memsw: deprecate noswapaccount kernel parameter and schedule it for removal
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include <asm/irq_regs.h>
40
41 enum event_type_t {
42 EVENT_FLEXIBLE = 0x1,
43 EVENT_PINNED = 0x2,
44 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
45 };
46
47 atomic_t perf_task_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 static LIST_HEAD(pmus);
53 static DEFINE_MUTEX(pmus_lock);
54 static struct srcu_struct pmus_srcu;
55
56 /*
57 * perf event paranoia level:
58 * -1 - not paranoid at all
59 * 0 - disallow raw tracepoint access for unpriv
60 * 1 - disallow cpu events for unpriv
61 * 2 - disallow kernel profiling for unpriv
62 */
63 int sysctl_perf_event_paranoid __read_mostly = 1;
64
65 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68 * max perf event sample rate
69 */
70 int sysctl_perf_event_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_event_id;
73
74 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
75 enum event_type_t event_type);
76
77 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
78 enum event_type_t event_type);
79
80 void __weak perf_event_print_debug(void) { }
81
82 extern __weak const char *perf_pmu_name(void)
83 {
84 return "pmu";
85 }
86
87 static inline u64 perf_clock(void)
88 {
89 return local_clock();
90 }
91
92 void perf_pmu_disable(struct pmu *pmu)
93 {
94 int *count = this_cpu_ptr(pmu->pmu_disable_count);
95 if (!(*count)++)
96 pmu->pmu_disable(pmu);
97 }
98
99 void perf_pmu_enable(struct pmu *pmu)
100 {
101 int *count = this_cpu_ptr(pmu->pmu_disable_count);
102 if (!--(*count))
103 pmu->pmu_enable(pmu);
104 }
105
106 static DEFINE_PER_CPU(struct list_head, rotation_list);
107
108 /*
109 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
110 * because they're strictly cpu affine and rotate_start is called with IRQs
111 * disabled, while rotate_context is called from IRQ context.
112 */
113 static void perf_pmu_rotate_start(struct pmu *pmu)
114 {
115 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
116 struct list_head *head = &__get_cpu_var(rotation_list);
117
118 WARN_ON(!irqs_disabled());
119
120 if (list_empty(&cpuctx->rotation_list))
121 list_add(&cpuctx->rotation_list, head);
122 }
123
124 static void get_ctx(struct perf_event_context *ctx)
125 {
126 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
127 }
128
129 static void free_ctx(struct rcu_head *head)
130 {
131 struct perf_event_context *ctx;
132
133 ctx = container_of(head, struct perf_event_context, rcu_head);
134 kfree(ctx);
135 }
136
137 static void put_ctx(struct perf_event_context *ctx)
138 {
139 if (atomic_dec_and_test(&ctx->refcount)) {
140 if (ctx->parent_ctx)
141 put_ctx(ctx->parent_ctx);
142 if (ctx->task)
143 put_task_struct(ctx->task);
144 call_rcu(&ctx->rcu_head, free_ctx);
145 }
146 }
147
148 static void unclone_ctx(struct perf_event_context *ctx)
149 {
150 if (ctx->parent_ctx) {
151 put_ctx(ctx->parent_ctx);
152 ctx->parent_ctx = NULL;
153 }
154 }
155
156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
157 {
158 /*
159 * only top level events have the pid namespace they were created in
160 */
161 if (event->parent)
162 event = event->parent;
163
164 return task_tgid_nr_ns(p, event->ns);
165 }
166
167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
168 {
169 /*
170 * only top level events have the pid namespace they were created in
171 */
172 if (event->parent)
173 event = event->parent;
174
175 return task_pid_nr_ns(p, event->ns);
176 }
177
178 /*
179 * If we inherit events we want to return the parent event id
180 * to userspace.
181 */
182 static u64 primary_event_id(struct perf_event *event)
183 {
184 u64 id = event->id;
185
186 if (event->parent)
187 id = event->parent->id;
188
189 return id;
190 }
191
192 /*
193 * Get the perf_event_context for a task and lock it.
194 * This has to cope with with the fact that until it is locked,
195 * the context could get moved to another task.
196 */
197 static struct perf_event_context *
198 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
199 {
200 struct perf_event_context *ctx;
201
202 rcu_read_lock();
203 retry:
204 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
205 if (ctx) {
206 /*
207 * If this context is a clone of another, it might
208 * get swapped for another underneath us by
209 * perf_event_task_sched_out, though the
210 * rcu_read_lock() protects us from any context
211 * getting freed. Lock the context and check if it
212 * got swapped before we could get the lock, and retry
213 * if so. If we locked the right context, then it
214 * can't get swapped on us any more.
215 */
216 raw_spin_lock_irqsave(&ctx->lock, *flags);
217 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
218 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
219 goto retry;
220 }
221
222 if (!atomic_inc_not_zero(&ctx->refcount)) {
223 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
224 ctx = NULL;
225 }
226 }
227 rcu_read_unlock();
228 return ctx;
229 }
230
231 /*
232 * Get the context for a task and increment its pin_count so it
233 * can't get swapped to another task. This also increments its
234 * reference count so that the context can't get freed.
235 */
236 static struct perf_event_context *
237 perf_pin_task_context(struct task_struct *task, int ctxn)
238 {
239 struct perf_event_context *ctx;
240 unsigned long flags;
241
242 ctx = perf_lock_task_context(task, ctxn, &flags);
243 if (ctx) {
244 ++ctx->pin_count;
245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 }
247 return ctx;
248 }
249
250 static void perf_unpin_context(struct perf_event_context *ctx)
251 {
252 unsigned long flags;
253
254 raw_spin_lock_irqsave(&ctx->lock, flags);
255 --ctx->pin_count;
256 raw_spin_unlock_irqrestore(&ctx->lock, flags);
257 put_ctx(ctx);
258 }
259
260 /*
261 * Update the record of the current time in a context.
262 */
263 static void update_context_time(struct perf_event_context *ctx)
264 {
265 u64 now = perf_clock();
266
267 ctx->time += now - ctx->timestamp;
268 ctx->timestamp = now;
269 }
270
271 static u64 perf_event_time(struct perf_event *event)
272 {
273 struct perf_event_context *ctx = event->ctx;
274 return ctx ? ctx->time : 0;
275 }
276
277 /*
278 * Update the total_time_enabled and total_time_running fields for a event.
279 */
280 static void update_event_times(struct perf_event *event)
281 {
282 struct perf_event_context *ctx = event->ctx;
283 u64 run_end;
284
285 if (event->state < PERF_EVENT_STATE_INACTIVE ||
286 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
287 return;
288
289 if (ctx->is_active)
290 run_end = perf_event_time(event);
291 else
292 run_end = event->tstamp_stopped;
293
294 event->total_time_enabled = run_end - event->tstamp_enabled;
295
296 if (event->state == PERF_EVENT_STATE_INACTIVE)
297 run_end = event->tstamp_stopped;
298 else
299 run_end = perf_event_time(event);
300
301 event->total_time_running = run_end - event->tstamp_running;
302 }
303
304 /*
305 * Update total_time_enabled and total_time_running for all events in a group.
306 */
307 static void update_group_times(struct perf_event *leader)
308 {
309 struct perf_event *event;
310
311 update_event_times(leader);
312 list_for_each_entry(event, &leader->sibling_list, group_entry)
313 update_event_times(event);
314 }
315
316 static struct list_head *
317 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
318 {
319 if (event->attr.pinned)
320 return &ctx->pinned_groups;
321 else
322 return &ctx->flexible_groups;
323 }
324
325 /*
326 * Add a event from the lists for its context.
327 * Must be called with ctx->mutex and ctx->lock held.
328 */
329 static void
330 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
331 {
332 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
333 event->attach_state |= PERF_ATTACH_CONTEXT;
334
335 /*
336 * If we're a stand alone event or group leader, we go to the context
337 * list, group events are kept attached to the group so that
338 * perf_group_detach can, at all times, locate all siblings.
339 */
340 if (event->group_leader == event) {
341 struct list_head *list;
342
343 if (is_software_event(event))
344 event->group_flags |= PERF_GROUP_SOFTWARE;
345
346 list = ctx_group_list(event, ctx);
347 list_add_tail(&event->group_entry, list);
348 }
349
350 list_add_rcu(&event->event_entry, &ctx->event_list);
351 if (!ctx->nr_events)
352 perf_pmu_rotate_start(ctx->pmu);
353 ctx->nr_events++;
354 if (event->attr.inherit_stat)
355 ctx->nr_stat++;
356 }
357
358 /*
359 * Called at perf_event creation and when events are attached/detached from a
360 * group.
361 */
362 static void perf_event__read_size(struct perf_event *event)
363 {
364 int entry = sizeof(u64); /* value */
365 int size = 0;
366 int nr = 1;
367
368 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
369 size += sizeof(u64);
370
371 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
372 size += sizeof(u64);
373
374 if (event->attr.read_format & PERF_FORMAT_ID)
375 entry += sizeof(u64);
376
377 if (event->attr.read_format & PERF_FORMAT_GROUP) {
378 nr += event->group_leader->nr_siblings;
379 size += sizeof(u64);
380 }
381
382 size += entry * nr;
383 event->read_size = size;
384 }
385
386 static void perf_event__header_size(struct perf_event *event)
387 {
388 struct perf_sample_data *data;
389 u64 sample_type = event->attr.sample_type;
390 u16 size = 0;
391
392 perf_event__read_size(event);
393
394 if (sample_type & PERF_SAMPLE_IP)
395 size += sizeof(data->ip);
396
397 if (sample_type & PERF_SAMPLE_ADDR)
398 size += sizeof(data->addr);
399
400 if (sample_type & PERF_SAMPLE_PERIOD)
401 size += sizeof(data->period);
402
403 if (sample_type & PERF_SAMPLE_READ)
404 size += event->read_size;
405
406 event->header_size = size;
407 }
408
409 static void perf_event__id_header_size(struct perf_event *event)
410 {
411 struct perf_sample_data *data;
412 u64 sample_type = event->attr.sample_type;
413 u16 size = 0;
414
415 if (sample_type & PERF_SAMPLE_TID)
416 size += sizeof(data->tid_entry);
417
418 if (sample_type & PERF_SAMPLE_TIME)
419 size += sizeof(data->time);
420
421 if (sample_type & PERF_SAMPLE_ID)
422 size += sizeof(data->id);
423
424 if (sample_type & PERF_SAMPLE_STREAM_ID)
425 size += sizeof(data->stream_id);
426
427 if (sample_type & PERF_SAMPLE_CPU)
428 size += sizeof(data->cpu_entry);
429
430 event->id_header_size = size;
431 }
432
433 static void perf_group_attach(struct perf_event *event)
434 {
435 struct perf_event *group_leader = event->group_leader, *pos;
436
437 /*
438 * We can have double attach due to group movement in perf_event_open.
439 */
440 if (event->attach_state & PERF_ATTACH_GROUP)
441 return;
442
443 event->attach_state |= PERF_ATTACH_GROUP;
444
445 if (group_leader == event)
446 return;
447
448 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
449 !is_software_event(event))
450 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
451
452 list_add_tail(&event->group_entry, &group_leader->sibling_list);
453 group_leader->nr_siblings++;
454
455 perf_event__header_size(group_leader);
456
457 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
458 perf_event__header_size(pos);
459 }
460
461 /*
462 * Remove a event from the lists for its context.
463 * Must be called with ctx->mutex and ctx->lock held.
464 */
465 static void
466 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
467 {
468 /*
469 * We can have double detach due to exit/hot-unplug + close.
470 */
471 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
472 return;
473
474 event->attach_state &= ~PERF_ATTACH_CONTEXT;
475
476 ctx->nr_events--;
477 if (event->attr.inherit_stat)
478 ctx->nr_stat--;
479
480 list_del_rcu(&event->event_entry);
481
482 if (event->group_leader == event)
483 list_del_init(&event->group_entry);
484
485 update_group_times(event);
486
487 /*
488 * If event was in error state, then keep it
489 * that way, otherwise bogus counts will be
490 * returned on read(). The only way to get out
491 * of error state is by explicit re-enabling
492 * of the event
493 */
494 if (event->state > PERF_EVENT_STATE_OFF)
495 event->state = PERF_EVENT_STATE_OFF;
496 }
497
498 static void perf_group_detach(struct perf_event *event)
499 {
500 struct perf_event *sibling, *tmp;
501 struct list_head *list = NULL;
502
503 /*
504 * We can have double detach due to exit/hot-unplug + close.
505 */
506 if (!(event->attach_state & PERF_ATTACH_GROUP))
507 return;
508
509 event->attach_state &= ~PERF_ATTACH_GROUP;
510
511 /*
512 * If this is a sibling, remove it from its group.
513 */
514 if (event->group_leader != event) {
515 list_del_init(&event->group_entry);
516 event->group_leader->nr_siblings--;
517 goto out;
518 }
519
520 if (!list_empty(&event->group_entry))
521 list = &event->group_entry;
522
523 /*
524 * If this was a group event with sibling events then
525 * upgrade the siblings to singleton events by adding them
526 * to whatever list we are on.
527 */
528 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
529 if (list)
530 list_move_tail(&sibling->group_entry, list);
531 sibling->group_leader = sibling;
532
533 /* Inherit group flags from the previous leader */
534 sibling->group_flags = event->group_flags;
535 }
536
537 out:
538 perf_event__header_size(event->group_leader);
539
540 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
541 perf_event__header_size(tmp);
542 }
543
544 static inline int
545 event_filter_match(struct perf_event *event)
546 {
547 return event->cpu == -1 || event->cpu == smp_processor_id();
548 }
549
550 static void
551 event_sched_out(struct perf_event *event,
552 struct perf_cpu_context *cpuctx,
553 struct perf_event_context *ctx)
554 {
555 u64 tstamp = perf_event_time(event);
556 u64 delta;
557 /*
558 * An event which could not be activated because of
559 * filter mismatch still needs to have its timings
560 * maintained, otherwise bogus information is return
561 * via read() for time_enabled, time_running:
562 */
563 if (event->state == PERF_EVENT_STATE_INACTIVE
564 && !event_filter_match(event)) {
565 delta = ctx->time - event->tstamp_stopped;
566 event->tstamp_running += delta;
567 event->tstamp_stopped = tstamp;
568 }
569
570 if (event->state != PERF_EVENT_STATE_ACTIVE)
571 return;
572
573 event->state = PERF_EVENT_STATE_INACTIVE;
574 if (event->pending_disable) {
575 event->pending_disable = 0;
576 event->state = PERF_EVENT_STATE_OFF;
577 }
578 event->tstamp_stopped = tstamp;
579 event->pmu->del(event, 0);
580 event->oncpu = -1;
581
582 if (!is_software_event(event))
583 cpuctx->active_oncpu--;
584 ctx->nr_active--;
585 if (event->attr.exclusive || !cpuctx->active_oncpu)
586 cpuctx->exclusive = 0;
587 }
588
589 static void
590 group_sched_out(struct perf_event *group_event,
591 struct perf_cpu_context *cpuctx,
592 struct perf_event_context *ctx)
593 {
594 struct perf_event *event;
595 int state = group_event->state;
596
597 event_sched_out(group_event, cpuctx, ctx);
598
599 /*
600 * Schedule out siblings (if any):
601 */
602 list_for_each_entry(event, &group_event->sibling_list, group_entry)
603 event_sched_out(event, cpuctx, ctx);
604
605 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
606 cpuctx->exclusive = 0;
607 }
608
609 static inline struct perf_cpu_context *
610 __get_cpu_context(struct perf_event_context *ctx)
611 {
612 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
613 }
614
615 /*
616 * Cross CPU call to remove a performance event
617 *
618 * We disable the event on the hardware level first. After that we
619 * remove it from the context list.
620 */
621 static void __perf_event_remove_from_context(void *info)
622 {
623 struct perf_event *event = info;
624 struct perf_event_context *ctx = event->ctx;
625 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
626
627 /*
628 * If this is a task context, we need to check whether it is
629 * the current task context of this cpu. If not it has been
630 * scheduled out before the smp call arrived.
631 */
632 if (ctx->task && cpuctx->task_ctx != ctx)
633 return;
634
635 raw_spin_lock(&ctx->lock);
636
637 event_sched_out(event, cpuctx, ctx);
638
639 list_del_event(event, ctx);
640
641 raw_spin_unlock(&ctx->lock);
642 }
643
644
645 /*
646 * Remove the event from a task's (or a CPU's) list of events.
647 *
648 * Must be called with ctx->mutex held.
649 *
650 * CPU events are removed with a smp call. For task events we only
651 * call when the task is on a CPU.
652 *
653 * If event->ctx is a cloned context, callers must make sure that
654 * every task struct that event->ctx->task could possibly point to
655 * remains valid. This is OK when called from perf_release since
656 * that only calls us on the top-level context, which can't be a clone.
657 * When called from perf_event_exit_task, it's OK because the
658 * context has been detached from its task.
659 */
660 static void perf_event_remove_from_context(struct perf_event *event)
661 {
662 struct perf_event_context *ctx = event->ctx;
663 struct task_struct *task = ctx->task;
664
665 if (!task) {
666 /*
667 * Per cpu events are removed via an smp call and
668 * the removal is always successful.
669 */
670 smp_call_function_single(event->cpu,
671 __perf_event_remove_from_context,
672 event, 1);
673 return;
674 }
675
676 retry:
677 task_oncpu_function_call(task, __perf_event_remove_from_context,
678 event);
679
680 raw_spin_lock_irq(&ctx->lock);
681 /*
682 * If the context is active we need to retry the smp call.
683 */
684 if (ctx->nr_active && !list_empty(&event->group_entry)) {
685 raw_spin_unlock_irq(&ctx->lock);
686 goto retry;
687 }
688
689 /*
690 * The lock prevents that this context is scheduled in so we
691 * can remove the event safely, if the call above did not
692 * succeed.
693 */
694 if (!list_empty(&event->group_entry))
695 list_del_event(event, ctx);
696 raw_spin_unlock_irq(&ctx->lock);
697 }
698
699 /*
700 * Cross CPU call to disable a performance event
701 */
702 static void __perf_event_disable(void *info)
703 {
704 struct perf_event *event = info;
705 struct perf_event_context *ctx = event->ctx;
706 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
707
708 /*
709 * If this is a per-task event, need to check whether this
710 * event's task is the current task on this cpu.
711 */
712 if (ctx->task && cpuctx->task_ctx != ctx)
713 return;
714
715 raw_spin_lock(&ctx->lock);
716
717 /*
718 * If the event is on, turn it off.
719 * If it is in error state, leave it in error state.
720 */
721 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
722 update_context_time(ctx);
723 update_group_times(event);
724 if (event == event->group_leader)
725 group_sched_out(event, cpuctx, ctx);
726 else
727 event_sched_out(event, cpuctx, ctx);
728 event->state = PERF_EVENT_STATE_OFF;
729 }
730
731 raw_spin_unlock(&ctx->lock);
732 }
733
734 /*
735 * Disable a event.
736 *
737 * If event->ctx is a cloned context, callers must make sure that
738 * every task struct that event->ctx->task could possibly point to
739 * remains valid. This condition is satisifed when called through
740 * perf_event_for_each_child or perf_event_for_each because they
741 * hold the top-level event's child_mutex, so any descendant that
742 * goes to exit will block in sync_child_event.
743 * When called from perf_pending_event it's OK because event->ctx
744 * is the current context on this CPU and preemption is disabled,
745 * hence we can't get into perf_event_task_sched_out for this context.
746 */
747 void perf_event_disable(struct perf_event *event)
748 {
749 struct perf_event_context *ctx = event->ctx;
750 struct task_struct *task = ctx->task;
751
752 if (!task) {
753 /*
754 * Disable the event on the cpu that it's on
755 */
756 smp_call_function_single(event->cpu, __perf_event_disable,
757 event, 1);
758 return;
759 }
760
761 retry:
762 task_oncpu_function_call(task, __perf_event_disable, event);
763
764 raw_spin_lock_irq(&ctx->lock);
765 /*
766 * If the event is still active, we need to retry the cross-call.
767 */
768 if (event->state == PERF_EVENT_STATE_ACTIVE) {
769 raw_spin_unlock_irq(&ctx->lock);
770 goto retry;
771 }
772
773 /*
774 * Since we have the lock this context can't be scheduled
775 * in, so we can change the state safely.
776 */
777 if (event->state == PERF_EVENT_STATE_INACTIVE) {
778 update_group_times(event);
779 event->state = PERF_EVENT_STATE_OFF;
780 }
781
782 raw_spin_unlock_irq(&ctx->lock);
783 }
784
785 static int
786 event_sched_in(struct perf_event *event,
787 struct perf_cpu_context *cpuctx,
788 struct perf_event_context *ctx)
789 {
790 u64 tstamp = perf_event_time(event);
791
792 if (event->state <= PERF_EVENT_STATE_OFF)
793 return 0;
794
795 event->state = PERF_EVENT_STATE_ACTIVE;
796 event->oncpu = smp_processor_id();
797 /*
798 * The new state must be visible before we turn it on in the hardware:
799 */
800 smp_wmb();
801
802 if (event->pmu->add(event, PERF_EF_START)) {
803 event->state = PERF_EVENT_STATE_INACTIVE;
804 event->oncpu = -1;
805 return -EAGAIN;
806 }
807
808 event->tstamp_running += tstamp - event->tstamp_stopped;
809
810 event->shadow_ctx_time = tstamp - ctx->timestamp;
811
812 if (!is_software_event(event))
813 cpuctx->active_oncpu++;
814 ctx->nr_active++;
815
816 if (event->attr.exclusive)
817 cpuctx->exclusive = 1;
818
819 return 0;
820 }
821
822 static int
823 group_sched_in(struct perf_event *group_event,
824 struct perf_cpu_context *cpuctx,
825 struct perf_event_context *ctx)
826 {
827 struct perf_event *event, *partial_group = NULL;
828 struct pmu *pmu = group_event->pmu;
829 u64 now = ctx->time;
830 bool simulate = false;
831
832 if (group_event->state == PERF_EVENT_STATE_OFF)
833 return 0;
834
835 pmu->start_txn(pmu);
836
837 if (event_sched_in(group_event, cpuctx, ctx)) {
838 pmu->cancel_txn(pmu);
839 return -EAGAIN;
840 }
841
842 /*
843 * Schedule in siblings as one group (if any):
844 */
845 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
846 if (event_sched_in(event, cpuctx, ctx)) {
847 partial_group = event;
848 goto group_error;
849 }
850 }
851
852 if (!pmu->commit_txn(pmu))
853 return 0;
854
855 group_error:
856 /*
857 * Groups can be scheduled in as one unit only, so undo any
858 * partial group before returning:
859 * The events up to the failed event are scheduled out normally,
860 * tstamp_stopped will be updated.
861 *
862 * The failed events and the remaining siblings need to have
863 * their timings updated as if they had gone thru event_sched_in()
864 * and event_sched_out(). This is required to get consistent timings
865 * across the group. This also takes care of the case where the group
866 * could never be scheduled by ensuring tstamp_stopped is set to mark
867 * the time the event was actually stopped, such that time delta
868 * calculation in update_event_times() is correct.
869 */
870 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
871 if (event == partial_group)
872 simulate = true;
873
874 if (simulate) {
875 event->tstamp_running += now - event->tstamp_stopped;
876 event->tstamp_stopped = now;
877 } else {
878 event_sched_out(event, cpuctx, ctx);
879 }
880 }
881 event_sched_out(group_event, cpuctx, ctx);
882
883 pmu->cancel_txn(pmu);
884
885 return -EAGAIN;
886 }
887
888 /*
889 * Work out whether we can put this event group on the CPU now.
890 */
891 static int group_can_go_on(struct perf_event *event,
892 struct perf_cpu_context *cpuctx,
893 int can_add_hw)
894 {
895 /*
896 * Groups consisting entirely of software events can always go on.
897 */
898 if (event->group_flags & PERF_GROUP_SOFTWARE)
899 return 1;
900 /*
901 * If an exclusive group is already on, no other hardware
902 * events can go on.
903 */
904 if (cpuctx->exclusive)
905 return 0;
906 /*
907 * If this group is exclusive and there are already
908 * events on the CPU, it can't go on.
909 */
910 if (event->attr.exclusive && cpuctx->active_oncpu)
911 return 0;
912 /*
913 * Otherwise, try to add it if all previous groups were able
914 * to go on.
915 */
916 return can_add_hw;
917 }
918
919 static void add_event_to_ctx(struct perf_event *event,
920 struct perf_event_context *ctx)
921 {
922 u64 tstamp = perf_event_time(event);
923
924 list_add_event(event, ctx);
925 perf_group_attach(event);
926 event->tstamp_enabled = tstamp;
927 event->tstamp_running = tstamp;
928 event->tstamp_stopped = tstamp;
929 }
930
931 /*
932 * Cross CPU call to install and enable a performance event
933 *
934 * Must be called with ctx->mutex held
935 */
936 static void __perf_install_in_context(void *info)
937 {
938 struct perf_event *event = info;
939 struct perf_event_context *ctx = event->ctx;
940 struct perf_event *leader = event->group_leader;
941 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
942 int err;
943
944 /*
945 * If this is a task context, we need to check whether it is
946 * the current task context of this cpu. If not it has been
947 * scheduled out before the smp call arrived.
948 * Or possibly this is the right context but it isn't
949 * on this cpu because it had no events.
950 */
951 if (ctx->task && cpuctx->task_ctx != ctx) {
952 if (cpuctx->task_ctx || ctx->task != current)
953 return;
954 cpuctx->task_ctx = ctx;
955 }
956
957 raw_spin_lock(&ctx->lock);
958 ctx->is_active = 1;
959 update_context_time(ctx);
960
961 add_event_to_ctx(event, ctx);
962
963 if (!event_filter_match(event))
964 goto unlock;
965
966 /*
967 * Don't put the event on if it is disabled or if
968 * it is in a group and the group isn't on.
969 */
970 if (event->state != PERF_EVENT_STATE_INACTIVE ||
971 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
972 goto unlock;
973
974 /*
975 * An exclusive event can't go on if there are already active
976 * hardware events, and no hardware event can go on if there
977 * is already an exclusive event on.
978 */
979 if (!group_can_go_on(event, cpuctx, 1))
980 err = -EEXIST;
981 else
982 err = event_sched_in(event, cpuctx, ctx);
983
984 if (err) {
985 /*
986 * This event couldn't go on. If it is in a group
987 * then we have to pull the whole group off.
988 * If the event group is pinned then put it in error state.
989 */
990 if (leader != event)
991 group_sched_out(leader, cpuctx, ctx);
992 if (leader->attr.pinned) {
993 update_group_times(leader);
994 leader->state = PERF_EVENT_STATE_ERROR;
995 }
996 }
997
998 unlock:
999 raw_spin_unlock(&ctx->lock);
1000 }
1001
1002 /*
1003 * Attach a performance event to a context
1004 *
1005 * First we add the event to the list with the hardware enable bit
1006 * in event->hw_config cleared.
1007 *
1008 * If the event is attached to a task which is on a CPU we use a smp
1009 * call to enable it in the task context. The task might have been
1010 * scheduled away, but we check this in the smp call again.
1011 *
1012 * Must be called with ctx->mutex held.
1013 */
1014 static void
1015 perf_install_in_context(struct perf_event_context *ctx,
1016 struct perf_event *event,
1017 int cpu)
1018 {
1019 struct task_struct *task = ctx->task;
1020
1021 event->ctx = ctx;
1022
1023 if (!task) {
1024 /*
1025 * Per cpu events are installed via an smp call and
1026 * the install is always successful.
1027 */
1028 smp_call_function_single(cpu, __perf_install_in_context,
1029 event, 1);
1030 return;
1031 }
1032
1033 retry:
1034 task_oncpu_function_call(task, __perf_install_in_context,
1035 event);
1036
1037 raw_spin_lock_irq(&ctx->lock);
1038 /*
1039 * we need to retry the smp call.
1040 */
1041 if (ctx->is_active && list_empty(&event->group_entry)) {
1042 raw_spin_unlock_irq(&ctx->lock);
1043 goto retry;
1044 }
1045
1046 /*
1047 * The lock prevents that this context is scheduled in so we
1048 * can add the event safely, if it the call above did not
1049 * succeed.
1050 */
1051 if (list_empty(&event->group_entry))
1052 add_event_to_ctx(event, ctx);
1053 raw_spin_unlock_irq(&ctx->lock);
1054 }
1055
1056 /*
1057 * Put a event into inactive state and update time fields.
1058 * Enabling the leader of a group effectively enables all
1059 * the group members that aren't explicitly disabled, so we
1060 * have to update their ->tstamp_enabled also.
1061 * Note: this works for group members as well as group leaders
1062 * since the non-leader members' sibling_lists will be empty.
1063 */
1064 static void __perf_event_mark_enabled(struct perf_event *event,
1065 struct perf_event_context *ctx)
1066 {
1067 struct perf_event *sub;
1068 u64 tstamp = perf_event_time(event);
1069
1070 event->state = PERF_EVENT_STATE_INACTIVE;
1071 event->tstamp_enabled = tstamp - event->total_time_enabled;
1072 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1073 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1074 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1075 }
1076 }
1077
1078 /*
1079 * Cross CPU call to enable a performance event
1080 */
1081 static void __perf_event_enable(void *info)
1082 {
1083 struct perf_event *event = info;
1084 struct perf_event_context *ctx = event->ctx;
1085 struct perf_event *leader = event->group_leader;
1086 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1087 int err;
1088
1089 /*
1090 * If this is a per-task event, need to check whether this
1091 * event's task is the current task on this cpu.
1092 */
1093 if (ctx->task && cpuctx->task_ctx != ctx) {
1094 if (cpuctx->task_ctx || ctx->task != current)
1095 return;
1096 cpuctx->task_ctx = ctx;
1097 }
1098
1099 raw_spin_lock(&ctx->lock);
1100 ctx->is_active = 1;
1101 update_context_time(ctx);
1102
1103 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1104 goto unlock;
1105 __perf_event_mark_enabled(event, ctx);
1106
1107 if (!event_filter_match(event))
1108 goto unlock;
1109
1110 /*
1111 * If the event is in a group and isn't the group leader,
1112 * then don't put it on unless the group is on.
1113 */
1114 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1115 goto unlock;
1116
1117 if (!group_can_go_on(event, cpuctx, 1)) {
1118 err = -EEXIST;
1119 } else {
1120 if (event == leader)
1121 err = group_sched_in(event, cpuctx, ctx);
1122 else
1123 err = event_sched_in(event, cpuctx, ctx);
1124 }
1125
1126 if (err) {
1127 /*
1128 * If this event can't go on and it's part of a
1129 * group, then the whole group has to come off.
1130 */
1131 if (leader != event)
1132 group_sched_out(leader, cpuctx, ctx);
1133 if (leader->attr.pinned) {
1134 update_group_times(leader);
1135 leader->state = PERF_EVENT_STATE_ERROR;
1136 }
1137 }
1138
1139 unlock:
1140 raw_spin_unlock(&ctx->lock);
1141 }
1142
1143 /*
1144 * Enable a event.
1145 *
1146 * If event->ctx is a cloned context, callers must make sure that
1147 * every task struct that event->ctx->task could possibly point to
1148 * remains valid. This condition is satisfied when called through
1149 * perf_event_for_each_child or perf_event_for_each as described
1150 * for perf_event_disable.
1151 */
1152 void perf_event_enable(struct perf_event *event)
1153 {
1154 struct perf_event_context *ctx = event->ctx;
1155 struct task_struct *task = ctx->task;
1156
1157 if (!task) {
1158 /*
1159 * Enable the event on the cpu that it's on
1160 */
1161 smp_call_function_single(event->cpu, __perf_event_enable,
1162 event, 1);
1163 return;
1164 }
1165
1166 raw_spin_lock_irq(&ctx->lock);
1167 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1168 goto out;
1169
1170 /*
1171 * If the event is in error state, clear that first.
1172 * That way, if we see the event in error state below, we
1173 * know that it has gone back into error state, as distinct
1174 * from the task having been scheduled away before the
1175 * cross-call arrived.
1176 */
1177 if (event->state == PERF_EVENT_STATE_ERROR)
1178 event->state = PERF_EVENT_STATE_OFF;
1179
1180 retry:
1181 raw_spin_unlock_irq(&ctx->lock);
1182 task_oncpu_function_call(task, __perf_event_enable, event);
1183
1184 raw_spin_lock_irq(&ctx->lock);
1185
1186 /*
1187 * If the context is active and the event is still off,
1188 * we need to retry the cross-call.
1189 */
1190 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1191 goto retry;
1192
1193 /*
1194 * Since we have the lock this context can't be scheduled
1195 * in, so we can change the state safely.
1196 */
1197 if (event->state == PERF_EVENT_STATE_OFF)
1198 __perf_event_mark_enabled(event, ctx);
1199
1200 out:
1201 raw_spin_unlock_irq(&ctx->lock);
1202 }
1203
1204 static int perf_event_refresh(struct perf_event *event, int refresh)
1205 {
1206 /*
1207 * not supported on inherited events
1208 */
1209 if (event->attr.inherit || !is_sampling_event(event))
1210 return -EINVAL;
1211
1212 atomic_add(refresh, &event->event_limit);
1213 perf_event_enable(event);
1214
1215 return 0;
1216 }
1217
1218 static void ctx_sched_out(struct perf_event_context *ctx,
1219 struct perf_cpu_context *cpuctx,
1220 enum event_type_t event_type)
1221 {
1222 struct perf_event *event;
1223
1224 raw_spin_lock(&ctx->lock);
1225 perf_pmu_disable(ctx->pmu);
1226 ctx->is_active = 0;
1227 if (likely(!ctx->nr_events))
1228 goto out;
1229 update_context_time(ctx);
1230
1231 if (!ctx->nr_active)
1232 goto out;
1233
1234 if (event_type & EVENT_PINNED) {
1235 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1236 group_sched_out(event, cpuctx, ctx);
1237 }
1238
1239 if (event_type & EVENT_FLEXIBLE) {
1240 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1241 group_sched_out(event, cpuctx, ctx);
1242 }
1243 out:
1244 perf_pmu_enable(ctx->pmu);
1245 raw_spin_unlock(&ctx->lock);
1246 }
1247
1248 /*
1249 * Test whether two contexts are equivalent, i.e. whether they
1250 * have both been cloned from the same version of the same context
1251 * and they both have the same number of enabled events.
1252 * If the number of enabled events is the same, then the set
1253 * of enabled events should be the same, because these are both
1254 * inherited contexts, therefore we can't access individual events
1255 * in them directly with an fd; we can only enable/disable all
1256 * events via prctl, or enable/disable all events in a family
1257 * via ioctl, which will have the same effect on both contexts.
1258 */
1259 static int context_equiv(struct perf_event_context *ctx1,
1260 struct perf_event_context *ctx2)
1261 {
1262 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1263 && ctx1->parent_gen == ctx2->parent_gen
1264 && !ctx1->pin_count && !ctx2->pin_count;
1265 }
1266
1267 static void __perf_event_sync_stat(struct perf_event *event,
1268 struct perf_event *next_event)
1269 {
1270 u64 value;
1271
1272 if (!event->attr.inherit_stat)
1273 return;
1274
1275 /*
1276 * Update the event value, we cannot use perf_event_read()
1277 * because we're in the middle of a context switch and have IRQs
1278 * disabled, which upsets smp_call_function_single(), however
1279 * we know the event must be on the current CPU, therefore we
1280 * don't need to use it.
1281 */
1282 switch (event->state) {
1283 case PERF_EVENT_STATE_ACTIVE:
1284 event->pmu->read(event);
1285 /* fall-through */
1286
1287 case PERF_EVENT_STATE_INACTIVE:
1288 update_event_times(event);
1289 break;
1290
1291 default:
1292 break;
1293 }
1294
1295 /*
1296 * In order to keep per-task stats reliable we need to flip the event
1297 * values when we flip the contexts.
1298 */
1299 value = local64_read(&next_event->count);
1300 value = local64_xchg(&event->count, value);
1301 local64_set(&next_event->count, value);
1302
1303 swap(event->total_time_enabled, next_event->total_time_enabled);
1304 swap(event->total_time_running, next_event->total_time_running);
1305
1306 /*
1307 * Since we swizzled the values, update the user visible data too.
1308 */
1309 perf_event_update_userpage(event);
1310 perf_event_update_userpage(next_event);
1311 }
1312
1313 #define list_next_entry(pos, member) \
1314 list_entry(pos->member.next, typeof(*pos), member)
1315
1316 static void perf_event_sync_stat(struct perf_event_context *ctx,
1317 struct perf_event_context *next_ctx)
1318 {
1319 struct perf_event *event, *next_event;
1320
1321 if (!ctx->nr_stat)
1322 return;
1323
1324 update_context_time(ctx);
1325
1326 event = list_first_entry(&ctx->event_list,
1327 struct perf_event, event_entry);
1328
1329 next_event = list_first_entry(&next_ctx->event_list,
1330 struct perf_event, event_entry);
1331
1332 while (&event->event_entry != &ctx->event_list &&
1333 &next_event->event_entry != &next_ctx->event_list) {
1334
1335 __perf_event_sync_stat(event, next_event);
1336
1337 event = list_next_entry(event, event_entry);
1338 next_event = list_next_entry(next_event, event_entry);
1339 }
1340 }
1341
1342 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1343 struct task_struct *next)
1344 {
1345 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1346 struct perf_event_context *next_ctx;
1347 struct perf_event_context *parent;
1348 struct perf_cpu_context *cpuctx;
1349 int do_switch = 1;
1350
1351 if (likely(!ctx))
1352 return;
1353
1354 cpuctx = __get_cpu_context(ctx);
1355 if (!cpuctx->task_ctx)
1356 return;
1357
1358 rcu_read_lock();
1359 parent = rcu_dereference(ctx->parent_ctx);
1360 next_ctx = next->perf_event_ctxp[ctxn];
1361 if (parent && next_ctx &&
1362 rcu_dereference(next_ctx->parent_ctx) == parent) {
1363 /*
1364 * Looks like the two contexts are clones, so we might be
1365 * able to optimize the context switch. We lock both
1366 * contexts and check that they are clones under the
1367 * lock (including re-checking that neither has been
1368 * uncloned in the meantime). It doesn't matter which
1369 * order we take the locks because no other cpu could
1370 * be trying to lock both of these tasks.
1371 */
1372 raw_spin_lock(&ctx->lock);
1373 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1374 if (context_equiv(ctx, next_ctx)) {
1375 /*
1376 * XXX do we need a memory barrier of sorts
1377 * wrt to rcu_dereference() of perf_event_ctxp
1378 */
1379 task->perf_event_ctxp[ctxn] = next_ctx;
1380 next->perf_event_ctxp[ctxn] = ctx;
1381 ctx->task = next;
1382 next_ctx->task = task;
1383 do_switch = 0;
1384
1385 perf_event_sync_stat(ctx, next_ctx);
1386 }
1387 raw_spin_unlock(&next_ctx->lock);
1388 raw_spin_unlock(&ctx->lock);
1389 }
1390 rcu_read_unlock();
1391
1392 if (do_switch) {
1393 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1394 cpuctx->task_ctx = NULL;
1395 }
1396 }
1397
1398 #define for_each_task_context_nr(ctxn) \
1399 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1400
1401 /*
1402 * Called from scheduler to remove the events of the current task,
1403 * with interrupts disabled.
1404 *
1405 * We stop each event and update the event value in event->count.
1406 *
1407 * This does not protect us against NMI, but disable()
1408 * sets the disabled bit in the control field of event _before_
1409 * accessing the event control register. If a NMI hits, then it will
1410 * not restart the event.
1411 */
1412 void __perf_event_task_sched_out(struct task_struct *task,
1413 struct task_struct *next)
1414 {
1415 int ctxn;
1416
1417 for_each_task_context_nr(ctxn)
1418 perf_event_context_sched_out(task, ctxn, next);
1419 }
1420
1421 static void task_ctx_sched_out(struct perf_event_context *ctx,
1422 enum event_type_t event_type)
1423 {
1424 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1425
1426 if (!cpuctx->task_ctx)
1427 return;
1428
1429 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1430 return;
1431
1432 ctx_sched_out(ctx, cpuctx, event_type);
1433 cpuctx->task_ctx = NULL;
1434 }
1435
1436 /*
1437 * Called with IRQs disabled
1438 */
1439 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1440 enum event_type_t event_type)
1441 {
1442 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1443 }
1444
1445 static void
1446 ctx_pinned_sched_in(struct perf_event_context *ctx,
1447 struct perf_cpu_context *cpuctx)
1448 {
1449 struct perf_event *event;
1450
1451 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1452 if (event->state <= PERF_EVENT_STATE_OFF)
1453 continue;
1454 if (!event_filter_match(event))
1455 continue;
1456
1457 if (group_can_go_on(event, cpuctx, 1))
1458 group_sched_in(event, cpuctx, ctx);
1459
1460 /*
1461 * If this pinned group hasn't been scheduled,
1462 * put it in error state.
1463 */
1464 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1465 update_group_times(event);
1466 event->state = PERF_EVENT_STATE_ERROR;
1467 }
1468 }
1469 }
1470
1471 static void
1472 ctx_flexible_sched_in(struct perf_event_context *ctx,
1473 struct perf_cpu_context *cpuctx)
1474 {
1475 struct perf_event *event;
1476 int can_add_hw = 1;
1477
1478 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1479 /* Ignore events in OFF or ERROR state */
1480 if (event->state <= PERF_EVENT_STATE_OFF)
1481 continue;
1482 /*
1483 * Listen to the 'cpu' scheduling filter constraint
1484 * of events:
1485 */
1486 if (!event_filter_match(event))
1487 continue;
1488
1489 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1490 if (group_sched_in(event, cpuctx, ctx))
1491 can_add_hw = 0;
1492 }
1493 }
1494 }
1495
1496 static void
1497 ctx_sched_in(struct perf_event_context *ctx,
1498 struct perf_cpu_context *cpuctx,
1499 enum event_type_t event_type)
1500 {
1501 raw_spin_lock(&ctx->lock);
1502 ctx->is_active = 1;
1503 if (likely(!ctx->nr_events))
1504 goto out;
1505
1506 ctx->timestamp = perf_clock();
1507
1508 /*
1509 * First go through the list and put on any pinned groups
1510 * in order to give them the best chance of going on.
1511 */
1512 if (event_type & EVENT_PINNED)
1513 ctx_pinned_sched_in(ctx, cpuctx);
1514
1515 /* Then walk through the lower prio flexible groups */
1516 if (event_type & EVENT_FLEXIBLE)
1517 ctx_flexible_sched_in(ctx, cpuctx);
1518
1519 out:
1520 raw_spin_unlock(&ctx->lock);
1521 }
1522
1523 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1524 enum event_type_t event_type)
1525 {
1526 struct perf_event_context *ctx = &cpuctx->ctx;
1527
1528 ctx_sched_in(ctx, cpuctx, event_type);
1529 }
1530
1531 static void task_ctx_sched_in(struct perf_event_context *ctx,
1532 enum event_type_t event_type)
1533 {
1534 struct perf_cpu_context *cpuctx;
1535
1536 cpuctx = __get_cpu_context(ctx);
1537 if (cpuctx->task_ctx == ctx)
1538 return;
1539
1540 ctx_sched_in(ctx, cpuctx, event_type);
1541 cpuctx->task_ctx = ctx;
1542 }
1543
1544 void perf_event_context_sched_in(struct perf_event_context *ctx)
1545 {
1546 struct perf_cpu_context *cpuctx;
1547
1548 cpuctx = __get_cpu_context(ctx);
1549 if (cpuctx->task_ctx == ctx)
1550 return;
1551
1552 perf_pmu_disable(ctx->pmu);
1553 /*
1554 * We want to keep the following priority order:
1555 * cpu pinned (that don't need to move), task pinned,
1556 * cpu flexible, task flexible.
1557 */
1558 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1559
1560 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1561 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1562 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1563
1564 cpuctx->task_ctx = ctx;
1565
1566 /*
1567 * Since these rotations are per-cpu, we need to ensure the
1568 * cpu-context we got scheduled on is actually rotating.
1569 */
1570 perf_pmu_rotate_start(ctx->pmu);
1571 perf_pmu_enable(ctx->pmu);
1572 }
1573
1574 /*
1575 * Called from scheduler to add the events of the current task
1576 * with interrupts disabled.
1577 *
1578 * We restore the event value and then enable it.
1579 *
1580 * This does not protect us against NMI, but enable()
1581 * sets the enabled bit in the control field of event _before_
1582 * accessing the event control register. If a NMI hits, then it will
1583 * keep the event running.
1584 */
1585 void __perf_event_task_sched_in(struct task_struct *task)
1586 {
1587 struct perf_event_context *ctx;
1588 int ctxn;
1589
1590 for_each_task_context_nr(ctxn) {
1591 ctx = task->perf_event_ctxp[ctxn];
1592 if (likely(!ctx))
1593 continue;
1594
1595 perf_event_context_sched_in(ctx);
1596 }
1597 }
1598
1599 #define MAX_INTERRUPTS (~0ULL)
1600
1601 static void perf_log_throttle(struct perf_event *event, int enable);
1602
1603 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1604 {
1605 u64 frequency = event->attr.sample_freq;
1606 u64 sec = NSEC_PER_SEC;
1607 u64 divisor, dividend;
1608
1609 int count_fls, nsec_fls, frequency_fls, sec_fls;
1610
1611 count_fls = fls64(count);
1612 nsec_fls = fls64(nsec);
1613 frequency_fls = fls64(frequency);
1614 sec_fls = 30;
1615
1616 /*
1617 * We got @count in @nsec, with a target of sample_freq HZ
1618 * the target period becomes:
1619 *
1620 * @count * 10^9
1621 * period = -------------------
1622 * @nsec * sample_freq
1623 *
1624 */
1625
1626 /*
1627 * Reduce accuracy by one bit such that @a and @b converge
1628 * to a similar magnitude.
1629 */
1630 #define REDUCE_FLS(a, b) \
1631 do { \
1632 if (a##_fls > b##_fls) { \
1633 a >>= 1; \
1634 a##_fls--; \
1635 } else { \
1636 b >>= 1; \
1637 b##_fls--; \
1638 } \
1639 } while (0)
1640
1641 /*
1642 * Reduce accuracy until either term fits in a u64, then proceed with
1643 * the other, so that finally we can do a u64/u64 division.
1644 */
1645 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1646 REDUCE_FLS(nsec, frequency);
1647 REDUCE_FLS(sec, count);
1648 }
1649
1650 if (count_fls + sec_fls > 64) {
1651 divisor = nsec * frequency;
1652
1653 while (count_fls + sec_fls > 64) {
1654 REDUCE_FLS(count, sec);
1655 divisor >>= 1;
1656 }
1657
1658 dividend = count * sec;
1659 } else {
1660 dividend = count * sec;
1661
1662 while (nsec_fls + frequency_fls > 64) {
1663 REDUCE_FLS(nsec, frequency);
1664 dividend >>= 1;
1665 }
1666
1667 divisor = nsec * frequency;
1668 }
1669
1670 if (!divisor)
1671 return dividend;
1672
1673 return div64_u64(dividend, divisor);
1674 }
1675
1676 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1677 {
1678 struct hw_perf_event *hwc = &event->hw;
1679 s64 period, sample_period;
1680 s64 delta;
1681
1682 period = perf_calculate_period(event, nsec, count);
1683
1684 delta = (s64)(period - hwc->sample_period);
1685 delta = (delta + 7) / 8; /* low pass filter */
1686
1687 sample_period = hwc->sample_period + delta;
1688
1689 if (!sample_period)
1690 sample_period = 1;
1691
1692 hwc->sample_period = sample_period;
1693
1694 if (local64_read(&hwc->period_left) > 8*sample_period) {
1695 event->pmu->stop(event, PERF_EF_UPDATE);
1696 local64_set(&hwc->period_left, 0);
1697 event->pmu->start(event, PERF_EF_RELOAD);
1698 }
1699 }
1700
1701 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1702 {
1703 struct perf_event *event;
1704 struct hw_perf_event *hwc;
1705 u64 interrupts, now;
1706 s64 delta;
1707
1708 raw_spin_lock(&ctx->lock);
1709 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1710 if (event->state != PERF_EVENT_STATE_ACTIVE)
1711 continue;
1712
1713 if (!event_filter_match(event))
1714 continue;
1715
1716 hwc = &event->hw;
1717
1718 interrupts = hwc->interrupts;
1719 hwc->interrupts = 0;
1720
1721 /*
1722 * unthrottle events on the tick
1723 */
1724 if (interrupts == MAX_INTERRUPTS) {
1725 perf_log_throttle(event, 1);
1726 event->pmu->start(event, 0);
1727 }
1728
1729 if (!event->attr.freq || !event->attr.sample_freq)
1730 continue;
1731
1732 event->pmu->read(event);
1733 now = local64_read(&event->count);
1734 delta = now - hwc->freq_count_stamp;
1735 hwc->freq_count_stamp = now;
1736
1737 if (delta > 0)
1738 perf_adjust_period(event, period, delta);
1739 }
1740 raw_spin_unlock(&ctx->lock);
1741 }
1742
1743 /*
1744 * Round-robin a context's events:
1745 */
1746 static void rotate_ctx(struct perf_event_context *ctx)
1747 {
1748 raw_spin_lock(&ctx->lock);
1749
1750 /*
1751 * Rotate the first entry last of non-pinned groups. Rotation might be
1752 * disabled by the inheritance code.
1753 */
1754 if (!ctx->rotate_disable)
1755 list_rotate_left(&ctx->flexible_groups);
1756
1757 raw_spin_unlock(&ctx->lock);
1758 }
1759
1760 /*
1761 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1762 * because they're strictly cpu affine and rotate_start is called with IRQs
1763 * disabled, while rotate_context is called from IRQ context.
1764 */
1765 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1766 {
1767 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1768 struct perf_event_context *ctx = NULL;
1769 int rotate = 0, remove = 1;
1770
1771 if (cpuctx->ctx.nr_events) {
1772 remove = 0;
1773 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1774 rotate = 1;
1775 }
1776
1777 ctx = cpuctx->task_ctx;
1778 if (ctx && ctx->nr_events) {
1779 remove = 0;
1780 if (ctx->nr_events != ctx->nr_active)
1781 rotate = 1;
1782 }
1783
1784 perf_pmu_disable(cpuctx->ctx.pmu);
1785 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1786 if (ctx)
1787 perf_ctx_adjust_freq(ctx, interval);
1788
1789 if (!rotate)
1790 goto done;
1791
1792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1793 if (ctx)
1794 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1795
1796 rotate_ctx(&cpuctx->ctx);
1797 if (ctx)
1798 rotate_ctx(ctx);
1799
1800 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1801 if (ctx)
1802 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1803
1804 done:
1805 if (remove)
1806 list_del_init(&cpuctx->rotation_list);
1807
1808 perf_pmu_enable(cpuctx->ctx.pmu);
1809 }
1810
1811 void perf_event_task_tick(void)
1812 {
1813 struct list_head *head = &__get_cpu_var(rotation_list);
1814 struct perf_cpu_context *cpuctx, *tmp;
1815
1816 WARN_ON(!irqs_disabled());
1817
1818 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1819 if (cpuctx->jiffies_interval == 1 ||
1820 !(jiffies % cpuctx->jiffies_interval))
1821 perf_rotate_context(cpuctx);
1822 }
1823 }
1824
1825 static int event_enable_on_exec(struct perf_event *event,
1826 struct perf_event_context *ctx)
1827 {
1828 if (!event->attr.enable_on_exec)
1829 return 0;
1830
1831 event->attr.enable_on_exec = 0;
1832 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1833 return 0;
1834
1835 __perf_event_mark_enabled(event, ctx);
1836
1837 return 1;
1838 }
1839
1840 /*
1841 * Enable all of a task's events that have been marked enable-on-exec.
1842 * This expects task == current.
1843 */
1844 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1845 {
1846 struct perf_event *event;
1847 unsigned long flags;
1848 int enabled = 0;
1849 int ret;
1850
1851 local_irq_save(flags);
1852 if (!ctx || !ctx->nr_events)
1853 goto out;
1854
1855 task_ctx_sched_out(ctx, EVENT_ALL);
1856
1857 raw_spin_lock(&ctx->lock);
1858
1859 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1860 ret = event_enable_on_exec(event, ctx);
1861 if (ret)
1862 enabled = 1;
1863 }
1864
1865 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1866 ret = event_enable_on_exec(event, ctx);
1867 if (ret)
1868 enabled = 1;
1869 }
1870
1871 /*
1872 * Unclone this context if we enabled any event.
1873 */
1874 if (enabled)
1875 unclone_ctx(ctx);
1876
1877 raw_spin_unlock(&ctx->lock);
1878
1879 perf_event_context_sched_in(ctx);
1880 out:
1881 local_irq_restore(flags);
1882 }
1883
1884 /*
1885 * Cross CPU call to read the hardware event
1886 */
1887 static void __perf_event_read(void *info)
1888 {
1889 struct perf_event *event = info;
1890 struct perf_event_context *ctx = event->ctx;
1891 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1892
1893 /*
1894 * If this is a task context, we need to check whether it is
1895 * the current task context of this cpu. If not it has been
1896 * scheduled out before the smp call arrived. In that case
1897 * event->count would have been updated to a recent sample
1898 * when the event was scheduled out.
1899 */
1900 if (ctx->task && cpuctx->task_ctx != ctx)
1901 return;
1902
1903 raw_spin_lock(&ctx->lock);
1904 update_context_time(ctx);
1905 update_event_times(event);
1906 raw_spin_unlock(&ctx->lock);
1907
1908 event->pmu->read(event);
1909 }
1910
1911 static inline u64 perf_event_count(struct perf_event *event)
1912 {
1913 return local64_read(&event->count) + atomic64_read(&event->child_count);
1914 }
1915
1916 static u64 perf_event_read(struct perf_event *event)
1917 {
1918 /*
1919 * If event is enabled and currently active on a CPU, update the
1920 * value in the event structure:
1921 */
1922 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1923 smp_call_function_single(event->oncpu,
1924 __perf_event_read, event, 1);
1925 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1926 struct perf_event_context *ctx = event->ctx;
1927 unsigned long flags;
1928
1929 raw_spin_lock_irqsave(&ctx->lock, flags);
1930 /*
1931 * may read while context is not active
1932 * (e.g., thread is blocked), in that case
1933 * we cannot update context time
1934 */
1935 if (ctx->is_active)
1936 update_context_time(ctx);
1937 update_event_times(event);
1938 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1939 }
1940
1941 return perf_event_count(event);
1942 }
1943
1944 /*
1945 * Callchain support
1946 */
1947
1948 struct callchain_cpus_entries {
1949 struct rcu_head rcu_head;
1950 struct perf_callchain_entry *cpu_entries[0];
1951 };
1952
1953 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1954 static atomic_t nr_callchain_events;
1955 static DEFINE_MUTEX(callchain_mutex);
1956 struct callchain_cpus_entries *callchain_cpus_entries;
1957
1958
1959 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1960 struct pt_regs *regs)
1961 {
1962 }
1963
1964 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1965 struct pt_regs *regs)
1966 {
1967 }
1968
1969 static void release_callchain_buffers_rcu(struct rcu_head *head)
1970 {
1971 struct callchain_cpus_entries *entries;
1972 int cpu;
1973
1974 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1975
1976 for_each_possible_cpu(cpu)
1977 kfree(entries->cpu_entries[cpu]);
1978
1979 kfree(entries);
1980 }
1981
1982 static void release_callchain_buffers(void)
1983 {
1984 struct callchain_cpus_entries *entries;
1985
1986 entries = callchain_cpus_entries;
1987 rcu_assign_pointer(callchain_cpus_entries, NULL);
1988 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1989 }
1990
1991 static int alloc_callchain_buffers(void)
1992 {
1993 int cpu;
1994 int size;
1995 struct callchain_cpus_entries *entries;
1996
1997 /*
1998 * We can't use the percpu allocation API for data that can be
1999 * accessed from NMI. Use a temporary manual per cpu allocation
2000 * until that gets sorted out.
2001 */
2002 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
2003 num_possible_cpus();
2004
2005 entries = kzalloc(size, GFP_KERNEL);
2006 if (!entries)
2007 return -ENOMEM;
2008
2009 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2010
2011 for_each_possible_cpu(cpu) {
2012 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2013 cpu_to_node(cpu));
2014 if (!entries->cpu_entries[cpu])
2015 goto fail;
2016 }
2017
2018 rcu_assign_pointer(callchain_cpus_entries, entries);
2019
2020 return 0;
2021
2022 fail:
2023 for_each_possible_cpu(cpu)
2024 kfree(entries->cpu_entries[cpu]);
2025 kfree(entries);
2026
2027 return -ENOMEM;
2028 }
2029
2030 static int get_callchain_buffers(void)
2031 {
2032 int err = 0;
2033 int count;
2034
2035 mutex_lock(&callchain_mutex);
2036
2037 count = atomic_inc_return(&nr_callchain_events);
2038 if (WARN_ON_ONCE(count < 1)) {
2039 err = -EINVAL;
2040 goto exit;
2041 }
2042
2043 if (count > 1) {
2044 /* If the allocation failed, give up */
2045 if (!callchain_cpus_entries)
2046 err = -ENOMEM;
2047 goto exit;
2048 }
2049
2050 err = alloc_callchain_buffers();
2051 if (err)
2052 release_callchain_buffers();
2053 exit:
2054 mutex_unlock(&callchain_mutex);
2055
2056 return err;
2057 }
2058
2059 static void put_callchain_buffers(void)
2060 {
2061 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2062 release_callchain_buffers();
2063 mutex_unlock(&callchain_mutex);
2064 }
2065 }
2066
2067 static int get_recursion_context(int *recursion)
2068 {
2069 int rctx;
2070
2071 if (in_nmi())
2072 rctx = 3;
2073 else if (in_irq())
2074 rctx = 2;
2075 else if (in_softirq())
2076 rctx = 1;
2077 else
2078 rctx = 0;
2079
2080 if (recursion[rctx])
2081 return -1;
2082
2083 recursion[rctx]++;
2084 barrier();
2085
2086 return rctx;
2087 }
2088
2089 static inline void put_recursion_context(int *recursion, int rctx)
2090 {
2091 barrier();
2092 recursion[rctx]--;
2093 }
2094
2095 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2096 {
2097 int cpu;
2098 struct callchain_cpus_entries *entries;
2099
2100 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2101 if (*rctx == -1)
2102 return NULL;
2103
2104 entries = rcu_dereference(callchain_cpus_entries);
2105 if (!entries)
2106 return NULL;
2107
2108 cpu = smp_processor_id();
2109
2110 return &entries->cpu_entries[cpu][*rctx];
2111 }
2112
2113 static void
2114 put_callchain_entry(int rctx)
2115 {
2116 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2117 }
2118
2119 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2120 {
2121 int rctx;
2122 struct perf_callchain_entry *entry;
2123
2124
2125 entry = get_callchain_entry(&rctx);
2126 if (rctx == -1)
2127 return NULL;
2128
2129 if (!entry)
2130 goto exit_put;
2131
2132 entry->nr = 0;
2133
2134 if (!user_mode(regs)) {
2135 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2136 perf_callchain_kernel(entry, regs);
2137 if (current->mm)
2138 regs = task_pt_regs(current);
2139 else
2140 regs = NULL;
2141 }
2142
2143 if (regs) {
2144 perf_callchain_store(entry, PERF_CONTEXT_USER);
2145 perf_callchain_user(entry, regs);
2146 }
2147
2148 exit_put:
2149 put_callchain_entry(rctx);
2150
2151 return entry;
2152 }
2153
2154 /*
2155 * Initialize the perf_event context in a task_struct:
2156 */
2157 static void __perf_event_init_context(struct perf_event_context *ctx)
2158 {
2159 raw_spin_lock_init(&ctx->lock);
2160 mutex_init(&ctx->mutex);
2161 INIT_LIST_HEAD(&ctx->pinned_groups);
2162 INIT_LIST_HEAD(&ctx->flexible_groups);
2163 INIT_LIST_HEAD(&ctx->event_list);
2164 atomic_set(&ctx->refcount, 1);
2165 }
2166
2167 static struct perf_event_context *
2168 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2169 {
2170 struct perf_event_context *ctx;
2171
2172 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2173 if (!ctx)
2174 return NULL;
2175
2176 __perf_event_init_context(ctx);
2177 if (task) {
2178 ctx->task = task;
2179 get_task_struct(task);
2180 }
2181 ctx->pmu = pmu;
2182
2183 return ctx;
2184 }
2185
2186 static struct task_struct *
2187 find_lively_task_by_vpid(pid_t vpid)
2188 {
2189 struct task_struct *task;
2190 int err;
2191
2192 rcu_read_lock();
2193 if (!vpid)
2194 task = current;
2195 else
2196 task = find_task_by_vpid(vpid);
2197 if (task)
2198 get_task_struct(task);
2199 rcu_read_unlock();
2200
2201 if (!task)
2202 return ERR_PTR(-ESRCH);
2203
2204 /* Reuse ptrace permission checks for now. */
2205 err = -EACCES;
2206 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2207 goto errout;
2208
2209 return task;
2210 errout:
2211 put_task_struct(task);
2212 return ERR_PTR(err);
2213
2214 }
2215
2216 static struct perf_event_context *
2217 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2218 {
2219 struct perf_event_context *ctx;
2220 struct perf_cpu_context *cpuctx;
2221 unsigned long flags;
2222 int ctxn, err;
2223
2224 if (!task) {
2225 /* Must be root to operate on a CPU event: */
2226 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2227 return ERR_PTR(-EACCES);
2228
2229 /*
2230 * We could be clever and allow to attach a event to an
2231 * offline CPU and activate it when the CPU comes up, but
2232 * that's for later.
2233 */
2234 if (!cpu_online(cpu))
2235 return ERR_PTR(-ENODEV);
2236
2237 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2238 ctx = &cpuctx->ctx;
2239 get_ctx(ctx);
2240
2241 return ctx;
2242 }
2243
2244 err = -EINVAL;
2245 ctxn = pmu->task_ctx_nr;
2246 if (ctxn < 0)
2247 goto errout;
2248
2249 retry:
2250 ctx = perf_lock_task_context(task, ctxn, &flags);
2251 if (ctx) {
2252 unclone_ctx(ctx);
2253 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2254 }
2255
2256 if (!ctx) {
2257 ctx = alloc_perf_context(pmu, task);
2258 err = -ENOMEM;
2259 if (!ctx)
2260 goto errout;
2261
2262 get_ctx(ctx);
2263
2264 err = 0;
2265 mutex_lock(&task->perf_event_mutex);
2266 /*
2267 * If it has already passed perf_event_exit_task().
2268 * we must see PF_EXITING, it takes this mutex too.
2269 */
2270 if (task->flags & PF_EXITING)
2271 err = -ESRCH;
2272 else if (task->perf_event_ctxp[ctxn])
2273 err = -EAGAIN;
2274 else
2275 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2276 mutex_unlock(&task->perf_event_mutex);
2277
2278 if (unlikely(err)) {
2279 put_task_struct(task);
2280 kfree(ctx);
2281
2282 if (err == -EAGAIN)
2283 goto retry;
2284 goto errout;
2285 }
2286 }
2287
2288 return ctx;
2289
2290 errout:
2291 return ERR_PTR(err);
2292 }
2293
2294 static void perf_event_free_filter(struct perf_event *event);
2295
2296 static void free_event_rcu(struct rcu_head *head)
2297 {
2298 struct perf_event *event;
2299
2300 event = container_of(head, struct perf_event, rcu_head);
2301 if (event->ns)
2302 put_pid_ns(event->ns);
2303 perf_event_free_filter(event);
2304 kfree(event);
2305 }
2306
2307 static void perf_buffer_put(struct perf_buffer *buffer);
2308
2309 static void free_event(struct perf_event *event)
2310 {
2311 irq_work_sync(&event->pending);
2312
2313 if (!event->parent) {
2314 if (event->attach_state & PERF_ATTACH_TASK)
2315 jump_label_dec(&perf_task_events);
2316 if (event->attr.mmap || event->attr.mmap_data)
2317 atomic_dec(&nr_mmap_events);
2318 if (event->attr.comm)
2319 atomic_dec(&nr_comm_events);
2320 if (event->attr.task)
2321 atomic_dec(&nr_task_events);
2322 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2323 put_callchain_buffers();
2324 }
2325
2326 if (event->buffer) {
2327 perf_buffer_put(event->buffer);
2328 event->buffer = NULL;
2329 }
2330
2331 if (event->destroy)
2332 event->destroy(event);
2333
2334 if (event->ctx)
2335 put_ctx(event->ctx);
2336
2337 call_rcu(&event->rcu_head, free_event_rcu);
2338 }
2339
2340 int perf_event_release_kernel(struct perf_event *event)
2341 {
2342 struct perf_event_context *ctx = event->ctx;
2343
2344 /*
2345 * Remove from the PMU, can't get re-enabled since we got
2346 * here because the last ref went.
2347 */
2348 perf_event_disable(event);
2349
2350 WARN_ON_ONCE(ctx->parent_ctx);
2351 /*
2352 * There are two ways this annotation is useful:
2353 *
2354 * 1) there is a lock recursion from perf_event_exit_task
2355 * see the comment there.
2356 *
2357 * 2) there is a lock-inversion with mmap_sem through
2358 * perf_event_read_group(), which takes faults while
2359 * holding ctx->mutex, however this is called after
2360 * the last filedesc died, so there is no possibility
2361 * to trigger the AB-BA case.
2362 */
2363 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2364 raw_spin_lock_irq(&ctx->lock);
2365 perf_group_detach(event);
2366 list_del_event(event, ctx);
2367 raw_spin_unlock_irq(&ctx->lock);
2368 mutex_unlock(&ctx->mutex);
2369
2370 free_event(event);
2371
2372 return 0;
2373 }
2374 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2375
2376 /*
2377 * Called when the last reference to the file is gone.
2378 */
2379 static int perf_release(struct inode *inode, struct file *file)
2380 {
2381 struct perf_event *event = file->private_data;
2382 struct task_struct *owner;
2383
2384 file->private_data = NULL;
2385
2386 rcu_read_lock();
2387 owner = ACCESS_ONCE(event->owner);
2388 /*
2389 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2390 * !owner it means the list deletion is complete and we can indeed
2391 * free this event, otherwise we need to serialize on
2392 * owner->perf_event_mutex.
2393 */
2394 smp_read_barrier_depends();
2395 if (owner) {
2396 /*
2397 * Since delayed_put_task_struct() also drops the last
2398 * task reference we can safely take a new reference
2399 * while holding the rcu_read_lock().
2400 */
2401 get_task_struct(owner);
2402 }
2403 rcu_read_unlock();
2404
2405 if (owner) {
2406 mutex_lock(&owner->perf_event_mutex);
2407 /*
2408 * We have to re-check the event->owner field, if it is cleared
2409 * we raced with perf_event_exit_task(), acquiring the mutex
2410 * ensured they're done, and we can proceed with freeing the
2411 * event.
2412 */
2413 if (event->owner)
2414 list_del_init(&event->owner_entry);
2415 mutex_unlock(&owner->perf_event_mutex);
2416 put_task_struct(owner);
2417 }
2418
2419 return perf_event_release_kernel(event);
2420 }
2421
2422 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2423 {
2424 struct perf_event *child;
2425 u64 total = 0;
2426
2427 *enabled = 0;
2428 *running = 0;
2429
2430 mutex_lock(&event->child_mutex);
2431 total += perf_event_read(event);
2432 *enabled += event->total_time_enabled +
2433 atomic64_read(&event->child_total_time_enabled);
2434 *running += event->total_time_running +
2435 atomic64_read(&event->child_total_time_running);
2436
2437 list_for_each_entry(child, &event->child_list, child_list) {
2438 total += perf_event_read(child);
2439 *enabled += child->total_time_enabled;
2440 *running += child->total_time_running;
2441 }
2442 mutex_unlock(&event->child_mutex);
2443
2444 return total;
2445 }
2446 EXPORT_SYMBOL_GPL(perf_event_read_value);
2447
2448 static int perf_event_read_group(struct perf_event *event,
2449 u64 read_format, char __user *buf)
2450 {
2451 struct perf_event *leader = event->group_leader, *sub;
2452 int n = 0, size = 0, ret = -EFAULT;
2453 struct perf_event_context *ctx = leader->ctx;
2454 u64 values[5];
2455 u64 count, enabled, running;
2456
2457 mutex_lock(&ctx->mutex);
2458 count = perf_event_read_value(leader, &enabled, &running);
2459
2460 values[n++] = 1 + leader->nr_siblings;
2461 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2462 values[n++] = enabled;
2463 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2464 values[n++] = running;
2465 values[n++] = count;
2466 if (read_format & PERF_FORMAT_ID)
2467 values[n++] = primary_event_id(leader);
2468
2469 size = n * sizeof(u64);
2470
2471 if (copy_to_user(buf, values, size))
2472 goto unlock;
2473
2474 ret = size;
2475
2476 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2477 n = 0;
2478
2479 values[n++] = perf_event_read_value(sub, &enabled, &running);
2480 if (read_format & PERF_FORMAT_ID)
2481 values[n++] = primary_event_id(sub);
2482
2483 size = n * sizeof(u64);
2484
2485 if (copy_to_user(buf + ret, values, size)) {
2486 ret = -EFAULT;
2487 goto unlock;
2488 }
2489
2490 ret += size;
2491 }
2492 unlock:
2493 mutex_unlock(&ctx->mutex);
2494
2495 return ret;
2496 }
2497
2498 static int perf_event_read_one(struct perf_event *event,
2499 u64 read_format, char __user *buf)
2500 {
2501 u64 enabled, running;
2502 u64 values[4];
2503 int n = 0;
2504
2505 values[n++] = perf_event_read_value(event, &enabled, &running);
2506 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2507 values[n++] = enabled;
2508 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2509 values[n++] = running;
2510 if (read_format & PERF_FORMAT_ID)
2511 values[n++] = primary_event_id(event);
2512
2513 if (copy_to_user(buf, values, n * sizeof(u64)))
2514 return -EFAULT;
2515
2516 return n * sizeof(u64);
2517 }
2518
2519 /*
2520 * Read the performance event - simple non blocking version for now
2521 */
2522 static ssize_t
2523 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2524 {
2525 u64 read_format = event->attr.read_format;
2526 int ret;
2527
2528 /*
2529 * Return end-of-file for a read on a event that is in
2530 * error state (i.e. because it was pinned but it couldn't be
2531 * scheduled on to the CPU at some point).
2532 */
2533 if (event->state == PERF_EVENT_STATE_ERROR)
2534 return 0;
2535
2536 if (count < event->read_size)
2537 return -ENOSPC;
2538
2539 WARN_ON_ONCE(event->ctx->parent_ctx);
2540 if (read_format & PERF_FORMAT_GROUP)
2541 ret = perf_event_read_group(event, read_format, buf);
2542 else
2543 ret = perf_event_read_one(event, read_format, buf);
2544
2545 return ret;
2546 }
2547
2548 static ssize_t
2549 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2550 {
2551 struct perf_event *event = file->private_data;
2552
2553 return perf_read_hw(event, buf, count);
2554 }
2555
2556 static unsigned int perf_poll(struct file *file, poll_table *wait)
2557 {
2558 struct perf_event *event = file->private_data;
2559 struct perf_buffer *buffer;
2560 unsigned int events = POLL_HUP;
2561
2562 rcu_read_lock();
2563 buffer = rcu_dereference(event->buffer);
2564 if (buffer)
2565 events = atomic_xchg(&buffer->poll, 0);
2566 rcu_read_unlock();
2567
2568 poll_wait(file, &event->waitq, wait);
2569
2570 return events;
2571 }
2572
2573 static void perf_event_reset(struct perf_event *event)
2574 {
2575 (void)perf_event_read(event);
2576 local64_set(&event->count, 0);
2577 perf_event_update_userpage(event);
2578 }
2579
2580 /*
2581 * Holding the top-level event's child_mutex means that any
2582 * descendant process that has inherited this event will block
2583 * in sync_child_event if it goes to exit, thus satisfying the
2584 * task existence requirements of perf_event_enable/disable.
2585 */
2586 static void perf_event_for_each_child(struct perf_event *event,
2587 void (*func)(struct perf_event *))
2588 {
2589 struct perf_event *child;
2590
2591 WARN_ON_ONCE(event->ctx->parent_ctx);
2592 mutex_lock(&event->child_mutex);
2593 func(event);
2594 list_for_each_entry(child, &event->child_list, child_list)
2595 func(child);
2596 mutex_unlock(&event->child_mutex);
2597 }
2598
2599 static void perf_event_for_each(struct perf_event *event,
2600 void (*func)(struct perf_event *))
2601 {
2602 struct perf_event_context *ctx = event->ctx;
2603 struct perf_event *sibling;
2604
2605 WARN_ON_ONCE(ctx->parent_ctx);
2606 mutex_lock(&ctx->mutex);
2607 event = event->group_leader;
2608
2609 perf_event_for_each_child(event, func);
2610 func(event);
2611 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2612 perf_event_for_each_child(event, func);
2613 mutex_unlock(&ctx->mutex);
2614 }
2615
2616 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2617 {
2618 struct perf_event_context *ctx = event->ctx;
2619 int ret = 0;
2620 u64 value;
2621
2622 if (!is_sampling_event(event))
2623 return -EINVAL;
2624
2625 if (copy_from_user(&value, arg, sizeof(value)))
2626 return -EFAULT;
2627
2628 if (!value)
2629 return -EINVAL;
2630
2631 raw_spin_lock_irq(&ctx->lock);
2632 if (event->attr.freq) {
2633 if (value > sysctl_perf_event_sample_rate) {
2634 ret = -EINVAL;
2635 goto unlock;
2636 }
2637
2638 event->attr.sample_freq = value;
2639 } else {
2640 event->attr.sample_period = value;
2641 event->hw.sample_period = value;
2642 }
2643 unlock:
2644 raw_spin_unlock_irq(&ctx->lock);
2645
2646 return ret;
2647 }
2648
2649 static const struct file_operations perf_fops;
2650
2651 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2652 {
2653 struct file *file;
2654
2655 file = fget_light(fd, fput_needed);
2656 if (!file)
2657 return ERR_PTR(-EBADF);
2658
2659 if (file->f_op != &perf_fops) {
2660 fput_light(file, *fput_needed);
2661 *fput_needed = 0;
2662 return ERR_PTR(-EBADF);
2663 }
2664
2665 return file->private_data;
2666 }
2667
2668 static int perf_event_set_output(struct perf_event *event,
2669 struct perf_event *output_event);
2670 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2671
2672 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2673 {
2674 struct perf_event *event = file->private_data;
2675 void (*func)(struct perf_event *);
2676 u32 flags = arg;
2677
2678 switch (cmd) {
2679 case PERF_EVENT_IOC_ENABLE:
2680 func = perf_event_enable;
2681 break;
2682 case PERF_EVENT_IOC_DISABLE:
2683 func = perf_event_disable;
2684 break;
2685 case PERF_EVENT_IOC_RESET:
2686 func = perf_event_reset;
2687 break;
2688
2689 case PERF_EVENT_IOC_REFRESH:
2690 return perf_event_refresh(event, arg);
2691
2692 case PERF_EVENT_IOC_PERIOD:
2693 return perf_event_period(event, (u64 __user *)arg);
2694
2695 case PERF_EVENT_IOC_SET_OUTPUT:
2696 {
2697 struct perf_event *output_event = NULL;
2698 int fput_needed = 0;
2699 int ret;
2700
2701 if (arg != -1) {
2702 output_event = perf_fget_light(arg, &fput_needed);
2703 if (IS_ERR(output_event))
2704 return PTR_ERR(output_event);
2705 }
2706
2707 ret = perf_event_set_output(event, output_event);
2708 if (output_event)
2709 fput_light(output_event->filp, fput_needed);
2710
2711 return ret;
2712 }
2713
2714 case PERF_EVENT_IOC_SET_FILTER:
2715 return perf_event_set_filter(event, (void __user *)arg);
2716
2717 default:
2718 return -ENOTTY;
2719 }
2720
2721 if (flags & PERF_IOC_FLAG_GROUP)
2722 perf_event_for_each(event, func);
2723 else
2724 perf_event_for_each_child(event, func);
2725
2726 return 0;
2727 }
2728
2729 int perf_event_task_enable(void)
2730 {
2731 struct perf_event *event;
2732
2733 mutex_lock(&current->perf_event_mutex);
2734 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2735 perf_event_for_each_child(event, perf_event_enable);
2736 mutex_unlock(&current->perf_event_mutex);
2737
2738 return 0;
2739 }
2740
2741 int perf_event_task_disable(void)
2742 {
2743 struct perf_event *event;
2744
2745 mutex_lock(&current->perf_event_mutex);
2746 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2747 perf_event_for_each_child(event, perf_event_disable);
2748 mutex_unlock(&current->perf_event_mutex);
2749
2750 return 0;
2751 }
2752
2753 #ifndef PERF_EVENT_INDEX_OFFSET
2754 # define PERF_EVENT_INDEX_OFFSET 0
2755 #endif
2756
2757 static int perf_event_index(struct perf_event *event)
2758 {
2759 if (event->hw.state & PERF_HES_STOPPED)
2760 return 0;
2761
2762 if (event->state != PERF_EVENT_STATE_ACTIVE)
2763 return 0;
2764
2765 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2766 }
2767
2768 /*
2769 * Callers need to ensure there can be no nesting of this function, otherwise
2770 * the seqlock logic goes bad. We can not serialize this because the arch
2771 * code calls this from NMI context.
2772 */
2773 void perf_event_update_userpage(struct perf_event *event)
2774 {
2775 struct perf_event_mmap_page *userpg;
2776 struct perf_buffer *buffer;
2777
2778 rcu_read_lock();
2779 buffer = rcu_dereference(event->buffer);
2780 if (!buffer)
2781 goto unlock;
2782
2783 userpg = buffer->user_page;
2784
2785 /*
2786 * Disable preemption so as to not let the corresponding user-space
2787 * spin too long if we get preempted.
2788 */
2789 preempt_disable();
2790 ++userpg->lock;
2791 barrier();
2792 userpg->index = perf_event_index(event);
2793 userpg->offset = perf_event_count(event);
2794 if (event->state == PERF_EVENT_STATE_ACTIVE)
2795 userpg->offset -= local64_read(&event->hw.prev_count);
2796
2797 userpg->time_enabled = event->total_time_enabled +
2798 atomic64_read(&event->child_total_time_enabled);
2799
2800 userpg->time_running = event->total_time_running +
2801 atomic64_read(&event->child_total_time_running);
2802
2803 barrier();
2804 ++userpg->lock;
2805 preempt_enable();
2806 unlock:
2807 rcu_read_unlock();
2808 }
2809
2810 static unsigned long perf_data_size(struct perf_buffer *buffer);
2811
2812 static void
2813 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2814 {
2815 long max_size = perf_data_size(buffer);
2816
2817 if (watermark)
2818 buffer->watermark = min(max_size, watermark);
2819
2820 if (!buffer->watermark)
2821 buffer->watermark = max_size / 2;
2822
2823 if (flags & PERF_BUFFER_WRITABLE)
2824 buffer->writable = 1;
2825
2826 atomic_set(&buffer->refcount, 1);
2827 }
2828
2829 #ifndef CONFIG_PERF_USE_VMALLOC
2830
2831 /*
2832 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2833 */
2834
2835 static struct page *
2836 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2837 {
2838 if (pgoff > buffer->nr_pages)
2839 return NULL;
2840
2841 if (pgoff == 0)
2842 return virt_to_page(buffer->user_page);
2843
2844 return virt_to_page(buffer->data_pages[pgoff - 1]);
2845 }
2846
2847 static void *perf_mmap_alloc_page(int cpu)
2848 {
2849 struct page *page;
2850 int node;
2851
2852 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2853 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2854 if (!page)
2855 return NULL;
2856
2857 return page_address(page);
2858 }
2859
2860 static struct perf_buffer *
2861 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2862 {
2863 struct perf_buffer *buffer;
2864 unsigned long size;
2865 int i;
2866
2867 size = sizeof(struct perf_buffer);
2868 size += nr_pages * sizeof(void *);
2869
2870 buffer = kzalloc(size, GFP_KERNEL);
2871 if (!buffer)
2872 goto fail;
2873
2874 buffer->user_page = perf_mmap_alloc_page(cpu);
2875 if (!buffer->user_page)
2876 goto fail_user_page;
2877
2878 for (i = 0; i < nr_pages; i++) {
2879 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2880 if (!buffer->data_pages[i])
2881 goto fail_data_pages;
2882 }
2883
2884 buffer->nr_pages = nr_pages;
2885
2886 perf_buffer_init(buffer, watermark, flags);
2887
2888 return buffer;
2889
2890 fail_data_pages:
2891 for (i--; i >= 0; i--)
2892 free_page((unsigned long)buffer->data_pages[i]);
2893
2894 free_page((unsigned long)buffer->user_page);
2895
2896 fail_user_page:
2897 kfree(buffer);
2898
2899 fail:
2900 return NULL;
2901 }
2902
2903 static void perf_mmap_free_page(unsigned long addr)
2904 {
2905 struct page *page = virt_to_page((void *)addr);
2906
2907 page->mapping = NULL;
2908 __free_page(page);
2909 }
2910
2911 static void perf_buffer_free(struct perf_buffer *buffer)
2912 {
2913 int i;
2914
2915 perf_mmap_free_page((unsigned long)buffer->user_page);
2916 for (i = 0; i < buffer->nr_pages; i++)
2917 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2918 kfree(buffer);
2919 }
2920
2921 static inline int page_order(struct perf_buffer *buffer)
2922 {
2923 return 0;
2924 }
2925
2926 #else
2927
2928 /*
2929 * Back perf_mmap() with vmalloc memory.
2930 *
2931 * Required for architectures that have d-cache aliasing issues.
2932 */
2933
2934 static inline int page_order(struct perf_buffer *buffer)
2935 {
2936 return buffer->page_order;
2937 }
2938
2939 static struct page *
2940 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2941 {
2942 if (pgoff > (1UL << page_order(buffer)))
2943 return NULL;
2944
2945 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2946 }
2947
2948 static void perf_mmap_unmark_page(void *addr)
2949 {
2950 struct page *page = vmalloc_to_page(addr);
2951
2952 page->mapping = NULL;
2953 }
2954
2955 static void perf_buffer_free_work(struct work_struct *work)
2956 {
2957 struct perf_buffer *buffer;
2958 void *base;
2959 int i, nr;
2960
2961 buffer = container_of(work, struct perf_buffer, work);
2962 nr = 1 << page_order(buffer);
2963
2964 base = buffer->user_page;
2965 for (i = 0; i < nr + 1; i++)
2966 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2967
2968 vfree(base);
2969 kfree(buffer);
2970 }
2971
2972 static void perf_buffer_free(struct perf_buffer *buffer)
2973 {
2974 schedule_work(&buffer->work);
2975 }
2976
2977 static struct perf_buffer *
2978 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2979 {
2980 struct perf_buffer *buffer;
2981 unsigned long size;
2982 void *all_buf;
2983
2984 size = sizeof(struct perf_buffer);
2985 size += sizeof(void *);
2986
2987 buffer = kzalloc(size, GFP_KERNEL);
2988 if (!buffer)
2989 goto fail;
2990
2991 INIT_WORK(&buffer->work, perf_buffer_free_work);
2992
2993 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2994 if (!all_buf)
2995 goto fail_all_buf;
2996
2997 buffer->user_page = all_buf;
2998 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2999 buffer->page_order = ilog2(nr_pages);
3000 buffer->nr_pages = 1;
3001
3002 perf_buffer_init(buffer, watermark, flags);
3003
3004 return buffer;
3005
3006 fail_all_buf:
3007 kfree(buffer);
3008
3009 fail:
3010 return NULL;
3011 }
3012
3013 #endif
3014
3015 static unsigned long perf_data_size(struct perf_buffer *buffer)
3016 {
3017 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3018 }
3019
3020 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3021 {
3022 struct perf_event *event = vma->vm_file->private_data;
3023 struct perf_buffer *buffer;
3024 int ret = VM_FAULT_SIGBUS;
3025
3026 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3027 if (vmf->pgoff == 0)
3028 ret = 0;
3029 return ret;
3030 }
3031
3032 rcu_read_lock();
3033 buffer = rcu_dereference(event->buffer);
3034 if (!buffer)
3035 goto unlock;
3036
3037 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3038 goto unlock;
3039
3040 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3041 if (!vmf->page)
3042 goto unlock;
3043
3044 get_page(vmf->page);
3045 vmf->page->mapping = vma->vm_file->f_mapping;
3046 vmf->page->index = vmf->pgoff;
3047
3048 ret = 0;
3049 unlock:
3050 rcu_read_unlock();
3051
3052 return ret;
3053 }
3054
3055 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3056 {
3057 struct perf_buffer *buffer;
3058
3059 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3060 perf_buffer_free(buffer);
3061 }
3062
3063 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3064 {
3065 struct perf_buffer *buffer;
3066
3067 rcu_read_lock();
3068 buffer = rcu_dereference(event->buffer);
3069 if (buffer) {
3070 if (!atomic_inc_not_zero(&buffer->refcount))
3071 buffer = NULL;
3072 }
3073 rcu_read_unlock();
3074
3075 return buffer;
3076 }
3077
3078 static void perf_buffer_put(struct perf_buffer *buffer)
3079 {
3080 if (!atomic_dec_and_test(&buffer->refcount))
3081 return;
3082
3083 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3084 }
3085
3086 static void perf_mmap_open(struct vm_area_struct *vma)
3087 {
3088 struct perf_event *event = vma->vm_file->private_data;
3089
3090 atomic_inc(&event->mmap_count);
3091 }
3092
3093 static void perf_mmap_close(struct vm_area_struct *vma)
3094 {
3095 struct perf_event *event = vma->vm_file->private_data;
3096
3097 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3098 unsigned long size = perf_data_size(event->buffer);
3099 struct user_struct *user = event->mmap_user;
3100 struct perf_buffer *buffer = event->buffer;
3101
3102 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3103 vma->vm_mm->locked_vm -= event->mmap_locked;
3104 rcu_assign_pointer(event->buffer, NULL);
3105 mutex_unlock(&event->mmap_mutex);
3106
3107 perf_buffer_put(buffer);
3108 free_uid(user);
3109 }
3110 }
3111
3112 static const struct vm_operations_struct perf_mmap_vmops = {
3113 .open = perf_mmap_open,
3114 .close = perf_mmap_close,
3115 .fault = perf_mmap_fault,
3116 .page_mkwrite = perf_mmap_fault,
3117 };
3118
3119 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3120 {
3121 struct perf_event *event = file->private_data;
3122 unsigned long user_locked, user_lock_limit;
3123 struct user_struct *user = current_user();
3124 unsigned long locked, lock_limit;
3125 struct perf_buffer *buffer;
3126 unsigned long vma_size;
3127 unsigned long nr_pages;
3128 long user_extra, extra;
3129 int ret = 0, flags = 0;
3130
3131 /*
3132 * Don't allow mmap() of inherited per-task counters. This would
3133 * create a performance issue due to all children writing to the
3134 * same buffer.
3135 */
3136 if (event->cpu == -1 && event->attr.inherit)
3137 return -EINVAL;
3138
3139 if (!(vma->vm_flags & VM_SHARED))
3140 return -EINVAL;
3141
3142 vma_size = vma->vm_end - vma->vm_start;
3143 nr_pages = (vma_size / PAGE_SIZE) - 1;
3144
3145 /*
3146 * If we have buffer pages ensure they're a power-of-two number, so we
3147 * can do bitmasks instead of modulo.
3148 */
3149 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3150 return -EINVAL;
3151
3152 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3153 return -EINVAL;
3154
3155 if (vma->vm_pgoff != 0)
3156 return -EINVAL;
3157
3158 WARN_ON_ONCE(event->ctx->parent_ctx);
3159 mutex_lock(&event->mmap_mutex);
3160 if (event->buffer) {
3161 if (event->buffer->nr_pages == nr_pages)
3162 atomic_inc(&event->buffer->refcount);
3163 else
3164 ret = -EINVAL;
3165 goto unlock;
3166 }
3167
3168 user_extra = nr_pages + 1;
3169 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3170
3171 /*
3172 * Increase the limit linearly with more CPUs:
3173 */
3174 user_lock_limit *= num_online_cpus();
3175
3176 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3177
3178 extra = 0;
3179 if (user_locked > user_lock_limit)
3180 extra = user_locked - user_lock_limit;
3181
3182 lock_limit = rlimit(RLIMIT_MEMLOCK);
3183 lock_limit >>= PAGE_SHIFT;
3184 locked = vma->vm_mm->locked_vm + extra;
3185
3186 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3187 !capable(CAP_IPC_LOCK)) {
3188 ret = -EPERM;
3189 goto unlock;
3190 }
3191
3192 WARN_ON(event->buffer);
3193
3194 if (vma->vm_flags & VM_WRITE)
3195 flags |= PERF_BUFFER_WRITABLE;
3196
3197 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3198 event->cpu, flags);
3199 if (!buffer) {
3200 ret = -ENOMEM;
3201 goto unlock;
3202 }
3203 rcu_assign_pointer(event->buffer, buffer);
3204
3205 atomic_long_add(user_extra, &user->locked_vm);
3206 event->mmap_locked = extra;
3207 event->mmap_user = get_current_user();
3208 vma->vm_mm->locked_vm += event->mmap_locked;
3209
3210 unlock:
3211 if (!ret)
3212 atomic_inc(&event->mmap_count);
3213 mutex_unlock(&event->mmap_mutex);
3214
3215 vma->vm_flags |= VM_RESERVED;
3216 vma->vm_ops = &perf_mmap_vmops;
3217
3218 return ret;
3219 }
3220
3221 static int perf_fasync(int fd, struct file *filp, int on)
3222 {
3223 struct inode *inode = filp->f_path.dentry->d_inode;
3224 struct perf_event *event = filp->private_data;
3225 int retval;
3226
3227 mutex_lock(&inode->i_mutex);
3228 retval = fasync_helper(fd, filp, on, &event->fasync);
3229 mutex_unlock(&inode->i_mutex);
3230
3231 if (retval < 0)
3232 return retval;
3233
3234 return 0;
3235 }
3236
3237 static const struct file_operations perf_fops = {
3238 .llseek = no_llseek,
3239 .release = perf_release,
3240 .read = perf_read,
3241 .poll = perf_poll,
3242 .unlocked_ioctl = perf_ioctl,
3243 .compat_ioctl = perf_ioctl,
3244 .mmap = perf_mmap,
3245 .fasync = perf_fasync,
3246 };
3247
3248 /*
3249 * Perf event wakeup
3250 *
3251 * If there's data, ensure we set the poll() state and publish everything
3252 * to user-space before waking everybody up.
3253 */
3254
3255 void perf_event_wakeup(struct perf_event *event)
3256 {
3257 wake_up_all(&event->waitq);
3258
3259 if (event->pending_kill) {
3260 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3261 event->pending_kill = 0;
3262 }
3263 }
3264
3265 static void perf_pending_event(struct irq_work *entry)
3266 {
3267 struct perf_event *event = container_of(entry,
3268 struct perf_event, pending);
3269
3270 if (event->pending_disable) {
3271 event->pending_disable = 0;
3272 __perf_event_disable(event);
3273 }
3274
3275 if (event->pending_wakeup) {
3276 event->pending_wakeup = 0;
3277 perf_event_wakeup(event);
3278 }
3279 }
3280
3281 /*
3282 * We assume there is only KVM supporting the callbacks.
3283 * Later on, we might change it to a list if there is
3284 * another virtualization implementation supporting the callbacks.
3285 */
3286 struct perf_guest_info_callbacks *perf_guest_cbs;
3287
3288 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3289 {
3290 perf_guest_cbs = cbs;
3291 return 0;
3292 }
3293 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3294
3295 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3296 {
3297 perf_guest_cbs = NULL;
3298 return 0;
3299 }
3300 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3301
3302 /*
3303 * Output
3304 */
3305 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3306 unsigned long offset, unsigned long head)
3307 {
3308 unsigned long mask;
3309
3310 if (!buffer->writable)
3311 return true;
3312
3313 mask = perf_data_size(buffer) - 1;
3314
3315 offset = (offset - tail) & mask;
3316 head = (head - tail) & mask;
3317
3318 if ((int)(head - offset) < 0)
3319 return false;
3320
3321 return true;
3322 }
3323
3324 static void perf_output_wakeup(struct perf_output_handle *handle)
3325 {
3326 atomic_set(&handle->buffer->poll, POLL_IN);
3327
3328 if (handle->nmi) {
3329 handle->event->pending_wakeup = 1;
3330 irq_work_queue(&handle->event->pending);
3331 } else
3332 perf_event_wakeup(handle->event);
3333 }
3334
3335 /*
3336 * We need to ensure a later event_id doesn't publish a head when a former
3337 * event isn't done writing. However since we need to deal with NMIs we
3338 * cannot fully serialize things.
3339 *
3340 * We only publish the head (and generate a wakeup) when the outer-most
3341 * event completes.
3342 */
3343 static void perf_output_get_handle(struct perf_output_handle *handle)
3344 {
3345 struct perf_buffer *buffer = handle->buffer;
3346
3347 preempt_disable();
3348 local_inc(&buffer->nest);
3349 handle->wakeup = local_read(&buffer->wakeup);
3350 }
3351
3352 static void perf_output_put_handle(struct perf_output_handle *handle)
3353 {
3354 struct perf_buffer *buffer = handle->buffer;
3355 unsigned long head;
3356
3357 again:
3358 head = local_read(&buffer->head);
3359
3360 /*
3361 * IRQ/NMI can happen here, which means we can miss a head update.
3362 */
3363
3364 if (!local_dec_and_test(&buffer->nest))
3365 goto out;
3366
3367 /*
3368 * Publish the known good head. Rely on the full barrier implied
3369 * by atomic_dec_and_test() order the buffer->head read and this
3370 * write.
3371 */
3372 buffer->user_page->data_head = head;
3373
3374 /*
3375 * Now check if we missed an update, rely on the (compiler)
3376 * barrier in atomic_dec_and_test() to re-read buffer->head.
3377 */
3378 if (unlikely(head != local_read(&buffer->head))) {
3379 local_inc(&buffer->nest);
3380 goto again;
3381 }
3382
3383 if (handle->wakeup != local_read(&buffer->wakeup))
3384 perf_output_wakeup(handle);
3385
3386 out:
3387 preempt_enable();
3388 }
3389
3390 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3391 const void *buf, unsigned int len)
3392 {
3393 do {
3394 unsigned long size = min_t(unsigned long, handle->size, len);
3395
3396 memcpy(handle->addr, buf, size);
3397
3398 len -= size;
3399 handle->addr += size;
3400 buf += size;
3401 handle->size -= size;
3402 if (!handle->size) {
3403 struct perf_buffer *buffer = handle->buffer;
3404
3405 handle->page++;
3406 handle->page &= buffer->nr_pages - 1;
3407 handle->addr = buffer->data_pages[handle->page];
3408 handle->size = PAGE_SIZE << page_order(buffer);
3409 }
3410 } while (len);
3411 }
3412
3413 static void __perf_event_header__init_id(struct perf_event_header *header,
3414 struct perf_sample_data *data,
3415 struct perf_event *event)
3416 {
3417 u64 sample_type = event->attr.sample_type;
3418
3419 data->type = sample_type;
3420 header->size += event->id_header_size;
3421
3422 if (sample_type & PERF_SAMPLE_TID) {
3423 /* namespace issues */
3424 data->tid_entry.pid = perf_event_pid(event, current);
3425 data->tid_entry.tid = perf_event_tid(event, current);
3426 }
3427
3428 if (sample_type & PERF_SAMPLE_TIME)
3429 data->time = perf_clock();
3430
3431 if (sample_type & PERF_SAMPLE_ID)
3432 data->id = primary_event_id(event);
3433
3434 if (sample_type & PERF_SAMPLE_STREAM_ID)
3435 data->stream_id = event->id;
3436
3437 if (sample_type & PERF_SAMPLE_CPU) {
3438 data->cpu_entry.cpu = raw_smp_processor_id();
3439 data->cpu_entry.reserved = 0;
3440 }
3441 }
3442
3443 static void perf_event_header__init_id(struct perf_event_header *header,
3444 struct perf_sample_data *data,
3445 struct perf_event *event)
3446 {
3447 if (event->attr.sample_id_all)
3448 __perf_event_header__init_id(header, data, event);
3449 }
3450
3451 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3452 struct perf_sample_data *data)
3453 {
3454 u64 sample_type = data->type;
3455
3456 if (sample_type & PERF_SAMPLE_TID)
3457 perf_output_put(handle, data->tid_entry);
3458
3459 if (sample_type & PERF_SAMPLE_TIME)
3460 perf_output_put(handle, data->time);
3461
3462 if (sample_type & PERF_SAMPLE_ID)
3463 perf_output_put(handle, data->id);
3464
3465 if (sample_type & PERF_SAMPLE_STREAM_ID)
3466 perf_output_put(handle, data->stream_id);
3467
3468 if (sample_type & PERF_SAMPLE_CPU)
3469 perf_output_put(handle, data->cpu_entry);
3470 }
3471
3472 static void perf_event__output_id_sample(struct perf_event *event,
3473 struct perf_output_handle *handle,
3474 struct perf_sample_data *sample)
3475 {
3476 if (event->attr.sample_id_all)
3477 __perf_event__output_id_sample(handle, sample);
3478 }
3479
3480 int perf_output_begin(struct perf_output_handle *handle,
3481 struct perf_event *event, unsigned int size,
3482 int nmi, int sample)
3483 {
3484 struct perf_buffer *buffer;
3485 unsigned long tail, offset, head;
3486 int have_lost;
3487 struct perf_sample_data sample_data;
3488 struct {
3489 struct perf_event_header header;
3490 u64 id;
3491 u64 lost;
3492 } lost_event;
3493
3494 rcu_read_lock();
3495 /*
3496 * For inherited events we send all the output towards the parent.
3497 */
3498 if (event->parent)
3499 event = event->parent;
3500
3501 buffer = rcu_dereference(event->buffer);
3502 if (!buffer)
3503 goto out;
3504
3505 handle->buffer = buffer;
3506 handle->event = event;
3507 handle->nmi = nmi;
3508 handle->sample = sample;
3509
3510 if (!buffer->nr_pages)
3511 goto out;
3512
3513 have_lost = local_read(&buffer->lost);
3514 if (have_lost) {
3515 lost_event.header.size = sizeof(lost_event);
3516 perf_event_header__init_id(&lost_event.header, &sample_data,
3517 event);
3518 size += lost_event.header.size;
3519 }
3520
3521 perf_output_get_handle(handle);
3522
3523 do {
3524 /*
3525 * Userspace could choose to issue a mb() before updating the
3526 * tail pointer. So that all reads will be completed before the
3527 * write is issued.
3528 */
3529 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3530 smp_rmb();
3531 offset = head = local_read(&buffer->head);
3532 head += size;
3533 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3534 goto fail;
3535 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3536
3537 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3538 local_add(buffer->watermark, &buffer->wakeup);
3539
3540 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3541 handle->page &= buffer->nr_pages - 1;
3542 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3543 handle->addr = buffer->data_pages[handle->page];
3544 handle->addr += handle->size;
3545 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3546
3547 if (have_lost) {
3548 lost_event.header.type = PERF_RECORD_LOST;
3549 lost_event.header.misc = 0;
3550 lost_event.id = event->id;
3551 lost_event.lost = local_xchg(&buffer->lost, 0);
3552
3553 perf_output_put(handle, lost_event);
3554 perf_event__output_id_sample(event, handle, &sample_data);
3555 }
3556
3557 return 0;
3558
3559 fail:
3560 local_inc(&buffer->lost);
3561 perf_output_put_handle(handle);
3562 out:
3563 rcu_read_unlock();
3564
3565 return -ENOSPC;
3566 }
3567
3568 void perf_output_end(struct perf_output_handle *handle)
3569 {
3570 struct perf_event *event = handle->event;
3571 struct perf_buffer *buffer = handle->buffer;
3572
3573 int wakeup_events = event->attr.wakeup_events;
3574
3575 if (handle->sample && wakeup_events) {
3576 int events = local_inc_return(&buffer->events);
3577 if (events >= wakeup_events) {
3578 local_sub(wakeup_events, &buffer->events);
3579 local_inc(&buffer->wakeup);
3580 }
3581 }
3582
3583 perf_output_put_handle(handle);
3584 rcu_read_unlock();
3585 }
3586
3587 static void perf_output_read_one(struct perf_output_handle *handle,
3588 struct perf_event *event,
3589 u64 enabled, u64 running)
3590 {
3591 u64 read_format = event->attr.read_format;
3592 u64 values[4];
3593 int n = 0;
3594
3595 values[n++] = perf_event_count(event);
3596 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3597 values[n++] = enabled +
3598 atomic64_read(&event->child_total_time_enabled);
3599 }
3600 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3601 values[n++] = running +
3602 atomic64_read(&event->child_total_time_running);
3603 }
3604 if (read_format & PERF_FORMAT_ID)
3605 values[n++] = primary_event_id(event);
3606
3607 perf_output_copy(handle, values, n * sizeof(u64));
3608 }
3609
3610 /*
3611 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3612 */
3613 static void perf_output_read_group(struct perf_output_handle *handle,
3614 struct perf_event *event,
3615 u64 enabled, u64 running)
3616 {
3617 struct perf_event *leader = event->group_leader, *sub;
3618 u64 read_format = event->attr.read_format;
3619 u64 values[5];
3620 int n = 0;
3621
3622 values[n++] = 1 + leader->nr_siblings;
3623
3624 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3625 values[n++] = enabled;
3626
3627 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3628 values[n++] = running;
3629
3630 if (leader != event)
3631 leader->pmu->read(leader);
3632
3633 values[n++] = perf_event_count(leader);
3634 if (read_format & PERF_FORMAT_ID)
3635 values[n++] = primary_event_id(leader);
3636
3637 perf_output_copy(handle, values, n * sizeof(u64));
3638
3639 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3640 n = 0;
3641
3642 if (sub != event)
3643 sub->pmu->read(sub);
3644
3645 values[n++] = perf_event_count(sub);
3646 if (read_format & PERF_FORMAT_ID)
3647 values[n++] = primary_event_id(sub);
3648
3649 perf_output_copy(handle, values, n * sizeof(u64));
3650 }
3651 }
3652
3653 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3654 PERF_FORMAT_TOTAL_TIME_RUNNING)
3655
3656 static void perf_output_read(struct perf_output_handle *handle,
3657 struct perf_event *event)
3658 {
3659 u64 enabled = 0, running = 0, now, ctx_time;
3660 u64 read_format = event->attr.read_format;
3661
3662 /*
3663 * compute total_time_enabled, total_time_running
3664 * based on snapshot values taken when the event
3665 * was last scheduled in.
3666 *
3667 * we cannot simply called update_context_time()
3668 * because of locking issue as we are called in
3669 * NMI context
3670 */
3671 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3672 now = perf_clock();
3673 ctx_time = event->shadow_ctx_time + now;
3674 enabled = ctx_time - event->tstamp_enabled;
3675 running = ctx_time - event->tstamp_running;
3676 }
3677
3678 if (event->attr.read_format & PERF_FORMAT_GROUP)
3679 perf_output_read_group(handle, event, enabled, running);
3680 else
3681 perf_output_read_one(handle, event, enabled, running);
3682 }
3683
3684 void perf_output_sample(struct perf_output_handle *handle,
3685 struct perf_event_header *header,
3686 struct perf_sample_data *data,
3687 struct perf_event *event)
3688 {
3689 u64 sample_type = data->type;
3690
3691 perf_output_put(handle, *header);
3692
3693 if (sample_type & PERF_SAMPLE_IP)
3694 perf_output_put(handle, data->ip);
3695
3696 if (sample_type & PERF_SAMPLE_TID)
3697 perf_output_put(handle, data->tid_entry);
3698
3699 if (sample_type & PERF_SAMPLE_TIME)
3700 perf_output_put(handle, data->time);
3701
3702 if (sample_type & PERF_SAMPLE_ADDR)
3703 perf_output_put(handle, data->addr);
3704
3705 if (sample_type & PERF_SAMPLE_ID)
3706 perf_output_put(handle, data->id);
3707
3708 if (sample_type & PERF_SAMPLE_STREAM_ID)
3709 perf_output_put(handle, data->stream_id);
3710
3711 if (sample_type & PERF_SAMPLE_CPU)
3712 perf_output_put(handle, data->cpu_entry);
3713
3714 if (sample_type & PERF_SAMPLE_PERIOD)
3715 perf_output_put(handle, data->period);
3716
3717 if (sample_type & PERF_SAMPLE_READ)
3718 perf_output_read(handle, event);
3719
3720 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3721 if (data->callchain) {
3722 int size = 1;
3723
3724 if (data->callchain)
3725 size += data->callchain->nr;
3726
3727 size *= sizeof(u64);
3728
3729 perf_output_copy(handle, data->callchain, size);
3730 } else {
3731 u64 nr = 0;
3732 perf_output_put(handle, nr);
3733 }
3734 }
3735
3736 if (sample_type & PERF_SAMPLE_RAW) {
3737 if (data->raw) {
3738 perf_output_put(handle, data->raw->size);
3739 perf_output_copy(handle, data->raw->data,
3740 data->raw->size);
3741 } else {
3742 struct {
3743 u32 size;
3744 u32 data;
3745 } raw = {
3746 .size = sizeof(u32),
3747 .data = 0,
3748 };
3749 perf_output_put(handle, raw);
3750 }
3751 }
3752 }
3753
3754 void perf_prepare_sample(struct perf_event_header *header,
3755 struct perf_sample_data *data,
3756 struct perf_event *event,
3757 struct pt_regs *regs)
3758 {
3759 u64 sample_type = event->attr.sample_type;
3760
3761 header->type = PERF_RECORD_SAMPLE;
3762 header->size = sizeof(*header) + event->header_size;
3763
3764 header->misc = 0;
3765 header->misc |= perf_misc_flags(regs);
3766
3767 __perf_event_header__init_id(header, data, event);
3768
3769 if (sample_type & PERF_SAMPLE_IP)
3770 data->ip = perf_instruction_pointer(regs);
3771
3772 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3773 int size = 1;
3774
3775 data->callchain = perf_callchain(regs);
3776
3777 if (data->callchain)
3778 size += data->callchain->nr;
3779
3780 header->size += size * sizeof(u64);
3781 }
3782
3783 if (sample_type & PERF_SAMPLE_RAW) {
3784 int size = sizeof(u32);
3785
3786 if (data->raw)
3787 size += data->raw->size;
3788 else
3789 size += sizeof(u32);
3790
3791 WARN_ON_ONCE(size & (sizeof(u64)-1));
3792 header->size += size;
3793 }
3794 }
3795
3796 static void perf_event_output(struct perf_event *event, int nmi,
3797 struct perf_sample_data *data,
3798 struct pt_regs *regs)
3799 {
3800 struct perf_output_handle handle;
3801 struct perf_event_header header;
3802
3803 /* protect the callchain buffers */
3804 rcu_read_lock();
3805
3806 perf_prepare_sample(&header, data, event, regs);
3807
3808 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3809 goto exit;
3810
3811 perf_output_sample(&handle, &header, data, event);
3812
3813 perf_output_end(&handle);
3814
3815 exit:
3816 rcu_read_unlock();
3817 }
3818
3819 /*
3820 * read event_id
3821 */
3822
3823 struct perf_read_event {
3824 struct perf_event_header header;
3825
3826 u32 pid;
3827 u32 tid;
3828 };
3829
3830 static void
3831 perf_event_read_event(struct perf_event *event,
3832 struct task_struct *task)
3833 {
3834 struct perf_output_handle handle;
3835 struct perf_sample_data sample;
3836 struct perf_read_event read_event = {
3837 .header = {
3838 .type = PERF_RECORD_READ,
3839 .misc = 0,
3840 .size = sizeof(read_event) + event->read_size,
3841 },
3842 .pid = perf_event_pid(event, task),
3843 .tid = perf_event_tid(event, task),
3844 };
3845 int ret;
3846
3847 perf_event_header__init_id(&read_event.header, &sample, event);
3848 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3849 if (ret)
3850 return;
3851
3852 perf_output_put(&handle, read_event);
3853 perf_output_read(&handle, event);
3854 perf_event__output_id_sample(event, &handle, &sample);
3855
3856 perf_output_end(&handle);
3857 }
3858
3859 /*
3860 * task tracking -- fork/exit
3861 *
3862 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3863 */
3864
3865 struct perf_task_event {
3866 struct task_struct *task;
3867 struct perf_event_context *task_ctx;
3868
3869 struct {
3870 struct perf_event_header header;
3871
3872 u32 pid;
3873 u32 ppid;
3874 u32 tid;
3875 u32 ptid;
3876 u64 time;
3877 } event_id;
3878 };
3879
3880 static void perf_event_task_output(struct perf_event *event,
3881 struct perf_task_event *task_event)
3882 {
3883 struct perf_output_handle handle;
3884 struct perf_sample_data sample;
3885 struct task_struct *task = task_event->task;
3886 int ret, size = task_event->event_id.header.size;
3887
3888 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3889
3890 ret = perf_output_begin(&handle, event,
3891 task_event->event_id.header.size, 0, 0);
3892 if (ret)
3893 goto out;
3894
3895 task_event->event_id.pid = perf_event_pid(event, task);
3896 task_event->event_id.ppid = perf_event_pid(event, current);
3897
3898 task_event->event_id.tid = perf_event_tid(event, task);
3899 task_event->event_id.ptid = perf_event_tid(event, current);
3900
3901 perf_output_put(&handle, task_event->event_id);
3902
3903 perf_event__output_id_sample(event, &handle, &sample);
3904
3905 perf_output_end(&handle);
3906 out:
3907 task_event->event_id.header.size = size;
3908 }
3909
3910 static int perf_event_task_match(struct perf_event *event)
3911 {
3912 if (event->state < PERF_EVENT_STATE_INACTIVE)
3913 return 0;
3914
3915 if (!event_filter_match(event))
3916 return 0;
3917
3918 if (event->attr.comm || event->attr.mmap ||
3919 event->attr.mmap_data || event->attr.task)
3920 return 1;
3921
3922 return 0;
3923 }
3924
3925 static void perf_event_task_ctx(struct perf_event_context *ctx,
3926 struct perf_task_event *task_event)
3927 {
3928 struct perf_event *event;
3929
3930 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3931 if (perf_event_task_match(event))
3932 perf_event_task_output(event, task_event);
3933 }
3934 }
3935
3936 static void perf_event_task_event(struct perf_task_event *task_event)
3937 {
3938 struct perf_cpu_context *cpuctx;
3939 struct perf_event_context *ctx;
3940 struct pmu *pmu;
3941 int ctxn;
3942
3943 rcu_read_lock();
3944 list_for_each_entry_rcu(pmu, &pmus, entry) {
3945 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3946 if (cpuctx->active_pmu != pmu)
3947 goto next;
3948 perf_event_task_ctx(&cpuctx->ctx, task_event);
3949
3950 ctx = task_event->task_ctx;
3951 if (!ctx) {
3952 ctxn = pmu->task_ctx_nr;
3953 if (ctxn < 0)
3954 goto next;
3955 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3956 }
3957 if (ctx)
3958 perf_event_task_ctx(ctx, task_event);
3959 next:
3960 put_cpu_ptr(pmu->pmu_cpu_context);
3961 }
3962 rcu_read_unlock();
3963 }
3964
3965 static void perf_event_task(struct task_struct *task,
3966 struct perf_event_context *task_ctx,
3967 int new)
3968 {
3969 struct perf_task_event task_event;
3970
3971 if (!atomic_read(&nr_comm_events) &&
3972 !atomic_read(&nr_mmap_events) &&
3973 !atomic_read(&nr_task_events))
3974 return;
3975
3976 task_event = (struct perf_task_event){
3977 .task = task,
3978 .task_ctx = task_ctx,
3979 .event_id = {
3980 .header = {
3981 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3982 .misc = 0,
3983 .size = sizeof(task_event.event_id),
3984 },
3985 /* .pid */
3986 /* .ppid */
3987 /* .tid */
3988 /* .ptid */
3989 .time = perf_clock(),
3990 },
3991 };
3992
3993 perf_event_task_event(&task_event);
3994 }
3995
3996 void perf_event_fork(struct task_struct *task)
3997 {
3998 perf_event_task(task, NULL, 1);
3999 }
4000
4001 /*
4002 * comm tracking
4003 */
4004
4005 struct perf_comm_event {
4006 struct task_struct *task;
4007 char *comm;
4008 int comm_size;
4009
4010 struct {
4011 struct perf_event_header header;
4012
4013 u32 pid;
4014 u32 tid;
4015 } event_id;
4016 };
4017
4018 static void perf_event_comm_output(struct perf_event *event,
4019 struct perf_comm_event *comm_event)
4020 {
4021 struct perf_output_handle handle;
4022 struct perf_sample_data sample;
4023 int size = comm_event->event_id.header.size;
4024 int ret;
4025
4026 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4027 ret = perf_output_begin(&handle, event,
4028 comm_event->event_id.header.size, 0, 0);
4029
4030 if (ret)
4031 goto out;
4032
4033 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4034 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4035
4036 perf_output_put(&handle, comm_event->event_id);
4037 perf_output_copy(&handle, comm_event->comm,
4038 comm_event->comm_size);
4039
4040 perf_event__output_id_sample(event, &handle, &sample);
4041
4042 perf_output_end(&handle);
4043 out:
4044 comm_event->event_id.header.size = size;
4045 }
4046
4047 static int perf_event_comm_match(struct perf_event *event)
4048 {
4049 if (event->state < PERF_EVENT_STATE_INACTIVE)
4050 return 0;
4051
4052 if (!event_filter_match(event))
4053 return 0;
4054
4055 if (event->attr.comm)
4056 return 1;
4057
4058 return 0;
4059 }
4060
4061 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4062 struct perf_comm_event *comm_event)
4063 {
4064 struct perf_event *event;
4065
4066 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4067 if (perf_event_comm_match(event))
4068 perf_event_comm_output(event, comm_event);
4069 }
4070 }
4071
4072 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4073 {
4074 struct perf_cpu_context *cpuctx;
4075 struct perf_event_context *ctx;
4076 char comm[TASK_COMM_LEN];
4077 unsigned int size;
4078 struct pmu *pmu;
4079 int ctxn;
4080
4081 memset(comm, 0, sizeof(comm));
4082 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4083 size = ALIGN(strlen(comm)+1, sizeof(u64));
4084
4085 comm_event->comm = comm;
4086 comm_event->comm_size = size;
4087
4088 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4089 rcu_read_lock();
4090 list_for_each_entry_rcu(pmu, &pmus, entry) {
4091 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4092 if (cpuctx->active_pmu != pmu)
4093 goto next;
4094 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4095
4096 ctxn = pmu->task_ctx_nr;
4097 if (ctxn < 0)
4098 goto next;
4099
4100 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4101 if (ctx)
4102 perf_event_comm_ctx(ctx, comm_event);
4103 next:
4104 put_cpu_ptr(pmu->pmu_cpu_context);
4105 }
4106 rcu_read_unlock();
4107 }
4108
4109 void perf_event_comm(struct task_struct *task)
4110 {
4111 struct perf_comm_event comm_event;
4112 struct perf_event_context *ctx;
4113 int ctxn;
4114
4115 for_each_task_context_nr(ctxn) {
4116 ctx = task->perf_event_ctxp[ctxn];
4117 if (!ctx)
4118 continue;
4119
4120 perf_event_enable_on_exec(ctx);
4121 }
4122
4123 if (!atomic_read(&nr_comm_events))
4124 return;
4125
4126 comm_event = (struct perf_comm_event){
4127 .task = task,
4128 /* .comm */
4129 /* .comm_size */
4130 .event_id = {
4131 .header = {
4132 .type = PERF_RECORD_COMM,
4133 .misc = 0,
4134 /* .size */
4135 },
4136 /* .pid */
4137 /* .tid */
4138 },
4139 };
4140
4141 perf_event_comm_event(&comm_event);
4142 }
4143
4144 /*
4145 * mmap tracking
4146 */
4147
4148 struct perf_mmap_event {
4149 struct vm_area_struct *vma;
4150
4151 const char *file_name;
4152 int file_size;
4153
4154 struct {
4155 struct perf_event_header header;
4156
4157 u32 pid;
4158 u32 tid;
4159 u64 start;
4160 u64 len;
4161 u64 pgoff;
4162 } event_id;
4163 };
4164
4165 static void perf_event_mmap_output(struct perf_event *event,
4166 struct perf_mmap_event *mmap_event)
4167 {
4168 struct perf_output_handle handle;
4169 struct perf_sample_data sample;
4170 int size = mmap_event->event_id.header.size;
4171 int ret;
4172
4173 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4174 ret = perf_output_begin(&handle, event,
4175 mmap_event->event_id.header.size, 0, 0);
4176 if (ret)
4177 goto out;
4178
4179 mmap_event->event_id.pid = perf_event_pid(event, current);
4180 mmap_event->event_id.tid = perf_event_tid(event, current);
4181
4182 perf_output_put(&handle, mmap_event->event_id);
4183 perf_output_copy(&handle, mmap_event->file_name,
4184 mmap_event->file_size);
4185
4186 perf_event__output_id_sample(event, &handle, &sample);
4187
4188 perf_output_end(&handle);
4189 out:
4190 mmap_event->event_id.header.size = size;
4191 }
4192
4193 static int perf_event_mmap_match(struct perf_event *event,
4194 struct perf_mmap_event *mmap_event,
4195 int executable)
4196 {
4197 if (event->state < PERF_EVENT_STATE_INACTIVE)
4198 return 0;
4199
4200 if (!event_filter_match(event))
4201 return 0;
4202
4203 if ((!executable && event->attr.mmap_data) ||
4204 (executable && event->attr.mmap))
4205 return 1;
4206
4207 return 0;
4208 }
4209
4210 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4211 struct perf_mmap_event *mmap_event,
4212 int executable)
4213 {
4214 struct perf_event *event;
4215
4216 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4217 if (perf_event_mmap_match(event, mmap_event, executable))
4218 perf_event_mmap_output(event, mmap_event);
4219 }
4220 }
4221
4222 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4223 {
4224 struct perf_cpu_context *cpuctx;
4225 struct perf_event_context *ctx;
4226 struct vm_area_struct *vma = mmap_event->vma;
4227 struct file *file = vma->vm_file;
4228 unsigned int size;
4229 char tmp[16];
4230 char *buf = NULL;
4231 const char *name;
4232 struct pmu *pmu;
4233 int ctxn;
4234
4235 memset(tmp, 0, sizeof(tmp));
4236
4237 if (file) {
4238 /*
4239 * d_path works from the end of the buffer backwards, so we
4240 * need to add enough zero bytes after the string to handle
4241 * the 64bit alignment we do later.
4242 */
4243 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4244 if (!buf) {
4245 name = strncpy(tmp, "//enomem", sizeof(tmp));
4246 goto got_name;
4247 }
4248 name = d_path(&file->f_path, buf, PATH_MAX);
4249 if (IS_ERR(name)) {
4250 name = strncpy(tmp, "//toolong", sizeof(tmp));
4251 goto got_name;
4252 }
4253 } else {
4254 if (arch_vma_name(mmap_event->vma)) {
4255 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4256 sizeof(tmp));
4257 goto got_name;
4258 }
4259
4260 if (!vma->vm_mm) {
4261 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4262 goto got_name;
4263 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4264 vma->vm_end >= vma->vm_mm->brk) {
4265 name = strncpy(tmp, "[heap]", sizeof(tmp));
4266 goto got_name;
4267 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4268 vma->vm_end >= vma->vm_mm->start_stack) {
4269 name = strncpy(tmp, "[stack]", sizeof(tmp));
4270 goto got_name;
4271 }
4272
4273 name = strncpy(tmp, "//anon", sizeof(tmp));
4274 goto got_name;
4275 }
4276
4277 got_name:
4278 size = ALIGN(strlen(name)+1, sizeof(u64));
4279
4280 mmap_event->file_name = name;
4281 mmap_event->file_size = size;
4282
4283 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4284
4285 rcu_read_lock();
4286 list_for_each_entry_rcu(pmu, &pmus, entry) {
4287 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4288 if (cpuctx->active_pmu != pmu)
4289 goto next;
4290 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4291 vma->vm_flags & VM_EXEC);
4292
4293 ctxn = pmu->task_ctx_nr;
4294 if (ctxn < 0)
4295 goto next;
4296
4297 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4298 if (ctx) {
4299 perf_event_mmap_ctx(ctx, mmap_event,
4300 vma->vm_flags & VM_EXEC);
4301 }
4302 next:
4303 put_cpu_ptr(pmu->pmu_cpu_context);
4304 }
4305 rcu_read_unlock();
4306
4307 kfree(buf);
4308 }
4309
4310 void perf_event_mmap(struct vm_area_struct *vma)
4311 {
4312 struct perf_mmap_event mmap_event;
4313
4314 if (!atomic_read(&nr_mmap_events))
4315 return;
4316
4317 mmap_event = (struct perf_mmap_event){
4318 .vma = vma,
4319 /* .file_name */
4320 /* .file_size */
4321 .event_id = {
4322 .header = {
4323 .type = PERF_RECORD_MMAP,
4324 .misc = PERF_RECORD_MISC_USER,
4325 /* .size */
4326 },
4327 /* .pid */
4328 /* .tid */
4329 .start = vma->vm_start,
4330 .len = vma->vm_end - vma->vm_start,
4331 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4332 },
4333 };
4334
4335 perf_event_mmap_event(&mmap_event);
4336 }
4337
4338 /*
4339 * IRQ throttle logging
4340 */
4341
4342 static void perf_log_throttle(struct perf_event *event, int enable)
4343 {
4344 struct perf_output_handle handle;
4345 struct perf_sample_data sample;
4346 int ret;
4347
4348 struct {
4349 struct perf_event_header header;
4350 u64 time;
4351 u64 id;
4352 u64 stream_id;
4353 } throttle_event = {
4354 .header = {
4355 .type = PERF_RECORD_THROTTLE,
4356 .misc = 0,
4357 .size = sizeof(throttle_event),
4358 },
4359 .time = perf_clock(),
4360 .id = primary_event_id(event),
4361 .stream_id = event->id,
4362 };
4363
4364 if (enable)
4365 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4366
4367 perf_event_header__init_id(&throttle_event.header, &sample, event);
4368
4369 ret = perf_output_begin(&handle, event,
4370 throttle_event.header.size, 1, 0);
4371 if (ret)
4372 return;
4373
4374 perf_output_put(&handle, throttle_event);
4375 perf_event__output_id_sample(event, &handle, &sample);
4376 perf_output_end(&handle);
4377 }
4378
4379 /*
4380 * Generic event overflow handling, sampling.
4381 */
4382
4383 static int __perf_event_overflow(struct perf_event *event, int nmi,
4384 int throttle, struct perf_sample_data *data,
4385 struct pt_regs *regs)
4386 {
4387 int events = atomic_read(&event->event_limit);
4388 struct hw_perf_event *hwc = &event->hw;
4389 int ret = 0;
4390
4391 /*
4392 * Non-sampling counters might still use the PMI to fold short
4393 * hardware counters, ignore those.
4394 */
4395 if (unlikely(!is_sampling_event(event)))
4396 return 0;
4397
4398 if (!throttle) {
4399 hwc->interrupts++;
4400 } else {
4401 if (hwc->interrupts != MAX_INTERRUPTS) {
4402 hwc->interrupts++;
4403 if (HZ * hwc->interrupts >
4404 (u64)sysctl_perf_event_sample_rate) {
4405 hwc->interrupts = MAX_INTERRUPTS;
4406 perf_log_throttle(event, 0);
4407 ret = 1;
4408 }
4409 } else {
4410 /*
4411 * Keep re-disabling events even though on the previous
4412 * pass we disabled it - just in case we raced with a
4413 * sched-in and the event got enabled again:
4414 */
4415 ret = 1;
4416 }
4417 }
4418
4419 if (event->attr.freq) {
4420 u64 now = perf_clock();
4421 s64 delta = now - hwc->freq_time_stamp;
4422
4423 hwc->freq_time_stamp = now;
4424
4425 if (delta > 0 && delta < 2*TICK_NSEC)
4426 perf_adjust_period(event, delta, hwc->last_period);
4427 }
4428
4429 /*
4430 * XXX event_limit might not quite work as expected on inherited
4431 * events
4432 */
4433
4434 event->pending_kill = POLL_IN;
4435 if (events && atomic_dec_and_test(&event->event_limit)) {
4436 ret = 1;
4437 event->pending_kill = POLL_HUP;
4438 if (nmi) {
4439 event->pending_disable = 1;
4440 irq_work_queue(&event->pending);
4441 } else
4442 perf_event_disable(event);
4443 }
4444
4445 if (event->overflow_handler)
4446 event->overflow_handler(event, nmi, data, regs);
4447 else
4448 perf_event_output(event, nmi, data, regs);
4449
4450 return ret;
4451 }
4452
4453 int perf_event_overflow(struct perf_event *event, int nmi,
4454 struct perf_sample_data *data,
4455 struct pt_regs *regs)
4456 {
4457 return __perf_event_overflow(event, nmi, 1, data, regs);
4458 }
4459
4460 /*
4461 * Generic software event infrastructure
4462 */
4463
4464 struct swevent_htable {
4465 struct swevent_hlist *swevent_hlist;
4466 struct mutex hlist_mutex;
4467 int hlist_refcount;
4468
4469 /* Recursion avoidance in each contexts */
4470 int recursion[PERF_NR_CONTEXTS];
4471 };
4472
4473 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4474
4475 /*
4476 * We directly increment event->count and keep a second value in
4477 * event->hw.period_left to count intervals. This period event
4478 * is kept in the range [-sample_period, 0] so that we can use the
4479 * sign as trigger.
4480 */
4481
4482 static u64 perf_swevent_set_period(struct perf_event *event)
4483 {
4484 struct hw_perf_event *hwc = &event->hw;
4485 u64 period = hwc->last_period;
4486 u64 nr, offset;
4487 s64 old, val;
4488
4489 hwc->last_period = hwc->sample_period;
4490
4491 again:
4492 old = val = local64_read(&hwc->period_left);
4493 if (val < 0)
4494 return 0;
4495
4496 nr = div64_u64(period + val, period);
4497 offset = nr * period;
4498 val -= offset;
4499 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4500 goto again;
4501
4502 return nr;
4503 }
4504
4505 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4506 int nmi, struct perf_sample_data *data,
4507 struct pt_regs *regs)
4508 {
4509 struct hw_perf_event *hwc = &event->hw;
4510 int throttle = 0;
4511
4512 data->period = event->hw.last_period;
4513 if (!overflow)
4514 overflow = perf_swevent_set_period(event);
4515
4516 if (hwc->interrupts == MAX_INTERRUPTS)
4517 return;
4518
4519 for (; overflow; overflow--) {
4520 if (__perf_event_overflow(event, nmi, throttle,
4521 data, regs)) {
4522 /*
4523 * We inhibit the overflow from happening when
4524 * hwc->interrupts == MAX_INTERRUPTS.
4525 */
4526 break;
4527 }
4528 throttle = 1;
4529 }
4530 }
4531
4532 static void perf_swevent_event(struct perf_event *event, u64 nr,
4533 int nmi, struct perf_sample_data *data,
4534 struct pt_regs *regs)
4535 {
4536 struct hw_perf_event *hwc = &event->hw;
4537
4538 local64_add(nr, &event->count);
4539
4540 if (!regs)
4541 return;
4542
4543 if (!is_sampling_event(event))
4544 return;
4545
4546 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4547 return perf_swevent_overflow(event, 1, nmi, data, regs);
4548
4549 if (local64_add_negative(nr, &hwc->period_left))
4550 return;
4551
4552 perf_swevent_overflow(event, 0, nmi, data, regs);
4553 }
4554
4555 static int perf_exclude_event(struct perf_event *event,
4556 struct pt_regs *regs)
4557 {
4558 if (event->hw.state & PERF_HES_STOPPED)
4559 return 0;
4560
4561 if (regs) {
4562 if (event->attr.exclude_user && user_mode(regs))
4563 return 1;
4564
4565 if (event->attr.exclude_kernel && !user_mode(regs))
4566 return 1;
4567 }
4568
4569 return 0;
4570 }
4571
4572 static int perf_swevent_match(struct perf_event *event,
4573 enum perf_type_id type,
4574 u32 event_id,
4575 struct perf_sample_data *data,
4576 struct pt_regs *regs)
4577 {
4578 if (event->attr.type != type)
4579 return 0;
4580
4581 if (event->attr.config != event_id)
4582 return 0;
4583
4584 if (perf_exclude_event(event, regs))
4585 return 0;
4586
4587 return 1;
4588 }
4589
4590 static inline u64 swevent_hash(u64 type, u32 event_id)
4591 {
4592 u64 val = event_id | (type << 32);
4593
4594 return hash_64(val, SWEVENT_HLIST_BITS);
4595 }
4596
4597 static inline struct hlist_head *
4598 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4599 {
4600 u64 hash = swevent_hash(type, event_id);
4601
4602 return &hlist->heads[hash];
4603 }
4604
4605 /* For the read side: events when they trigger */
4606 static inline struct hlist_head *
4607 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4608 {
4609 struct swevent_hlist *hlist;
4610
4611 hlist = rcu_dereference(swhash->swevent_hlist);
4612 if (!hlist)
4613 return NULL;
4614
4615 return __find_swevent_head(hlist, type, event_id);
4616 }
4617
4618 /* For the event head insertion and removal in the hlist */
4619 static inline struct hlist_head *
4620 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4621 {
4622 struct swevent_hlist *hlist;
4623 u32 event_id = event->attr.config;
4624 u64 type = event->attr.type;
4625
4626 /*
4627 * Event scheduling is always serialized against hlist allocation
4628 * and release. Which makes the protected version suitable here.
4629 * The context lock guarantees that.
4630 */
4631 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4632 lockdep_is_held(&event->ctx->lock));
4633 if (!hlist)
4634 return NULL;
4635
4636 return __find_swevent_head(hlist, type, event_id);
4637 }
4638
4639 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4640 u64 nr, int nmi,
4641 struct perf_sample_data *data,
4642 struct pt_regs *regs)
4643 {
4644 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4645 struct perf_event *event;
4646 struct hlist_node *node;
4647 struct hlist_head *head;
4648
4649 rcu_read_lock();
4650 head = find_swevent_head_rcu(swhash, type, event_id);
4651 if (!head)
4652 goto end;
4653
4654 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4655 if (perf_swevent_match(event, type, event_id, data, regs))
4656 perf_swevent_event(event, nr, nmi, data, regs);
4657 }
4658 end:
4659 rcu_read_unlock();
4660 }
4661
4662 int perf_swevent_get_recursion_context(void)
4663 {
4664 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4665
4666 return get_recursion_context(swhash->recursion);
4667 }
4668 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4669
4670 inline void perf_swevent_put_recursion_context(int rctx)
4671 {
4672 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4673
4674 put_recursion_context(swhash->recursion, rctx);
4675 }
4676
4677 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4678 struct pt_regs *regs, u64 addr)
4679 {
4680 struct perf_sample_data data;
4681 int rctx;
4682
4683 preempt_disable_notrace();
4684 rctx = perf_swevent_get_recursion_context();
4685 if (rctx < 0)
4686 return;
4687
4688 perf_sample_data_init(&data, addr);
4689
4690 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4691
4692 perf_swevent_put_recursion_context(rctx);
4693 preempt_enable_notrace();
4694 }
4695
4696 static void perf_swevent_read(struct perf_event *event)
4697 {
4698 }
4699
4700 static int perf_swevent_add(struct perf_event *event, int flags)
4701 {
4702 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4703 struct hw_perf_event *hwc = &event->hw;
4704 struct hlist_head *head;
4705
4706 if (is_sampling_event(event)) {
4707 hwc->last_period = hwc->sample_period;
4708 perf_swevent_set_period(event);
4709 }
4710
4711 hwc->state = !(flags & PERF_EF_START);
4712
4713 head = find_swevent_head(swhash, event);
4714 if (WARN_ON_ONCE(!head))
4715 return -EINVAL;
4716
4717 hlist_add_head_rcu(&event->hlist_entry, head);
4718
4719 return 0;
4720 }
4721
4722 static void perf_swevent_del(struct perf_event *event, int flags)
4723 {
4724 hlist_del_rcu(&event->hlist_entry);
4725 }
4726
4727 static void perf_swevent_start(struct perf_event *event, int flags)
4728 {
4729 event->hw.state = 0;
4730 }
4731
4732 static void perf_swevent_stop(struct perf_event *event, int flags)
4733 {
4734 event->hw.state = PERF_HES_STOPPED;
4735 }
4736
4737 /* Deref the hlist from the update side */
4738 static inline struct swevent_hlist *
4739 swevent_hlist_deref(struct swevent_htable *swhash)
4740 {
4741 return rcu_dereference_protected(swhash->swevent_hlist,
4742 lockdep_is_held(&swhash->hlist_mutex));
4743 }
4744
4745 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4746 {
4747 struct swevent_hlist *hlist;
4748
4749 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4750 kfree(hlist);
4751 }
4752
4753 static void swevent_hlist_release(struct swevent_htable *swhash)
4754 {
4755 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4756
4757 if (!hlist)
4758 return;
4759
4760 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4761 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4762 }
4763
4764 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4765 {
4766 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4767
4768 mutex_lock(&swhash->hlist_mutex);
4769
4770 if (!--swhash->hlist_refcount)
4771 swevent_hlist_release(swhash);
4772
4773 mutex_unlock(&swhash->hlist_mutex);
4774 }
4775
4776 static void swevent_hlist_put(struct perf_event *event)
4777 {
4778 int cpu;
4779
4780 if (event->cpu != -1) {
4781 swevent_hlist_put_cpu(event, event->cpu);
4782 return;
4783 }
4784
4785 for_each_possible_cpu(cpu)
4786 swevent_hlist_put_cpu(event, cpu);
4787 }
4788
4789 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4790 {
4791 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4792 int err = 0;
4793
4794 mutex_lock(&swhash->hlist_mutex);
4795
4796 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4797 struct swevent_hlist *hlist;
4798
4799 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4800 if (!hlist) {
4801 err = -ENOMEM;
4802 goto exit;
4803 }
4804 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4805 }
4806 swhash->hlist_refcount++;
4807 exit:
4808 mutex_unlock(&swhash->hlist_mutex);
4809
4810 return err;
4811 }
4812
4813 static int swevent_hlist_get(struct perf_event *event)
4814 {
4815 int err;
4816 int cpu, failed_cpu;
4817
4818 if (event->cpu != -1)
4819 return swevent_hlist_get_cpu(event, event->cpu);
4820
4821 get_online_cpus();
4822 for_each_possible_cpu(cpu) {
4823 err = swevent_hlist_get_cpu(event, cpu);
4824 if (err) {
4825 failed_cpu = cpu;
4826 goto fail;
4827 }
4828 }
4829 put_online_cpus();
4830
4831 return 0;
4832 fail:
4833 for_each_possible_cpu(cpu) {
4834 if (cpu == failed_cpu)
4835 break;
4836 swevent_hlist_put_cpu(event, cpu);
4837 }
4838
4839 put_online_cpus();
4840 return err;
4841 }
4842
4843 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4844
4845 static void sw_perf_event_destroy(struct perf_event *event)
4846 {
4847 u64 event_id = event->attr.config;
4848
4849 WARN_ON(event->parent);
4850
4851 jump_label_dec(&perf_swevent_enabled[event_id]);
4852 swevent_hlist_put(event);
4853 }
4854
4855 static int perf_swevent_init(struct perf_event *event)
4856 {
4857 int event_id = event->attr.config;
4858
4859 if (event->attr.type != PERF_TYPE_SOFTWARE)
4860 return -ENOENT;
4861
4862 switch (event_id) {
4863 case PERF_COUNT_SW_CPU_CLOCK:
4864 case PERF_COUNT_SW_TASK_CLOCK:
4865 return -ENOENT;
4866
4867 default:
4868 break;
4869 }
4870
4871 if (event_id >= PERF_COUNT_SW_MAX)
4872 return -ENOENT;
4873
4874 if (!event->parent) {
4875 int err;
4876
4877 err = swevent_hlist_get(event);
4878 if (err)
4879 return err;
4880
4881 jump_label_inc(&perf_swevent_enabled[event_id]);
4882 event->destroy = sw_perf_event_destroy;
4883 }
4884
4885 return 0;
4886 }
4887
4888 static struct pmu perf_swevent = {
4889 .task_ctx_nr = perf_sw_context,
4890
4891 .event_init = perf_swevent_init,
4892 .add = perf_swevent_add,
4893 .del = perf_swevent_del,
4894 .start = perf_swevent_start,
4895 .stop = perf_swevent_stop,
4896 .read = perf_swevent_read,
4897 };
4898
4899 #ifdef CONFIG_EVENT_TRACING
4900
4901 static int perf_tp_filter_match(struct perf_event *event,
4902 struct perf_sample_data *data)
4903 {
4904 void *record = data->raw->data;
4905
4906 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4907 return 1;
4908 return 0;
4909 }
4910
4911 static int perf_tp_event_match(struct perf_event *event,
4912 struct perf_sample_data *data,
4913 struct pt_regs *regs)
4914 {
4915 /*
4916 * All tracepoints are from kernel-space.
4917 */
4918 if (event->attr.exclude_kernel)
4919 return 0;
4920
4921 if (!perf_tp_filter_match(event, data))
4922 return 0;
4923
4924 return 1;
4925 }
4926
4927 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4928 struct pt_regs *regs, struct hlist_head *head, int rctx)
4929 {
4930 struct perf_sample_data data;
4931 struct perf_event *event;
4932 struct hlist_node *node;
4933
4934 struct perf_raw_record raw = {
4935 .size = entry_size,
4936 .data = record,
4937 };
4938
4939 perf_sample_data_init(&data, addr);
4940 data.raw = &raw;
4941
4942 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4943 if (perf_tp_event_match(event, &data, regs))
4944 perf_swevent_event(event, count, 1, &data, regs);
4945 }
4946
4947 perf_swevent_put_recursion_context(rctx);
4948 }
4949 EXPORT_SYMBOL_GPL(perf_tp_event);
4950
4951 static void tp_perf_event_destroy(struct perf_event *event)
4952 {
4953 perf_trace_destroy(event);
4954 }
4955
4956 static int perf_tp_event_init(struct perf_event *event)
4957 {
4958 int err;
4959
4960 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4961 return -ENOENT;
4962
4963 err = perf_trace_init(event);
4964 if (err)
4965 return err;
4966
4967 event->destroy = tp_perf_event_destroy;
4968
4969 return 0;
4970 }
4971
4972 static struct pmu perf_tracepoint = {
4973 .task_ctx_nr = perf_sw_context,
4974
4975 .event_init = perf_tp_event_init,
4976 .add = perf_trace_add,
4977 .del = perf_trace_del,
4978 .start = perf_swevent_start,
4979 .stop = perf_swevent_stop,
4980 .read = perf_swevent_read,
4981 };
4982
4983 static inline void perf_tp_register(void)
4984 {
4985 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4986 }
4987
4988 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4989 {
4990 char *filter_str;
4991 int ret;
4992
4993 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4994 return -EINVAL;
4995
4996 filter_str = strndup_user(arg, PAGE_SIZE);
4997 if (IS_ERR(filter_str))
4998 return PTR_ERR(filter_str);
4999
5000 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5001
5002 kfree(filter_str);
5003 return ret;
5004 }
5005
5006 static void perf_event_free_filter(struct perf_event *event)
5007 {
5008 ftrace_profile_free_filter(event);
5009 }
5010
5011 #else
5012
5013 static inline void perf_tp_register(void)
5014 {
5015 }
5016
5017 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5018 {
5019 return -ENOENT;
5020 }
5021
5022 static void perf_event_free_filter(struct perf_event *event)
5023 {
5024 }
5025
5026 #endif /* CONFIG_EVENT_TRACING */
5027
5028 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5029 void perf_bp_event(struct perf_event *bp, void *data)
5030 {
5031 struct perf_sample_data sample;
5032 struct pt_regs *regs = data;
5033
5034 perf_sample_data_init(&sample, bp->attr.bp_addr);
5035
5036 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5037 perf_swevent_event(bp, 1, 1, &sample, regs);
5038 }
5039 #endif
5040
5041 /*
5042 * hrtimer based swevent callback
5043 */
5044
5045 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5046 {
5047 enum hrtimer_restart ret = HRTIMER_RESTART;
5048 struct perf_sample_data data;
5049 struct pt_regs *regs;
5050 struct perf_event *event;
5051 u64 period;
5052
5053 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5054 event->pmu->read(event);
5055
5056 perf_sample_data_init(&data, 0);
5057 data.period = event->hw.last_period;
5058 regs = get_irq_regs();
5059
5060 if (regs && !perf_exclude_event(event, regs)) {
5061 if (!(event->attr.exclude_idle && current->pid == 0))
5062 if (perf_event_overflow(event, 0, &data, regs))
5063 ret = HRTIMER_NORESTART;
5064 }
5065
5066 period = max_t(u64, 10000, event->hw.sample_period);
5067 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5068
5069 return ret;
5070 }
5071
5072 static void perf_swevent_start_hrtimer(struct perf_event *event)
5073 {
5074 struct hw_perf_event *hwc = &event->hw;
5075 s64 period;
5076
5077 if (!is_sampling_event(event))
5078 return;
5079
5080 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5081 hwc->hrtimer.function = perf_swevent_hrtimer;
5082
5083 period = local64_read(&hwc->period_left);
5084 if (period) {
5085 if (period < 0)
5086 period = 10000;
5087
5088 local64_set(&hwc->period_left, 0);
5089 } else {
5090 period = max_t(u64, 10000, hwc->sample_period);
5091 }
5092 __hrtimer_start_range_ns(&hwc->hrtimer,
5093 ns_to_ktime(period), 0,
5094 HRTIMER_MODE_REL_PINNED, 0);
5095 }
5096
5097 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5098 {
5099 struct hw_perf_event *hwc = &event->hw;
5100
5101 if (is_sampling_event(event)) {
5102 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5103 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5104
5105 hrtimer_cancel(&hwc->hrtimer);
5106 }
5107 }
5108
5109 /*
5110 * Software event: cpu wall time clock
5111 */
5112
5113 static void cpu_clock_event_update(struct perf_event *event)
5114 {
5115 s64 prev;
5116 u64 now;
5117
5118 now = local_clock();
5119 prev = local64_xchg(&event->hw.prev_count, now);
5120 local64_add(now - prev, &event->count);
5121 }
5122
5123 static void cpu_clock_event_start(struct perf_event *event, int flags)
5124 {
5125 local64_set(&event->hw.prev_count, local_clock());
5126 perf_swevent_start_hrtimer(event);
5127 }
5128
5129 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5130 {
5131 perf_swevent_cancel_hrtimer(event);
5132 cpu_clock_event_update(event);
5133 }
5134
5135 static int cpu_clock_event_add(struct perf_event *event, int flags)
5136 {
5137 if (flags & PERF_EF_START)
5138 cpu_clock_event_start(event, flags);
5139
5140 return 0;
5141 }
5142
5143 static void cpu_clock_event_del(struct perf_event *event, int flags)
5144 {
5145 cpu_clock_event_stop(event, flags);
5146 }
5147
5148 static void cpu_clock_event_read(struct perf_event *event)
5149 {
5150 cpu_clock_event_update(event);
5151 }
5152
5153 static int cpu_clock_event_init(struct perf_event *event)
5154 {
5155 if (event->attr.type != PERF_TYPE_SOFTWARE)
5156 return -ENOENT;
5157
5158 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5159 return -ENOENT;
5160
5161 return 0;
5162 }
5163
5164 static struct pmu perf_cpu_clock = {
5165 .task_ctx_nr = perf_sw_context,
5166
5167 .event_init = cpu_clock_event_init,
5168 .add = cpu_clock_event_add,
5169 .del = cpu_clock_event_del,
5170 .start = cpu_clock_event_start,
5171 .stop = cpu_clock_event_stop,
5172 .read = cpu_clock_event_read,
5173 };
5174
5175 /*
5176 * Software event: task time clock
5177 */
5178
5179 static void task_clock_event_update(struct perf_event *event, u64 now)
5180 {
5181 u64 prev;
5182 s64 delta;
5183
5184 prev = local64_xchg(&event->hw.prev_count, now);
5185 delta = now - prev;
5186 local64_add(delta, &event->count);
5187 }
5188
5189 static void task_clock_event_start(struct perf_event *event, int flags)
5190 {
5191 local64_set(&event->hw.prev_count, event->ctx->time);
5192 perf_swevent_start_hrtimer(event);
5193 }
5194
5195 static void task_clock_event_stop(struct perf_event *event, int flags)
5196 {
5197 perf_swevent_cancel_hrtimer(event);
5198 task_clock_event_update(event, event->ctx->time);
5199 }
5200
5201 static int task_clock_event_add(struct perf_event *event, int flags)
5202 {
5203 if (flags & PERF_EF_START)
5204 task_clock_event_start(event, flags);
5205
5206 return 0;
5207 }
5208
5209 static void task_clock_event_del(struct perf_event *event, int flags)
5210 {
5211 task_clock_event_stop(event, PERF_EF_UPDATE);
5212 }
5213
5214 static void task_clock_event_read(struct perf_event *event)
5215 {
5216 u64 time;
5217
5218 if (!in_nmi()) {
5219 update_context_time(event->ctx);
5220 time = event->ctx->time;
5221 } else {
5222 u64 now = perf_clock();
5223 u64 delta = now - event->ctx->timestamp;
5224 time = event->ctx->time + delta;
5225 }
5226
5227 task_clock_event_update(event, time);
5228 }
5229
5230 static int task_clock_event_init(struct perf_event *event)
5231 {
5232 if (event->attr.type != PERF_TYPE_SOFTWARE)
5233 return -ENOENT;
5234
5235 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5236 return -ENOENT;
5237
5238 return 0;
5239 }
5240
5241 static struct pmu perf_task_clock = {
5242 .task_ctx_nr = perf_sw_context,
5243
5244 .event_init = task_clock_event_init,
5245 .add = task_clock_event_add,
5246 .del = task_clock_event_del,
5247 .start = task_clock_event_start,
5248 .stop = task_clock_event_stop,
5249 .read = task_clock_event_read,
5250 };
5251
5252 static void perf_pmu_nop_void(struct pmu *pmu)
5253 {
5254 }
5255
5256 static int perf_pmu_nop_int(struct pmu *pmu)
5257 {
5258 return 0;
5259 }
5260
5261 static void perf_pmu_start_txn(struct pmu *pmu)
5262 {
5263 perf_pmu_disable(pmu);
5264 }
5265
5266 static int perf_pmu_commit_txn(struct pmu *pmu)
5267 {
5268 perf_pmu_enable(pmu);
5269 return 0;
5270 }
5271
5272 static void perf_pmu_cancel_txn(struct pmu *pmu)
5273 {
5274 perf_pmu_enable(pmu);
5275 }
5276
5277 /*
5278 * Ensures all contexts with the same task_ctx_nr have the same
5279 * pmu_cpu_context too.
5280 */
5281 static void *find_pmu_context(int ctxn)
5282 {
5283 struct pmu *pmu;
5284
5285 if (ctxn < 0)
5286 return NULL;
5287
5288 list_for_each_entry(pmu, &pmus, entry) {
5289 if (pmu->task_ctx_nr == ctxn)
5290 return pmu->pmu_cpu_context;
5291 }
5292
5293 return NULL;
5294 }
5295
5296 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5297 {
5298 int cpu;
5299
5300 for_each_possible_cpu(cpu) {
5301 struct perf_cpu_context *cpuctx;
5302
5303 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5304
5305 if (cpuctx->active_pmu == old_pmu)
5306 cpuctx->active_pmu = pmu;
5307 }
5308 }
5309
5310 static void free_pmu_context(struct pmu *pmu)
5311 {
5312 struct pmu *i;
5313
5314 mutex_lock(&pmus_lock);
5315 /*
5316 * Like a real lame refcount.
5317 */
5318 list_for_each_entry(i, &pmus, entry) {
5319 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5320 update_pmu_context(i, pmu);
5321 goto out;
5322 }
5323 }
5324
5325 free_percpu(pmu->pmu_cpu_context);
5326 out:
5327 mutex_unlock(&pmus_lock);
5328 }
5329 static struct idr pmu_idr;
5330
5331 static ssize_t
5332 type_show(struct device *dev, struct device_attribute *attr, char *page)
5333 {
5334 struct pmu *pmu = dev_get_drvdata(dev);
5335
5336 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5337 }
5338
5339 static struct device_attribute pmu_dev_attrs[] = {
5340 __ATTR_RO(type),
5341 __ATTR_NULL,
5342 };
5343
5344 static int pmu_bus_running;
5345 static struct bus_type pmu_bus = {
5346 .name = "event_source",
5347 .dev_attrs = pmu_dev_attrs,
5348 };
5349
5350 static void pmu_dev_release(struct device *dev)
5351 {
5352 kfree(dev);
5353 }
5354
5355 static int pmu_dev_alloc(struct pmu *pmu)
5356 {
5357 int ret = -ENOMEM;
5358
5359 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5360 if (!pmu->dev)
5361 goto out;
5362
5363 device_initialize(pmu->dev);
5364 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5365 if (ret)
5366 goto free_dev;
5367
5368 dev_set_drvdata(pmu->dev, pmu);
5369 pmu->dev->bus = &pmu_bus;
5370 pmu->dev->release = pmu_dev_release;
5371 ret = device_add(pmu->dev);
5372 if (ret)
5373 goto free_dev;
5374
5375 out:
5376 return ret;
5377
5378 free_dev:
5379 put_device(pmu->dev);
5380 goto out;
5381 }
5382
5383 static struct lock_class_key cpuctx_mutex;
5384
5385 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5386 {
5387 int cpu, ret;
5388
5389 mutex_lock(&pmus_lock);
5390 ret = -ENOMEM;
5391 pmu->pmu_disable_count = alloc_percpu(int);
5392 if (!pmu->pmu_disable_count)
5393 goto unlock;
5394
5395 pmu->type = -1;
5396 if (!name)
5397 goto skip_type;
5398 pmu->name = name;
5399
5400 if (type < 0) {
5401 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5402 if (!err)
5403 goto free_pdc;
5404
5405 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5406 if (err) {
5407 ret = err;
5408 goto free_pdc;
5409 }
5410 }
5411 pmu->type = type;
5412
5413 if (pmu_bus_running) {
5414 ret = pmu_dev_alloc(pmu);
5415 if (ret)
5416 goto free_idr;
5417 }
5418
5419 skip_type:
5420 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5421 if (pmu->pmu_cpu_context)
5422 goto got_cpu_context;
5423
5424 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5425 if (!pmu->pmu_cpu_context)
5426 goto free_dev;
5427
5428 for_each_possible_cpu(cpu) {
5429 struct perf_cpu_context *cpuctx;
5430
5431 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5432 __perf_event_init_context(&cpuctx->ctx);
5433 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5434 cpuctx->ctx.type = cpu_context;
5435 cpuctx->ctx.pmu = pmu;
5436 cpuctx->jiffies_interval = 1;
5437 INIT_LIST_HEAD(&cpuctx->rotation_list);
5438 cpuctx->active_pmu = pmu;
5439 }
5440
5441 got_cpu_context:
5442 if (!pmu->start_txn) {
5443 if (pmu->pmu_enable) {
5444 /*
5445 * If we have pmu_enable/pmu_disable calls, install
5446 * transaction stubs that use that to try and batch
5447 * hardware accesses.
5448 */
5449 pmu->start_txn = perf_pmu_start_txn;
5450 pmu->commit_txn = perf_pmu_commit_txn;
5451 pmu->cancel_txn = perf_pmu_cancel_txn;
5452 } else {
5453 pmu->start_txn = perf_pmu_nop_void;
5454 pmu->commit_txn = perf_pmu_nop_int;
5455 pmu->cancel_txn = perf_pmu_nop_void;
5456 }
5457 }
5458
5459 if (!pmu->pmu_enable) {
5460 pmu->pmu_enable = perf_pmu_nop_void;
5461 pmu->pmu_disable = perf_pmu_nop_void;
5462 }
5463
5464 list_add_rcu(&pmu->entry, &pmus);
5465 ret = 0;
5466 unlock:
5467 mutex_unlock(&pmus_lock);
5468
5469 return ret;
5470
5471 free_dev:
5472 device_del(pmu->dev);
5473 put_device(pmu->dev);
5474
5475 free_idr:
5476 if (pmu->type >= PERF_TYPE_MAX)
5477 idr_remove(&pmu_idr, pmu->type);
5478
5479 free_pdc:
5480 free_percpu(pmu->pmu_disable_count);
5481 goto unlock;
5482 }
5483
5484 void perf_pmu_unregister(struct pmu *pmu)
5485 {
5486 mutex_lock(&pmus_lock);
5487 list_del_rcu(&pmu->entry);
5488 mutex_unlock(&pmus_lock);
5489
5490 /*
5491 * We dereference the pmu list under both SRCU and regular RCU, so
5492 * synchronize against both of those.
5493 */
5494 synchronize_srcu(&pmus_srcu);
5495 synchronize_rcu();
5496
5497 free_percpu(pmu->pmu_disable_count);
5498 if (pmu->type >= PERF_TYPE_MAX)
5499 idr_remove(&pmu_idr, pmu->type);
5500 device_del(pmu->dev);
5501 put_device(pmu->dev);
5502 free_pmu_context(pmu);
5503 }
5504
5505 struct pmu *perf_init_event(struct perf_event *event)
5506 {
5507 struct pmu *pmu = NULL;
5508 int idx;
5509
5510 idx = srcu_read_lock(&pmus_srcu);
5511
5512 rcu_read_lock();
5513 pmu = idr_find(&pmu_idr, event->attr.type);
5514 rcu_read_unlock();
5515 if (pmu)
5516 goto unlock;
5517
5518 list_for_each_entry_rcu(pmu, &pmus, entry) {
5519 int ret = pmu->event_init(event);
5520 if (!ret)
5521 goto unlock;
5522
5523 if (ret != -ENOENT) {
5524 pmu = ERR_PTR(ret);
5525 goto unlock;
5526 }
5527 }
5528 pmu = ERR_PTR(-ENOENT);
5529 unlock:
5530 srcu_read_unlock(&pmus_srcu, idx);
5531
5532 return pmu;
5533 }
5534
5535 /*
5536 * Allocate and initialize a event structure
5537 */
5538 static struct perf_event *
5539 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5540 struct task_struct *task,
5541 struct perf_event *group_leader,
5542 struct perf_event *parent_event,
5543 perf_overflow_handler_t overflow_handler)
5544 {
5545 struct pmu *pmu;
5546 struct perf_event *event;
5547 struct hw_perf_event *hwc;
5548 long err;
5549
5550 if ((unsigned)cpu >= nr_cpu_ids) {
5551 if (!task || cpu != -1)
5552 return ERR_PTR(-EINVAL);
5553 }
5554
5555 event = kzalloc(sizeof(*event), GFP_KERNEL);
5556 if (!event)
5557 return ERR_PTR(-ENOMEM);
5558
5559 /*
5560 * Single events are their own group leaders, with an
5561 * empty sibling list:
5562 */
5563 if (!group_leader)
5564 group_leader = event;
5565
5566 mutex_init(&event->child_mutex);
5567 INIT_LIST_HEAD(&event->child_list);
5568
5569 INIT_LIST_HEAD(&event->group_entry);
5570 INIT_LIST_HEAD(&event->event_entry);
5571 INIT_LIST_HEAD(&event->sibling_list);
5572 init_waitqueue_head(&event->waitq);
5573 init_irq_work(&event->pending, perf_pending_event);
5574
5575 mutex_init(&event->mmap_mutex);
5576
5577 event->cpu = cpu;
5578 event->attr = *attr;
5579 event->group_leader = group_leader;
5580 event->pmu = NULL;
5581 event->oncpu = -1;
5582
5583 event->parent = parent_event;
5584
5585 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5586 event->id = atomic64_inc_return(&perf_event_id);
5587
5588 event->state = PERF_EVENT_STATE_INACTIVE;
5589
5590 if (task) {
5591 event->attach_state = PERF_ATTACH_TASK;
5592 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5593 /*
5594 * hw_breakpoint is a bit difficult here..
5595 */
5596 if (attr->type == PERF_TYPE_BREAKPOINT)
5597 event->hw.bp_target = task;
5598 #endif
5599 }
5600
5601 if (!overflow_handler && parent_event)
5602 overflow_handler = parent_event->overflow_handler;
5603
5604 event->overflow_handler = overflow_handler;
5605
5606 if (attr->disabled)
5607 event->state = PERF_EVENT_STATE_OFF;
5608
5609 pmu = NULL;
5610
5611 hwc = &event->hw;
5612 hwc->sample_period = attr->sample_period;
5613 if (attr->freq && attr->sample_freq)
5614 hwc->sample_period = 1;
5615 hwc->last_period = hwc->sample_period;
5616
5617 local64_set(&hwc->period_left, hwc->sample_period);
5618
5619 /*
5620 * we currently do not support PERF_FORMAT_GROUP on inherited events
5621 */
5622 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5623 goto done;
5624
5625 pmu = perf_init_event(event);
5626
5627 done:
5628 err = 0;
5629 if (!pmu)
5630 err = -EINVAL;
5631 else if (IS_ERR(pmu))
5632 err = PTR_ERR(pmu);
5633
5634 if (err) {
5635 if (event->ns)
5636 put_pid_ns(event->ns);
5637 kfree(event);
5638 return ERR_PTR(err);
5639 }
5640
5641 event->pmu = pmu;
5642
5643 if (!event->parent) {
5644 if (event->attach_state & PERF_ATTACH_TASK)
5645 jump_label_inc(&perf_task_events);
5646 if (event->attr.mmap || event->attr.mmap_data)
5647 atomic_inc(&nr_mmap_events);
5648 if (event->attr.comm)
5649 atomic_inc(&nr_comm_events);
5650 if (event->attr.task)
5651 atomic_inc(&nr_task_events);
5652 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5653 err = get_callchain_buffers();
5654 if (err) {
5655 free_event(event);
5656 return ERR_PTR(err);
5657 }
5658 }
5659 }
5660
5661 return event;
5662 }
5663
5664 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5665 struct perf_event_attr *attr)
5666 {
5667 u32 size;
5668 int ret;
5669
5670 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5671 return -EFAULT;
5672
5673 /*
5674 * zero the full structure, so that a short copy will be nice.
5675 */
5676 memset(attr, 0, sizeof(*attr));
5677
5678 ret = get_user(size, &uattr->size);
5679 if (ret)
5680 return ret;
5681
5682 if (size > PAGE_SIZE) /* silly large */
5683 goto err_size;
5684
5685 if (!size) /* abi compat */
5686 size = PERF_ATTR_SIZE_VER0;
5687
5688 if (size < PERF_ATTR_SIZE_VER0)
5689 goto err_size;
5690
5691 /*
5692 * If we're handed a bigger struct than we know of,
5693 * ensure all the unknown bits are 0 - i.e. new
5694 * user-space does not rely on any kernel feature
5695 * extensions we dont know about yet.
5696 */
5697 if (size > sizeof(*attr)) {
5698 unsigned char __user *addr;
5699 unsigned char __user *end;
5700 unsigned char val;
5701
5702 addr = (void __user *)uattr + sizeof(*attr);
5703 end = (void __user *)uattr + size;
5704
5705 for (; addr < end; addr++) {
5706 ret = get_user(val, addr);
5707 if (ret)
5708 return ret;
5709 if (val)
5710 goto err_size;
5711 }
5712 size = sizeof(*attr);
5713 }
5714
5715 ret = copy_from_user(attr, uattr, size);
5716 if (ret)
5717 return -EFAULT;
5718
5719 /*
5720 * If the type exists, the corresponding creation will verify
5721 * the attr->config.
5722 */
5723 if (attr->type >= PERF_TYPE_MAX)
5724 return -EINVAL;
5725
5726 if (attr->__reserved_1)
5727 return -EINVAL;
5728
5729 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5730 return -EINVAL;
5731
5732 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5733 return -EINVAL;
5734
5735 out:
5736 return ret;
5737
5738 err_size:
5739 put_user(sizeof(*attr), &uattr->size);
5740 ret = -E2BIG;
5741 goto out;
5742 }
5743
5744 static int
5745 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5746 {
5747 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5748 int ret = -EINVAL;
5749
5750 if (!output_event)
5751 goto set;
5752
5753 /* don't allow circular references */
5754 if (event == output_event)
5755 goto out;
5756
5757 /*
5758 * Don't allow cross-cpu buffers
5759 */
5760 if (output_event->cpu != event->cpu)
5761 goto out;
5762
5763 /*
5764 * If its not a per-cpu buffer, it must be the same task.
5765 */
5766 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5767 goto out;
5768
5769 set:
5770 mutex_lock(&event->mmap_mutex);
5771 /* Can't redirect output if we've got an active mmap() */
5772 if (atomic_read(&event->mmap_count))
5773 goto unlock;
5774
5775 if (output_event) {
5776 /* get the buffer we want to redirect to */
5777 buffer = perf_buffer_get(output_event);
5778 if (!buffer)
5779 goto unlock;
5780 }
5781
5782 old_buffer = event->buffer;
5783 rcu_assign_pointer(event->buffer, buffer);
5784 ret = 0;
5785 unlock:
5786 mutex_unlock(&event->mmap_mutex);
5787
5788 if (old_buffer)
5789 perf_buffer_put(old_buffer);
5790 out:
5791 return ret;
5792 }
5793
5794 /**
5795 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5796 *
5797 * @attr_uptr: event_id type attributes for monitoring/sampling
5798 * @pid: target pid
5799 * @cpu: target cpu
5800 * @group_fd: group leader event fd
5801 */
5802 SYSCALL_DEFINE5(perf_event_open,
5803 struct perf_event_attr __user *, attr_uptr,
5804 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5805 {
5806 struct perf_event *group_leader = NULL, *output_event = NULL;
5807 struct perf_event *event, *sibling;
5808 struct perf_event_attr attr;
5809 struct perf_event_context *ctx;
5810 struct file *event_file = NULL;
5811 struct file *group_file = NULL;
5812 struct task_struct *task = NULL;
5813 struct pmu *pmu;
5814 int event_fd;
5815 int move_group = 0;
5816 int fput_needed = 0;
5817 int err;
5818
5819 /* for future expandability... */
5820 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5821 return -EINVAL;
5822
5823 err = perf_copy_attr(attr_uptr, &attr);
5824 if (err)
5825 return err;
5826
5827 if (!attr.exclude_kernel) {
5828 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5829 return -EACCES;
5830 }
5831
5832 if (attr.freq) {
5833 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5834 return -EINVAL;
5835 }
5836
5837 event_fd = get_unused_fd_flags(O_RDWR);
5838 if (event_fd < 0)
5839 return event_fd;
5840
5841 if (group_fd != -1) {
5842 group_leader = perf_fget_light(group_fd, &fput_needed);
5843 if (IS_ERR(group_leader)) {
5844 err = PTR_ERR(group_leader);
5845 goto err_fd;
5846 }
5847 group_file = group_leader->filp;
5848 if (flags & PERF_FLAG_FD_OUTPUT)
5849 output_event = group_leader;
5850 if (flags & PERF_FLAG_FD_NO_GROUP)
5851 group_leader = NULL;
5852 }
5853
5854 if (pid != -1) {
5855 task = find_lively_task_by_vpid(pid);
5856 if (IS_ERR(task)) {
5857 err = PTR_ERR(task);
5858 goto err_group_fd;
5859 }
5860 }
5861
5862 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5863 if (IS_ERR(event)) {
5864 err = PTR_ERR(event);
5865 goto err_task;
5866 }
5867
5868 /*
5869 * Special case software events and allow them to be part of
5870 * any hardware group.
5871 */
5872 pmu = event->pmu;
5873
5874 if (group_leader &&
5875 (is_software_event(event) != is_software_event(group_leader))) {
5876 if (is_software_event(event)) {
5877 /*
5878 * If event and group_leader are not both a software
5879 * event, and event is, then group leader is not.
5880 *
5881 * Allow the addition of software events to !software
5882 * groups, this is safe because software events never
5883 * fail to schedule.
5884 */
5885 pmu = group_leader->pmu;
5886 } else if (is_software_event(group_leader) &&
5887 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5888 /*
5889 * In case the group is a pure software group, and we
5890 * try to add a hardware event, move the whole group to
5891 * the hardware context.
5892 */
5893 move_group = 1;
5894 }
5895 }
5896
5897 /*
5898 * Get the target context (task or percpu):
5899 */
5900 ctx = find_get_context(pmu, task, cpu);
5901 if (IS_ERR(ctx)) {
5902 err = PTR_ERR(ctx);
5903 goto err_alloc;
5904 }
5905
5906 /*
5907 * Look up the group leader (we will attach this event to it):
5908 */
5909 if (group_leader) {
5910 err = -EINVAL;
5911
5912 /*
5913 * Do not allow a recursive hierarchy (this new sibling
5914 * becoming part of another group-sibling):
5915 */
5916 if (group_leader->group_leader != group_leader)
5917 goto err_context;
5918 /*
5919 * Do not allow to attach to a group in a different
5920 * task or CPU context:
5921 */
5922 if (move_group) {
5923 if (group_leader->ctx->type != ctx->type)
5924 goto err_context;
5925 } else {
5926 if (group_leader->ctx != ctx)
5927 goto err_context;
5928 }
5929
5930 /*
5931 * Only a group leader can be exclusive or pinned
5932 */
5933 if (attr.exclusive || attr.pinned)
5934 goto err_context;
5935 }
5936
5937 if (output_event) {
5938 err = perf_event_set_output(event, output_event);
5939 if (err)
5940 goto err_context;
5941 }
5942
5943 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5944 if (IS_ERR(event_file)) {
5945 err = PTR_ERR(event_file);
5946 goto err_context;
5947 }
5948
5949 if (move_group) {
5950 struct perf_event_context *gctx = group_leader->ctx;
5951
5952 mutex_lock(&gctx->mutex);
5953 perf_event_remove_from_context(group_leader);
5954 list_for_each_entry(sibling, &group_leader->sibling_list,
5955 group_entry) {
5956 perf_event_remove_from_context(sibling);
5957 put_ctx(gctx);
5958 }
5959 mutex_unlock(&gctx->mutex);
5960 put_ctx(gctx);
5961 }
5962
5963 event->filp = event_file;
5964 WARN_ON_ONCE(ctx->parent_ctx);
5965 mutex_lock(&ctx->mutex);
5966
5967 if (move_group) {
5968 perf_install_in_context(ctx, group_leader, cpu);
5969 get_ctx(ctx);
5970 list_for_each_entry(sibling, &group_leader->sibling_list,
5971 group_entry) {
5972 perf_install_in_context(ctx, sibling, cpu);
5973 get_ctx(ctx);
5974 }
5975 }
5976
5977 perf_install_in_context(ctx, event, cpu);
5978 ++ctx->generation;
5979 mutex_unlock(&ctx->mutex);
5980
5981 event->owner = current;
5982
5983 mutex_lock(&current->perf_event_mutex);
5984 list_add_tail(&event->owner_entry, &current->perf_event_list);
5985 mutex_unlock(&current->perf_event_mutex);
5986
5987 /*
5988 * Precalculate sample_data sizes
5989 */
5990 perf_event__header_size(event);
5991 perf_event__id_header_size(event);
5992
5993 /*
5994 * Drop the reference on the group_event after placing the
5995 * new event on the sibling_list. This ensures destruction
5996 * of the group leader will find the pointer to itself in
5997 * perf_group_detach().
5998 */
5999 fput_light(group_file, fput_needed);
6000 fd_install(event_fd, event_file);
6001 return event_fd;
6002
6003 err_context:
6004 put_ctx(ctx);
6005 err_alloc:
6006 free_event(event);
6007 err_task:
6008 if (task)
6009 put_task_struct(task);
6010 err_group_fd:
6011 fput_light(group_file, fput_needed);
6012 err_fd:
6013 put_unused_fd(event_fd);
6014 return err;
6015 }
6016
6017 /**
6018 * perf_event_create_kernel_counter
6019 *
6020 * @attr: attributes of the counter to create
6021 * @cpu: cpu in which the counter is bound
6022 * @task: task to profile (NULL for percpu)
6023 */
6024 struct perf_event *
6025 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6026 struct task_struct *task,
6027 perf_overflow_handler_t overflow_handler)
6028 {
6029 struct perf_event_context *ctx;
6030 struct perf_event *event;
6031 int err;
6032
6033 /*
6034 * Get the target context (task or percpu):
6035 */
6036
6037 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6038 if (IS_ERR(event)) {
6039 err = PTR_ERR(event);
6040 goto err;
6041 }
6042
6043 ctx = find_get_context(event->pmu, task, cpu);
6044 if (IS_ERR(ctx)) {
6045 err = PTR_ERR(ctx);
6046 goto err_free;
6047 }
6048
6049 event->filp = NULL;
6050 WARN_ON_ONCE(ctx->parent_ctx);
6051 mutex_lock(&ctx->mutex);
6052 perf_install_in_context(ctx, event, cpu);
6053 ++ctx->generation;
6054 mutex_unlock(&ctx->mutex);
6055
6056 return event;
6057
6058 err_free:
6059 free_event(event);
6060 err:
6061 return ERR_PTR(err);
6062 }
6063 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6064
6065 static void sync_child_event(struct perf_event *child_event,
6066 struct task_struct *child)
6067 {
6068 struct perf_event *parent_event = child_event->parent;
6069 u64 child_val;
6070
6071 if (child_event->attr.inherit_stat)
6072 perf_event_read_event(child_event, child);
6073
6074 child_val = perf_event_count(child_event);
6075
6076 /*
6077 * Add back the child's count to the parent's count:
6078 */
6079 atomic64_add(child_val, &parent_event->child_count);
6080 atomic64_add(child_event->total_time_enabled,
6081 &parent_event->child_total_time_enabled);
6082 atomic64_add(child_event->total_time_running,
6083 &parent_event->child_total_time_running);
6084
6085 /*
6086 * Remove this event from the parent's list
6087 */
6088 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6089 mutex_lock(&parent_event->child_mutex);
6090 list_del_init(&child_event->child_list);
6091 mutex_unlock(&parent_event->child_mutex);
6092
6093 /*
6094 * Release the parent event, if this was the last
6095 * reference to it.
6096 */
6097 fput(parent_event->filp);
6098 }
6099
6100 static void
6101 __perf_event_exit_task(struct perf_event *child_event,
6102 struct perf_event_context *child_ctx,
6103 struct task_struct *child)
6104 {
6105 struct perf_event *parent_event;
6106
6107 perf_event_remove_from_context(child_event);
6108
6109 parent_event = child_event->parent;
6110 /*
6111 * It can happen that parent exits first, and has events
6112 * that are still around due to the child reference. These
6113 * events need to be zapped - but otherwise linger.
6114 */
6115 if (parent_event) {
6116 sync_child_event(child_event, child);
6117 free_event(child_event);
6118 }
6119 }
6120
6121 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6122 {
6123 struct perf_event *child_event, *tmp;
6124 struct perf_event_context *child_ctx;
6125 unsigned long flags;
6126
6127 if (likely(!child->perf_event_ctxp[ctxn])) {
6128 perf_event_task(child, NULL, 0);
6129 return;
6130 }
6131
6132 local_irq_save(flags);
6133 /*
6134 * We can't reschedule here because interrupts are disabled,
6135 * and either child is current or it is a task that can't be
6136 * scheduled, so we are now safe from rescheduling changing
6137 * our context.
6138 */
6139 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6140 task_ctx_sched_out(child_ctx, EVENT_ALL);
6141
6142 /*
6143 * Take the context lock here so that if find_get_context is
6144 * reading child->perf_event_ctxp, we wait until it has
6145 * incremented the context's refcount before we do put_ctx below.
6146 */
6147 raw_spin_lock(&child_ctx->lock);
6148 child->perf_event_ctxp[ctxn] = NULL;
6149 /*
6150 * If this context is a clone; unclone it so it can't get
6151 * swapped to another process while we're removing all
6152 * the events from it.
6153 */
6154 unclone_ctx(child_ctx);
6155 update_context_time(child_ctx);
6156 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6157
6158 /*
6159 * Report the task dead after unscheduling the events so that we
6160 * won't get any samples after PERF_RECORD_EXIT. We can however still
6161 * get a few PERF_RECORD_READ events.
6162 */
6163 perf_event_task(child, child_ctx, 0);
6164
6165 /*
6166 * We can recurse on the same lock type through:
6167 *
6168 * __perf_event_exit_task()
6169 * sync_child_event()
6170 * fput(parent_event->filp)
6171 * perf_release()
6172 * mutex_lock(&ctx->mutex)
6173 *
6174 * But since its the parent context it won't be the same instance.
6175 */
6176 mutex_lock(&child_ctx->mutex);
6177
6178 again:
6179 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6180 group_entry)
6181 __perf_event_exit_task(child_event, child_ctx, child);
6182
6183 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6184 group_entry)
6185 __perf_event_exit_task(child_event, child_ctx, child);
6186
6187 /*
6188 * If the last event was a group event, it will have appended all
6189 * its siblings to the list, but we obtained 'tmp' before that which
6190 * will still point to the list head terminating the iteration.
6191 */
6192 if (!list_empty(&child_ctx->pinned_groups) ||
6193 !list_empty(&child_ctx->flexible_groups))
6194 goto again;
6195
6196 mutex_unlock(&child_ctx->mutex);
6197
6198 put_ctx(child_ctx);
6199 }
6200
6201 /*
6202 * When a child task exits, feed back event values to parent events.
6203 */
6204 void perf_event_exit_task(struct task_struct *child)
6205 {
6206 struct perf_event *event, *tmp;
6207 int ctxn;
6208
6209 mutex_lock(&child->perf_event_mutex);
6210 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6211 owner_entry) {
6212 list_del_init(&event->owner_entry);
6213
6214 /*
6215 * Ensure the list deletion is visible before we clear
6216 * the owner, closes a race against perf_release() where
6217 * we need to serialize on the owner->perf_event_mutex.
6218 */
6219 smp_wmb();
6220 event->owner = NULL;
6221 }
6222 mutex_unlock(&child->perf_event_mutex);
6223
6224 for_each_task_context_nr(ctxn)
6225 perf_event_exit_task_context(child, ctxn);
6226 }
6227
6228 static void perf_free_event(struct perf_event *event,
6229 struct perf_event_context *ctx)
6230 {
6231 struct perf_event *parent = event->parent;
6232
6233 if (WARN_ON_ONCE(!parent))
6234 return;
6235
6236 mutex_lock(&parent->child_mutex);
6237 list_del_init(&event->child_list);
6238 mutex_unlock(&parent->child_mutex);
6239
6240 fput(parent->filp);
6241
6242 perf_group_detach(event);
6243 list_del_event(event, ctx);
6244 free_event(event);
6245 }
6246
6247 /*
6248 * free an unexposed, unused context as created by inheritance by
6249 * perf_event_init_task below, used by fork() in case of fail.
6250 */
6251 void perf_event_free_task(struct task_struct *task)
6252 {
6253 struct perf_event_context *ctx;
6254 struct perf_event *event, *tmp;
6255 int ctxn;
6256
6257 for_each_task_context_nr(ctxn) {
6258 ctx = task->perf_event_ctxp[ctxn];
6259 if (!ctx)
6260 continue;
6261
6262 mutex_lock(&ctx->mutex);
6263 again:
6264 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6265 group_entry)
6266 perf_free_event(event, ctx);
6267
6268 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6269 group_entry)
6270 perf_free_event(event, ctx);
6271
6272 if (!list_empty(&ctx->pinned_groups) ||
6273 !list_empty(&ctx->flexible_groups))
6274 goto again;
6275
6276 mutex_unlock(&ctx->mutex);
6277
6278 put_ctx(ctx);
6279 }
6280 }
6281
6282 void perf_event_delayed_put(struct task_struct *task)
6283 {
6284 int ctxn;
6285
6286 for_each_task_context_nr(ctxn)
6287 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6288 }
6289
6290 /*
6291 * inherit a event from parent task to child task:
6292 */
6293 static struct perf_event *
6294 inherit_event(struct perf_event *parent_event,
6295 struct task_struct *parent,
6296 struct perf_event_context *parent_ctx,
6297 struct task_struct *child,
6298 struct perf_event *group_leader,
6299 struct perf_event_context *child_ctx)
6300 {
6301 struct perf_event *child_event;
6302 unsigned long flags;
6303
6304 /*
6305 * Instead of creating recursive hierarchies of events,
6306 * we link inherited events back to the original parent,
6307 * which has a filp for sure, which we use as the reference
6308 * count:
6309 */
6310 if (parent_event->parent)
6311 parent_event = parent_event->parent;
6312
6313 child_event = perf_event_alloc(&parent_event->attr,
6314 parent_event->cpu,
6315 child,
6316 group_leader, parent_event,
6317 NULL);
6318 if (IS_ERR(child_event))
6319 return child_event;
6320 get_ctx(child_ctx);
6321
6322 /*
6323 * Make the child state follow the state of the parent event,
6324 * not its attr.disabled bit. We hold the parent's mutex,
6325 * so we won't race with perf_event_{en, dis}able_family.
6326 */
6327 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6328 child_event->state = PERF_EVENT_STATE_INACTIVE;
6329 else
6330 child_event->state = PERF_EVENT_STATE_OFF;
6331
6332 if (parent_event->attr.freq) {
6333 u64 sample_period = parent_event->hw.sample_period;
6334 struct hw_perf_event *hwc = &child_event->hw;
6335
6336 hwc->sample_period = sample_period;
6337 hwc->last_period = sample_period;
6338
6339 local64_set(&hwc->period_left, sample_period);
6340 }
6341
6342 child_event->ctx = child_ctx;
6343 child_event->overflow_handler = parent_event->overflow_handler;
6344
6345 /*
6346 * Precalculate sample_data sizes
6347 */
6348 perf_event__header_size(child_event);
6349 perf_event__id_header_size(child_event);
6350
6351 /*
6352 * Link it up in the child's context:
6353 */
6354 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6355 add_event_to_ctx(child_event, child_ctx);
6356 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6357
6358 /*
6359 * Get a reference to the parent filp - we will fput it
6360 * when the child event exits. This is safe to do because
6361 * we are in the parent and we know that the filp still
6362 * exists and has a nonzero count:
6363 */
6364 atomic_long_inc(&parent_event->filp->f_count);
6365
6366 /*
6367 * Link this into the parent event's child list
6368 */
6369 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6370 mutex_lock(&parent_event->child_mutex);
6371 list_add_tail(&child_event->child_list, &parent_event->child_list);
6372 mutex_unlock(&parent_event->child_mutex);
6373
6374 return child_event;
6375 }
6376
6377 static int inherit_group(struct perf_event *parent_event,
6378 struct task_struct *parent,
6379 struct perf_event_context *parent_ctx,
6380 struct task_struct *child,
6381 struct perf_event_context *child_ctx)
6382 {
6383 struct perf_event *leader;
6384 struct perf_event *sub;
6385 struct perf_event *child_ctr;
6386
6387 leader = inherit_event(parent_event, parent, parent_ctx,
6388 child, NULL, child_ctx);
6389 if (IS_ERR(leader))
6390 return PTR_ERR(leader);
6391 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6392 child_ctr = inherit_event(sub, parent, parent_ctx,
6393 child, leader, child_ctx);
6394 if (IS_ERR(child_ctr))
6395 return PTR_ERR(child_ctr);
6396 }
6397 return 0;
6398 }
6399
6400 static int
6401 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6402 struct perf_event_context *parent_ctx,
6403 struct task_struct *child, int ctxn,
6404 int *inherited_all)
6405 {
6406 int ret;
6407 struct perf_event_context *child_ctx;
6408
6409 if (!event->attr.inherit) {
6410 *inherited_all = 0;
6411 return 0;
6412 }
6413
6414 child_ctx = child->perf_event_ctxp[ctxn];
6415 if (!child_ctx) {
6416 /*
6417 * This is executed from the parent task context, so
6418 * inherit events that have been marked for cloning.
6419 * First allocate and initialize a context for the
6420 * child.
6421 */
6422
6423 child_ctx = alloc_perf_context(event->pmu, child);
6424 if (!child_ctx)
6425 return -ENOMEM;
6426
6427 child->perf_event_ctxp[ctxn] = child_ctx;
6428 }
6429
6430 ret = inherit_group(event, parent, parent_ctx,
6431 child, child_ctx);
6432
6433 if (ret)
6434 *inherited_all = 0;
6435
6436 return ret;
6437 }
6438
6439 /*
6440 * Initialize the perf_event context in task_struct
6441 */
6442 int perf_event_init_context(struct task_struct *child, int ctxn)
6443 {
6444 struct perf_event_context *child_ctx, *parent_ctx;
6445 struct perf_event_context *cloned_ctx;
6446 struct perf_event *event;
6447 struct task_struct *parent = current;
6448 int inherited_all = 1;
6449 unsigned long flags;
6450 int ret = 0;
6451
6452 if (likely(!parent->perf_event_ctxp[ctxn]))
6453 return 0;
6454
6455 /*
6456 * If the parent's context is a clone, pin it so it won't get
6457 * swapped under us.
6458 */
6459 parent_ctx = perf_pin_task_context(parent, ctxn);
6460
6461 /*
6462 * No need to check if parent_ctx != NULL here; since we saw
6463 * it non-NULL earlier, the only reason for it to become NULL
6464 * is if we exit, and since we're currently in the middle of
6465 * a fork we can't be exiting at the same time.
6466 */
6467
6468 /*
6469 * Lock the parent list. No need to lock the child - not PID
6470 * hashed yet and not running, so nobody can access it.
6471 */
6472 mutex_lock(&parent_ctx->mutex);
6473
6474 /*
6475 * We dont have to disable NMIs - we are only looking at
6476 * the list, not manipulating it:
6477 */
6478 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6479 ret = inherit_task_group(event, parent, parent_ctx,
6480 child, ctxn, &inherited_all);
6481 if (ret)
6482 break;
6483 }
6484
6485 /*
6486 * We can't hold ctx->lock when iterating the ->flexible_group list due
6487 * to allocations, but we need to prevent rotation because
6488 * rotate_ctx() will change the list from interrupt context.
6489 */
6490 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6491 parent_ctx->rotate_disable = 1;
6492 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6493
6494 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6495 ret = inherit_task_group(event, parent, parent_ctx,
6496 child, ctxn, &inherited_all);
6497 if (ret)
6498 break;
6499 }
6500
6501 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6502 parent_ctx->rotate_disable = 0;
6503
6504 child_ctx = child->perf_event_ctxp[ctxn];
6505
6506 if (child_ctx && inherited_all) {
6507 /*
6508 * Mark the child context as a clone of the parent
6509 * context, or of whatever the parent is a clone of.
6510 *
6511 * Note that if the parent is a clone, the holding of
6512 * parent_ctx->lock avoids it from being uncloned.
6513 */
6514 cloned_ctx = parent_ctx->parent_ctx;
6515 if (cloned_ctx) {
6516 child_ctx->parent_ctx = cloned_ctx;
6517 child_ctx->parent_gen = parent_ctx->parent_gen;
6518 } else {
6519 child_ctx->parent_ctx = parent_ctx;
6520 child_ctx->parent_gen = parent_ctx->generation;
6521 }
6522 get_ctx(child_ctx->parent_ctx);
6523 }
6524
6525 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6526 mutex_unlock(&parent_ctx->mutex);
6527
6528 perf_unpin_context(parent_ctx);
6529
6530 return ret;
6531 }
6532
6533 /*
6534 * Initialize the perf_event context in task_struct
6535 */
6536 int perf_event_init_task(struct task_struct *child)
6537 {
6538 int ctxn, ret;
6539
6540 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6541 mutex_init(&child->perf_event_mutex);
6542 INIT_LIST_HEAD(&child->perf_event_list);
6543
6544 for_each_task_context_nr(ctxn) {
6545 ret = perf_event_init_context(child, ctxn);
6546 if (ret)
6547 return ret;
6548 }
6549
6550 return 0;
6551 }
6552
6553 static void __init perf_event_init_all_cpus(void)
6554 {
6555 struct swevent_htable *swhash;
6556 int cpu;
6557
6558 for_each_possible_cpu(cpu) {
6559 swhash = &per_cpu(swevent_htable, cpu);
6560 mutex_init(&swhash->hlist_mutex);
6561 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6562 }
6563 }
6564
6565 static void __cpuinit perf_event_init_cpu(int cpu)
6566 {
6567 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6568
6569 mutex_lock(&swhash->hlist_mutex);
6570 if (swhash->hlist_refcount > 0) {
6571 struct swevent_hlist *hlist;
6572
6573 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6574 WARN_ON(!hlist);
6575 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6576 }
6577 mutex_unlock(&swhash->hlist_mutex);
6578 }
6579
6580 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6581 static void perf_pmu_rotate_stop(struct pmu *pmu)
6582 {
6583 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6584
6585 WARN_ON(!irqs_disabled());
6586
6587 list_del_init(&cpuctx->rotation_list);
6588 }
6589
6590 static void __perf_event_exit_context(void *__info)
6591 {
6592 struct perf_event_context *ctx = __info;
6593 struct perf_event *event, *tmp;
6594
6595 perf_pmu_rotate_stop(ctx->pmu);
6596
6597 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6598 __perf_event_remove_from_context(event);
6599 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6600 __perf_event_remove_from_context(event);
6601 }
6602
6603 static void perf_event_exit_cpu_context(int cpu)
6604 {
6605 struct perf_event_context *ctx;
6606 struct pmu *pmu;
6607 int idx;
6608
6609 idx = srcu_read_lock(&pmus_srcu);
6610 list_for_each_entry_rcu(pmu, &pmus, entry) {
6611 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6612
6613 mutex_lock(&ctx->mutex);
6614 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6615 mutex_unlock(&ctx->mutex);
6616 }
6617 srcu_read_unlock(&pmus_srcu, idx);
6618 }
6619
6620 static void perf_event_exit_cpu(int cpu)
6621 {
6622 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6623
6624 mutex_lock(&swhash->hlist_mutex);
6625 swevent_hlist_release(swhash);
6626 mutex_unlock(&swhash->hlist_mutex);
6627
6628 perf_event_exit_cpu_context(cpu);
6629 }
6630 #else
6631 static inline void perf_event_exit_cpu(int cpu) { }
6632 #endif
6633
6634 static int
6635 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6636 {
6637 int cpu;
6638
6639 for_each_online_cpu(cpu)
6640 perf_event_exit_cpu(cpu);
6641
6642 return NOTIFY_OK;
6643 }
6644
6645 /*
6646 * Run the perf reboot notifier at the very last possible moment so that
6647 * the generic watchdog code runs as long as possible.
6648 */
6649 static struct notifier_block perf_reboot_notifier = {
6650 .notifier_call = perf_reboot,
6651 .priority = INT_MIN,
6652 };
6653
6654 static int __cpuinit
6655 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6656 {
6657 unsigned int cpu = (long)hcpu;
6658
6659 switch (action & ~CPU_TASKS_FROZEN) {
6660
6661 case CPU_UP_PREPARE:
6662 case CPU_DOWN_FAILED:
6663 perf_event_init_cpu(cpu);
6664 break;
6665
6666 case CPU_UP_CANCELED:
6667 case CPU_DOWN_PREPARE:
6668 perf_event_exit_cpu(cpu);
6669 break;
6670
6671 default:
6672 break;
6673 }
6674
6675 return NOTIFY_OK;
6676 }
6677
6678 void __init perf_event_init(void)
6679 {
6680 int ret;
6681
6682 idr_init(&pmu_idr);
6683
6684 perf_event_init_all_cpus();
6685 init_srcu_struct(&pmus_srcu);
6686 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6687 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6688 perf_pmu_register(&perf_task_clock, NULL, -1);
6689 perf_tp_register();
6690 perf_cpu_notifier(perf_cpu_notify);
6691 register_reboot_notifier(&perf_reboot_notifier);
6692
6693 ret = init_hw_breakpoint();
6694 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6695 }
6696
6697 static int __init perf_event_sysfs_init(void)
6698 {
6699 struct pmu *pmu;
6700 int ret;
6701
6702 mutex_lock(&pmus_lock);
6703
6704 ret = bus_register(&pmu_bus);
6705 if (ret)
6706 goto unlock;
6707
6708 list_for_each_entry(pmu, &pmus, entry) {
6709 if (!pmu->name || pmu->type < 0)
6710 continue;
6711
6712 ret = pmu_dev_alloc(pmu);
6713 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6714 }
6715 pmu_bus_running = 1;
6716 ret = 0;
6717
6718 unlock:
6719 mutex_unlock(&pmus_lock);
6720
6721 return ret;
6722 }
6723 device_initcall(perf_event_sysfs_init);