519 swevent_hlist_put_cpu(event, cpu);
4520 }
4521
4522 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4523 {
4524 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4525 int err = 0;
4526
4527 mutex_lock(&cpuctx->hlist_mutex);
4528
4529 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4530 struct swevent_hlist *hlist;
4531
4532 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4533 if (!hlist) {
4534 err = -ENOMEM;
4535 goto exit;
4536 }
4537 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4538 }
4539 cpuctx->hlist_refcount++;
4540 exit:
4541 mutex_unlock(&cpuctx->hlist_mutex);
4542
4543 return err;
4544 }
4545
4546 static int swevent_hlist_get(struct perf_event *event)
4547 {
4548 int err;
4549 int cpu, failed_cpu;
4550
4551 if (event->cpu != -1)
4552 return swevent_hlist_get_cpu(event, event->cpu);
4553
4554 get_online_cpus();
4555 for_each_possible_cpu(cpu) {
4556 err = swevent_hlist_get_cpu(event, cpu);
4557 if (err) {
4558 failed_cpu = cpu;
4559 goto fail;
4560 }
4561 }
4562 put_online_cpus();
4563
4564 return 0;
4565 fail:
4566 for_each_possible_cpu(cpu) {
4567 if (cpu == failed_cpu)
4568 break;
4569 swevent_hlist_put_cpu(event, cpu);
4570 }
4571
4572 put_online_cpus();
4573 return err;
4574 }
4575
4576 #ifdef CONFIG_EVENT_TRACING
4577
4578 static const struct pmu perf_ops_tracepoint = {
4579 .enable = perf_trace_enable,
4580 .disable = perf_trace_disable,
4581 .start = perf_swevent_int,
4582 .stop = perf_swevent_void,
4583 .read = perf_swevent_read,
4584 .unthrottle = perf_swevent_void,
4585 };
4586
4587 static int perf_tp_filter_match(struct perf_event *event,
4588 struct perf_sample_data *data)
4589 {
4590 void *record = data->raw->data;
4591
4592 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4593 return 1;
4594 return 0;
4595 }
4596
4597 static int perf_tp_event_match(struct perf_event *event,
4598 struct perf_sample_data *data,
4599 struct pt_regs *regs)
4600 {
4601 /*
4602 * All tracepoints are from kernel-space.
4603 */
4604 if (event->attr.exclude_kernel)
4605 return 0;
4606
4607 if (!perf_tp_filter_match(event, data))
4608 return 0;
4609
4610 return 1;
4611 }
4612
4613 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4614 struct pt_regs *regs, struct hlist_head *head, int rctx)
4615 {
4616 struct perf_sample_data data;
4617 struct perf_event *event;
4618 struct hlist_node *node;
4619
4620 struct perf_raw_record raw = {
4621 .size = entry_size,
4622 .data = record,
4623 };
4624
4625 perf_sample_data_init(&data, addr);
4626 data.raw = &raw;
4627
4628 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4629 if (perf_tp_event_match(event, &data, regs))
4630 perf_swevent_add(event, count, 1, &data, regs);
4631 }
4632
4633 perf_swevent_put_recursion_context(rctx);
4634 }
4635 EXPORT_SYMBOL_GPL(perf_tp_event);
4636
4637 static void tp_perf_event_destroy(struct perf_event *event)
4638 {
4639 perf_trace_destroy(event);
4640 }
4641
4642 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4643 {
4644 int err;
4645
4646 /*
4647 * Raw tracepoint data is a severe data leak, only allow root to
4648 * have these.
4649 */
4650 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4651 perf_paranoid_tracepoint_raw() &&
4652 !capable(CAP_SYS_ADMIN))
4653 return ERR_PTR(-EPERM);
4654
4655 err = perf_trace_init(event);
4656 if (err)
4657 return NULL;
4658
4659 event->destroy = tp_perf_event_destroy;
4660
4661 return &perf_ops_tracepoint;
4662 }
4663
4664 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4665 {
4666 char *filter_str;
4667 int ret;
4668
4669 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4670 return -EINVAL;
4671
4672 filter_str = strndup_user(arg, PAGE_SIZE);
4673 if (IS_ERR(filter_str))
4674 return PTR_ERR(filter_str);
4675
4676 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4677
4678 kfree(filter_str);
4679 return ret;
4680 }
4681
4682 static void perf_event_free_filter(struct perf_event *event)
4683 {
4684 ftrace_profile_free_filter(event);
4685 }
4686
4687 #else
4688
4689 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4690 {
4691 return NULL;
4692 }
4693
4694 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4695 {
4696 return -ENOENT;
4697 }
4698
4699 static void perf_event_free_filter(struct perf_event *event)
4700 {
4701 }
4702
4703 #endif /* CONFIG_EVENT_TRACING */
4704
4705 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4706 static void bp_perf_event_destroy(struct perf_event *event)
4707 {
4708 release_bp_slot(event);
4709 }
4710
4711 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4712 {
4713 int err;
4714
4715 err = register_perf_hw_breakpoint(bp);
4716 if (err)
4717 return ERR_PTR(err);
4718
4719 bp->destroy = bp_perf_event_destroy;
4720
4721 return &perf_ops_bp;
4722 }
4723
4724 void perf_bp_event(struct perf_event *bp, void *data)
4725 {
4726 struct perf_sample_data sample;
4727 struct pt_regs *regs = data;
4728
4729 perf_sample_data_init(&sample, bp->attr.bp_addr);
4730
4731 if (!perf_exclude_event(bp, regs))
4732 perf_swevent_add(bp, 1, 1, &sample, regs);
4733 }
4734 #else
4735 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4736 {
4737 return NULL;
4738 }
4739
4740 void perf_bp_event(struct perf_event *bp, void *regs)
4741 {
4742 }
4743 #endif
4744
4745 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4746
4747 static void sw_perf_event_destroy(struct perf_event *event)
4748 {
4749 u64 event_id = event->attr.config;
4750
4751 WARN_ON(event->parent);
4752
4753 atomic_dec(&perf_swevent_enabled[event_id]);
4754 swevent_hlist_put(event);
4755 }
4756
4757 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4758 {
4759 const struct pmu *pmu = NULL;
4760 u64 event_id = event->attr.config;
4761
4762 /*
4763 * Software events (currently) can't in general distinguish
4764 * between user, kernel and hypervisor events.
4765 * However, context switches and cpu migrations are considered
4766 * to be kernel events, and page faults are never hypervisor
4767 * events.
4768 */
4769 switch (event_id) {
4770 case PERF_COUNT_SW_CPU_CLOCK:
4771 pmu = &perf_ops_cpu_clock;
4772
4773 break;
4774 case PERF_COUNT_SW_TASK_CLOCK:
4775 /*
4776 * If the user instantiates this as a per-cpu event,
4777 * use the cpu_clock event instead.
4778 */
4779 if (event->ctx->task)
4780 pmu = &perf_ops_task_clock;
4781 else
4782 pmu = &perf_ops_cpu_clock;
4783
4784 break;
4785 case PERF_COUNT_SW_PAGE_FAULTS:
4786 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4787 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4788 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4789 case PERF_COUNT_SW_CPU_MIGRATIONS:
4790 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4791 case PERF_COUNT_SW_EMULATION_FAULTS:
4792 if (!event->parent) {
4793 int err;
4794
4795 err = swevent_hlist_get(event);
4796 if (err)
4797 return ERR_PTR(err);
4798
4799 atomic_inc(&perf_swevent_enabled[event_id]);
4800 event->destroy = sw_perf_event_destroy;
4801 }
4802 pmu = &perf_ops_generic;
4803 break;
4804 }
4805
4806 return pmu;
4807 }
4808
4809 /*
4810 * Allocate and initialize a event structure
4811 */
4812 static struct perf_event *
4813 perf_event_alloc(struct perf_event_attr *attr,
4814 int cpu,
4815 struct perf_event_context *ctx,
4816 struct perf_event *group_leader,
4817 struct perf_event *parent_event,
4818 perf_overflow_handler_t overflow_handler,
4819 gfp_t gfpflags)
4820 {
4821 const struct pmu *pmu;
4822 struct perf_event *event;
4823 struct hw_perf_event *hwc;
4824 long err;
4825
4826 event = kzalloc(sizeof(*event), gfpflags);
4827 if (!event)
4828 return ERR_PTR(-ENOMEM);
4829
4830 /*
4831 * Single events are their own group leaders, with an
4832 * empty sibling list:
4833 */
4834 if (!group_leader)
4835 group_leader = event;
4836
4837 mutex_init(&event->child_mutex);
4838 INIT_LIST_HEAD(&event->child_list);
4839
4840 INIT_LIST_HEAD(&event->group_entry);
4841 INIT_LIST_HEAD(&event->event_entry);
4842 INIT_LIST_HEAD(&event->sibling_list);
4843 init_waitqueue_head(&event->waitq);
4844
4845 mutex_init(&event->mmap_mutex);
4846
4847 event->cpu = cpu;
4848 event->attr = *attr;
4849 event->group_leader = group_leader;
4850 event->pmu = NULL;
4851 event->ctx = ctx;
4852 event->oncpu = -1;
4853
4854 event->parent = parent_event;
4855
4856 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4857 event->id = atomic64_inc_return(&perf_event_id);
4858
4859 event->state = PERF_EVENT_STATE_INACTIVE;
4860
4861 if (!overflow_handler && parent_event)
4862 overflow_handler = parent_event->overflow_handler;
4863
4864 event->overflow_handler = overflow_handler;
4865
4866 if (attr->disabled)
4867 event->state = PERF_EVENT_STATE_OFF;
4868
4869 pmu = NULL;
4870
4871 hwc = &event->hw;
4872 hwc->sample_period = attr->sample_period;
4873 if (attr->freq && attr->sample_freq)
4874 hwc->sample_period = 1;
4875 hwc->last_period = hwc->sample_period;
4876
4877 local64_set(&hwc->period_left, hwc->sample_period);
4878
4879 /*
4880 * we currently do not support PERF_FORMAT_GROUP on inherited events
4881 */
4882 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4883 goto done;
4884
4885 switch (attr->type) {
4886 case PERF_TYPE_RAW:
4887 case PERF_TYPE_HARDWARE:
4888 case PERF_TYPE_HW_CACHE:
4889 pmu = hw_perf_event_init(event);
4890 break;
4891
4892 case PERF_TYPE_SOFTWARE:
4893 pmu = sw_perf_event_init(event);
4894 break;
4895
4896 case PERF_TYPE_TRACEPOINT:
4897 pmu = tp_perf_event_init(event);
4898 break;
4899
4900 case PERF_TYPE_BREAKPOINT:
4901 pmu = bp_perf_event_init(event);
4902 break;
4903
4904
4905 default:
4906 break;
4907 }
4908 done:
4909 err = 0;
4910 if (!pmu)
4911 err = -EINVAL;
4912 else if (IS_ERR(pmu))
4913 err = PTR_ERR(pmu);
4914
4915 if (err) {
4916 if (event->ns)
4917 put_pid_ns(event->ns);
4918 kfree(event);
4919 return ERR_PTR(err);
4920 }
4921
4922 event->pmu = pmu;
4923
4924 if (!event->parent) {
4925 atomic_inc(&nr_events);
4926 if (event->attr.mmap || event->attr.mmap_data)
4927 atomic_inc(&nr_mmap_events);
4928 if (event->attr.comm)
4929 atomic_inc(&nr_comm_events);
4930 if (event->attr.task)
4931 atomic_inc(&nr_task_events);
4932 }
4933
4934 return event;
4935 }
4936
4937 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4938 struct perf_event_attr *attr)
4939 {
4940 u32 size;
4941 int ret;
4942
4943 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4944 return -EFAULT;
4945
4946 /*
4947 * zero the full structure, so that a short copy will be nice.
4948 */
4949 memset(attr, 0, sizeof(*attr));
4950
4951 ret = get_user(size, &uattr->size);
4952 if (ret)
4953 return ret;
4954
4955 if (size > PAGE_SIZE) /* silly large */
4956 goto err_size;
4957
4958 if (!size) /* abi compat */
4959 size = PERF_ATTR_SIZE_VER0;
4960
4961 if (size < PERF_ATTR_SIZE_VER0)
4962 goto err_size;
4963
4964 /*
4965 * If we're handed a bigger struct than we know of,
4966 * ensure all the unknown bits are 0 - i.e. new
4967 * user-space does not rely on any kernel feature
4968 * extensions we dont know about yet.
4969 */
4970 if (size > sizeof(*attr)) {
4971 unsigned char __user *addr;
4972 unsigned char __user *end;
4973 unsigned char val;
4974
4975 addr = (void __user *)uattr + sizeof(*attr);
4976 end = (void __user *)uattr + size;
4977
4978 for (; addr < end; addr++) {
4979 ret = get_user(val, addr);
4980 if (ret)
4981 return ret;
4982 if (val)
4983 goto err_size;
4984 }
4985 size = sizeof(*attr);
4986 }
4987
4988 ret = copy_from_user(attr, uattr, size);
4989 if (ret)
4990 return -EFAULT;
4991
4992 /*
4993 * If the type exists, the corresponding creation will verify
4994 * the attr->config.
4995 */
4996 if (attr->type >= PERF_TYPE_MAX)
4997 return -EINVAL;
4998
4999 if (attr->__reserved_1)
5000 return -EINVAL;
5001
5002 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5003 return -EINVAL;
5004
5005 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5006 return -EINVAL;
5007
5008 out:
5009 return ret;
5010
5011 err_size:
5012 put_user(sizeof(*attr), &uattr->size);
5013 ret = -E2BIG;
5014 goto out;
5015 }
5016
5017 static int
5018 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5019 {
5020 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5021 int ret = -EINVAL;
5022
5023 if (!output_event)
5024 goto set;
5025
5026 /* don't allow circular references */
5027 if (event == output_event)
5028 goto out;
5029
5030 /*
5031 * Don't allow cross-cpu buffers
5032 */
5033 if (output_event->cpu != event->cpu)
5034 goto out;
5035
5036 /*
5037 * If its not a per-cpu buffer, it must be the same task.
5038 */
5039 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5040 goto out;
5041
5042 set:
5043 mutex_lock(&event->mmap_mutex);
5044 /* Can't redirect output if we've got an active mmap() */
5045 if (atomic_read(&event->mmap_count))
5046 goto unlock;
5047
5048 if (output_event) {
5049 /* get the buffer we want to redirect to */
5050 buffer = perf_buffer_get(output_event);
5051 if (!buffer)
5052 goto unlock;
5053 }
5054
5055 old_buffer = event->buffer;
5056 rcu_assign_pointer(event->buffer, buffer);
5057 ret = 0;
5058 unlock:
5059 mutex_unlock(&event->mmap_mutex);
5060
5061 if (old_buffer)
5062 perf_buffer_put(old_buffer);
5063 out:
5064 return ret;
5065 }
5066
5067 /**
5068 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5069 *
5070 * @attr_uptr: event_id type attributes for monitoring/sampling
5071 * @pid: target pid
5072 * @cpu: target cpu
5073 * @group_fd: group leader event fd
5074 */
5075 SYSCALL_DEFINE5(perf_event_open,
5076 struct perf_event_attr __user *, attr_uptr,
5077 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5078 {
5079 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5080 struct perf_event_attr attr;
5081 struct perf_event_context *ctx;
5082 struct file *event_file = NULL;
5083 struct file *group_file = NULL;
5084 int event_fd;
5085 int fput_needed = 0;
5086 int err;
5087
5088 /* for future expandability... */
5089 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5090 return -EINVAL;
5091
5092 err = perf_copy_attr(attr_uptr, &attr);
5093 if (err)
5094 return err;
5095
5096 if (!attr.exclude_kernel) {
5097 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5098 return -EACCES;
5099 }
5100
5101 if (attr.freq) {
5102 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5103 return -EINVAL;
5104 }
5105
5106 event_fd = get_unused_fd_flags(O_RDWR);
5107 if (event_fd < 0)
5108 return event_fd;
5109
5110 /*
5111 * Get the target context (task or percpu):
5112 */
5113 ctx = find_get_context(pid, cpu);
5114 if (IS_ERR(ctx)) {
5115 err = PTR_ERR(ctx);
5116 goto err_fd;
5117 }
5118
5119 if (group_fd != -1) {
5120 group_leader = perf_fget_light(group_fd, &fput_needed);
5121 if (IS_ERR(group_leader)) {
5122 err = PTR_ERR(group_leader);
5123 goto err_put_context;
5124 }
5125 group_file = group_leader->filp;
5126 if (flags & PERF_FLAG_FD_OUTPUT)
5127 output_event = group_leader;
5128 if (flags & PERF_FLAG_FD_NO_GROUP)
5129 group_leader = NULL;
5130 }
5131
5132 /*
5133 * Look up the group leader (we will attach this event to it):
5134 */
5135 if (group_leader) {
5136 err = -EINVAL;
5137
5138 /*
5139 * Do not allow a recursive hierarchy (this new sibling
5140 * becoming part of another group-sibling):
5141 */
5142 if (group_leader->group_leader != group_leader)
5143 goto err_put_context;
5144 /*
5145 * Do not allow to attach to a group in a different
5146 * task or CPU context:
5147 */
5148 if (group_leader->ctx != ctx)
5149 goto err_put_context;
5150 /*
5151 * Only a group leader can be exclusive or pinned
5152 */
5153 if (attr.exclusive || attr.pinned)
5154 goto err_put_context;
5155 }
5156
5157 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5158 NULL, NULL, GFP_KERNEL);
5159 if (IS_ERR(event)) {
5160 err = PTR_ERR(event);
5161 goto err_put_context;
5162 }
5163
5164 if (output_event) {
5165 err = perf_event_set_output(event, output_event);
5166 if (err)
5167 goto err_free_put_context;
5168 }
5169
5170 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5171 if (IS_ERR(event_file)) {
5172 err = PTR_ERR(event_file);
5173 goto err_free_put_context;
5174 }
5175
5176 event->filp = event_file;
5177 WARN_ON_ONCE(ctx->parent_ctx);
5178 mutex_lock(&ctx->mutex);
5179 perf_install_in_context(ctx, event, cpu);
5180 ++ctx->generation;
5181 mutex_unlock(&ctx->mutex);
5182
5183 event->owner = current;
5184 get_task_struct(current);
5185 mutex_lock(&current->perf_event_mutex);
5186 list_add_tail(&event->owner_entry, &current->perf_event_list);
5187 mutex_unlock(&current->perf_event_mutex);
5188
5189 /*
5190 * Drop the reference on the group_event after placing the
5191 * new event on the sibling_list. This ensures destruction
5192 * of the group leader will find the pointer to itself in
5193 * perf_group_detach().
5194 */
5195 fput_light(group_file, fput_needed);
5196 fd_install(event_fd, event_file);
5197 return event_fd;
5198
5199 err_free_put_context:
5200 free_event(event);
5201 err_put_context:
5202 fput_light(group_file, fput_needed);
5203 put_ctx(ctx);
5204 err_fd:
5205 put_unused_fd(event_fd);
5206 return err;
5207 }
5208
5209 /**
5210 * perf_event_create_kernel_counter
5211 *
5212 * @attr: attributes of the counter to create
5213 * @cpu: cpu in which the counter is bound
5214 * @pid: task to profile
5215 */
5216 struct perf_event *
5217 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5218 pid_t pid,
5219 perf_overflow_handler_t overflow_handler)
5220 {
5221 struct perf_event *event;
5222 struct perf_event_context *ctx;
5223 int err;
5224
5225 /*
5226 * Get the target context (task or percpu):
5227 */
5228
5229 ctx = find_get_context(pid, cpu);
5230 if (IS_ERR(ctx)) {
5231 err = PTR_ERR(ctx);
5232 goto err_exit;
5233 }
5234
5235 event = perf_event_alloc(attr, cpu, ctx, NULL,
5236 NULL, overflow_handler, GFP_KERNEL);
5237 if (IS_ERR(event)) {
5238 err = PTR_ERR(event);
5239 goto err_put_context;
5240 }
5241
5242 event->filp = NULL;
5243 WARN_ON_ONCE(ctx->parent_ctx);
5244 mutex_lock(&ctx->mutex);
5245 perf_install_in_context(ctx, event, cpu);
5246 ++ctx->generation;
5247 mutex_unlock(&ctx->mutex);
5248
5249 event->owner = current;
5250 get_task_struct(current);
5251 mutex_lock(&current->perf_event_mutex);
5252 list_add_tail(&event->owner_entry, &current->perf_event_list);
5253 mutex_unlock(&current->perf_event_mutex);
5254
5255 return event;
5256
5257 err_put_context:
5258 put_ctx(ctx);
5259 err_exit:
5260 return ERR_PTR(err);
5261 }
5262 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5263
5264 /*
5265 * inherit a event from parent task to child task:
5266 */
5267 static struct perf_event *
5268 inherit_event(struct perf_event *parent_event,
5269 struct task_struct *parent,
5270 struct perf_event_context *parent_ctx,
5271 struct task_struct *child,
5272 struct perf_event *group_leader,
5273 struct perf_event_context *child_ctx)
5274 {
5275 struct perf_event *child_event;
5276
5277 /*
5278 * Instead of creating recursive hierarchies of events,
5279 * we link inherited events back to the original parent,
5280 * which has a filp for sure, which we use as the reference
5281 * count:
5282 */
5283 if (parent_event->parent)
5284 parent_event = parent_event->parent;
5285
5286 child_event = perf_event_alloc(&parent_event->attr,
5287 parent_event->cpu, child_ctx,
5288 group_leader, parent_event,
5289 NULL, GFP_KERNEL);
5290 if (IS_ERR(child_event))
5291 return child_event;
5292 get_ctx(child_ctx);
5293
5294 /*
5295 * Make the child state follow the state of the parent event,
5296 * not its attr.disabled bit. We hold the parent's mutex,
5297 * so we won't race with perf_event_{en, dis}able_family.
5298 */
5299 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5300 child_event->state = PERF_EVENT_STATE_INACTIVE;
5301 else
5302 child_event->state = PERF_EVENT_STATE_OFF;
5303
5304 if (parent_event->attr.freq) {
5305 u64 sample_period = parent_event->hw.sample_period;
5306 struct hw_perf_event *hwc = &child_event->hw;
5307
5308 hwc->sample_period = sample_period;
5309 hwc->last_period = sample_period;
5310
5311 local64_set(&hwc->period_left, sample_period);
5312 }
5313
5314 child_event->overflow_handler = parent_event->overflow_handler;
5315
5316 /*
5317 * Link it up in the child's context:
5318 */
5319 add_event_to_ctx(child_event, child_ctx);
5320
5321 /*
5322 * Get a reference to the parent filp - we will fput it
5323 * when the child event exits. This is safe to do because
5324 * we are in the parent and we know that the filp still
5325 * exists and has a nonzero count:
5326 */
5327 atomic_long_inc(&parent_event->filp->f_count);
5328
5329 /*
5330 * Link this into the parent event's child list
5331 */
5332 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5333 mutex_lock(&parent_event->child_mutex);
5334 list_add_tail(&child_event->child_list, &parent_event->child_list);
5335 mutex_unlock(&parent_event->child_mutex);
5336
5337 return child_event;
5338 }
5339
5340 static int inherit_group(struct perf_event *parent_event,
5341 struct task_struct *parent,
5342 struct perf_event_context *parent_ctx,
5343 struct task_struct *child,
5344 struct perf_event_context *child_ctx)
5345 {
5346 struct perf_event *leader;
5347 struct perf_event *sub;
5348 struct perf_event *child_ctr;
5349
5350 leader = inherit_event(parent_event, parent, parent_ctx,
5351 child, NULL, child_ctx);
5352 if (IS_ERR(leader))
5353 return PTR_ERR(leader);
5354 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5355 child_ctr = inherit_event(sub, parent, parent_ctx,
5356 child, leader, child_ctx);
5357 if (IS_ERR(child_ctr))
5358 return PTR_ERR(child_ctr);
5359 }
5360 return 0;
5361 }
5362
5363 static void sync_child_event(struct perf_event *child_event,
5364 struct task_struct *child)
5365 {
5366 struct perf_event *parent_event = child_event->parent;
5367 u64 child_val;
5368
5369 if (child_event->attr.inherit_stat)
5370 perf_event_read_event(child_event, child);
5371
5372 child_val = perf_event_count(child_event);
5373
5374 /*
5375 * Add back the child's count to the parent's count:
5376 */
5377 atomic64_add(child_val, &parent_event->child_count);
5378 atomic64_add(child_event->total_time_enabled,
5379 &parent_event->child_total_time_enabled);
5380 atomic64_add(child_event->total_time_running,
5381 &parent_event->child_total_time_running);
5382
5383 /*
5384 * Remove this event from the parent's list
5385 */
5386 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5387 mutex_lock(&parent_event->child_mutex);
5388 list_del_init(&child_event->child_list);
5389 mutex_unlock(&parent_event->child_mutex);
5390
5391 /*
5392 * Release the parent event, if this was the last
5393 * reference to it.
5394 */
5395 fput(parent_event->filp);
5396 }
5397
5398 static void
5399 __perf_event_exit_task(struct perf_event *child_event,
5400 struct perf_event_context *child_ctx,
5401 struct task_struct *child)
5402 {
5403 struct perf_event *parent_event;
5404
5405 perf_event_remove_from_context(child_event);
5406
5407 parent_event = child_event->parent;
5408 /*
5409 * It can happen that parent exits first, and has events
5410 * that are still around due to the child reference. These
5411 * events need to be zapped - but otherwise linger.
5412 */
5413 if (parent_event) {
5414 sync_child_event(child_event, child);
5415 free_event(child_event);
5416 }
5417 }
5418
5419 /*
5420 * When a child task exits, feed back event values to parent events.
5421 */
5422 void perf_event_exit_task(struct task_struct *child)
5423 {
5424 struct perf_event *child_event, *tmp;
5425 struct perf_event_context *child_ctx;
5426 unsigned long flags;
5427
5428 if (likely(!child->perf_event_ctxp)) {
5429 perf_event_task(child, NULL, 0);
5430 return;
5431 }
5432
5433 local_irq_save(flags);
5434 /*
5435 * We can't reschedule here because interrupts are disabled,
5436 * and either child is current or it is a task that can't be
5437 * scheduled, so we are now safe from rescheduling changing
5438 * our context.
5439 */
5440 child_ctx = child->perf_event_ctxp;
5441 __perf_event_task_sched_out(child_ctx);
5442
5443 /*
5444 * Take the context lock here so that if find_get_context is
5445 * reading child->perf_event_ctxp, we wait until it has
5446 * incremented the context's refcount before we do put_ctx below.
5447 */
5448 raw_spin_lock(&child_ctx->lock);
5449 child->perf_event_ctxp = NULL;
5450 /*
5451 * If this context is a clone; unclone it so it can't get
5452 * swapped to another process while we're removing all
5453 * the events from it.
5454 */
5455 unclone_ctx(child_ctx);
5456 update_context_time(child_ctx);
5457 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5458
5459 /*
5460 * Report the task dead after unscheduling the events so that we
5461 * won't get any samples after PERF_RECORD_EXIT. We can however still
5462 * get a few PERF_RECORD_READ events.
5463 */
5464 perf_event_task(child, child_ctx, 0);
5465
5466 /*
5467 * We can recurse on the same lock type through:
5468 *
5469 * __perf_event_exit_task()
5470 * sync_child_event()
5471 * fput(parent_event->filp)
5472 * perf_release()
5473 * mutex_lock(&ctx->mutex)
5474 *
5475 * But since its the parent context it won't be the same instance.
5476 */
5477 mutex_lock(&child_ctx->mutex);
5478
5479 again:
5480 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5481 group_entry)
5482 __perf_event_exit_task(child_event, child_ctx, child);
5483
5484 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5485 group_entry)
5486 __perf_event_exit_task(child_event, child_ctx, child);
5487
5488 /*
5489 * If the last event was a group event, it will have appended all
5490 * its siblings to the list, but we obtained 'tmp' before that which
5491 * will still point to the list head terminating the iteration.
5492 */
5493 if (!list_empty(&child_ctx->pinned_groups) ||
5494 !list_empty(&child_ctx->flexible_groups))
5495 goto again;
5496
5497 mutex_unlock(&child_ctx->mutex);
5498
5499 put_ctx(child_ctx);
5500 }
5501
5502 static void perf_free_event(struct perf_event *event,
5503 struct perf_event_context *ctx)
5504 {
5505 struct perf_event *parent = event->parent;
5506
5507 if (WARN_ON_ONCE(!parent))
5508 return;
5509
5510 mutex_lock(&parent->child_mutex);
5511 list_del_init(&event->child_list);
5512 mutex_unlock(&parent->child_mutex);
5513
5514 fput(parent->filp);
5515
5516 perf_group_detach(event);
5517 list_del_event(event, ctx);
5518 free_event(event);
5519 }
5520
5521 /*
5522 * free an unexposed, unused context as created by inheritance by
5523 * init_task below, used by fork() in case of fail.
5524 */
5525 void perf_event_free_task(struct task_struct *task)
5526 {
5527 struct perf_event_context *ctx = task->perf_event_ctxp;
5528 struct perf_event *event, *tmp;
5529
5530 if (!ctx)
5531 return;
5532
5533 mutex_lock(&ctx->mutex);
5534 again:
5535 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5536 perf_free_event(event, ctx);
5537
5538 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5539 group_entry)
5540 perf_free_event(event, ctx);
5541
5542 if (!list_empty(&ctx->pinned_groups) ||
5543 !list_empty(&ctx->flexible_groups))
5544 goto again;
5545
5546 mutex_unlock(&ctx->mutex);
5547
5548 put_ctx(ctx);
5549 }
5550
5551 static int
5552 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5553 struct perf_event_context *parent_ctx,
5554 struct task_struct *child,
5555 int *inherited_all)
5556 {
5557 int ret;
5558 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5559
5560 if (!event->attr.inherit) {
5561 *inherited_all = 0;
5562 return 0;
5563 }
5564
5565 if (!child_ctx) {
5566 /*
5567 * This is executed from the parent task context, so
5568 * inherit events that have been marked for cloning.
5569 * First allocate and initialize a context for the
5570 * child.
5571 */
5572
5573 child_ctx = kzalloc(sizeof(struct perf_event_context),
5574 GFP_KERNEL);
5575 if (!child_ctx)
5576 return -ENOMEM;
5577
5578 __perf_event_init_context(child_ctx, child);
5579 child->perf_event_ctxp = child_ctx;
5580 get_task_struct(child);
5581 }
5582
5583 ret = inherit_group(event, parent, parent_ctx,
5584 child, child_ctx);
5585
5586 if (ret)
5587 *inherited_all = 0;
5588
5589 return ret;
5590 }
5591
5592
5593 /*
5594 * Initialize the perf_event context in task_struct
5595 */
5596 int perf_event_init_task(struct task_struct *child)
5597 {
5598 struct perf_event_context *child_ctx, *parent_ctx;
5599 struct perf_event_context *cloned_ctx;
5600 struct perf_event *event;
5601 struct task_struct *parent = current;
5602 int inherited_all = 1;
5603 int ret = 0;
5604
5605 child->perf_event_ctxp = NULL;
5606
5607 mutex_init(&child->perf_event_mutex);
5608 INIT_LIST_HEAD(&child->perf_event_list);
5609
5610 if (likely(!parent->perf_event_ctxp))
5611 return 0;
5612
5613 /*
5614 * If the parent's context is a clone, pin it so it won't get
5615 * swapped under us.
5616 */
5617 parent_ctx = perf_pin_task_context(parent);
5618
5619 /*
5620 * No need to check if parent_ctx != NULL here; since we saw
5621 * it non-NULL earlier, the only reason for it to become NULL
5622 * is if we exit, and since we're currently in the middle of
5623 * a fork we can't be exiting at the same time.
5624 */
5625
5626 /*
5627 * Lock the parent list. No need to lock the child - not PID
5628 * hashed yet and not running, so nobody can access it.
5629 */
5630 mutex_lock(&parent_ctx->mutex);
5631
5632 /*
5633 * We dont have to disable NMIs - we are only looking at
5634 * the list, not manipulating it:
5635 */
5636 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5637 ret = inherit_task_group(event, parent, parent_ctx, child,
5638 &inherited_all);
5639 if (ret)
5640 break;
5641 }
5642
5643 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5644 ret = inherit_task_group(event, parent, parent_ctx, child,
5645 &inherited_all);
5646 if (ret)
5647 break;
5648 }
5649
5650 child_ctx = child->perf_event_ctxp;
5651
5652 if (child_ctx && inherited_all) {
5653 /*
5654 * Mark the child context as a clone of the parent
5655 * context, or of whatever the parent is a clone of.
5656 * Note that if the parent is a clone, it could get
5657 * uncloned at any point, but that doesn't matter
5658 * because the list of events and the generation
5659 * count can't have changed since we took the mutex.
5660 */
5661 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5662 if (cloned_ctx) {
5663 child_ctx->parent_ctx = cloned_ctx;
5664 child_ctx->parent_gen = parent_ctx->parent_gen;
5665 } else {
5666 child_ctx->parent_ctx = parent_ctx;
5667 child_ctx->parent_gen = parent_ctx->generation;
5668 }
5669 get_ctx(child_ctx->parent_ctx);
5670 }
5671
5672 mutex_unlock(&parent_ctx->mutex);
5673
5674 perf_unpin_context(parent_ctx);
5675
5676 return ret;
5677 }
5678
5679 static void __init perf_event_init_all_cpus(void)
5680 {
5681 int cpu;
5682 struct perf_cpu_context *cpuctx;
5683
5684 for_each_possible_cpu(cpu) {
5685 cpuctx = &per_cpu(perf_cpu_context, cpu);
5686 mutex_init(&cpuctx->hlist_mutex);
5687 __perf_event_init_context(&cpuctx->ctx, NULL);
5688 }
5689 }
5690
5691 static void __cpuinit perf_event_init_cpu(int cpu)
5692 {
5693 struct perf_cpu_context *cpuctx;
5694
5695 cpuctx = &per_cpu(perf_cpu_context, cpu);
5696
5697 spin_lock(&perf_resource_lock);
5698 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5699 spin_unlock(&perf_resource_lock);
5700
5701 mutex_lock(&cpuctx->hlist_mutex);
5702 if (cpuctx->hlist_refcount > 0) {
5703 struct swevent_hlist *hlist;
5704
5705 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5706 WARN_ON_ONCE(!hlist);
5707 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5708 }
5709 mutex_unlock(&cpuctx->hlist_mutex);
5710 }
5711
5712 #ifdef CONFIG_HOTPLUG_CPU
5713 static void __perf_event_exit_cpu(void *info)
5714 {
5715 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5716 struct perf_event_context *ctx = &cpuctx->ctx;
5717 struct perf_event *event, *tmp;
5718
5719 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5720 __perf_event_remove_from_context(event);
5721 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5722 __perf_event_remove_from_context(event);
5723 }
5724 static void perf_event_exit_cpu(int cpu)
5725 {
5726 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5727 struct perf_event_context *ctx = &cpuctx->ctx;
5728
5729 mutex_lock(&cpuctx->hlist_mutex);
5730 swevent_hlist_release(cpuctx);
5731 mutex_unlock(&cpuctx->hlist_mutex);
5732
5733 mutex_lock(&ctx->mutex);
5734 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5735 mutex_unlock(&ctx->mutex);
5736 }
5737 #else
5738 static inline void perf_event_exit_cpu(int cpu) { }
5739 #endif
5740
5741 static int __cpuinit
5742 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5743 {
5744 unsigned int cpu = (long)hcpu;
5745
5746 switch (action) {
5747
5748 case CPU_UP_PREPARE:
5749 case CPU_UP_PREPARE_FROZEN:
5750 perf_event_init_cpu(cpu);
5751 break;
5752
5753 case CPU_DOWN_PREPARE:
5754 case CPU_DOWN_PREPARE_FROZEN:
5755 perf_event_exit_cpu(cpu);
5756 break;
5757
5758 default:
5759 break;
5760 }
5761
5762 return NOTIFY_OK;
5763 }
5764
5765 /*
5766 * This has to have a higher priority than migration_notifier in sched.c.
5767 */
5768 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5769 .notifier_call = perf_cpu_notify,
5770 .priority = 20,
5771 };
5772
5773 void __init perf_event_init(void)
5774 {
5775 perf_event_init_all_cpus();
5776 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5777 (void *)(long)smp_processor_id());
5778 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5779 (void *)(long)smp_processor_id());
5780 register_cpu_notifier(&perf_cpu_nb);
5781 }
5782
5783 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5784 struct sysdev_class_attribute *attr,
5785 char *buf)
5786 {
5787 return sprintf(buf, "%d\n", perf_reserved_percpu);
5788 }
5789
5790 static ssize_t
5791 perf_set_reserve_percpu(struct sysdev_class *class,
5792 struct sysdev_class_attribute *attr,
5793 const char *buf,
5794 size_t count)
5795 {
5796 struct perf_cpu_context *cpuctx;
5797 unsigned long val;
5798 int err, cpu, mpt;
5799
5800 err = strict_strtoul(buf, 10, &val);
5801 if (err)
5802 return err;
5803 if (val > perf_max_events)
5804 return -EINVAL;
5805
5806 spin_lock(&perf_resource_lock);
5807 perf_reserved_percpu = val;
5808 for_each_online_cpu(cpu) {
5809 cpuctx = &per_cpu(perf_cpu_context, cpu);
5810 raw_spin_lock_irq(&cpuctx->ctx.lock);
5811 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5812 perf_max_events - perf_reserved_percpu);
5813 cpuctx->max_pertask = mpt;
5814 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5815 }
5816 spin_unlock(&perf_resource_lock);
5817
5818 return count;
5819 }
5820
5821 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5822 struct sysdev_class_attribute *attr,
5823 char *buf)
5824 {
5825 return sprintf(buf, "%d\n", perf_overcommit);
5826 }
5827
5828 static ssize_t
5829 perf_set_overcommit(struct sysdev_class *class,
5830 struct sysdev_class_attribute *attr,
5831 const char *buf, size_t count)
5832 {
5833 unsigned long val;
5834 int err;
5835
5836 err = strict_strtoul(buf, 10, &val);
5837 if (err)
5838 return err;
5839 if (val > 1)
5840 return -EINVAL;
5841
5842 spin_lock(&perf_resource_lock);
5843 perf_overcommit = val;
5844 spin_unlock(&perf_resource_lock);
5845
5846 return count;
5847 }
5848
5849 static SYSDEV_CLASS_ATTR(
5850 reserve_percpu,
5851 0644,
5852 perf_show_reserve_percpu,
5853 perf_set_reserve_percpu
5854 );
5855
5856 static SYSDEV_CLASS_ATTR(
5857 overcommit,
5858 0644,
5859 perf_show_overcommit,
5860 perf_set_overcommit
5861 );
5862
5863 static struct attribute *perfclass_attrs[] = {
5864 &attr_reserve_percpu.attr,
5865 &attr_overcommit.attr,
5866 NULL
5867 };
5868
5869 static struct attribute_group perfclass_attr_group = {
5870 .attrs = perfclass_attrs,
5871 .name = "perf_events",
5872 };
5873
5874 static int __init perf_event_sysfs_init(void)
5875 {
5876 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5877 &perfclass_attr_group);
5878 }
5879 device_initcall(perf_event_sysfs_init);