Merge branch 'devel-stable' of master.kernel.org:/home/rmk/linux-2.6-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include <asm/irq_regs.h>
40
41 enum event_type_t {
42 EVENT_FLEXIBLE = 0x1,
43 EVENT_PINNED = 0x2,
44 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
45 };
46
47 atomic_t perf_task_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 static LIST_HEAD(pmus);
53 static DEFINE_MUTEX(pmus_lock);
54 static struct srcu_struct pmus_srcu;
55
56 /*
57 * perf event paranoia level:
58 * -1 - not paranoid at all
59 * 0 - disallow raw tracepoint access for unpriv
60 * 1 - disallow cpu events for unpriv
61 * 2 - disallow kernel profiling for unpriv
62 */
63 int sysctl_perf_event_paranoid __read_mostly = 1;
64
65 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68 * max perf event sample rate
69 */
70 int sysctl_perf_event_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_event_id;
73
74 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
75 enum event_type_t event_type);
76
77 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
78 enum event_type_t event_type);
79
80 void __weak perf_event_print_debug(void) { }
81
82 extern __weak const char *perf_pmu_name(void)
83 {
84 return "pmu";
85 }
86
87 static inline u64 perf_clock(void)
88 {
89 return local_clock();
90 }
91
92 void perf_pmu_disable(struct pmu *pmu)
93 {
94 int *count = this_cpu_ptr(pmu->pmu_disable_count);
95 if (!(*count)++)
96 pmu->pmu_disable(pmu);
97 }
98
99 void perf_pmu_enable(struct pmu *pmu)
100 {
101 int *count = this_cpu_ptr(pmu->pmu_disable_count);
102 if (!--(*count))
103 pmu->pmu_enable(pmu);
104 }
105
106 static DEFINE_PER_CPU(struct list_head, rotation_list);
107
108 /*
109 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
110 * because they're strictly cpu affine and rotate_start is called with IRQs
111 * disabled, while rotate_context is called from IRQ context.
112 */
113 static void perf_pmu_rotate_start(struct pmu *pmu)
114 {
115 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
116 struct list_head *head = &__get_cpu_var(rotation_list);
117
118 WARN_ON(!irqs_disabled());
119
120 if (list_empty(&cpuctx->rotation_list))
121 list_add(&cpuctx->rotation_list, head);
122 }
123
124 static void get_ctx(struct perf_event_context *ctx)
125 {
126 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
127 }
128
129 static void free_ctx(struct rcu_head *head)
130 {
131 struct perf_event_context *ctx;
132
133 ctx = container_of(head, struct perf_event_context, rcu_head);
134 kfree(ctx);
135 }
136
137 static void put_ctx(struct perf_event_context *ctx)
138 {
139 if (atomic_dec_and_test(&ctx->refcount)) {
140 if (ctx->parent_ctx)
141 put_ctx(ctx->parent_ctx);
142 if (ctx->task)
143 put_task_struct(ctx->task);
144 call_rcu(&ctx->rcu_head, free_ctx);
145 }
146 }
147
148 static void unclone_ctx(struct perf_event_context *ctx)
149 {
150 if (ctx->parent_ctx) {
151 put_ctx(ctx->parent_ctx);
152 ctx->parent_ctx = NULL;
153 }
154 }
155
156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
157 {
158 /*
159 * only top level events have the pid namespace they were created in
160 */
161 if (event->parent)
162 event = event->parent;
163
164 return task_tgid_nr_ns(p, event->ns);
165 }
166
167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
168 {
169 /*
170 * only top level events have the pid namespace they were created in
171 */
172 if (event->parent)
173 event = event->parent;
174
175 return task_pid_nr_ns(p, event->ns);
176 }
177
178 /*
179 * If we inherit events we want to return the parent event id
180 * to userspace.
181 */
182 static u64 primary_event_id(struct perf_event *event)
183 {
184 u64 id = event->id;
185
186 if (event->parent)
187 id = event->parent->id;
188
189 return id;
190 }
191
192 /*
193 * Get the perf_event_context for a task and lock it.
194 * This has to cope with with the fact that until it is locked,
195 * the context could get moved to another task.
196 */
197 static struct perf_event_context *
198 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
199 {
200 struct perf_event_context *ctx;
201
202 rcu_read_lock();
203 retry:
204 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
205 if (ctx) {
206 /*
207 * If this context is a clone of another, it might
208 * get swapped for another underneath us by
209 * perf_event_task_sched_out, though the
210 * rcu_read_lock() protects us from any context
211 * getting freed. Lock the context and check if it
212 * got swapped before we could get the lock, and retry
213 * if so. If we locked the right context, then it
214 * can't get swapped on us any more.
215 */
216 raw_spin_lock_irqsave(&ctx->lock, *flags);
217 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
218 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
219 goto retry;
220 }
221
222 if (!atomic_inc_not_zero(&ctx->refcount)) {
223 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
224 ctx = NULL;
225 }
226 }
227 rcu_read_unlock();
228 return ctx;
229 }
230
231 /*
232 * Get the context for a task and increment its pin_count so it
233 * can't get swapped to another task. This also increments its
234 * reference count so that the context can't get freed.
235 */
236 static struct perf_event_context *
237 perf_pin_task_context(struct task_struct *task, int ctxn)
238 {
239 struct perf_event_context *ctx;
240 unsigned long flags;
241
242 ctx = perf_lock_task_context(task, ctxn, &flags);
243 if (ctx) {
244 ++ctx->pin_count;
245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 }
247 return ctx;
248 }
249
250 static void perf_unpin_context(struct perf_event_context *ctx)
251 {
252 unsigned long flags;
253
254 raw_spin_lock_irqsave(&ctx->lock, flags);
255 --ctx->pin_count;
256 raw_spin_unlock_irqrestore(&ctx->lock, flags);
257 put_ctx(ctx);
258 }
259
260 /*
261 * Update the record of the current time in a context.
262 */
263 static void update_context_time(struct perf_event_context *ctx)
264 {
265 u64 now = perf_clock();
266
267 ctx->time += now - ctx->timestamp;
268 ctx->timestamp = now;
269 }
270
271 static u64 perf_event_time(struct perf_event *event)
272 {
273 struct perf_event_context *ctx = event->ctx;
274 return ctx ? ctx->time : 0;
275 }
276
277 /*
278 * Update the total_time_enabled and total_time_running fields for a event.
279 */
280 static void update_event_times(struct perf_event *event)
281 {
282 struct perf_event_context *ctx = event->ctx;
283 u64 run_end;
284
285 if (event->state < PERF_EVENT_STATE_INACTIVE ||
286 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
287 return;
288
289 if (ctx->is_active)
290 run_end = perf_event_time(event);
291 else
292 run_end = event->tstamp_stopped;
293
294 event->total_time_enabled = run_end - event->tstamp_enabled;
295
296 if (event->state == PERF_EVENT_STATE_INACTIVE)
297 run_end = event->tstamp_stopped;
298 else
299 run_end = perf_event_time(event);
300
301 event->total_time_running = run_end - event->tstamp_running;
302 }
303
304 /*
305 * Update total_time_enabled and total_time_running for all events in a group.
306 */
307 static void update_group_times(struct perf_event *leader)
308 {
309 struct perf_event *event;
310
311 update_event_times(leader);
312 list_for_each_entry(event, &leader->sibling_list, group_entry)
313 update_event_times(event);
314 }
315
316 static struct list_head *
317 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
318 {
319 if (event->attr.pinned)
320 return &ctx->pinned_groups;
321 else
322 return &ctx->flexible_groups;
323 }
324
325 /*
326 * Add a event from the lists for its context.
327 * Must be called with ctx->mutex and ctx->lock held.
328 */
329 static void
330 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
331 {
332 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
333 event->attach_state |= PERF_ATTACH_CONTEXT;
334
335 /*
336 * If we're a stand alone event or group leader, we go to the context
337 * list, group events are kept attached to the group so that
338 * perf_group_detach can, at all times, locate all siblings.
339 */
340 if (event->group_leader == event) {
341 struct list_head *list;
342
343 if (is_software_event(event))
344 event->group_flags |= PERF_GROUP_SOFTWARE;
345
346 list = ctx_group_list(event, ctx);
347 list_add_tail(&event->group_entry, list);
348 }
349
350 list_add_rcu(&event->event_entry, &ctx->event_list);
351 if (!ctx->nr_events)
352 perf_pmu_rotate_start(ctx->pmu);
353 ctx->nr_events++;
354 if (event->attr.inherit_stat)
355 ctx->nr_stat++;
356 }
357
358 /*
359 * Called at perf_event creation and when events are attached/detached from a
360 * group.
361 */
362 static void perf_event__read_size(struct perf_event *event)
363 {
364 int entry = sizeof(u64); /* value */
365 int size = 0;
366 int nr = 1;
367
368 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
369 size += sizeof(u64);
370
371 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
372 size += sizeof(u64);
373
374 if (event->attr.read_format & PERF_FORMAT_ID)
375 entry += sizeof(u64);
376
377 if (event->attr.read_format & PERF_FORMAT_GROUP) {
378 nr += event->group_leader->nr_siblings;
379 size += sizeof(u64);
380 }
381
382 size += entry * nr;
383 event->read_size = size;
384 }
385
386 static void perf_event__header_size(struct perf_event *event)
387 {
388 struct perf_sample_data *data;
389 u64 sample_type = event->attr.sample_type;
390 u16 size = 0;
391
392 perf_event__read_size(event);
393
394 if (sample_type & PERF_SAMPLE_IP)
395 size += sizeof(data->ip);
396
397 if (sample_type & PERF_SAMPLE_ADDR)
398 size += sizeof(data->addr);
399
400 if (sample_type & PERF_SAMPLE_PERIOD)
401 size += sizeof(data->period);
402
403 if (sample_type & PERF_SAMPLE_READ)
404 size += event->read_size;
405
406 event->header_size = size;
407 }
408
409 static void perf_event__id_header_size(struct perf_event *event)
410 {
411 struct perf_sample_data *data;
412 u64 sample_type = event->attr.sample_type;
413 u16 size = 0;
414
415 if (sample_type & PERF_SAMPLE_TID)
416 size += sizeof(data->tid_entry);
417
418 if (sample_type & PERF_SAMPLE_TIME)
419 size += sizeof(data->time);
420
421 if (sample_type & PERF_SAMPLE_ID)
422 size += sizeof(data->id);
423
424 if (sample_type & PERF_SAMPLE_STREAM_ID)
425 size += sizeof(data->stream_id);
426
427 if (sample_type & PERF_SAMPLE_CPU)
428 size += sizeof(data->cpu_entry);
429
430 event->id_header_size = size;
431 }
432
433 static void perf_group_attach(struct perf_event *event)
434 {
435 struct perf_event *group_leader = event->group_leader, *pos;
436
437 /*
438 * We can have double attach due to group movement in perf_event_open.
439 */
440 if (event->attach_state & PERF_ATTACH_GROUP)
441 return;
442
443 event->attach_state |= PERF_ATTACH_GROUP;
444
445 if (group_leader == event)
446 return;
447
448 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
449 !is_software_event(event))
450 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
451
452 list_add_tail(&event->group_entry, &group_leader->sibling_list);
453 group_leader->nr_siblings++;
454
455 perf_event__header_size(group_leader);
456
457 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
458 perf_event__header_size(pos);
459 }
460
461 /*
462 * Remove a event from the lists for its context.
463 * Must be called with ctx->mutex and ctx->lock held.
464 */
465 static void
466 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
467 {
468 /*
469 * We can have double detach due to exit/hot-unplug + close.
470 */
471 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
472 return;
473
474 event->attach_state &= ~PERF_ATTACH_CONTEXT;
475
476 ctx->nr_events--;
477 if (event->attr.inherit_stat)
478 ctx->nr_stat--;
479
480 list_del_rcu(&event->event_entry);
481
482 if (event->group_leader == event)
483 list_del_init(&event->group_entry);
484
485 update_group_times(event);
486
487 /*
488 * If event was in error state, then keep it
489 * that way, otherwise bogus counts will be
490 * returned on read(). The only way to get out
491 * of error state is by explicit re-enabling
492 * of the event
493 */
494 if (event->state > PERF_EVENT_STATE_OFF)
495 event->state = PERF_EVENT_STATE_OFF;
496 }
497
498 static void perf_group_detach(struct perf_event *event)
499 {
500 struct perf_event *sibling, *tmp;
501 struct list_head *list = NULL;
502
503 /*
504 * We can have double detach due to exit/hot-unplug + close.
505 */
506 if (!(event->attach_state & PERF_ATTACH_GROUP))
507 return;
508
509 event->attach_state &= ~PERF_ATTACH_GROUP;
510
511 /*
512 * If this is a sibling, remove it from its group.
513 */
514 if (event->group_leader != event) {
515 list_del_init(&event->group_entry);
516 event->group_leader->nr_siblings--;
517 goto out;
518 }
519
520 if (!list_empty(&event->group_entry))
521 list = &event->group_entry;
522
523 /*
524 * If this was a group event with sibling events then
525 * upgrade the siblings to singleton events by adding them
526 * to whatever list we are on.
527 */
528 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
529 if (list)
530 list_move_tail(&sibling->group_entry, list);
531 sibling->group_leader = sibling;
532
533 /* Inherit group flags from the previous leader */
534 sibling->group_flags = event->group_flags;
535 }
536
537 out:
538 perf_event__header_size(event->group_leader);
539
540 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
541 perf_event__header_size(tmp);
542 }
543
544 static inline int
545 event_filter_match(struct perf_event *event)
546 {
547 return event->cpu == -1 || event->cpu == smp_processor_id();
548 }
549
550 static void
551 event_sched_out(struct perf_event *event,
552 struct perf_cpu_context *cpuctx,
553 struct perf_event_context *ctx)
554 {
555 u64 tstamp = perf_event_time(event);
556 u64 delta;
557 /*
558 * An event which could not be activated because of
559 * filter mismatch still needs to have its timings
560 * maintained, otherwise bogus information is return
561 * via read() for time_enabled, time_running:
562 */
563 if (event->state == PERF_EVENT_STATE_INACTIVE
564 && !event_filter_match(event)) {
565 delta = ctx->time - event->tstamp_stopped;
566 event->tstamp_running += delta;
567 event->tstamp_stopped = tstamp;
568 }
569
570 if (event->state != PERF_EVENT_STATE_ACTIVE)
571 return;
572
573 event->state = PERF_EVENT_STATE_INACTIVE;
574 if (event->pending_disable) {
575 event->pending_disable = 0;
576 event->state = PERF_EVENT_STATE_OFF;
577 }
578 event->tstamp_stopped = tstamp;
579 event->pmu->del(event, 0);
580 event->oncpu = -1;
581
582 if (!is_software_event(event))
583 cpuctx->active_oncpu--;
584 ctx->nr_active--;
585 if (event->attr.exclusive || !cpuctx->active_oncpu)
586 cpuctx->exclusive = 0;
587 }
588
589 static void
590 group_sched_out(struct perf_event *group_event,
591 struct perf_cpu_context *cpuctx,
592 struct perf_event_context *ctx)
593 {
594 struct perf_event *event;
595 int state = group_event->state;
596
597 event_sched_out(group_event, cpuctx, ctx);
598
599 /*
600 * Schedule out siblings (if any):
601 */
602 list_for_each_entry(event, &group_event->sibling_list, group_entry)
603 event_sched_out(event, cpuctx, ctx);
604
605 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
606 cpuctx->exclusive = 0;
607 }
608
609 static inline struct perf_cpu_context *
610 __get_cpu_context(struct perf_event_context *ctx)
611 {
612 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
613 }
614
615 /*
616 * Cross CPU call to remove a performance event
617 *
618 * We disable the event on the hardware level first. After that we
619 * remove it from the context list.
620 */
621 static void __perf_event_remove_from_context(void *info)
622 {
623 struct perf_event *event = info;
624 struct perf_event_context *ctx = event->ctx;
625 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
626
627 /*
628 * If this is a task context, we need to check whether it is
629 * the current task context of this cpu. If not it has been
630 * scheduled out before the smp call arrived.
631 */
632 if (ctx->task && cpuctx->task_ctx != ctx)
633 return;
634
635 raw_spin_lock(&ctx->lock);
636
637 event_sched_out(event, cpuctx, ctx);
638
639 list_del_event(event, ctx);
640
641 raw_spin_unlock(&ctx->lock);
642 }
643
644
645 /*
646 * Remove the event from a task's (or a CPU's) list of events.
647 *
648 * Must be called with ctx->mutex held.
649 *
650 * CPU events are removed with a smp call. For task events we only
651 * call when the task is on a CPU.
652 *
653 * If event->ctx is a cloned context, callers must make sure that
654 * every task struct that event->ctx->task could possibly point to
655 * remains valid. This is OK when called from perf_release since
656 * that only calls us on the top-level context, which can't be a clone.
657 * When called from perf_event_exit_task, it's OK because the
658 * context has been detached from its task.
659 */
660 static void perf_event_remove_from_context(struct perf_event *event)
661 {
662 struct perf_event_context *ctx = event->ctx;
663 struct task_struct *task = ctx->task;
664
665 if (!task) {
666 /*
667 * Per cpu events are removed via an smp call and
668 * the removal is always successful.
669 */
670 smp_call_function_single(event->cpu,
671 __perf_event_remove_from_context,
672 event, 1);
673 return;
674 }
675
676 retry:
677 task_oncpu_function_call(task, __perf_event_remove_from_context,
678 event);
679
680 raw_spin_lock_irq(&ctx->lock);
681 /*
682 * If the context is active we need to retry the smp call.
683 */
684 if (ctx->nr_active && !list_empty(&event->group_entry)) {
685 raw_spin_unlock_irq(&ctx->lock);
686 goto retry;
687 }
688
689 /*
690 * The lock prevents that this context is scheduled in so we
691 * can remove the event safely, if the call above did not
692 * succeed.
693 */
694 if (!list_empty(&event->group_entry))
695 list_del_event(event, ctx);
696 raw_spin_unlock_irq(&ctx->lock);
697 }
698
699 /*
700 * Cross CPU call to disable a performance event
701 */
702 static void __perf_event_disable(void *info)
703 {
704 struct perf_event *event = info;
705 struct perf_event_context *ctx = event->ctx;
706 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
707
708 /*
709 * If this is a per-task event, need to check whether this
710 * event's task is the current task on this cpu.
711 */
712 if (ctx->task && cpuctx->task_ctx != ctx)
713 return;
714
715 raw_spin_lock(&ctx->lock);
716
717 /*
718 * If the event is on, turn it off.
719 * If it is in error state, leave it in error state.
720 */
721 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
722 update_context_time(ctx);
723 update_group_times(event);
724 if (event == event->group_leader)
725 group_sched_out(event, cpuctx, ctx);
726 else
727 event_sched_out(event, cpuctx, ctx);
728 event->state = PERF_EVENT_STATE_OFF;
729 }
730
731 raw_spin_unlock(&ctx->lock);
732 }
733
734 /*
735 * Disable a event.
736 *
737 * If event->ctx is a cloned context, callers must make sure that
738 * every task struct that event->ctx->task could possibly point to
739 * remains valid. This condition is satisifed when called through
740 * perf_event_for_each_child or perf_event_for_each because they
741 * hold the top-level event's child_mutex, so any descendant that
742 * goes to exit will block in sync_child_event.
743 * When called from perf_pending_event it's OK because event->ctx
744 * is the current context on this CPU and preemption is disabled,
745 * hence we can't get into perf_event_task_sched_out for this context.
746 */
747 void perf_event_disable(struct perf_event *event)
748 {
749 struct perf_event_context *ctx = event->ctx;
750 struct task_struct *task = ctx->task;
751
752 if (!task) {
753 /*
754 * Disable the event on the cpu that it's on
755 */
756 smp_call_function_single(event->cpu, __perf_event_disable,
757 event, 1);
758 return;
759 }
760
761 retry:
762 task_oncpu_function_call(task, __perf_event_disable, event);
763
764 raw_spin_lock_irq(&ctx->lock);
765 /*
766 * If the event is still active, we need to retry the cross-call.
767 */
768 if (event->state == PERF_EVENT_STATE_ACTIVE) {
769 raw_spin_unlock_irq(&ctx->lock);
770 goto retry;
771 }
772
773 /*
774 * Since we have the lock this context can't be scheduled
775 * in, so we can change the state safely.
776 */
777 if (event->state == PERF_EVENT_STATE_INACTIVE) {
778 update_group_times(event);
779 event->state = PERF_EVENT_STATE_OFF;
780 }
781
782 raw_spin_unlock_irq(&ctx->lock);
783 }
784
785 static int
786 event_sched_in(struct perf_event *event,
787 struct perf_cpu_context *cpuctx,
788 struct perf_event_context *ctx)
789 {
790 u64 tstamp = perf_event_time(event);
791
792 if (event->state <= PERF_EVENT_STATE_OFF)
793 return 0;
794
795 event->state = PERF_EVENT_STATE_ACTIVE;
796 event->oncpu = smp_processor_id();
797 /*
798 * The new state must be visible before we turn it on in the hardware:
799 */
800 smp_wmb();
801
802 if (event->pmu->add(event, PERF_EF_START)) {
803 event->state = PERF_EVENT_STATE_INACTIVE;
804 event->oncpu = -1;
805 return -EAGAIN;
806 }
807
808 event->tstamp_running += tstamp - event->tstamp_stopped;
809
810 event->shadow_ctx_time = tstamp - ctx->timestamp;
811
812 if (!is_software_event(event))
813 cpuctx->active_oncpu++;
814 ctx->nr_active++;
815
816 if (event->attr.exclusive)
817 cpuctx->exclusive = 1;
818
819 return 0;
820 }
821
822 static int
823 group_sched_in(struct perf_event *group_event,
824 struct perf_cpu_context *cpuctx,
825 struct perf_event_context *ctx)
826 {
827 struct perf_event *event, *partial_group = NULL;
828 struct pmu *pmu = group_event->pmu;
829 u64 now = ctx->time;
830 bool simulate = false;
831
832 if (group_event->state == PERF_EVENT_STATE_OFF)
833 return 0;
834
835 pmu->start_txn(pmu);
836
837 if (event_sched_in(group_event, cpuctx, ctx)) {
838 pmu->cancel_txn(pmu);
839 return -EAGAIN;
840 }
841
842 /*
843 * Schedule in siblings as one group (if any):
844 */
845 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
846 if (event_sched_in(event, cpuctx, ctx)) {
847 partial_group = event;
848 goto group_error;
849 }
850 }
851
852 if (!pmu->commit_txn(pmu))
853 return 0;
854
855 group_error:
856 /*
857 * Groups can be scheduled in as one unit only, so undo any
858 * partial group before returning:
859 * The events up to the failed event are scheduled out normally,
860 * tstamp_stopped will be updated.
861 *
862 * The failed events and the remaining siblings need to have
863 * their timings updated as if they had gone thru event_sched_in()
864 * and event_sched_out(). This is required to get consistent timings
865 * across the group. This also takes care of the case where the group
866 * could never be scheduled by ensuring tstamp_stopped is set to mark
867 * the time the event was actually stopped, such that time delta
868 * calculation in update_event_times() is correct.
869 */
870 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
871 if (event == partial_group)
872 simulate = true;
873
874 if (simulate) {
875 event->tstamp_running += now - event->tstamp_stopped;
876 event->tstamp_stopped = now;
877 } else {
878 event_sched_out(event, cpuctx, ctx);
879 }
880 }
881 event_sched_out(group_event, cpuctx, ctx);
882
883 pmu->cancel_txn(pmu);
884
885 return -EAGAIN;
886 }
887
888 /*
889 * Work out whether we can put this event group on the CPU now.
890 */
891 static int group_can_go_on(struct perf_event *event,
892 struct perf_cpu_context *cpuctx,
893 int can_add_hw)
894 {
895 /*
896 * Groups consisting entirely of software events can always go on.
897 */
898 if (event->group_flags & PERF_GROUP_SOFTWARE)
899 return 1;
900 /*
901 * If an exclusive group is already on, no other hardware
902 * events can go on.
903 */
904 if (cpuctx->exclusive)
905 return 0;
906 /*
907 * If this group is exclusive and there are already
908 * events on the CPU, it can't go on.
909 */
910 if (event->attr.exclusive && cpuctx->active_oncpu)
911 return 0;
912 /*
913 * Otherwise, try to add it if all previous groups were able
914 * to go on.
915 */
916 return can_add_hw;
917 }
918
919 static void add_event_to_ctx(struct perf_event *event,
920 struct perf_event_context *ctx)
921 {
922 u64 tstamp = perf_event_time(event);
923
924 list_add_event(event, ctx);
925 perf_group_attach(event);
926 event->tstamp_enabled = tstamp;
927 event->tstamp_running = tstamp;
928 event->tstamp_stopped = tstamp;
929 }
930
931 /*
932 * Cross CPU call to install and enable a performance event
933 *
934 * Must be called with ctx->mutex held
935 */
936 static void __perf_install_in_context(void *info)
937 {
938 struct perf_event *event = info;
939 struct perf_event_context *ctx = event->ctx;
940 struct perf_event *leader = event->group_leader;
941 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
942 int err;
943
944 /*
945 * If this is a task context, we need to check whether it is
946 * the current task context of this cpu. If not it has been
947 * scheduled out before the smp call arrived.
948 * Or possibly this is the right context but it isn't
949 * on this cpu because it had no events.
950 */
951 if (ctx->task && cpuctx->task_ctx != ctx) {
952 if (cpuctx->task_ctx || ctx->task != current)
953 return;
954 cpuctx->task_ctx = ctx;
955 }
956
957 raw_spin_lock(&ctx->lock);
958 ctx->is_active = 1;
959 update_context_time(ctx);
960
961 add_event_to_ctx(event, ctx);
962
963 if (!event_filter_match(event))
964 goto unlock;
965
966 /*
967 * Don't put the event on if it is disabled or if
968 * it is in a group and the group isn't on.
969 */
970 if (event->state != PERF_EVENT_STATE_INACTIVE ||
971 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
972 goto unlock;
973
974 /*
975 * An exclusive event can't go on if there are already active
976 * hardware events, and no hardware event can go on if there
977 * is already an exclusive event on.
978 */
979 if (!group_can_go_on(event, cpuctx, 1))
980 err = -EEXIST;
981 else
982 err = event_sched_in(event, cpuctx, ctx);
983
984 if (err) {
985 /*
986 * This event couldn't go on. If it is in a group
987 * then we have to pull the whole group off.
988 * If the event group is pinned then put it in error state.
989 */
990 if (leader != event)
991 group_sched_out(leader, cpuctx, ctx);
992 if (leader->attr.pinned) {
993 update_group_times(leader);
994 leader->state = PERF_EVENT_STATE_ERROR;
995 }
996 }
997
998 unlock:
999 raw_spin_unlock(&ctx->lock);
1000 }
1001
1002 /*
1003 * Attach a performance event to a context
1004 *
1005 * First we add the event to the list with the hardware enable bit
1006 * in event->hw_config cleared.
1007 *
1008 * If the event is attached to a task which is on a CPU we use a smp
1009 * call to enable it in the task context. The task might have been
1010 * scheduled away, but we check this in the smp call again.
1011 *
1012 * Must be called with ctx->mutex held.
1013 */
1014 static void
1015 perf_install_in_context(struct perf_event_context *ctx,
1016 struct perf_event *event,
1017 int cpu)
1018 {
1019 struct task_struct *task = ctx->task;
1020
1021 event->ctx = ctx;
1022
1023 if (!task) {
1024 /*
1025 * Per cpu events are installed via an smp call and
1026 * the install is always successful.
1027 */
1028 smp_call_function_single(cpu, __perf_install_in_context,
1029 event, 1);
1030 return;
1031 }
1032
1033 retry:
1034 task_oncpu_function_call(task, __perf_install_in_context,
1035 event);
1036
1037 raw_spin_lock_irq(&ctx->lock);
1038 /*
1039 * we need to retry the smp call.
1040 */
1041 if (ctx->is_active && list_empty(&event->group_entry)) {
1042 raw_spin_unlock_irq(&ctx->lock);
1043 goto retry;
1044 }
1045
1046 /*
1047 * The lock prevents that this context is scheduled in so we
1048 * can add the event safely, if it the call above did not
1049 * succeed.
1050 */
1051 if (list_empty(&event->group_entry))
1052 add_event_to_ctx(event, ctx);
1053 raw_spin_unlock_irq(&ctx->lock);
1054 }
1055
1056 /*
1057 * Put a event into inactive state and update time fields.
1058 * Enabling the leader of a group effectively enables all
1059 * the group members that aren't explicitly disabled, so we
1060 * have to update their ->tstamp_enabled also.
1061 * Note: this works for group members as well as group leaders
1062 * since the non-leader members' sibling_lists will be empty.
1063 */
1064 static void __perf_event_mark_enabled(struct perf_event *event,
1065 struct perf_event_context *ctx)
1066 {
1067 struct perf_event *sub;
1068 u64 tstamp = perf_event_time(event);
1069
1070 event->state = PERF_EVENT_STATE_INACTIVE;
1071 event->tstamp_enabled = tstamp - event->total_time_enabled;
1072 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1073 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1074 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1075 }
1076 }
1077
1078 /*
1079 * Cross CPU call to enable a performance event
1080 */
1081 static void __perf_event_enable(void *info)
1082 {
1083 struct perf_event *event = info;
1084 struct perf_event_context *ctx = event->ctx;
1085 struct perf_event *leader = event->group_leader;
1086 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1087 int err;
1088
1089 /*
1090 * If this is a per-task event, need to check whether this
1091 * event's task is the current task on this cpu.
1092 */
1093 if (ctx->task && cpuctx->task_ctx != ctx) {
1094 if (cpuctx->task_ctx || ctx->task != current)
1095 return;
1096 cpuctx->task_ctx = ctx;
1097 }
1098
1099 raw_spin_lock(&ctx->lock);
1100 ctx->is_active = 1;
1101 update_context_time(ctx);
1102
1103 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1104 goto unlock;
1105 __perf_event_mark_enabled(event, ctx);
1106
1107 if (!event_filter_match(event))
1108 goto unlock;
1109
1110 /*
1111 * If the event is in a group and isn't the group leader,
1112 * then don't put it on unless the group is on.
1113 */
1114 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1115 goto unlock;
1116
1117 if (!group_can_go_on(event, cpuctx, 1)) {
1118 err = -EEXIST;
1119 } else {
1120 if (event == leader)
1121 err = group_sched_in(event, cpuctx, ctx);
1122 else
1123 err = event_sched_in(event, cpuctx, ctx);
1124 }
1125
1126 if (err) {
1127 /*
1128 * If this event can't go on and it's part of a
1129 * group, then the whole group has to come off.
1130 */
1131 if (leader != event)
1132 group_sched_out(leader, cpuctx, ctx);
1133 if (leader->attr.pinned) {
1134 update_group_times(leader);
1135 leader->state = PERF_EVENT_STATE_ERROR;
1136 }
1137 }
1138
1139 unlock:
1140 raw_spin_unlock(&ctx->lock);
1141 }
1142
1143 /*
1144 * Enable a event.
1145 *
1146 * If event->ctx is a cloned context, callers must make sure that
1147 * every task struct that event->ctx->task could possibly point to
1148 * remains valid. This condition is satisfied when called through
1149 * perf_event_for_each_child or perf_event_for_each as described
1150 * for perf_event_disable.
1151 */
1152 void perf_event_enable(struct perf_event *event)
1153 {
1154 struct perf_event_context *ctx = event->ctx;
1155 struct task_struct *task = ctx->task;
1156
1157 if (!task) {
1158 /*
1159 * Enable the event on the cpu that it's on
1160 */
1161 smp_call_function_single(event->cpu, __perf_event_enable,
1162 event, 1);
1163 return;
1164 }
1165
1166 raw_spin_lock_irq(&ctx->lock);
1167 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1168 goto out;
1169
1170 /*
1171 * If the event is in error state, clear that first.
1172 * That way, if we see the event in error state below, we
1173 * know that it has gone back into error state, as distinct
1174 * from the task having been scheduled away before the
1175 * cross-call arrived.
1176 */
1177 if (event->state == PERF_EVENT_STATE_ERROR)
1178 event->state = PERF_EVENT_STATE_OFF;
1179
1180 retry:
1181 raw_spin_unlock_irq(&ctx->lock);
1182 task_oncpu_function_call(task, __perf_event_enable, event);
1183
1184 raw_spin_lock_irq(&ctx->lock);
1185
1186 /*
1187 * If the context is active and the event is still off,
1188 * we need to retry the cross-call.
1189 */
1190 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1191 goto retry;
1192
1193 /*
1194 * Since we have the lock this context can't be scheduled
1195 * in, so we can change the state safely.
1196 */
1197 if (event->state == PERF_EVENT_STATE_OFF)
1198 __perf_event_mark_enabled(event, ctx);
1199
1200 out:
1201 raw_spin_unlock_irq(&ctx->lock);
1202 }
1203
1204 static int perf_event_refresh(struct perf_event *event, int refresh)
1205 {
1206 /*
1207 * not supported on inherited events
1208 */
1209 if (event->attr.inherit || !is_sampling_event(event))
1210 return -EINVAL;
1211
1212 atomic_add(refresh, &event->event_limit);
1213 perf_event_enable(event);
1214
1215 return 0;
1216 }
1217
1218 static void ctx_sched_out(struct perf_event_context *ctx,
1219 struct perf_cpu_context *cpuctx,
1220 enum event_type_t event_type)
1221 {
1222 struct perf_event *event;
1223
1224 raw_spin_lock(&ctx->lock);
1225 perf_pmu_disable(ctx->pmu);
1226 ctx->is_active = 0;
1227 if (likely(!ctx->nr_events))
1228 goto out;
1229 update_context_time(ctx);
1230
1231 if (!ctx->nr_active)
1232 goto out;
1233
1234 if (event_type & EVENT_PINNED) {
1235 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1236 group_sched_out(event, cpuctx, ctx);
1237 }
1238
1239 if (event_type & EVENT_FLEXIBLE) {
1240 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1241 group_sched_out(event, cpuctx, ctx);
1242 }
1243 out:
1244 perf_pmu_enable(ctx->pmu);
1245 raw_spin_unlock(&ctx->lock);
1246 }
1247
1248 /*
1249 * Test whether two contexts are equivalent, i.e. whether they
1250 * have both been cloned from the same version of the same context
1251 * and they both have the same number of enabled events.
1252 * If the number of enabled events is the same, then the set
1253 * of enabled events should be the same, because these are both
1254 * inherited contexts, therefore we can't access individual events
1255 * in them directly with an fd; we can only enable/disable all
1256 * events via prctl, or enable/disable all events in a family
1257 * via ioctl, which will have the same effect on both contexts.
1258 */
1259 static int context_equiv(struct perf_event_context *ctx1,
1260 struct perf_event_context *ctx2)
1261 {
1262 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1263 && ctx1->parent_gen == ctx2->parent_gen
1264 && !ctx1->pin_count && !ctx2->pin_count;
1265 }
1266
1267 static void __perf_event_sync_stat(struct perf_event *event,
1268 struct perf_event *next_event)
1269 {
1270 u64 value;
1271
1272 if (!event->attr.inherit_stat)
1273 return;
1274
1275 /*
1276 * Update the event value, we cannot use perf_event_read()
1277 * because we're in the middle of a context switch and have IRQs
1278 * disabled, which upsets smp_call_function_single(), however
1279 * we know the event must be on the current CPU, therefore we
1280 * don't need to use it.
1281 */
1282 switch (event->state) {
1283 case PERF_EVENT_STATE_ACTIVE:
1284 event->pmu->read(event);
1285 /* fall-through */
1286
1287 case PERF_EVENT_STATE_INACTIVE:
1288 update_event_times(event);
1289 break;
1290
1291 default:
1292 break;
1293 }
1294
1295 /*
1296 * In order to keep per-task stats reliable we need to flip the event
1297 * values when we flip the contexts.
1298 */
1299 value = local64_read(&next_event->count);
1300 value = local64_xchg(&event->count, value);
1301 local64_set(&next_event->count, value);
1302
1303 swap(event->total_time_enabled, next_event->total_time_enabled);
1304 swap(event->total_time_running, next_event->total_time_running);
1305
1306 /*
1307 * Since we swizzled the values, update the user visible data too.
1308 */
1309 perf_event_update_userpage(event);
1310 perf_event_update_userpage(next_event);
1311 }
1312
1313 #define list_next_entry(pos, member) \
1314 list_entry(pos->member.next, typeof(*pos), member)
1315
1316 static void perf_event_sync_stat(struct perf_event_context *ctx,
1317 struct perf_event_context *next_ctx)
1318 {
1319 struct perf_event *event, *next_event;
1320
1321 if (!ctx->nr_stat)
1322 return;
1323
1324 update_context_time(ctx);
1325
1326 event = list_first_entry(&ctx->event_list,
1327 struct perf_event, event_entry);
1328
1329 next_event = list_first_entry(&next_ctx->event_list,
1330 struct perf_event, event_entry);
1331
1332 while (&event->event_entry != &ctx->event_list &&
1333 &next_event->event_entry != &next_ctx->event_list) {
1334
1335 __perf_event_sync_stat(event, next_event);
1336
1337 event = list_next_entry(event, event_entry);
1338 next_event = list_next_entry(next_event, event_entry);
1339 }
1340 }
1341
1342 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1343 struct task_struct *next)
1344 {
1345 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1346 struct perf_event_context *next_ctx;
1347 struct perf_event_context *parent;
1348 struct perf_cpu_context *cpuctx;
1349 int do_switch = 1;
1350
1351 if (likely(!ctx))
1352 return;
1353
1354 cpuctx = __get_cpu_context(ctx);
1355 if (!cpuctx->task_ctx)
1356 return;
1357
1358 rcu_read_lock();
1359 parent = rcu_dereference(ctx->parent_ctx);
1360 next_ctx = next->perf_event_ctxp[ctxn];
1361 if (parent && next_ctx &&
1362 rcu_dereference(next_ctx->parent_ctx) == parent) {
1363 /*
1364 * Looks like the two contexts are clones, so we might be
1365 * able to optimize the context switch. We lock both
1366 * contexts and check that they are clones under the
1367 * lock (including re-checking that neither has been
1368 * uncloned in the meantime). It doesn't matter which
1369 * order we take the locks because no other cpu could
1370 * be trying to lock both of these tasks.
1371 */
1372 raw_spin_lock(&ctx->lock);
1373 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1374 if (context_equiv(ctx, next_ctx)) {
1375 /*
1376 * XXX do we need a memory barrier of sorts
1377 * wrt to rcu_dereference() of perf_event_ctxp
1378 */
1379 task->perf_event_ctxp[ctxn] = next_ctx;
1380 next->perf_event_ctxp[ctxn] = ctx;
1381 ctx->task = next;
1382 next_ctx->task = task;
1383 do_switch = 0;
1384
1385 perf_event_sync_stat(ctx, next_ctx);
1386 }
1387 raw_spin_unlock(&next_ctx->lock);
1388 raw_spin_unlock(&ctx->lock);
1389 }
1390 rcu_read_unlock();
1391
1392 if (do_switch) {
1393 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1394 cpuctx->task_ctx = NULL;
1395 }
1396 }
1397
1398 #define for_each_task_context_nr(ctxn) \
1399 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1400
1401 /*
1402 * Called from scheduler to remove the events of the current task,
1403 * with interrupts disabled.
1404 *
1405 * We stop each event and update the event value in event->count.
1406 *
1407 * This does not protect us against NMI, but disable()
1408 * sets the disabled bit in the control field of event _before_
1409 * accessing the event control register. If a NMI hits, then it will
1410 * not restart the event.
1411 */
1412 void __perf_event_task_sched_out(struct task_struct *task,
1413 struct task_struct *next)
1414 {
1415 int ctxn;
1416
1417 for_each_task_context_nr(ctxn)
1418 perf_event_context_sched_out(task, ctxn, next);
1419 }
1420
1421 static void task_ctx_sched_out(struct perf_event_context *ctx,
1422 enum event_type_t event_type)
1423 {
1424 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1425
1426 if (!cpuctx->task_ctx)
1427 return;
1428
1429 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1430 return;
1431
1432 ctx_sched_out(ctx, cpuctx, event_type);
1433 cpuctx->task_ctx = NULL;
1434 }
1435
1436 /*
1437 * Called with IRQs disabled
1438 */
1439 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1440 enum event_type_t event_type)
1441 {
1442 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1443 }
1444
1445 static void
1446 ctx_pinned_sched_in(struct perf_event_context *ctx,
1447 struct perf_cpu_context *cpuctx)
1448 {
1449 struct perf_event *event;
1450
1451 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1452 if (event->state <= PERF_EVENT_STATE_OFF)
1453 continue;
1454 if (!event_filter_match(event))
1455 continue;
1456
1457 if (group_can_go_on(event, cpuctx, 1))
1458 group_sched_in(event, cpuctx, ctx);
1459
1460 /*
1461 * If this pinned group hasn't been scheduled,
1462 * put it in error state.
1463 */
1464 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1465 update_group_times(event);
1466 event->state = PERF_EVENT_STATE_ERROR;
1467 }
1468 }
1469 }
1470
1471 static void
1472 ctx_flexible_sched_in(struct perf_event_context *ctx,
1473 struct perf_cpu_context *cpuctx)
1474 {
1475 struct perf_event *event;
1476 int can_add_hw = 1;
1477
1478 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1479 /* Ignore events in OFF or ERROR state */
1480 if (event->state <= PERF_EVENT_STATE_OFF)
1481 continue;
1482 /*
1483 * Listen to the 'cpu' scheduling filter constraint
1484 * of events:
1485 */
1486 if (!event_filter_match(event))
1487 continue;
1488
1489 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1490 if (group_sched_in(event, cpuctx, ctx))
1491 can_add_hw = 0;
1492 }
1493 }
1494 }
1495
1496 static void
1497 ctx_sched_in(struct perf_event_context *ctx,
1498 struct perf_cpu_context *cpuctx,
1499 enum event_type_t event_type)
1500 {
1501 raw_spin_lock(&ctx->lock);
1502 ctx->is_active = 1;
1503 if (likely(!ctx->nr_events))
1504 goto out;
1505
1506 ctx->timestamp = perf_clock();
1507
1508 /*
1509 * First go through the list and put on any pinned groups
1510 * in order to give them the best chance of going on.
1511 */
1512 if (event_type & EVENT_PINNED)
1513 ctx_pinned_sched_in(ctx, cpuctx);
1514
1515 /* Then walk through the lower prio flexible groups */
1516 if (event_type & EVENT_FLEXIBLE)
1517 ctx_flexible_sched_in(ctx, cpuctx);
1518
1519 out:
1520 raw_spin_unlock(&ctx->lock);
1521 }
1522
1523 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1524 enum event_type_t event_type)
1525 {
1526 struct perf_event_context *ctx = &cpuctx->ctx;
1527
1528 ctx_sched_in(ctx, cpuctx, event_type);
1529 }
1530
1531 static void task_ctx_sched_in(struct perf_event_context *ctx,
1532 enum event_type_t event_type)
1533 {
1534 struct perf_cpu_context *cpuctx;
1535
1536 cpuctx = __get_cpu_context(ctx);
1537 if (cpuctx->task_ctx == ctx)
1538 return;
1539
1540 ctx_sched_in(ctx, cpuctx, event_type);
1541 cpuctx->task_ctx = ctx;
1542 }
1543
1544 void perf_event_context_sched_in(struct perf_event_context *ctx)
1545 {
1546 struct perf_cpu_context *cpuctx;
1547
1548 cpuctx = __get_cpu_context(ctx);
1549 if (cpuctx->task_ctx == ctx)
1550 return;
1551
1552 perf_pmu_disable(ctx->pmu);
1553 /*
1554 * We want to keep the following priority order:
1555 * cpu pinned (that don't need to move), task pinned,
1556 * cpu flexible, task flexible.
1557 */
1558 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1559
1560 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1561 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1562 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1563
1564 cpuctx->task_ctx = ctx;
1565
1566 /*
1567 * Since these rotations are per-cpu, we need to ensure the
1568 * cpu-context we got scheduled on is actually rotating.
1569 */
1570 perf_pmu_rotate_start(ctx->pmu);
1571 perf_pmu_enable(ctx->pmu);
1572 }
1573
1574 /*
1575 * Called from scheduler to add the events of the current task
1576 * with interrupts disabled.
1577 *
1578 * We restore the event value and then enable it.
1579 *
1580 * This does not protect us against NMI, but enable()
1581 * sets the enabled bit in the control field of event _before_
1582 * accessing the event control register. If a NMI hits, then it will
1583 * keep the event running.
1584 */
1585 void __perf_event_task_sched_in(struct task_struct *task)
1586 {
1587 struct perf_event_context *ctx;
1588 int ctxn;
1589
1590 for_each_task_context_nr(ctxn) {
1591 ctx = task->perf_event_ctxp[ctxn];
1592 if (likely(!ctx))
1593 continue;
1594
1595 perf_event_context_sched_in(ctx);
1596 }
1597 }
1598
1599 #define MAX_INTERRUPTS (~0ULL)
1600
1601 static void perf_log_throttle(struct perf_event *event, int enable);
1602
1603 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1604 {
1605 u64 frequency = event->attr.sample_freq;
1606 u64 sec = NSEC_PER_SEC;
1607 u64 divisor, dividend;
1608
1609 int count_fls, nsec_fls, frequency_fls, sec_fls;
1610
1611 count_fls = fls64(count);
1612 nsec_fls = fls64(nsec);
1613 frequency_fls = fls64(frequency);
1614 sec_fls = 30;
1615
1616 /*
1617 * We got @count in @nsec, with a target of sample_freq HZ
1618 * the target period becomes:
1619 *
1620 * @count * 10^9
1621 * period = -------------------
1622 * @nsec * sample_freq
1623 *
1624 */
1625
1626 /*
1627 * Reduce accuracy by one bit such that @a and @b converge
1628 * to a similar magnitude.
1629 */
1630 #define REDUCE_FLS(a, b) \
1631 do { \
1632 if (a##_fls > b##_fls) { \
1633 a >>= 1; \
1634 a##_fls--; \
1635 } else { \
1636 b >>= 1; \
1637 b##_fls--; \
1638 } \
1639 } while (0)
1640
1641 /*
1642 * Reduce accuracy until either term fits in a u64, then proceed with
1643 * the other, so that finally we can do a u64/u64 division.
1644 */
1645 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1646 REDUCE_FLS(nsec, frequency);
1647 REDUCE_FLS(sec, count);
1648 }
1649
1650 if (count_fls + sec_fls > 64) {
1651 divisor = nsec * frequency;
1652
1653 while (count_fls + sec_fls > 64) {
1654 REDUCE_FLS(count, sec);
1655 divisor >>= 1;
1656 }
1657
1658 dividend = count * sec;
1659 } else {
1660 dividend = count * sec;
1661
1662 while (nsec_fls + frequency_fls > 64) {
1663 REDUCE_FLS(nsec, frequency);
1664 dividend >>= 1;
1665 }
1666
1667 divisor = nsec * frequency;
1668 }
1669
1670 if (!divisor)
1671 return dividend;
1672
1673 return div64_u64(dividend, divisor);
1674 }
1675
1676 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1677 {
1678 struct hw_perf_event *hwc = &event->hw;
1679 s64 period, sample_period;
1680 s64 delta;
1681
1682 period = perf_calculate_period(event, nsec, count);
1683
1684 delta = (s64)(period - hwc->sample_period);
1685 delta = (delta + 7) / 8; /* low pass filter */
1686
1687 sample_period = hwc->sample_period + delta;
1688
1689 if (!sample_period)
1690 sample_period = 1;
1691
1692 hwc->sample_period = sample_period;
1693
1694 if (local64_read(&hwc->period_left) > 8*sample_period) {
1695 event->pmu->stop(event, PERF_EF_UPDATE);
1696 local64_set(&hwc->period_left, 0);
1697 event->pmu->start(event, PERF_EF_RELOAD);
1698 }
1699 }
1700
1701 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1702 {
1703 struct perf_event *event;
1704 struct hw_perf_event *hwc;
1705 u64 interrupts, now;
1706 s64 delta;
1707
1708 raw_spin_lock(&ctx->lock);
1709 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1710 if (event->state != PERF_EVENT_STATE_ACTIVE)
1711 continue;
1712
1713 if (!event_filter_match(event))
1714 continue;
1715
1716 hwc = &event->hw;
1717
1718 interrupts = hwc->interrupts;
1719 hwc->interrupts = 0;
1720
1721 /*
1722 * unthrottle events on the tick
1723 */
1724 if (interrupts == MAX_INTERRUPTS) {
1725 perf_log_throttle(event, 1);
1726 event->pmu->start(event, 0);
1727 }
1728
1729 if (!event->attr.freq || !event->attr.sample_freq)
1730 continue;
1731
1732 event->pmu->read(event);
1733 now = local64_read(&event->count);
1734 delta = now - hwc->freq_count_stamp;
1735 hwc->freq_count_stamp = now;
1736
1737 if (delta > 0)
1738 perf_adjust_period(event, period, delta);
1739 }
1740 raw_spin_unlock(&ctx->lock);
1741 }
1742
1743 /*
1744 * Round-robin a context's events:
1745 */
1746 static void rotate_ctx(struct perf_event_context *ctx)
1747 {
1748 raw_spin_lock(&ctx->lock);
1749
1750 /*
1751 * Rotate the first entry last of non-pinned groups. Rotation might be
1752 * disabled by the inheritance code.
1753 */
1754 if (!ctx->rotate_disable)
1755 list_rotate_left(&ctx->flexible_groups);
1756
1757 raw_spin_unlock(&ctx->lock);
1758 }
1759
1760 /*
1761 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1762 * because they're strictly cpu affine and rotate_start is called with IRQs
1763 * disabled, while rotate_context is called from IRQ context.
1764 */
1765 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1766 {
1767 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1768 struct perf_event_context *ctx = NULL;
1769 int rotate = 0, remove = 1;
1770
1771 if (cpuctx->ctx.nr_events) {
1772 remove = 0;
1773 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1774 rotate = 1;
1775 }
1776
1777 ctx = cpuctx->task_ctx;
1778 if (ctx && ctx->nr_events) {
1779 remove = 0;
1780 if (ctx->nr_events != ctx->nr_active)
1781 rotate = 1;
1782 }
1783
1784 perf_pmu_disable(cpuctx->ctx.pmu);
1785 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1786 if (ctx)
1787 perf_ctx_adjust_freq(ctx, interval);
1788
1789 if (!rotate)
1790 goto done;
1791
1792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1793 if (ctx)
1794 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1795
1796 rotate_ctx(&cpuctx->ctx);
1797 if (ctx)
1798 rotate_ctx(ctx);
1799
1800 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1801 if (ctx)
1802 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1803
1804 done:
1805 if (remove)
1806 list_del_init(&cpuctx->rotation_list);
1807
1808 perf_pmu_enable(cpuctx->ctx.pmu);
1809 }
1810
1811 void perf_event_task_tick(void)
1812 {
1813 struct list_head *head = &__get_cpu_var(rotation_list);
1814 struct perf_cpu_context *cpuctx, *tmp;
1815
1816 WARN_ON(!irqs_disabled());
1817
1818 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1819 if (cpuctx->jiffies_interval == 1 ||
1820 !(jiffies % cpuctx->jiffies_interval))
1821 perf_rotate_context(cpuctx);
1822 }
1823 }
1824
1825 static int event_enable_on_exec(struct perf_event *event,
1826 struct perf_event_context *ctx)
1827 {
1828 if (!event->attr.enable_on_exec)
1829 return 0;
1830
1831 event->attr.enable_on_exec = 0;
1832 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1833 return 0;
1834
1835 __perf_event_mark_enabled(event, ctx);
1836
1837 return 1;
1838 }
1839
1840 /*
1841 * Enable all of a task's events that have been marked enable-on-exec.
1842 * This expects task == current.
1843 */
1844 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1845 {
1846 struct perf_event *event;
1847 unsigned long flags;
1848 int enabled = 0;
1849 int ret;
1850
1851 local_irq_save(flags);
1852 if (!ctx || !ctx->nr_events)
1853 goto out;
1854
1855 task_ctx_sched_out(ctx, EVENT_ALL);
1856
1857 raw_spin_lock(&ctx->lock);
1858
1859 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1860 ret = event_enable_on_exec(event, ctx);
1861 if (ret)
1862 enabled = 1;
1863 }
1864
1865 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1866 ret = event_enable_on_exec(event, ctx);
1867 if (ret)
1868 enabled = 1;
1869 }
1870
1871 /*
1872 * Unclone this context if we enabled any event.
1873 */
1874 if (enabled)
1875 unclone_ctx(ctx);
1876
1877 raw_spin_unlock(&ctx->lock);
1878
1879 perf_event_context_sched_in(ctx);
1880 out:
1881 local_irq_restore(flags);
1882 }
1883
1884 /*
1885 * Cross CPU call to read the hardware event
1886 */
1887 static void __perf_event_read(void *info)
1888 {
1889 struct perf_event *event = info;
1890 struct perf_event_context *ctx = event->ctx;
1891 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1892
1893 /*
1894 * If this is a task context, we need to check whether it is
1895 * the current task context of this cpu. If not it has been
1896 * scheduled out before the smp call arrived. In that case
1897 * event->count would have been updated to a recent sample
1898 * when the event was scheduled out.
1899 */
1900 if (ctx->task && cpuctx->task_ctx != ctx)
1901 return;
1902
1903 raw_spin_lock(&ctx->lock);
1904 update_context_time(ctx);
1905 update_event_times(event);
1906 raw_spin_unlock(&ctx->lock);
1907
1908 event->pmu->read(event);
1909 }
1910
1911 static inline u64 perf_event_count(struct perf_event *event)
1912 {
1913 return local64_read(&event->count) + atomic64_read(&event->child_count);
1914 }
1915
1916 static u64 perf_event_read(struct perf_event *event)
1917 {
1918 /*
1919 * If event is enabled and currently active on a CPU, update the
1920 * value in the event structure:
1921 */
1922 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1923 smp_call_function_single(event->oncpu,
1924 __perf_event_read, event, 1);
1925 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1926 struct perf_event_context *ctx = event->ctx;
1927 unsigned long flags;
1928
1929 raw_spin_lock_irqsave(&ctx->lock, flags);
1930 /*
1931 * may read while context is not active
1932 * (e.g., thread is blocked), in that case
1933 * we cannot update context time
1934 */
1935 if (ctx->is_active)
1936 update_context_time(ctx);
1937 update_event_times(event);
1938 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1939 }
1940
1941 return perf_event_count(event);
1942 }
1943
1944 /*
1945 * Callchain support
1946 */
1947
1948 struct callchain_cpus_entries {
1949 struct rcu_head rcu_head;
1950 struct perf_callchain_entry *cpu_entries[0];
1951 };
1952
1953 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1954 static atomic_t nr_callchain_events;
1955 static DEFINE_MUTEX(callchain_mutex);
1956 struct callchain_cpus_entries *callchain_cpus_entries;
1957
1958
1959 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1960 struct pt_regs *regs)
1961 {
1962 }
1963
1964 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1965 struct pt_regs *regs)
1966 {
1967 }
1968
1969 static void release_callchain_buffers_rcu(struct rcu_head *head)
1970 {
1971 struct callchain_cpus_entries *entries;
1972 int cpu;
1973
1974 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1975
1976 for_each_possible_cpu(cpu)
1977 kfree(entries->cpu_entries[cpu]);
1978
1979 kfree(entries);
1980 }
1981
1982 static void release_callchain_buffers(void)
1983 {
1984 struct callchain_cpus_entries *entries;
1985
1986 entries = callchain_cpus_entries;
1987 rcu_assign_pointer(callchain_cpus_entries, NULL);
1988 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1989 }
1990
1991 static int alloc_callchain_buffers(void)
1992 {
1993 int cpu;
1994 int size;
1995 struct callchain_cpus_entries *entries;
1996
1997 /*
1998 * We can't use the percpu allocation API for data that can be
1999 * accessed from NMI. Use a temporary manual per cpu allocation
2000 * until that gets sorted out.
2001 */
2002 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
2003 num_possible_cpus();
2004
2005 entries = kzalloc(size, GFP_KERNEL);
2006 if (!entries)
2007 return -ENOMEM;
2008
2009 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2010
2011 for_each_possible_cpu(cpu) {
2012 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2013 cpu_to_node(cpu));
2014 if (!entries->cpu_entries[cpu])
2015 goto fail;
2016 }
2017
2018 rcu_assign_pointer(callchain_cpus_entries, entries);
2019
2020 return 0;
2021
2022 fail:
2023 for_each_possible_cpu(cpu)
2024 kfree(entries->cpu_entries[cpu]);
2025 kfree(entries);
2026
2027 return -ENOMEM;
2028 }
2029
2030 static int get_callchain_buffers(void)
2031 {
2032 int err = 0;
2033 int count;
2034
2035 mutex_lock(&callchain_mutex);
2036
2037 count = atomic_inc_return(&nr_callchain_events);
2038 if (WARN_ON_ONCE(count < 1)) {
2039 err = -EINVAL;
2040 goto exit;
2041 }
2042
2043 if (count > 1) {
2044 /* If the allocation failed, give up */
2045 if (!callchain_cpus_entries)
2046 err = -ENOMEM;
2047 goto exit;
2048 }
2049
2050 err = alloc_callchain_buffers();
2051 if (err)
2052 release_callchain_buffers();
2053 exit:
2054 mutex_unlock(&callchain_mutex);
2055
2056 return err;
2057 }
2058
2059 static void put_callchain_buffers(void)
2060 {
2061 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2062 release_callchain_buffers();
2063 mutex_unlock(&callchain_mutex);
2064 }
2065 }
2066
2067 static int get_recursion_context(int *recursion)
2068 {
2069 int rctx;
2070
2071 if (in_nmi())
2072 rctx = 3;
2073 else if (in_irq())
2074 rctx = 2;
2075 else if (in_softirq())
2076 rctx = 1;
2077 else
2078 rctx = 0;
2079
2080 if (recursion[rctx])
2081 return -1;
2082
2083 recursion[rctx]++;
2084 barrier();
2085
2086 return rctx;
2087 }
2088
2089 static inline void put_recursion_context(int *recursion, int rctx)
2090 {
2091 barrier();
2092 recursion[rctx]--;
2093 }
2094
2095 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2096 {
2097 int cpu;
2098 struct callchain_cpus_entries *entries;
2099
2100 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2101 if (*rctx == -1)
2102 return NULL;
2103
2104 entries = rcu_dereference(callchain_cpus_entries);
2105 if (!entries)
2106 return NULL;
2107
2108 cpu = smp_processor_id();
2109
2110 return &entries->cpu_entries[cpu][*rctx];
2111 }
2112
2113 static void
2114 put_callchain_entry(int rctx)
2115 {
2116 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2117 }
2118
2119 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2120 {
2121 int rctx;
2122 struct perf_callchain_entry *entry;
2123
2124
2125 entry = get_callchain_entry(&rctx);
2126 if (rctx == -1)
2127 return NULL;
2128
2129 if (!entry)
2130 goto exit_put;
2131
2132 entry->nr = 0;
2133
2134 if (!user_mode(regs)) {
2135 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2136 perf_callchain_kernel(entry, regs);
2137 if (current->mm)
2138 regs = task_pt_regs(current);
2139 else
2140 regs = NULL;
2141 }
2142
2143 if (regs) {
2144 perf_callchain_store(entry, PERF_CONTEXT_USER);
2145 perf_callchain_user(entry, regs);
2146 }
2147
2148 exit_put:
2149 put_callchain_entry(rctx);
2150
2151 return entry;
2152 }
2153
2154 /*
2155 * Initialize the perf_event context in a task_struct:
2156 */
2157 static void __perf_event_init_context(struct perf_event_context *ctx)
2158 {
2159 raw_spin_lock_init(&ctx->lock);
2160 mutex_init(&ctx->mutex);
2161 INIT_LIST_HEAD(&ctx->pinned_groups);
2162 INIT_LIST_HEAD(&ctx->flexible_groups);
2163 INIT_LIST_HEAD(&ctx->event_list);
2164 atomic_set(&ctx->refcount, 1);
2165 }
2166
2167 static struct perf_event_context *
2168 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2169 {
2170 struct perf_event_context *ctx;
2171
2172 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2173 if (!ctx)
2174 return NULL;
2175
2176 __perf_event_init_context(ctx);
2177 if (task) {
2178 ctx->task = task;
2179 get_task_struct(task);
2180 }
2181 ctx->pmu = pmu;
2182
2183 return ctx;
2184 }
2185
2186 static struct task_struct *
2187 find_lively_task_by_vpid(pid_t vpid)
2188 {
2189 struct task_struct *task;
2190 int err;
2191
2192 rcu_read_lock();
2193 if (!vpid)
2194 task = current;
2195 else
2196 task = find_task_by_vpid(vpid);
2197 if (task)
2198 get_task_struct(task);
2199 rcu_read_unlock();
2200
2201 if (!task)
2202 return ERR_PTR(-ESRCH);
2203
2204 /*
2205 * Can't attach events to a dying task.
2206 */
2207 err = -ESRCH;
2208 if (task->flags & PF_EXITING)
2209 goto errout;
2210
2211 /* Reuse ptrace permission checks for now. */
2212 err = -EACCES;
2213 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2214 goto errout;
2215
2216 return task;
2217 errout:
2218 put_task_struct(task);
2219 return ERR_PTR(err);
2220
2221 }
2222
2223 static struct perf_event_context *
2224 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2225 {
2226 struct perf_event_context *ctx;
2227 struct perf_cpu_context *cpuctx;
2228 unsigned long flags;
2229 int ctxn, err;
2230
2231 if (!task && cpu != -1) {
2232 /* Must be root to operate on a CPU event: */
2233 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2234 return ERR_PTR(-EACCES);
2235
2236 if (cpu < 0 || cpu >= nr_cpumask_bits)
2237 return ERR_PTR(-EINVAL);
2238
2239 /*
2240 * We could be clever and allow to attach a event to an
2241 * offline CPU and activate it when the CPU comes up, but
2242 * that's for later.
2243 */
2244 if (!cpu_online(cpu))
2245 return ERR_PTR(-ENODEV);
2246
2247 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2248 ctx = &cpuctx->ctx;
2249 get_ctx(ctx);
2250
2251 return ctx;
2252 }
2253
2254 err = -EINVAL;
2255 ctxn = pmu->task_ctx_nr;
2256 if (ctxn < 0)
2257 goto errout;
2258
2259 retry:
2260 ctx = perf_lock_task_context(task, ctxn, &flags);
2261 if (ctx) {
2262 unclone_ctx(ctx);
2263 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2264 }
2265
2266 if (!ctx) {
2267 ctx = alloc_perf_context(pmu, task);
2268 err = -ENOMEM;
2269 if (!ctx)
2270 goto errout;
2271
2272 get_ctx(ctx);
2273
2274 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2275 /*
2276 * We raced with some other task; use
2277 * the context they set.
2278 */
2279 put_task_struct(task);
2280 kfree(ctx);
2281 goto retry;
2282 }
2283 }
2284
2285 return ctx;
2286
2287 errout:
2288 return ERR_PTR(err);
2289 }
2290
2291 static void perf_event_free_filter(struct perf_event *event);
2292
2293 static void free_event_rcu(struct rcu_head *head)
2294 {
2295 struct perf_event *event;
2296
2297 event = container_of(head, struct perf_event, rcu_head);
2298 if (event->ns)
2299 put_pid_ns(event->ns);
2300 perf_event_free_filter(event);
2301 kfree(event);
2302 }
2303
2304 static void perf_buffer_put(struct perf_buffer *buffer);
2305
2306 static void free_event(struct perf_event *event)
2307 {
2308 irq_work_sync(&event->pending);
2309
2310 if (!event->parent) {
2311 if (event->attach_state & PERF_ATTACH_TASK)
2312 jump_label_dec(&perf_task_events);
2313 if (event->attr.mmap || event->attr.mmap_data)
2314 atomic_dec(&nr_mmap_events);
2315 if (event->attr.comm)
2316 atomic_dec(&nr_comm_events);
2317 if (event->attr.task)
2318 atomic_dec(&nr_task_events);
2319 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2320 put_callchain_buffers();
2321 }
2322
2323 if (event->buffer) {
2324 perf_buffer_put(event->buffer);
2325 event->buffer = NULL;
2326 }
2327
2328 if (event->destroy)
2329 event->destroy(event);
2330
2331 if (event->ctx)
2332 put_ctx(event->ctx);
2333
2334 call_rcu(&event->rcu_head, free_event_rcu);
2335 }
2336
2337 int perf_event_release_kernel(struct perf_event *event)
2338 {
2339 struct perf_event_context *ctx = event->ctx;
2340
2341 /*
2342 * Remove from the PMU, can't get re-enabled since we got
2343 * here because the last ref went.
2344 */
2345 perf_event_disable(event);
2346
2347 WARN_ON_ONCE(ctx->parent_ctx);
2348 /*
2349 * There are two ways this annotation is useful:
2350 *
2351 * 1) there is a lock recursion from perf_event_exit_task
2352 * see the comment there.
2353 *
2354 * 2) there is a lock-inversion with mmap_sem through
2355 * perf_event_read_group(), which takes faults while
2356 * holding ctx->mutex, however this is called after
2357 * the last filedesc died, so there is no possibility
2358 * to trigger the AB-BA case.
2359 */
2360 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2361 raw_spin_lock_irq(&ctx->lock);
2362 perf_group_detach(event);
2363 list_del_event(event, ctx);
2364 raw_spin_unlock_irq(&ctx->lock);
2365 mutex_unlock(&ctx->mutex);
2366
2367 free_event(event);
2368
2369 return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2372
2373 /*
2374 * Called when the last reference to the file is gone.
2375 */
2376 static int perf_release(struct inode *inode, struct file *file)
2377 {
2378 struct perf_event *event = file->private_data;
2379 struct task_struct *owner;
2380
2381 file->private_data = NULL;
2382
2383 rcu_read_lock();
2384 owner = ACCESS_ONCE(event->owner);
2385 /*
2386 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2387 * !owner it means the list deletion is complete and we can indeed
2388 * free this event, otherwise we need to serialize on
2389 * owner->perf_event_mutex.
2390 */
2391 smp_read_barrier_depends();
2392 if (owner) {
2393 /*
2394 * Since delayed_put_task_struct() also drops the last
2395 * task reference we can safely take a new reference
2396 * while holding the rcu_read_lock().
2397 */
2398 get_task_struct(owner);
2399 }
2400 rcu_read_unlock();
2401
2402 if (owner) {
2403 mutex_lock(&owner->perf_event_mutex);
2404 /*
2405 * We have to re-check the event->owner field, if it is cleared
2406 * we raced with perf_event_exit_task(), acquiring the mutex
2407 * ensured they're done, and we can proceed with freeing the
2408 * event.
2409 */
2410 if (event->owner)
2411 list_del_init(&event->owner_entry);
2412 mutex_unlock(&owner->perf_event_mutex);
2413 put_task_struct(owner);
2414 }
2415
2416 return perf_event_release_kernel(event);
2417 }
2418
2419 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2420 {
2421 struct perf_event *child;
2422 u64 total = 0;
2423
2424 *enabled = 0;
2425 *running = 0;
2426
2427 mutex_lock(&event->child_mutex);
2428 total += perf_event_read(event);
2429 *enabled += event->total_time_enabled +
2430 atomic64_read(&event->child_total_time_enabled);
2431 *running += event->total_time_running +
2432 atomic64_read(&event->child_total_time_running);
2433
2434 list_for_each_entry(child, &event->child_list, child_list) {
2435 total += perf_event_read(child);
2436 *enabled += child->total_time_enabled;
2437 *running += child->total_time_running;
2438 }
2439 mutex_unlock(&event->child_mutex);
2440
2441 return total;
2442 }
2443 EXPORT_SYMBOL_GPL(perf_event_read_value);
2444
2445 static int perf_event_read_group(struct perf_event *event,
2446 u64 read_format, char __user *buf)
2447 {
2448 struct perf_event *leader = event->group_leader, *sub;
2449 int n = 0, size = 0, ret = -EFAULT;
2450 struct perf_event_context *ctx = leader->ctx;
2451 u64 values[5];
2452 u64 count, enabled, running;
2453
2454 mutex_lock(&ctx->mutex);
2455 count = perf_event_read_value(leader, &enabled, &running);
2456
2457 values[n++] = 1 + leader->nr_siblings;
2458 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2459 values[n++] = enabled;
2460 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2461 values[n++] = running;
2462 values[n++] = count;
2463 if (read_format & PERF_FORMAT_ID)
2464 values[n++] = primary_event_id(leader);
2465
2466 size = n * sizeof(u64);
2467
2468 if (copy_to_user(buf, values, size))
2469 goto unlock;
2470
2471 ret = size;
2472
2473 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2474 n = 0;
2475
2476 values[n++] = perf_event_read_value(sub, &enabled, &running);
2477 if (read_format & PERF_FORMAT_ID)
2478 values[n++] = primary_event_id(sub);
2479
2480 size = n * sizeof(u64);
2481
2482 if (copy_to_user(buf + ret, values, size)) {
2483 ret = -EFAULT;
2484 goto unlock;
2485 }
2486
2487 ret += size;
2488 }
2489 unlock:
2490 mutex_unlock(&ctx->mutex);
2491
2492 return ret;
2493 }
2494
2495 static int perf_event_read_one(struct perf_event *event,
2496 u64 read_format, char __user *buf)
2497 {
2498 u64 enabled, running;
2499 u64 values[4];
2500 int n = 0;
2501
2502 values[n++] = perf_event_read_value(event, &enabled, &running);
2503 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2504 values[n++] = enabled;
2505 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2506 values[n++] = running;
2507 if (read_format & PERF_FORMAT_ID)
2508 values[n++] = primary_event_id(event);
2509
2510 if (copy_to_user(buf, values, n * sizeof(u64)))
2511 return -EFAULT;
2512
2513 return n * sizeof(u64);
2514 }
2515
2516 /*
2517 * Read the performance event - simple non blocking version for now
2518 */
2519 static ssize_t
2520 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2521 {
2522 u64 read_format = event->attr.read_format;
2523 int ret;
2524
2525 /*
2526 * Return end-of-file for a read on a event that is in
2527 * error state (i.e. because it was pinned but it couldn't be
2528 * scheduled on to the CPU at some point).
2529 */
2530 if (event->state == PERF_EVENT_STATE_ERROR)
2531 return 0;
2532
2533 if (count < event->read_size)
2534 return -ENOSPC;
2535
2536 WARN_ON_ONCE(event->ctx->parent_ctx);
2537 if (read_format & PERF_FORMAT_GROUP)
2538 ret = perf_event_read_group(event, read_format, buf);
2539 else
2540 ret = perf_event_read_one(event, read_format, buf);
2541
2542 return ret;
2543 }
2544
2545 static ssize_t
2546 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2547 {
2548 struct perf_event *event = file->private_data;
2549
2550 return perf_read_hw(event, buf, count);
2551 }
2552
2553 static unsigned int perf_poll(struct file *file, poll_table *wait)
2554 {
2555 struct perf_event *event = file->private_data;
2556 struct perf_buffer *buffer;
2557 unsigned int events = POLL_HUP;
2558
2559 rcu_read_lock();
2560 buffer = rcu_dereference(event->buffer);
2561 if (buffer)
2562 events = atomic_xchg(&buffer->poll, 0);
2563 rcu_read_unlock();
2564
2565 poll_wait(file, &event->waitq, wait);
2566
2567 return events;
2568 }
2569
2570 static void perf_event_reset(struct perf_event *event)
2571 {
2572 (void)perf_event_read(event);
2573 local64_set(&event->count, 0);
2574 perf_event_update_userpage(event);
2575 }
2576
2577 /*
2578 * Holding the top-level event's child_mutex means that any
2579 * descendant process that has inherited this event will block
2580 * in sync_child_event if it goes to exit, thus satisfying the
2581 * task existence requirements of perf_event_enable/disable.
2582 */
2583 static void perf_event_for_each_child(struct perf_event *event,
2584 void (*func)(struct perf_event *))
2585 {
2586 struct perf_event *child;
2587
2588 WARN_ON_ONCE(event->ctx->parent_ctx);
2589 mutex_lock(&event->child_mutex);
2590 func(event);
2591 list_for_each_entry(child, &event->child_list, child_list)
2592 func(child);
2593 mutex_unlock(&event->child_mutex);
2594 }
2595
2596 static void perf_event_for_each(struct perf_event *event,
2597 void (*func)(struct perf_event *))
2598 {
2599 struct perf_event_context *ctx = event->ctx;
2600 struct perf_event *sibling;
2601
2602 WARN_ON_ONCE(ctx->parent_ctx);
2603 mutex_lock(&ctx->mutex);
2604 event = event->group_leader;
2605
2606 perf_event_for_each_child(event, func);
2607 func(event);
2608 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2609 perf_event_for_each_child(event, func);
2610 mutex_unlock(&ctx->mutex);
2611 }
2612
2613 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2614 {
2615 struct perf_event_context *ctx = event->ctx;
2616 int ret = 0;
2617 u64 value;
2618
2619 if (!is_sampling_event(event))
2620 return -EINVAL;
2621
2622 if (copy_from_user(&value, arg, sizeof(value)))
2623 return -EFAULT;
2624
2625 if (!value)
2626 return -EINVAL;
2627
2628 raw_spin_lock_irq(&ctx->lock);
2629 if (event->attr.freq) {
2630 if (value > sysctl_perf_event_sample_rate) {
2631 ret = -EINVAL;
2632 goto unlock;
2633 }
2634
2635 event->attr.sample_freq = value;
2636 } else {
2637 event->attr.sample_period = value;
2638 event->hw.sample_period = value;
2639 }
2640 unlock:
2641 raw_spin_unlock_irq(&ctx->lock);
2642
2643 return ret;
2644 }
2645
2646 static const struct file_operations perf_fops;
2647
2648 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2649 {
2650 struct file *file;
2651
2652 file = fget_light(fd, fput_needed);
2653 if (!file)
2654 return ERR_PTR(-EBADF);
2655
2656 if (file->f_op != &perf_fops) {
2657 fput_light(file, *fput_needed);
2658 *fput_needed = 0;
2659 return ERR_PTR(-EBADF);
2660 }
2661
2662 return file->private_data;
2663 }
2664
2665 static int perf_event_set_output(struct perf_event *event,
2666 struct perf_event *output_event);
2667 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2668
2669 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2670 {
2671 struct perf_event *event = file->private_data;
2672 void (*func)(struct perf_event *);
2673 u32 flags = arg;
2674
2675 switch (cmd) {
2676 case PERF_EVENT_IOC_ENABLE:
2677 func = perf_event_enable;
2678 break;
2679 case PERF_EVENT_IOC_DISABLE:
2680 func = perf_event_disable;
2681 break;
2682 case PERF_EVENT_IOC_RESET:
2683 func = perf_event_reset;
2684 break;
2685
2686 case PERF_EVENT_IOC_REFRESH:
2687 return perf_event_refresh(event, arg);
2688
2689 case PERF_EVENT_IOC_PERIOD:
2690 return perf_event_period(event, (u64 __user *)arg);
2691
2692 case PERF_EVENT_IOC_SET_OUTPUT:
2693 {
2694 struct perf_event *output_event = NULL;
2695 int fput_needed = 0;
2696 int ret;
2697
2698 if (arg != -1) {
2699 output_event = perf_fget_light(arg, &fput_needed);
2700 if (IS_ERR(output_event))
2701 return PTR_ERR(output_event);
2702 }
2703
2704 ret = perf_event_set_output(event, output_event);
2705 if (output_event)
2706 fput_light(output_event->filp, fput_needed);
2707
2708 return ret;
2709 }
2710
2711 case PERF_EVENT_IOC_SET_FILTER:
2712 return perf_event_set_filter(event, (void __user *)arg);
2713
2714 default:
2715 return -ENOTTY;
2716 }
2717
2718 if (flags & PERF_IOC_FLAG_GROUP)
2719 perf_event_for_each(event, func);
2720 else
2721 perf_event_for_each_child(event, func);
2722
2723 return 0;
2724 }
2725
2726 int perf_event_task_enable(void)
2727 {
2728 struct perf_event *event;
2729
2730 mutex_lock(&current->perf_event_mutex);
2731 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2732 perf_event_for_each_child(event, perf_event_enable);
2733 mutex_unlock(&current->perf_event_mutex);
2734
2735 return 0;
2736 }
2737
2738 int perf_event_task_disable(void)
2739 {
2740 struct perf_event *event;
2741
2742 mutex_lock(&current->perf_event_mutex);
2743 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2744 perf_event_for_each_child(event, perf_event_disable);
2745 mutex_unlock(&current->perf_event_mutex);
2746
2747 return 0;
2748 }
2749
2750 #ifndef PERF_EVENT_INDEX_OFFSET
2751 # define PERF_EVENT_INDEX_OFFSET 0
2752 #endif
2753
2754 static int perf_event_index(struct perf_event *event)
2755 {
2756 if (event->hw.state & PERF_HES_STOPPED)
2757 return 0;
2758
2759 if (event->state != PERF_EVENT_STATE_ACTIVE)
2760 return 0;
2761
2762 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2763 }
2764
2765 /*
2766 * Callers need to ensure there can be no nesting of this function, otherwise
2767 * the seqlock logic goes bad. We can not serialize this because the arch
2768 * code calls this from NMI context.
2769 */
2770 void perf_event_update_userpage(struct perf_event *event)
2771 {
2772 struct perf_event_mmap_page *userpg;
2773 struct perf_buffer *buffer;
2774
2775 rcu_read_lock();
2776 buffer = rcu_dereference(event->buffer);
2777 if (!buffer)
2778 goto unlock;
2779
2780 userpg = buffer->user_page;
2781
2782 /*
2783 * Disable preemption so as to not let the corresponding user-space
2784 * spin too long if we get preempted.
2785 */
2786 preempt_disable();
2787 ++userpg->lock;
2788 barrier();
2789 userpg->index = perf_event_index(event);
2790 userpg->offset = perf_event_count(event);
2791 if (event->state == PERF_EVENT_STATE_ACTIVE)
2792 userpg->offset -= local64_read(&event->hw.prev_count);
2793
2794 userpg->time_enabled = event->total_time_enabled +
2795 atomic64_read(&event->child_total_time_enabled);
2796
2797 userpg->time_running = event->total_time_running +
2798 atomic64_read(&event->child_total_time_running);
2799
2800 barrier();
2801 ++userpg->lock;
2802 preempt_enable();
2803 unlock:
2804 rcu_read_unlock();
2805 }
2806
2807 static unsigned long perf_data_size(struct perf_buffer *buffer);
2808
2809 static void
2810 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2811 {
2812 long max_size = perf_data_size(buffer);
2813
2814 if (watermark)
2815 buffer->watermark = min(max_size, watermark);
2816
2817 if (!buffer->watermark)
2818 buffer->watermark = max_size / 2;
2819
2820 if (flags & PERF_BUFFER_WRITABLE)
2821 buffer->writable = 1;
2822
2823 atomic_set(&buffer->refcount, 1);
2824 }
2825
2826 #ifndef CONFIG_PERF_USE_VMALLOC
2827
2828 /*
2829 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2830 */
2831
2832 static struct page *
2833 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2834 {
2835 if (pgoff > buffer->nr_pages)
2836 return NULL;
2837
2838 if (pgoff == 0)
2839 return virt_to_page(buffer->user_page);
2840
2841 return virt_to_page(buffer->data_pages[pgoff - 1]);
2842 }
2843
2844 static void *perf_mmap_alloc_page(int cpu)
2845 {
2846 struct page *page;
2847 int node;
2848
2849 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2850 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2851 if (!page)
2852 return NULL;
2853
2854 return page_address(page);
2855 }
2856
2857 static struct perf_buffer *
2858 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2859 {
2860 struct perf_buffer *buffer;
2861 unsigned long size;
2862 int i;
2863
2864 size = sizeof(struct perf_buffer);
2865 size += nr_pages * sizeof(void *);
2866
2867 buffer = kzalloc(size, GFP_KERNEL);
2868 if (!buffer)
2869 goto fail;
2870
2871 buffer->user_page = perf_mmap_alloc_page(cpu);
2872 if (!buffer->user_page)
2873 goto fail_user_page;
2874
2875 for (i = 0; i < nr_pages; i++) {
2876 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2877 if (!buffer->data_pages[i])
2878 goto fail_data_pages;
2879 }
2880
2881 buffer->nr_pages = nr_pages;
2882
2883 perf_buffer_init(buffer, watermark, flags);
2884
2885 return buffer;
2886
2887 fail_data_pages:
2888 for (i--; i >= 0; i--)
2889 free_page((unsigned long)buffer->data_pages[i]);
2890
2891 free_page((unsigned long)buffer->user_page);
2892
2893 fail_user_page:
2894 kfree(buffer);
2895
2896 fail:
2897 return NULL;
2898 }
2899
2900 static void perf_mmap_free_page(unsigned long addr)
2901 {
2902 struct page *page = virt_to_page((void *)addr);
2903
2904 page->mapping = NULL;
2905 __free_page(page);
2906 }
2907
2908 static void perf_buffer_free(struct perf_buffer *buffer)
2909 {
2910 int i;
2911
2912 perf_mmap_free_page((unsigned long)buffer->user_page);
2913 for (i = 0; i < buffer->nr_pages; i++)
2914 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2915 kfree(buffer);
2916 }
2917
2918 static inline int page_order(struct perf_buffer *buffer)
2919 {
2920 return 0;
2921 }
2922
2923 #else
2924
2925 /*
2926 * Back perf_mmap() with vmalloc memory.
2927 *
2928 * Required for architectures that have d-cache aliasing issues.
2929 */
2930
2931 static inline int page_order(struct perf_buffer *buffer)
2932 {
2933 return buffer->page_order;
2934 }
2935
2936 static struct page *
2937 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2938 {
2939 if (pgoff > (1UL << page_order(buffer)))
2940 return NULL;
2941
2942 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2943 }
2944
2945 static void perf_mmap_unmark_page(void *addr)
2946 {
2947 struct page *page = vmalloc_to_page(addr);
2948
2949 page->mapping = NULL;
2950 }
2951
2952 static void perf_buffer_free_work(struct work_struct *work)
2953 {
2954 struct perf_buffer *buffer;
2955 void *base;
2956 int i, nr;
2957
2958 buffer = container_of(work, struct perf_buffer, work);
2959 nr = 1 << page_order(buffer);
2960
2961 base = buffer->user_page;
2962 for (i = 0; i < nr + 1; i++)
2963 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2964
2965 vfree(base);
2966 kfree(buffer);
2967 }
2968
2969 static void perf_buffer_free(struct perf_buffer *buffer)
2970 {
2971 schedule_work(&buffer->work);
2972 }
2973
2974 static struct perf_buffer *
2975 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2976 {
2977 struct perf_buffer *buffer;
2978 unsigned long size;
2979 void *all_buf;
2980
2981 size = sizeof(struct perf_buffer);
2982 size += sizeof(void *);
2983
2984 buffer = kzalloc(size, GFP_KERNEL);
2985 if (!buffer)
2986 goto fail;
2987
2988 INIT_WORK(&buffer->work, perf_buffer_free_work);
2989
2990 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2991 if (!all_buf)
2992 goto fail_all_buf;
2993
2994 buffer->user_page = all_buf;
2995 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2996 buffer->page_order = ilog2(nr_pages);
2997 buffer->nr_pages = 1;
2998
2999 perf_buffer_init(buffer, watermark, flags);
3000
3001 return buffer;
3002
3003 fail_all_buf:
3004 kfree(buffer);
3005
3006 fail:
3007 return NULL;
3008 }
3009
3010 #endif
3011
3012 static unsigned long perf_data_size(struct perf_buffer *buffer)
3013 {
3014 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3015 }
3016
3017 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3018 {
3019 struct perf_event *event = vma->vm_file->private_data;
3020 struct perf_buffer *buffer;
3021 int ret = VM_FAULT_SIGBUS;
3022
3023 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3024 if (vmf->pgoff == 0)
3025 ret = 0;
3026 return ret;
3027 }
3028
3029 rcu_read_lock();
3030 buffer = rcu_dereference(event->buffer);
3031 if (!buffer)
3032 goto unlock;
3033
3034 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3035 goto unlock;
3036
3037 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3038 if (!vmf->page)
3039 goto unlock;
3040
3041 get_page(vmf->page);
3042 vmf->page->mapping = vma->vm_file->f_mapping;
3043 vmf->page->index = vmf->pgoff;
3044
3045 ret = 0;
3046 unlock:
3047 rcu_read_unlock();
3048
3049 return ret;
3050 }
3051
3052 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3053 {
3054 struct perf_buffer *buffer;
3055
3056 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3057 perf_buffer_free(buffer);
3058 }
3059
3060 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3061 {
3062 struct perf_buffer *buffer;
3063
3064 rcu_read_lock();
3065 buffer = rcu_dereference(event->buffer);
3066 if (buffer) {
3067 if (!atomic_inc_not_zero(&buffer->refcount))
3068 buffer = NULL;
3069 }
3070 rcu_read_unlock();
3071
3072 return buffer;
3073 }
3074
3075 static void perf_buffer_put(struct perf_buffer *buffer)
3076 {
3077 if (!atomic_dec_and_test(&buffer->refcount))
3078 return;
3079
3080 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3081 }
3082
3083 static void perf_mmap_open(struct vm_area_struct *vma)
3084 {
3085 struct perf_event *event = vma->vm_file->private_data;
3086
3087 atomic_inc(&event->mmap_count);
3088 }
3089
3090 static void perf_mmap_close(struct vm_area_struct *vma)
3091 {
3092 struct perf_event *event = vma->vm_file->private_data;
3093
3094 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3095 unsigned long size = perf_data_size(event->buffer);
3096 struct user_struct *user = event->mmap_user;
3097 struct perf_buffer *buffer = event->buffer;
3098
3099 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3100 vma->vm_mm->locked_vm -= event->mmap_locked;
3101 rcu_assign_pointer(event->buffer, NULL);
3102 mutex_unlock(&event->mmap_mutex);
3103
3104 perf_buffer_put(buffer);
3105 free_uid(user);
3106 }
3107 }
3108
3109 static const struct vm_operations_struct perf_mmap_vmops = {
3110 .open = perf_mmap_open,
3111 .close = perf_mmap_close,
3112 .fault = perf_mmap_fault,
3113 .page_mkwrite = perf_mmap_fault,
3114 };
3115
3116 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3117 {
3118 struct perf_event *event = file->private_data;
3119 unsigned long user_locked, user_lock_limit;
3120 struct user_struct *user = current_user();
3121 unsigned long locked, lock_limit;
3122 struct perf_buffer *buffer;
3123 unsigned long vma_size;
3124 unsigned long nr_pages;
3125 long user_extra, extra;
3126 int ret = 0, flags = 0;
3127
3128 /*
3129 * Don't allow mmap() of inherited per-task counters. This would
3130 * create a performance issue due to all children writing to the
3131 * same buffer.
3132 */
3133 if (event->cpu == -1 && event->attr.inherit)
3134 return -EINVAL;
3135
3136 if (!(vma->vm_flags & VM_SHARED))
3137 return -EINVAL;
3138
3139 vma_size = vma->vm_end - vma->vm_start;
3140 nr_pages = (vma_size / PAGE_SIZE) - 1;
3141
3142 /*
3143 * If we have buffer pages ensure they're a power-of-two number, so we
3144 * can do bitmasks instead of modulo.
3145 */
3146 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3147 return -EINVAL;
3148
3149 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3150 return -EINVAL;
3151
3152 if (vma->vm_pgoff != 0)
3153 return -EINVAL;
3154
3155 WARN_ON_ONCE(event->ctx->parent_ctx);
3156 mutex_lock(&event->mmap_mutex);
3157 if (event->buffer) {
3158 if (event->buffer->nr_pages == nr_pages)
3159 atomic_inc(&event->buffer->refcount);
3160 else
3161 ret = -EINVAL;
3162 goto unlock;
3163 }
3164
3165 user_extra = nr_pages + 1;
3166 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3167
3168 /*
3169 * Increase the limit linearly with more CPUs:
3170 */
3171 user_lock_limit *= num_online_cpus();
3172
3173 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3174
3175 extra = 0;
3176 if (user_locked > user_lock_limit)
3177 extra = user_locked - user_lock_limit;
3178
3179 lock_limit = rlimit(RLIMIT_MEMLOCK);
3180 lock_limit >>= PAGE_SHIFT;
3181 locked = vma->vm_mm->locked_vm + extra;
3182
3183 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3184 !capable(CAP_IPC_LOCK)) {
3185 ret = -EPERM;
3186 goto unlock;
3187 }
3188
3189 WARN_ON(event->buffer);
3190
3191 if (vma->vm_flags & VM_WRITE)
3192 flags |= PERF_BUFFER_WRITABLE;
3193
3194 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3195 event->cpu, flags);
3196 if (!buffer) {
3197 ret = -ENOMEM;
3198 goto unlock;
3199 }
3200 rcu_assign_pointer(event->buffer, buffer);
3201
3202 atomic_long_add(user_extra, &user->locked_vm);
3203 event->mmap_locked = extra;
3204 event->mmap_user = get_current_user();
3205 vma->vm_mm->locked_vm += event->mmap_locked;
3206
3207 unlock:
3208 if (!ret)
3209 atomic_inc(&event->mmap_count);
3210 mutex_unlock(&event->mmap_mutex);
3211
3212 vma->vm_flags |= VM_RESERVED;
3213 vma->vm_ops = &perf_mmap_vmops;
3214
3215 return ret;
3216 }
3217
3218 static int perf_fasync(int fd, struct file *filp, int on)
3219 {
3220 struct inode *inode = filp->f_path.dentry->d_inode;
3221 struct perf_event *event = filp->private_data;
3222 int retval;
3223
3224 mutex_lock(&inode->i_mutex);
3225 retval = fasync_helper(fd, filp, on, &event->fasync);
3226 mutex_unlock(&inode->i_mutex);
3227
3228 if (retval < 0)
3229 return retval;
3230
3231 return 0;
3232 }
3233
3234 static const struct file_operations perf_fops = {
3235 .llseek = no_llseek,
3236 .release = perf_release,
3237 .read = perf_read,
3238 .poll = perf_poll,
3239 .unlocked_ioctl = perf_ioctl,
3240 .compat_ioctl = perf_ioctl,
3241 .mmap = perf_mmap,
3242 .fasync = perf_fasync,
3243 };
3244
3245 /*
3246 * Perf event wakeup
3247 *
3248 * If there's data, ensure we set the poll() state and publish everything
3249 * to user-space before waking everybody up.
3250 */
3251
3252 void perf_event_wakeup(struct perf_event *event)
3253 {
3254 wake_up_all(&event->waitq);
3255
3256 if (event->pending_kill) {
3257 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3258 event->pending_kill = 0;
3259 }
3260 }
3261
3262 static void perf_pending_event(struct irq_work *entry)
3263 {
3264 struct perf_event *event = container_of(entry,
3265 struct perf_event, pending);
3266
3267 if (event->pending_disable) {
3268 event->pending_disable = 0;
3269 __perf_event_disable(event);
3270 }
3271
3272 if (event->pending_wakeup) {
3273 event->pending_wakeup = 0;
3274 perf_event_wakeup(event);
3275 }
3276 }
3277
3278 /*
3279 * We assume there is only KVM supporting the callbacks.
3280 * Later on, we might change it to a list if there is
3281 * another virtualization implementation supporting the callbacks.
3282 */
3283 struct perf_guest_info_callbacks *perf_guest_cbs;
3284
3285 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3286 {
3287 perf_guest_cbs = cbs;
3288 return 0;
3289 }
3290 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3291
3292 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3293 {
3294 perf_guest_cbs = NULL;
3295 return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3298
3299 /*
3300 * Output
3301 */
3302 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3303 unsigned long offset, unsigned long head)
3304 {
3305 unsigned long mask;
3306
3307 if (!buffer->writable)
3308 return true;
3309
3310 mask = perf_data_size(buffer) - 1;
3311
3312 offset = (offset - tail) & mask;
3313 head = (head - tail) & mask;
3314
3315 if ((int)(head - offset) < 0)
3316 return false;
3317
3318 return true;
3319 }
3320
3321 static void perf_output_wakeup(struct perf_output_handle *handle)
3322 {
3323 atomic_set(&handle->buffer->poll, POLL_IN);
3324
3325 if (handle->nmi) {
3326 handle->event->pending_wakeup = 1;
3327 irq_work_queue(&handle->event->pending);
3328 } else
3329 perf_event_wakeup(handle->event);
3330 }
3331
3332 /*
3333 * We need to ensure a later event_id doesn't publish a head when a former
3334 * event isn't done writing. However since we need to deal with NMIs we
3335 * cannot fully serialize things.
3336 *
3337 * We only publish the head (and generate a wakeup) when the outer-most
3338 * event completes.
3339 */
3340 static void perf_output_get_handle(struct perf_output_handle *handle)
3341 {
3342 struct perf_buffer *buffer = handle->buffer;
3343
3344 preempt_disable();
3345 local_inc(&buffer->nest);
3346 handle->wakeup = local_read(&buffer->wakeup);
3347 }
3348
3349 static void perf_output_put_handle(struct perf_output_handle *handle)
3350 {
3351 struct perf_buffer *buffer = handle->buffer;
3352 unsigned long head;
3353
3354 again:
3355 head = local_read(&buffer->head);
3356
3357 /*
3358 * IRQ/NMI can happen here, which means we can miss a head update.
3359 */
3360
3361 if (!local_dec_and_test(&buffer->nest))
3362 goto out;
3363
3364 /*
3365 * Publish the known good head. Rely on the full barrier implied
3366 * by atomic_dec_and_test() order the buffer->head read and this
3367 * write.
3368 */
3369 buffer->user_page->data_head = head;
3370
3371 /*
3372 * Now check if we missed an update, rely on the (compiler)
3373 * barrier in atomic_dec_and_test() to re-read buffer->head.
3374 */
3375 if (unlikely(head != local_read(&buffer->head))) {
3376 local_inc(&buffer->nest);
3377 goto again;
3378 }
3379
3380 if (handle->wakeup != local_read(&buffer->wakeup))
3381 perf_output_wakeup(handle);
3382
3383 out:
3384 preempt_enable();
3385 }
3386
3387 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3388 const void *buf, unsigned int len)
3389 {
3390 do {
3391 unsigned long size = min_t(unsigned long, handle->size, len);
3392
3393 memcpy(handle->addr, buf, size);
3394
3395 len -= size;
3396 handle->addr += size;
3397 buf += size;
3398 handle->size -= size;
3399 if (!handle->size) {
3400 struct perf_buffer *buffer = handle->buffer;
3401
3402 handle->page++;
3403 handle->page &= buffer->nr_pages - 1;
3404 handle->addr = buffer->data_pages[handle->page];
3405 handle->size = PAGE_SIZE << page_order(buffer);
3406 }
3407 } while (len);
3408 }
3409
3410 static void __perf_event_header__init_id(struct perf_event_header *header,
3411 struct perf_sample_data *data,
3412 struct perf_event *event)
3413 {
3414 u64 sample_type = event->attr.sample_type;
3415
3416 data->type = sample_type;
3417 header->size += event->id_header_size;
3418
3419 if (sample_type & PERF_SAMPLE_TID) {
3420 /* namespace issues */
3421 data->tid_entry.pid = perf_event_pid(event, current);
3422 data->tid_entry.tid = perf_event_tid(event, current);
3423 }
3424
3425 if (sample_type & PERF_SAMPLE_TIME)
3426 data->time = perf_clock();
3427
3428 if (sample_type & PERF_SAMPLE_ID)
3429 data->id = primary_event_id(event);
3430
3431 if (sample_type & PERF_SAMPLE_STREAM_ID)
3432 data->stream_id = event->id;
3433
3434 if (sample_type & PERF_SAMPLE_CPU) {
3435 data->cpu_entry.cpu = raw_smp_processor_id();
3436 data->cpu_entry.reserved = 0;
3437 }
3438 }
3439
3440 static void perf_event_header__init_id(struct perf_event_header *header,
3441 struct perf_sample_data *data,
3442 struct perf_event *event)
3443 {
3444 if (event->attr.sample_id_all)
3445 __perf_event_header__init_id(header, data, event);
3446 }
3447
3448 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3449 struct perf_sample_data *data)
3450 {
3451 u64 sample_type = data->type;
3452
3453 if (sample_type & PERF_SAMPLE_TID)
3454 perf_output_put(handle, data->tid_entry);
3455
3456 if (sample_type & PERF_SAMPLE_TIME)
3457 perf_output_put(handle, data->time);
3458
3459 if (sample_type & PERF_SAMPLE_ID)
3460 perf_output_put(handle, data->id);
3461
3462 if (sample_type & PERF_SAMPLE_STREAM_ID)
3463 perf_output_put(handle, data->stream_id);
3464
3465 if (sample_type & PERF_SAMPLE_CPU)
3466 perf_output_put(handle, data->cpu_entry);
3467 }
3468
3469 static void perf_event__output_id_sample(struct perf_event *event,
3470 struct perf_output_handle *handle,
3471 struct perf_sample_data *sample)
3472 {
3473 if (event->attr.sample_id_all)
3474 __perf_event__output_id_sample(handle, sample);
3475 }
3476
3477 int perf_output_begin(struct perf_output_handle *handle,
3478 struct perf_event *event, unsigned int size,
3479 int nmi, int sample)
3480 {
3481 struct perf_buffer *buffer;
3482 unsigned long tail, offset, head;
3483 int have_lost;
3484 struct perf_sample_data sample_data;
3485 struct {
3486 struct perf_event_header header;
3487 u64 id;
3488 u64 lost;
3489 } lost_event;
3490
3491 rcu_read_lock();
3492 /*
3493 * For inherited events we send all the output towards the parent.
3494 */
3495 if (event->parent)
3496 event = event->parent;
3497
3498 buffer = rcu_dereference(event->buffer);
3499 if (!buffer)
3500 goto out;
3501
3502 handle->buffer = buffer;
3503 handle->event = event;
3504 handle->nmi = nmi;
3505 handle->sample = sample;
3506
3507 if (!buffer->nr_pages)
3508 goto out;
3509
3510 have_lost = local_read(&buffer->lost);
3511 if (have_lost) {
3512 lost_event.header.size = sizeof(lost_event);
3513 perf_event_header__init_id(&lost_event.header, &sample_data,
3514 event);
3515 size += lost_event.header.size;
3516 }
3517
3518 perf_output_get_handle(handle);
3519
3520 do {
3521 /*
3522 * Userspace could choose to issue a mb() before updating the
3523 * tail pointer. So that all reads will be completed before the
3524 * write is issued.
3525 */
3526 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3527 smp_rmb();
3528 offset = head = local_read(&buffer->head);
3529 head += size;
3530 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3531 goto fail;
3532 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3533
3534 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3535 local_add(buffer->watermark, &buffer->wakeup);
3536
3537 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3538 handle->page &= buffer->nr_pages - 1;
3539 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3540 handle->addr = buffer->data_pages[handle->page];
3541 handle->addr += handle->size;
3542 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3543
3544 if (have_lost) {
3545 lost_event.header.type = PERF_RECORD_LOST;
3546 lost_event.header.misc = 0;
3547 lost_event.id = event->id;
3548 lost_event.lost = local_xchg(&buffer->lost, 0);
3549
3550 perf_output_put(handle, lost_event);
3551 perf_event__output_id_sample(event, handle, &sample_data);
3552 }
3553
3554 return 0;
3555
3556 fail:
3557 local_inc(&buffer->lost);
3558 perf_output_put_handle(handle);
3559 out:
3560 rcu_read_unlock();
3561
3562 return -ENOSPC;
3563 }
3564
3565 void perf_output_end(struct perf_output_handle *handle)
3566 {
3567 struct perf_event *event = handle->event;
3568 struct perf_buffer *buffer = handle->buffer;
3569
3570 int wakeup_events = event->attr.wakeup_events;
3571
3572 if (handle->sample && wakeup_events) {
3573 int events = local_inc_return(&buffer->events);
3574 if (events >= wakeup_events) {
3575 local_sub(wakeup_events, &buffer->events);
3576 local_inc(&buffer->wakeup);
3577 }
3578 }
3579
3580 perf_output_put_handle(handle);
3581 rcu_read_unlock();
3582 }
3583
3584 static void perf_output_read_one(struct perf_output_handle *handle,
3585 struct perf_event *event,
3586 u64 enabled, u64 running)
3587 {
3588 u64 read_format = event->attr.read_format;
3589 u64 values[4];
3590 int n = 0;
3591
3592 values[n++] = perf_event_count(event);
3593 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3594 values[n++] = enabled +
3595 atomic64_read(&event->child_total_time_enabled);
3596 }
3597 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3598 values[n++] = running +
3599 atomic64_read(&event->child_total_time_running);
3600 }
3601 if (read_format & PERF_FORMAT_ID)
3602 values[n++] = primary_event_id(event);
3603
3604 perf_output_copy(handle, values, n * sizeof(u64));
3605 }
3606
3607 /*
3608 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3609 */
3610 static void perf_output_read_group(struct perf_output_handle *handle,
3611 struct perf_event *event,
3612 u64 enabled, u64 running)
3613 {
3614 struct perf_event *leader = event->group_leader, *sub;
3615 u64 read_format = event->attr.read_format;
3616 u64 values[5];
3617 int n = 0;
3618
3619 values[n++] = 1 + leader->nr_siblings;
3620
3621 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3622 values[n++] = enabled;
3623
3624 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3625 values[n++] = running;
3626
3627 if (leader != event)
3628 leader->pmu->read(leader);
3629
3630 values[n++] = perf_event_count(leader);
3631 if (read_format & PERF_FORMAT_ID)
3632 values[n++] = primary_event_id(leader);
3633
3634 perf_output_copy(handle, values, n * sizeof(u64));
3635
3636 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3637 n = 0;
3638
3639 if (sub != event)
3640 sub->pmu->read(sub);
3641
3642 values[n++] = perf_event_count(sub);
3643 if (read_format & PERF_FORMAT_ID)
3644 values[n++] = primary_event_id(sub);
3645
3646 perf_output_copy(handle, values, n * sizeof(u64));
3647 }
3648 }
3649
3650 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3651 PERF_FORMAT_TOTAL_TIME_RUNNING)
3652
3653 static void perf_output_read(struct perf_output_handle *handle,
3654 struct perf_event *event)
3655 {
3656 u64 enabled = 0, running = 0, now, ctx_time;
3657 u64 read_format = event->attr.read_format;
3658
3659 /*
3660 * compute total_time_enabled, total_time_running
3661 * based on snapshot values taken when the event
3662 * was last scheduled in.
3663 *
3664 * we cannot simply called update_context_time()
3665 * because of locking issue as we are called in
3666 * NMI context
3667 */
3668 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3669 now = perf_clock();
3670 ctx_time = event->shadow_ctx_time + now;
3671 enabled = ctx_time - event->tstamp_enabled;
3672 running = ctx_time - event->tstamp_running;
3673 }
3674
3675 if (event->attr.read_format & PERF_FORMAT_GROUP)
3676 perf_output_read_group(handle, event, enabled, running);
3677 else
3678 perf_output_read_one(handle, event, enabled, running);
3679 }
3680
3681 void perf_output_sample(struct perf_output_handle *handle,
3682 struct perf_event_header *header,
3683 struct perf_sample_data *data,
3684 struct perf_event *event)
3685 {
3686 u64 sample_type = data->type;
3687
3688 perf_output_put(handle, *header);
3689
3690 if (sample_type & PERF_SAMPLE_IP)
3691 perf_output_put(handle, data->ip);
3692
3693 if (sample_type & PERF_SAMPLE_TID)
3694 perf_output_put(handle, data->tid_entry);
3695
3696 if (sample_type & PERF_SAMPLE_TIME)
3697 perf_output_put(handle, data->time);
3698
3699 if (sample_type & PERF_SAMPLE_ADDR)
3700 perf_output_put(handle, data->addr);
3701
3702 if (sample_type & PERF_SAMPLE_ID)
3703 perf_output_put(handle, data->id);
3704
3705 if (sample_type & PERF_SAMPLE_STREAM_ID)
3706 perf_output_put(handle, data->stream_id);
3707
3708 if (sample_type & PERF_SAMPLE_CPU)
3709 perf_output_put(handle, data->cpu_entry);
3710
3711 if (sample_type & PERF_SAMPLE_PERIOD)
3712 perf_output_put(handle, data->period);
3713
3714 if (sample_type & PERF_SAMPLE_READ)
3715 perf_output_read(handle, event);
3716
3717 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3718 if (data->callchain) {
3719 int size = 1;
3720
3721 if (data->callchain)
3722 size += data->callchain->nr;
3723
3724 size *= sizeof(u64);
3725
3726 perf_output_copy(handle, data->callchain, size);
3727 } else {
3728 u64 nr = 0;
3729 perf_output_put(handle, nr);
3730 }
3731 }
3732
3733 if (sample_type & PERF_SAMPLE_RAW) {
3734 if (data->raw) {
3735 perf_output_put(handle, data->raw->size);
3736 perf_output_copy(handle, data->raw->data,
3737 data->raw->size);
3738 } else {
3739 struct {
3740 u32 size;
3741 u32 data;
3742 } raw = {
3743 .size = sizeof(u32),
3744 .data = 0,
3745 };
3746 perf_output_put(handle, raw);
3747 }
3748 }
3749 }
3750
3751 void perf_prepare_sample(struct perf_event_header *header,
3752 struct perf_sample_data *data,
3753 struct perf_event *event,
3754 struct pt_regs *regs)
3755 {
3756 u64 sample_type = event->attr.sample_type;
3757
3758 header->type = PERF_RECORD_SAMPLE;
3759 header->size = sizeof(*header) + event->header_size;
3760
3761 header->misc = 0;
3762 header->misc |= perf_misc_flags(regs);
3763
3764 __perf_event_header__init_id(header, data, event);
3765
3766 if (sample_type & PERF_SAMPLE_IP)
3767 data->ip = perf_instruction_pointer(regs);
3768
3769 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3770 int size = 1;
3771
3772 data->callchain = perf_callchain(regs);
3773
3774 if (data->callchain)
3775 size += data->callchain->nr;
3776
3777 header->size += size * sizeof(u64);
3778 }
3779
3780 if (sample_type & PERF_SAMPLE_RAW) {
3781 int size = sizeof(u32);
3782
3783 if (data->raw)
3784 size += data->raw->size;
3785 else
3786 size += sizeof(u32);
3787
3788 WARN_ON_ONCE(size & (sizeof(u64)-1));
3789 header->size += size;
3790 }
3791 }
3792
3793 static void perf_event_output(struct perf_event *event, int nmi,
3794 struct perf_sample_data *data,
3795 struct pt_regs *regs)
3796 {
3797 struct perf_output_handle handle;
3798 struct perf_event_header header;
3799
3800 /* protect the callchain buffers */
3801 rcu_read_lock();
3802
3803 perf_prepare_sample(&header, data, event, regs);
3804
3805 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3806 goto exit;
3807
3808 perf_output_sample(&handle, &header, data, event);
3809
3810 perf_output_end(&handle);
3811
3812 exit:
3813 rcu_read_unlock();
3814 }
3815
3816 /*
3817 * read event_id
3818 */
3819
3820 struct perf_read_event {
3821 struct perf_event_header header;
3822
3823 u32 pid;
3824 u32 tid;
3825 };
3826
3827 static void
3828 perf_event_read_event(struct perf_event *event,
3829 struct task_struct *task)
3830 {
3831 struct perf_output_handle handle;
3832 struct perf_sample_data sample;
3833 struct perf_read_event read_event = {
3834 .header = {
3835 .type = PERF_RECORD_READ,
3836 .misc = 0,
3837 .size = sizeof(read_event) + event->read_size,
3838 },
3839 .pid = perf_event_pid(event, task),
3840 .tid = perf_event_tid(event, task),
3841 };
3842 int ret;
3843
3844 perf_event_header__init_id(&read_event.header, &sample, event);
3845 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3846 if (ret)
3847 return;
3848
3849 perf_output_put(&handle, read_event);
3850 perf_output_read(&handle, event);
3851 perf_event__output_id_sample(event, &handle, &sample);
3852
3853 perf_output_end(&handle);
3854 }
3855
3856 /*
3857 * task tracking -- fork/exit
3858 *
3859 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3860 */
3861
3862 struct perf_task_event {
3863 struct task_struct *task;
3864 struct perf_event_context *task_ctx;
3865
3866 struct {
3867 struct perf_event_header header;
3868
3869 u32 pid;
3870 u32 ppid;
3871 u32 tid;
3872 u32 ptid;
3873 u64 time;
3874 } event_id;
3875 };
3876
3877 static void perf_event_task_output(struct perf_event *event,
3878 struct perf_task_event *task_event)
3879 {
3880 struct perf_output_handle handle;
3881 struct perf_sample_data sample;
3882 struct task_struct *task = task_event->task;
3883 int ret, size = task_event->event_id.header.size;
3884
3885 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3886
3887 ret = perf_output_begin(&handle, event,
3888 task_event->event_id.header.size, 0, 0);
3889 if (ret)
3890 goto out;
3891
3892 task_event->event_id.pid = perf_event_pid(event, task);
3893 task_event->event_id.ppid = perf_event_pid(event, current);
3894
3895 task_event->event_id.tid = perf_event_tid(event, task);
3896 task_event->event_id.ptid = perf_event_tid(event, current);
3897
3898 perf_output_put(&handle, task_event->event_id);
3899
3900 perf_event__output_id_sample(event, &handle, &sample);
3901
3902 perf_output_end(&handle);
3903 out:
3904 task_event->event_id.header.size = size;
3905 }
3906
3907 static int perf_event_task_match(struct perf_event *event)
3908 {
3909 if (event->state < PERF_EVENT_STATE_INACTIVE)
3910 return 0;
3911
3912 if (!event_filter_match(event))
3913 return 0;
3914
3915 if (event->attr.comm || event->attr.mmap ||
3916 event->attr.mmap_data || event->attr.task)
3917 return 1;
3918
3919 return 0;
3920 }
3921
3922 static void perf_event_task_ctx(struct perf_event_context *ctx,
3923 struct perf_task_event *task_event)
3924 {
3925 struct perf_event *event;
3926
3927 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3928 if (perf_event_task_match(event))
3929 perf_event_task_output(event, task_event);
3930 }
3931 }
3932
3933 static void perf_event_task_event(struct perf_task_event *task_event)
3934 {
3935 struct perf_cpu_context *cpuctx;
3936 struct perf_event_context *ctx;
3937 struct pmu *pmu;
3938 int ctxn;
3939
3940 rcu_read_lock();
3941 list_for_each_entry_rcu(pmu, &pmus, entry) {
3942 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3943 if (cpuctx->active_pmu != pmu)
3944 goto next;
3945 perf_event_task_ctx(&cpuctx->ctx, task_event);
3946
3947 ctx = task_event->task_ctx;
3948 if (!ctx) {
3949 ctxn = pmu->task_ctx_nr;
3950 if (ctxn < 0)
3951 goto next;
3952 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3953 }
3954 if (ctx)
3955 perf_event_task_ctx(ctx, task_event);
3956 next:
3957 put_cpu_ptr(pmu->pmu_cpu_context);
3958 }
3959 rcu_read_unlock();
3960 }
3961
3962 static void perf_event_task(struct task_struct *task,
3963 struct perf_event_context *task_ctx,
3964 int new)
3965 {
3966 struct perf_task_event task_event;
3967
3968 if (!atomic_read(&nr_comm_events) &&
3969 !atomic_read(&nr_mmap_events) &&
3970 !atomic_read(&nr_task_events))
3971 return;
3972
3973 task_event = (struct perf_task_event){
3974 .task = task,
3975 .task_ctx = task_ctx,
3976 .event_id = {
3977 .header = {
3978 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3979 .misc = 0,
3980 .size = sizeof(task_event.event_id),
3981 },
3982 /* .pid */
3983 /* .ppid */
3984 /* .tid */
3985 /* .ptid */
3986 .time = perf_clock(),
3987 },
3988 };
3989
3990 perf_event_task_event(&task_event);
3991 }
3992
3993 void perf_event_fork(struct task_struct *task)
3994 {
3995 perf_event_task(task, NULL, 1);
3996 }
3997
3998 /*
3999 * comm tracking
4000 */
4001
4002 struct perf_comm_event {
4003 struct task_struct *task;
4004 char *comm;
4005 int comm_size;
4006
4007 struct {
4008 struct perf_event_header header;
4009
4010 u32 pid;
4011 u32 tid;
4012 } event_id;
4013 };
4014
4015 static void perf_event_comm_output(struct perf_event *event,
4016 struct perf_comm_event *comm_event)
4017 {
4018 struct perf_output_handle handle;
4019 struct perf_sample_data sample;
4020 int size = comm_event->event_id.header.size;
4021 int ret;
4022
4023 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4024 ret = perf_output_begin(&handle, event,
4025 comm_event->event_id.header.size, 0, 0);
4026
4027 if (ret)
4028 goto out;
4029
4030 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4031 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4032
4033 perf_output_put(&handle, comm_event->event_id);
4034 perf_output_copy(&handle, comm_event->comm,
4035 comm_event->comm_size);
4036
4037 perf_event__output_id_sample(event, &handle, &sample);
4038
4039 perf_output_end(&handle);
4040 out:
4041 comm_event->event_id.header.size = size;
4042 }
4043
4044 static int perf_event_comm_match(struct perf_event *event)
4045 {
4046 if (event->state < PERF_EVENT_STATE_INACTIVE)
4047 return 0;
4048
4049 if (!event_filter_match(event))
4050 return 0;
4051
4052 if (event->attr.comm)
4053 return 1;
4054
4055 return 0;
4056 }
4057
4058 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4059 struct perf_comm_event *comm_event)
4060 {
4061 struct perf_event *event;
4062
4063 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4064 if (perf_event_comm_match(event))
4065 perf_event_comm_output(event, comm_event);
4066 }
4067 }
4068
4069 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4070 {
4071 struct perf_cpu_context *cpuctx;
4072 struct perf_event_context *ctx;
4073 char comm[TASK_COMM_LEN];
4074 unsigned int size;
4075 struct pmu *pmu;
4076 int ctxn;
4077
4078 memset(comm, 0, sizeof(comm));
4079 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4080 size = ALIGN(strlen(comm)+1, sizeof(u64));
4081
4082 comm_event->comm = comm;
4083 comm_event->comm_size = size;
4084
4085 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4086 rcu_read_lock();
4087 list_for_each_entry_rcu(pmu, &pmus, entry) {
4088 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4089 if (cpuctx->active_pmu != pmu)
4090 goto next;
4091 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4092
4093 ctxn = pmu->task_ctx_nr;
4094 if (ctxn < 0)
4095 goto next;
4096
4097 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4098 if (ctx)
4099 perf_event_comm_ctx(ctx, comm_event);
4100 next:
4101 put_cpu_ptr(pmu->pmu_cpu_context);
4102 }
4103 rcu_read_unlock();
4104 }
4105
4106 void perf_event_comm(struct task_struct *task)
4107 {
4108 struct perf_comm_event comm_event;
4109 struct perf_event_context *ctx;
4110 int ctxn;
4111
4112 for_each_task_context_nr(ctxn) {
4113 ctx = task->perf_event_ctxp[ctxn];
4114 if (!ctx)
4115 continue;
4116
4117 perf_event_enable_on_exec(ctx);
4118 }
4119
4120 if (!atomic_read(&nr_comm_events))
4121 return;
4122
4123 comm_event = (struct perf_comm_event){
4124 .task = task,
4125 /* .comm */
4126 /* .comm_size */
4127 .event_id = {
4128 .header = {
4129 .type = PERF_RECORD_COMM,
4130 .misc = 0,
4131 /* .size */
4132 },
4133 /* .pid */
4134 /* .tid */
4135 },
4136 };
4137
4138 perf_event_comm_event(&comm_event);
4139 }
4140
4141 /*
4142 * mmap tracking
4143 */
4144
4145 struct perf_mmap_event {
4146 struct vm_area_struct *vma;
4147
4148 const char *file_name;
4149 int file_size;
4150
4151 struct {
4152 struct perf_event_header header;
4153
4154 u32 pid;
4155 u32 tid;
4156 u64 start;
4157 u64 len;
4158 u64 pgoff;
4159 } event_id;
4160 };
4161
4162 static void perf_event_mmap_output(struct perf_event *event,
4163 struct perf_mmap_event *mmap_event)
4164 {
4165 struct perf_output_handle handle;
4166 struct perf_sample_data sample;
4167 int size = mmap_event->event_id.header.size;
4168 int ret;
4169
4170 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4171 ret = perf_output_begin(&handle, event,
4172 mmap_event->event_id.header.size, 0, 0);
4173 if (ret)
4174 goto out;
4175
4176 mmap_event->event_id.pid = perf_event_pid(event, current);
4177 mmap_event->event_id.tid = perf_event_tid(event, current);
4178
4179 perf_output_put(&handle, mmap_event->event_id);
4180 perf_output_copy(&handle, mmap_event->file_name,
4181 mmap_event->file_size);
4182
4183 perf_event__output_id_sample(event, &handle, &sample);
4184
4185 perf_output_end(&handle);
4186 out:
4187 mmap_event->event_id.header.size = size;
4188 }
4189
4190 static int perf_event_mmap_match(struct perf_event *event,
4191 struct perf_mmap_event *mmap_event,
4192 int executable)
4193 {
4194 if (event->state < PERF_EVENT_STATE_INACTIVE)
4195 return 0;
4196
4197 if (!event_filter_match(event))
4198 return 0;
4199
4200 if ((!executable && event->attr.mmap_data) ||
4201 (executable && event->attr.mmap))
4202 return 1;
4203
4204 return 0;
4205 }
4206
4207 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4208 struct perf_mmap_event *mmap_event,
4209 int executable)
4210 {
4211 struct perf_event *event;
4212
4213 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4214 if (perf_event_mmap_match(event, mmap_event, executable))
4215 perf_event_mmap_output(event, mmap_event);
4216 }
4217 }
4218
4219 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4220 {
4221 struct perf_cpu_context *cpuctx;
4222 struct perf_event_context *ctx;
4223 struct vm_area_struct *vma = mmap_event->vma;
4224 struct file *file = vma->vm_file;
4225 unsigned int size;
4226 char tmp[16];
4227 char *buf = NULL;
4228 const char *name;
4229 struct pmu *pmu;
4230 int ctxn;
4231
4232 memset(tmp, 0, sizeof(tmp));
4233
4234 if (file) {
4235 /*
4236 * d_path works from the end of the buffer backwards, so we
4237 * need to add enough zero bytes after the string to handle
4238 * the 64bit alignment we do later.
4239 */
4240 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4241 if (!buf) {
4242 name = strncpy(tmp, "//enomem", sizeof(tmp));
4243 goto got_name;
4244 }
4245 name = d_path(&file->f_path, buf, PATH_MAX);
4246 if (IS_ERR(name)) {
4247 name = strncpy(tmp, "//toolong", sizeof(tmp));
4248 goto got_name;
4249 }
4250 } else {
4251 if (arch_vma_name(mmap_event->vma)) {
4252 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4253 sizeof(tmp));
4254 goto got_name;
4255 }
4256
4257 if (!vma->vm_mm) {
4258 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4259 goto got_name;
4260 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4261 vma->vm_end >= vma->vm_mm->brk) {
4262 name = strncpy(tmp, "[heap]", sizeof(tmp));
4263 goto got_name;
4264 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4265 vma->vm_end >= vma->vm_mm->start_stack) {
4266 name = strncpy(tmp, "[stack]", sizeof(tmp));
4267 goto got_name;
4268 }
4269
4270 name = strncpy(tmp, "//anon", sizeof(tmp));
4271 goto got_name;
4272 }
4273
4274 got_name:
4275 size = ALIGN(strlen(name)+1, sizeof(u64));
4276
4277 mmap_event->file_name = name;
4278 mmap_event->file_size = size;
4279
4280 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4281
4282 rcu_read_lock();
4283 list_for_each_entry_rcu(pmu, &pmus, entry) {
4284 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4285 if (cpuctx->active_pmu != pmu)
4286 goto next;
4287 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4288 vma->vm_flags & VM_EXEC);
4289
4290 ctxn = pmu->task_ctx_nr;
4291 if (ctxn < 0)
4292 goto next;
4293
4294 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4295 if (ctx) {
4296 perf_event_mmap_ctx(ctx, mmap_event,
4297 vma->vm_flags & VM_EXEC);
4298 }
4299 next:
4300 put_cpu_ptr(pmu->pmu_cpu_context);
4301 }
4302 rcu_read_unlock();
4303
4304 kfree(buf);
4305 }
4306
4307 void perf_event_mmap(struct vm_area_struct *vma)
4308 {
4309 struct perf_mmap_event mmap_event;
4310
4311 if (!atomic_read(&nr_mmap_events))
4312 return;
4313
4314 mmap_event = (struct perf_mmap_event){
4315 .vma = vma,
4316 /* .file_name */
4317 /* .file_size */
4318 .event_id = {
4319 .header = {
4320 .type = PERF_RECORD_MMAP,
4321 .misc = PERF_RECORD_MISC_USER,
4322 /* .size */
4323 },
4324 /* .pid */
4325 /* .tid */
4326 .start = vma->vm_start,
4327 .len = vma->vm_end - vma->vm_start,
4328 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4329 },
4330 };
4331
4332 perf_event_mmap_event(&mmap_event);
4333 }
4334
4335 /*
4336 * IRQ throttle logging
4337 */
4338
4339 static void perf_log_throttle(struct perf_event *event, int enable)
4340 {
4341 struct perf_output_handle handle;
4342 struct perf_sample_data sample;
4343 int ret;
4344
4345 struct {
4346 struct perf_event_header header;
4347 u64 time;
4348 u64 id;
4349 u64 stream_id;
4350 } throttle_event = {
4351 .header = {
4352 .type = PERF_RECORD_THROTTLE,
4353 .misc = 0,
4354 .size = sizeof(throttle_event),
4355 },
4356 .time = perf_clock(),
4357 .id = primary_event_id(event),
4358 .stream_id = event->id,
4359 };
4360
4361 if (enable)
4362 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4363
4364 perf_event_header__init_id(&throttle_event.header, &sample, event);
4365
4366 ret = perf_output_begin(&handle, event,
4367 throttle_event.header.size, 1, 0);
4368 if (ret)
4369 return;
4370
4371 perf_output_put(&handle, throttle_event);
4372 perf_event__output_id_sample(event, &handle, &sample);
4373 perf_output_end(&handle);
4374 }
4375
4376 /*
4377 * Generic event overflow handling, sampling.
4378 */
4379
4380 static int __perf_event_overflow(struct perf_event *event, int nmi,
4381 int throttle, struct perf_sample_data *data,
4382 struct pt_regs *regs)
4383 {
4384 int events = atomic_read(&event->event_limit);
4385 struct hw_perf_event *hwc = &event->hw;
4386 int ret = 0;
4387
4388 /*
4389 * Non-sampling counters might still use the PMI to fold short
4390 * hardware counters, ignore those.
4391 */
4392 if (unlikely(!is_sampling_event(event)))
4393 return 0;
4394
4395 if (!throttle) {
4396 hwc->interrupts++;
4397 } else {
4398 if (hwc->interrupts != MAX_INTERRUPTS) {
4399 hwc->interrupts++;
4400 if (HZ * hwc->interrupts >
4401 (u64)sysctl_perf_event_sample_rate) {
4402 hwc->interrupts = MAX_INTERRUPTS;
4403 perf_log_throttle(event, 0);
4404 ret = 1;
4405 }
4406 } else {
4407 /*
4408 * Keep re-disabling events even though on the previous
4409 * pass we disabled it - just in case we raced with a
4410 * sched-in and the event got enabled again:
4411 */
4412 ret = 1;
4413 }
4414 }
4415
4416 if (event->attr.freq) {
4417 u64 now = perf_clock();
4418 s64 delta = now - hwc->freq_time_stamp;
4419
4420 hwc->freq_time_stamp = now;
4421
4422 if (delta > 0 && delta < 2*TICK_NSEC)
4423 perf_adjust_period(event, delta, hwc->last_period);
4424 }
4425
4426 /*
4427 * XXX event_limit might not quite work as expected on inherited
4428 * events
4429 */
4430
4431 event->pending_kill = POLL_IN;
4432 if (events && atomic_dec_and_test(&event->event_limit)) {
4433 ret = 1;
4434 event->pending_kill = POLL_HUP;
4435 if (nmi) {
4436 event->pending_disable = 1;
4437 irq_work_queue(&event->pending);
4438 } else
4439 perf_event_disable(event);
4440 }
4441
4442 if (event->overflow_handler)
4443 event->overflow_handler(event, nmi, data, regs);
4444 else
4445 perf_event_output(event, nmi, data, regs);
4446
4447 return ret;
4448 }
4449
4450 int perf_event_overflow(struct perf_event *event, int nmi,
4451 struct perf_sample_data *data,
4452 struct pt_regs *regs)
4453 {
4454 return __perf_event_overflow(event, nmi, 1, data, regs);
4455 }
4456
4457 /*
4458 * Generic software event infrastructure
4459 */
4460
4461 struct swevent_htable {
4462 struct swevent_hlist *swevent_hlist;
4463 struct mutex hlist_mutex;
4464 int hlist_refcount;
4465
4466 /* Recursion avoidance in each contexts */
4467 int recursion[PERF_NR_CONTEXTS];
4468 };
4469
4470 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4471
4472 /*
4473 * We directly increment event->count and keep a second value in
4474 * event->hw.period_left to count intervals. This period event
4475 * is kept in the range [-sample_period, 0] so that we can use the
4476 * sign as trigger.
4477 */
4478
4479 static u64 perf_swevent_set_period(struct perf_event *event)
4480 {
4481 struct hw_perf_event *hwc = &event->hw;
4482 u64 period = hwc->last_period;
4483 u64 nr, offset;
4484 s64 old, val;
4485
4486 hwc->last_period = hwc->sample_period;
4487
4488 again:
4489 old = val = local64_read(&hwc->period_left);
4490 if (val < 0)
4491 return 0;
4492
4493 nr = div64_u64(period + val, period);
4494 offset = nr * period;
4495 val -= offset;
4496 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4497 goto again;
4498
4499 return nr;
4500 }
4501
4502 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4503 int nmi, struct perf_sample_data *data,
4504 struct pt_regs *regs)
4505 {
4506 struct hw_perf_event *hwc = &event->hw;
4507 int throttle = 0;
4508
4509 data->period = event->hw.last_period;
4510 if (!overflow)
4511 overflow = perf_swevent_set_period(event);
4512
4513 if (hwc->interrupts == MAX_INTERRUPTS)
4514 return;
4515
4516 for (; overflow; overflow--) {
4517 if (__perf_event_overflow(event, nmi, throttle,
4518 data, regs)) {
4519 /*
4520 * We inhibit the overflow from happening when
4521 * hwc->interrupts == MAX_INTERRUPTS.
4522 */
4523 break;
4524 }
4525 throttle = 1;
4526 }
4527 }
4528
4529 static void perf_swevent_event(struct perf_event *event, u64 nr,
4530 int nmi, struct perf_sample_data *data,
4531 struct pt_regs *regs)
4532 {
4533 struct hw_perf_event *hwc = &event->hw;
4534
4535 local64_add(nr, &event->count);
4536
4537 if (!regs)
4538 return;
4539
4540 if (!is_sampling_event(event))
4541 return;
4542
4543 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4544 return perf_swevent_overflow(event, 1, nmi, data, regs);
4545
4546 if (local64_add_negative(nr, &hwc->period_left))
4547 return;
4548
4549 perf_swevent_overflow(event, 0, nmi, data, regs);
4550 }
4551
4552 static int perf_exclude_event(struct perf_event *event,
4553 struct pt_regs *regs)
4554 {
4555 if (event->hw.state & PERF_HES_STOPPED)
4556 return 0;
4557
4558 if (regs) {
4559 if (event->attr.exclude_user && user_mode(regs))
4560 return 1;
4561
4562 if (event->attr.exclude_kernel && !user_mode(regs))
4563 return 1;
4564 }
4565
4566 return 0;
4567 }
4568
4569 static int perf_swevent_match(struct perf_event *event,
4570 enum perf_type_id type,
4571 u32 event_id,
4572 struct perf_sample_data *data,
4573 struct pt_regs *regs)
4574 {
4575 if (event->attr.type != type)
4576 return 0;
4577
4578 if (event->attr.config != event_id)
4579 return 0;
4580
4581 if (perf_exclude_event(event, regs))
4582 return 0;
4583
4584 return 1;
4585 }
4586
4587 static inline u64 swevent_hash(u64 type, u32 event_id)
4588 {
4589 u64 val = event_id | (type << 32);
4590
4591 return hash_64(val, SWEVENT_HLIST_BITS);
4592 }
4593
4594 static inline struct hlist_head *
4595 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4596 {
4597 u64 hash = swevent_hash(type, event_id);
4598
4599 return &hlist->heads[hash];
4600 }
4601
4602 /* For the read side: events when they trigger */
4603 static inline struct hlist_head *
4604 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4605 {
4606 struct swevent_hlist *hlist;
4607
4608 hlist = rcu_dereference(swhash->swevent_hlist);
4609 if (!hlist)
4610 return NULL;
4611
4612 return __find_swevent_head(hlist, type, event_id);
4613 }
4614
4615 /* For the event head insertion and removal in the hlist */
4616 static inline struct hlist_head *
4617 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4618 {
4619 struct swevent_hlist *hlist;
4620 u32 event_id = event->attr.config;
4621 u64 type = event->attr.type;
4622
4623 /*
4624 * Event scheduling is always serialized against hlist allocation
4625 * and release. Which makes the protected version suitable here.
4626 * The context lock guarantees that.
4627 */
4628 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4629 lockdep_is_held(&event->ctx->lock));
4630 if (!hlist)
4631 return NULL;
4632
4633 return __find_swevent_head(hlist, type, event_id);
4634 }
4635
4636 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4637 u64 nr, int nmi,
4638 struct perf_sample_data *data,
4639 struct pt_regs *regs)
4640 {
4641 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4642 struct perf_event *event;
4643 struct hlist_node *node;
4644 struct hlist_head *head;
4645
4646 rcu_read_lock();
4647 head = find_swevent_head_rcu(swhash, type, event_id);
4648 if (!head)
4649 goto end;
4650
4651 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4652 if (perf_swevent_match(event, type, event_id, data, regs))
4653 perf_swevent_event(event, nr, nmi, data, regs);
4654 }
4655 end:
4656 rcu_read_unlock();
4657 }
4658
4659 int perf_swevent_get_recursion_context(void)
4660 {
4661 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4662
4663 return get_recursion_context(swhash->recursion);
4664 }
4665 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4666
4667 inline void perf_swevent_put_recursion_context(int rctx)
4668 {
4669 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4670
4671 put_recursion_context(swhash->recursion, rctx);
4672 }
4673
4674 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4675 struct pt_regs *regs, u64 addr)
4676 {
4677 struct perf_sample_data data;
4678 int rctx;
4679
4680 preempt_disable_notrace();
4681 rctx = perf_swevent_get_recursion_context();
4682 if (rctx < 0)
4683 return;
4684
4685 perf_sample_data_init(&data, addr);
4686
4687 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4688
4689 perf_swevent_put_recursion_context(rctx);
4690 preempt_enable_notrace();
4691 }
4692
4693 static void perf_swevent_read(struct perf_event *event)
4694 {
4695 }
4696
4697 static int perf_swevent_add(struct perf_event *event, int flags)
4698 {
4699 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4700 struct hw_perf_event *hwc = &event->hw;
4701 struct hlist_head *head;
4702
4703 if (is_sampling_event(event)) {
4704 hwc->last_period = hwc->sample_period;
4705 perf_swevent_set_period(event);
4706 }
4707
4708 hwc->state = !(flags & PERF_EF_START);
4709
4710 head = find_swevent_head(swhash, event);
4711 if (WARN_ON_ONCE(!head))
4712 return -EINVAL;
4713
4714 hlist_add_head_rcu(&event->hlist_entry, head);
4715
4716 return 0;
4717 }
4718
4719 static void perf_swevent_del(struct perf_event *event, int flags)
4720 {
4721 hlist_del_rcu(&event->hlist_entry);
4722 }
4723
4724 static void perf_swevent_start(struct perf_event *event, int flags)
4725 {
4726 event->hw.state = 0;
4727 }
4728
4729 static void perf_swevent_stop(struct perf_event *event, int flags)
4730 {
4731 event->hw.state = PERF_HES_STOPPED;
4732 }
4733
4734 /* Deref the hlist from the update side */
4735 static inline struct swevent_hlist *
4736 swevent_hlist_deref(struct swevent_htable *swhash)
4737 {
4738 return rcu_dereference_protected(swhash->swevent_hlist,
4739 lockdep_is_held(&swhash->hlist_mutex));
4740 }
4741
4742 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4743 {
4744 struct swevent_hlist *hlist;
4745
4746 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4747 kfree(hlist);
4748 }
4749
4750 static void swevent_hlist_release(struct swevent_htable *swhash)
4751 {
4752 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4753
4754 if (!hlist)
4755 return;
4756
4757 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4758 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4759 }
4760
4761 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4762 {
4763 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4764
4765 mutex_lock(&swhash->hlist_mutex);
4766
4767 if (!--swhash->hlist_refcount)
4768 swevent_hlist_release(swhash);
4769
4770 mutex_unlock(&swhash->hlist_mutex);
4771 }
4772
4773 static void swevent_hlist_put(struct perf_event *event)
4774 {
4775 int cpu;
4776
4777 if (event->cpu != -1) {
4778 swevent_hlist_put_cpu(event, event->cpu);
4779 return;
4780 }
4781
4782 for_each_possible_cpu(cpu)
4783 swevent_hlist_put_cpu(event, cpu);
4784 }
4785
4786 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4787 {
4788 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4789 int err = 0;
4790
4791 mutex_lock(&swhash->hlist_mutex);
4792
4793 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4794 struct swevent_hlist *hlist;
4795
4796 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4797 if (!hlist) {
4798 err = -ENOMEM;
4799 goto exit;
4800 }
4801 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4802 }
4803 swhash->hlist_refcount++;
4804 exit:
4805 mutex_unlock(&swhash->hlist_mutex);
4806
4807 return err;
4808 }
4809
4810 static int swevent_hlist_get(struct perf_event *event)
4811 {
4812 int err;
4813 int cpu, failed_cpu;
4814
4815 if (event->cpu != -1)
4816 return swevent_hlist_get_cpu(event, event->cpu);
4817
4818 get_online_cpus();
4819 for_each_possible_cpu(cpu) {
4820 err = swevent_hlist_get_cpu(event, cpu);
4821 if (err) {
4822 failed_cpu = cpu;
4823 goto fail;
4824 }
4825 }
4826 put_online_cpus();
4827
4828 return 0;
4829 fail:
4830 for_each_possible_cpu(cpu) {
4831 if (cpu == failed_cpu)
4832 break;
4833 swevent_hlist_put_cpu(event, cpu);
4834 }
4835
4836 put_online_cpus();
4837 return err;
4838 }
4839
4840 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4841
4842 static void sw_perf_event_destroy(struct perf_event *event)
4843 {
4844 u64 event_id = event->attr.config;
4845
4846 WARN_ON(event->parent);
4847
4848 jump_label_dec(&perf_swevent_enabled[event_id]);
4849 swevent_hlist_put(event);
4850 }
4851
4852 static int perf_swevent_init(struct perf_event *event)
4853 {
4854 int event_id = event->attr.config;
4855
4856 if (event->attr.type != PERF_TYPE_SOFTWARE)
4857 return -ENOENT;
4858
4859 switch (event_id) {
4860 case PERF_COUNT_SW_CPU_CLOCK:
4861 case PERF_COUNT_SW_TASK_CLOCK:
4862 return -ENOENT;
4863
4864 default:
4865 break;
4866 }
4867
4868 if (event_id >= PERF_COUNT_SW_MAX)
4869 return -ENOENT;
4870
4871 if (!event->parent) {
4872 int err;
4873
4874 err = swevent_hlist_get(event);
4875 if (err)
4876 return err;
4877
4878 jump_label_inc(&perf_swevent_enabled[event_id]);
4879 event->destroy = sw_perf_event_destroy;
4880 }
4881
4882 return 0;
4883 }
4884
4885 static struct pmu perf_swevent = {
4886 .task_ctx_nr = perf_sw_context,
4887
4888 .event_init = perf_swevent_init,
4889 .add = perf_swevent_add,
4890 .del = perf_swevent_del,
4891 .start = perf_swevent_start,
4892 .stop = perf_swevent_stop,
4893 .read = perf_swevent_read,
4894 };
4895
4896 #ifdef CONFIG_EVENT_TRACING
4897
4898 static int perf_tp_filter_match(struct perf_event *event,
4899 struct perf_sample_data *data)
4900 {
4901 void *record = data->raw->data;
4902
4903 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4904 return 1;
4905 return 0;
4906 }
4907
4908 static int perf_tp_event_match(struct perf_event *event,
4909 struct perf_sample_data *data,
4910 struct pt_regs *regs)
4911 {
4912 /*
4913 * All tracepoints are from kernel-space.
4914 */
4915 if (event->attr.exclude_kernel)
4916 return 0;
4917
4918 if (!perf_tp_filter_match(event, data))
4919 return 0;
4920
4921 return 1;
4922 }
4923
4924 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4925 struct pt_regs *regs, struct hlist_head *head, int rctx)
4926 {
4927 struct perf_sample_data data;
4928 struct perf_event *event;
4929 struct hlist_node *node;
4930
4931 struct perf_raw_record raw = {
4932 .size = entry_size,
4933 .data = record,
4934 };
4935
4936 perf_sample_data_init(&data, addr);
4937 data.raw = &raw;
4938
4939 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4940 if (perf_tp_event_match(event, &data, regs))
4941 perf_swevent_event(event, count, 1, &data, regs);
4942 }
4943
4944 perf_swevent_put_recursion_context(rctx);
4945 }
4946 EXPORT_SYMBOL_GPL(perf_tp_event);
4947
4948 static void tp_perf_event_destroy(struct perf_event *event)
4949 {
4950 perf_trace_destroy(event);
4951 }
4952
4953 static int perf_tp_event_init(struct perf_event *event)
4954 {
4955 int err;
4956
4957 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4958 return -ENOENT;
4959
4960 err = perf_trace_init(event);
4961 if (err)
4962 return err;
4963
4964 event->destroy = tp_perf_event_destroy;
4965
4966 return 0;
4967 }
4968
4969 static struct pmu perf_tracepoint = {
4970 .task_ctx_nr = perf_sw_context,
4971
4972 .event_init = perf_tp_event_init,
4973 .add = perf_trace_add,
4974 .del = perf_trace_del,
4975 .start = perf_swevent_start,
4976 .stop = perf_swevent_stop,
4977 .read = perf_swevent_read,
4978 };
4979
4980 static inline void perf_tp_register(void)
4981 {
4982 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4983 }
4984
4985 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4986 {
4987 char *filter_str;
4988 int ret;
4989
4990 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4991 return -EINVAL;
4992
4993 filter_str = strndup_user(arg, PAGE_SIZE);
4994 if (IS_ERR(filter_str))
4995 return PTR_ERR(filter_str);
4996
4997 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4998
4999 kfree(filter_str);
5000 return ret;
5001 }
5002
5003 static void perf_event_free_filter(struct perf_event *event)
5004 {
5005 ftrace_profile_free_filter(event);
5006 }
5007
5008 #else
5009
5010 static inline void perf_tp_register(void)
5011 {
5012 }
5013
5014 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5015 {
5016 return -ENOENT;
5017 }
5018
5019 static void perf_event_free_filter(struct perf_event *event)
5020 {
5021 }
5022
5023 #endif /* CONFIG_EVENT_TRACING */
5024
5025 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5026 void perf_bp_event(struct perf_event *bp, void *data)
5027 {
5028 struct perf_sample_data sample;
5029 struct pt_regs *regs = data;
5030
5031 perf_sample_data_init(&sample, bp->attr.bp_addr);
5032
5033 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5034 perf_swevent_event(bp, 1, 1, &sample, regs);
5035 }
5036 #endif
5037
5038 /*
5039 * hrtimer based swevent callback
5040 */
5041
5042 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5043 {
5044 enum hrtimer_restart ret = HRTIMER_RESTART;
5045 struct perf_sample_data data;
5046 struct pt_regs *regs;
5047 struct perf_event *event;
5048 u64 period;
5049
5050 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5051 event->pmu->read(event);
5052
5053 perf_sample_data_init(&data, 0);
5054 data.period = event->hw.last_period;
5055 regs = get_irq_regs();
5056
5057 if (regs && !perf_exclude_event(event, regs)) {
5058 if (!(event->attr.exclude_idle && current->pid == 0))
5059 if (perf_event_overflow(event, 0, &data, regs))
5060 ret = HRTIMER_NORESTART;
5061 }
5062
5063 period = max_t(u64, 10000, event->hw.sample_period);
5064 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5065
5066 return ret;
5067 }
5068
5069 static void perf_swevent_start_hrtimer(struct perf_event *event)
5070 {
5071 struct hw_perf_event *hwc = &event->hw;
5072 s64 period;
5073
5074 if (!is_sampling_event(event))
5075 return;
5076
5077 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5078 hwc->hrtimer.function = perf_swevent_hrtimer;
5079
5080 period = local64_read(&hwc->period_left);
5081 if (period) {
5082 if (period < 0)
5083 period = 10000;
5084
5085 local64_set(&hwc->period_left, 0);
5086 } else {
5087 period = max_t(u64, 10000, hwc->sample_period);
5088 }
5089 __hrtimer_start_range_ns(&hwc->hrtimer,
5090 ns_to_ktime(period), 0,
5091 HRTIMER_MODE_REL_PINNED, 0);
5092 }
5093
5094 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5095 {
5096 struct hw_perf_event *hwc = &event->hw;
5097
5098 if (is_sampling_event(event)) {
5099 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5100 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5101
5102 hrtimer_cancel(&hwc->hrtimer);
5103 }
5104 }
5105
5106 /*
5107 * Software event: cpu wall time clock
5108 */
5109
5110 static void cpu_clock_event_update(struct perf_event *event)
5111 {
5112 s64 prev;
5113 u64 now;
5114
5115 now = local_clock();
5116 prev = local64_xchg(&event->hw.prev_count, now);
5117 local64_add(now - prev, &event->count);
5118 }
5119
5120 static void cpu_clock_event_start(struct perf_event *event, int flags)
5121 {
5122 local64_set(&event->hw.prev_count, local_clock());
5123 perf_swevent_start_hrtimer(event);
5124 }
5125
5126 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5127 {
5128 perf_swevent_cancel_hrtimer(event);
5129 cpu_clock_event_update(event);
5130 }
5131
5132 static int cpu_clock_event_add(struct perf_event *event, int flags)
5133 {
5134 if (flags & PERF_EF_START)
5135 cpu_clock_event_start(event, flags);
5136
5137 return 0;
5138 }
5139
5140 static void cpu_clock_event_del(struct perf_event *event, int flags)
5141 {
5142 cpu_clock_event_stop(event, flags);
5143 }
5144
5145 static void cpu_clock_event_read(struct perf_event *event)
5146 {
5147 cpu_clock_event_update(event);
5148 }
5149
5150 static int cpu_clock_event_init(struct perf_event *event)
5151 {
5152 if (event->attr.type != PERF_TYPE_SOFTWARE)
5153 return -ENOENT;
5154
5155 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5156 return -ENOENT;
5157
5158 return 0;
5159 }
5160
5161 static struct pmu perf_cpu_clock = {
5162 .task_ctx_nr = perf_sw_context,
5163
5164 .event_init = cpu_clock_event_init,
5165 .add = cpu_clock_event_add,
5166 .del = cpu_clock_event_del,
5167 .start = cpu_clock_event_start,
5168 .stop = cpu_clock_event_stop,
5169 .read = cpu_clock_event_read,
5170 };
5171
5172 /*
5173 * Software event: task time clock
5174 */
5175
5176 static void task_clock_event_update(struct perf_event *event, u64 now)
5177 {
5178 u64 prev;
5179 s64 delta;
5180
5181 prev = local64_xchg(&event->hw.prev_count, now);
5182 delta = now - prev;
5183 local64_add(delta, &event->count);
5184 }
5185
5186 static void task_clock_event_start(struct perf_event *event, int flags)
5187 {
5188 local64_set(&event->hw.prev_count, event->ctx->time);
5189 perf_swevent_start_hrtimer(event);
5190 }
5191
5192 static void task_clock_event_stop(struct perf_event *event, int flags)
5193 {
5194 perf_swevent_cancel_hrtimer(event);
5195 task_clock_event_update(event, event->ctx->time);
5196 }
5197
5198 static int task_clock_event_add(struct perf_event *event, int flags)
5199 {
5200 if (flags & PERF_EF_START)
5201 task_clock_event_start(event, flags);
5202
5203 return 0;
5204 }
5205
5206 static void task_clock_event_del(struct perf_event *event, int flags)
5207 {
5208 task_clock_event_stop(event, PERF_EF_UPDATE);
5209 }
5210
5211 static void task_clock_event_read(struct perf_event *event)
5212 {
5213 u64 time;
5214
5215 if (!in_nmi()) {
5216 update_context_time(event->ctx);
5217 time = event->ctx->time;
5218 } else {
5219 u64 now = perf_clock();
5220 u64 delta = now - event->ctx->timestamp;
5221 time = event->ctx->time + delta;
5222 }
5223
5224 task_clock_event_update(event, time);
5225 }
5226
5227 static int task_clock_event_init(struct perf_event *event)
5228 {
5229 if (event->attr.type != PERF_TYPE_SOFTWARE)
5230 return -ENOENT;
5231
5232 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5233 return -ENOENT;
5234
5235 return 0;
5236 }
5237
5238 static struct pmu perf_task_clock = {
5239 .task_ctx_nr = perf_sw_context,
5240
5241 .event_init = task_clock_event_init,
5242 .add = task_clock_event_add,
5243 .del = task_clock_event_del,
5244 .start = task_clock_event_start,
5245 .stop = task_clock_event_stop,
5246 .read = task_clock_event_read,
5247 };
5248
5249 static void perf_pmu_nop_void(struct pmu *pmu)
5250 {
5251 }
5252
5253 static int perf_pmu_nop_int(struct pmu *pmu)
5254 {
5255 return 0;
5256 }
5257
5258 static void perf_pmu_start_txn(struct pmu *pmu)
5259 {
5260 perf_pmu_disable(pmu);
5261 }
5262
5263 static int perf_pmu_commit_txn(struct pmu *pmu)
5264 {
5265 perf_pmu_enable(pmu);
5266 return 0;
5267 }
5268
5269 static void perf_pmu_cancel_txn(struct pmu *pmu)
5270 {
5271 perf_pmu_enable(pmu);
5272 }
5273
5274 /*
5275 * Ensures all contexts with the same task_ctx_nr have the same
5276 * pmu_cpu_context too.
5277 */
5278 static void *find_pmu_context(int ctxn)
5279 {
5280 struct pmu *pmu;
5281
5282 if (ctxn < 0)
5283 return NULL;
5284
5285 list_for_each_entry(pmu, &pmus, entry) {
5286 if (pmu->task_ctx_nr == ctxn)
5287 return pmu->pmu_cpu_context;
5288 }
5289
5290 return NULL;
5291 }
5292
5293 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5294 {
5295 int cpu;
5296
5297 for_each_possible_cpu(cpu) {
5298 struct perf_cpu_context *cpuctx;
5299
5300 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5301
5302 if (cpuctx->active_pmu == old_pmu)
5303 cpuctx->active_pmu = pmu;
5304 }
5305 }
5306
5307 static void free_pmu_context(struct pmu *pmu)
5308 {
5309 struct pmu *i;
5310
5311 mutex_lock(&pmus_lock);
5312 /*
5313 * Like a real lame refcount.
5314 */
5315 list_for_each_entry(i, &pmus, entry) {
5316 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5317 update_pmu_context(i, pmu);
5318 goto out;
5319 }
5320 }
5321
5322 free_percpu(pmu->pmu_cpu_context);
5323 out:
5324 mutex_unlock(&pmus_lock);
5325 }
5326 static struct idr pmu_idr;
5327
5328 static ssize_t
5329 type_show(struct device *dev, struct device_attribute *attr, char *page)
5330 {
5331 struct pmu *pmu = dev_get_drvdata(dev);
5332
5333 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5334 }
5335
5336 static struct device_attribute pmu_dev_attrs[] = {
5337 __ATTR_RO(type),
5338 __ATTR_NULL,
5339 };
5340
5341 static int pmu_bus_running;
5342 static struct bus_type pmu_bus = {
5343 .name = "event_source",
5344 .dev_attrs = pmu_dev_attrs,
5345 };
5346
5347 static void pmu_dev_release(struct device *dev)
5348 {
5349 kfree(dev);
5350 }
5351
5352 static int pmu_dev_alloc(struct pmu *pmu)
5353 {
5354 int ret = -ENOMEM;
5355
5356 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5357 if (!pmu->dev)
5358 goto out;
5359
5360 device_initialize(pmu->dev);
5361 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5362 if (ret)
5363 goto free_dev;
5364
5365 dev_set_drvdata(pmu->dev, pmu);
5366 pmu->dev->bus = &pmu_bus;
5367 pmu->dev->release = pmu_dev_release;
5368 ret = device_add(pmu->dev);
5369 if (ret)
5370 goto free_dev;
5371
5372 out:
5373 return ret;
5374
5375 free_dev:
5376 put_device(pmu->dev);
5377 goto out;
5378 }
5379
5380 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5381 {
5382 int cpu, ret;
5383
5384 mutex_lock(&pmus_lock);
5385 ret = -ENOMEM;
5386 pmu->pmu_disable_count = alloc_percpu(int);
5387 if (!pmu->pmu_disable_count)
5388 goto unlock;
5389
5390 pmu->type = -1;
5391 if (!name)
5392 goto skip_type;
5393 pmu->name = name;
5394
5395 if (type < 0) {
5396 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5397 if (!err)
5398 goto free_pdc;
5399
5400 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5401 if (err) {
5402 ret = err;
5403 goto free_pdc;
5404 }
5405 }
5406 pmu->type = type;
5407
5408 if (pmu_bus_running) {
5409 ret = pmu_dev_alloc(pmu);
5410 if (ret)
5411 goto free_idr;
5412 }
5413
5414 skip_type:
5415 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5416 if (pmu->pmu_cpu_context)
5417 goto got_cpu_context;
5418
5419 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5420 if (!pmu->pmu_cpu_context)
5421 goto free_dev;
5422
5423 for_each_possible_cpu(cpu) {
5424 struct perf_cpu_context *cpuctx;
5425
5426 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5427 __perf_event_init_context(&cpuctx->ctx);
5428 cpuctx->ctx.type = cpu_context;
5429 cpuctx->ctx.pmu = pmu;
5430 cpuctx->jiffies_interval = 1;
5431 INIT_LIST_HEAD(&cpuctx->rotation_list);
5432 cpuctx->active_pmu = pmu;
5433 }
5434
5435 got_cpu_context:
5436 if (!pmu->start_txn) {
5437 if (pmu->pmu_enable) {
5438 /*
5439 * If we have pmu_enable/pmu_disable calls, install
5440 * transaction stubs that use that to try and batch
5441 * hardware accesses.
5442 */
5443 pmu->start_txn = perf_pmu_start_txn;
5444 pmu->commit_txn = perf_pmu_commit_txn;
5445 pmu->cancel_txn = perf_pmu_cancel_txn;
5446 } else {
5447 pmu->start_txn = perf_pmu_nop_void;
5448 pmu->commit_txn = perf_pmu_nop_int;
5449 pmu->cancel_txn = perf_pmu_nop_void;
5450 }
5451 }
5452
5453 if (!pmu->pmu_enable) {
5454 pmu->pmu_enable = perf_pmu_nop_void;
5455 pmu->pmu_disable = perf_pmu_nop_void;
5456 }
5457
5458 list_add_rcu(&pmu->entry, &pmus);
5459 ret = 0;
5460 unlock:
5461 mutex_unlock(&pmus_lock);
5462
5463 return ret;
5464
5465 free_dev:
5466 device_del(pmu->dev);
5467 put_device(pmu->dev);
5468
5469 free_idr:
5470 if (pmu->type >= PERF_TYPE_MAX)
5471 idr_remove(&pmu_idr, pmu->type);
5472
5473 free_pdc:
5474 free_percpu(pmu->pmu_disable_count);
5475 goto unlock;
5476 }
5477
5478 void perf_pmu_unregister(struct pmu *pmu)
5479 {
5480 mutex_lock(&pmus_lock);
5481 list_del_rcu(&pmu->entry);
5482 mutex_unlock(&pmus_lock);
5483
5484 /*
5485 * We dereference the pmu list under both SRCU and regular RCU, so
5486 * synchronize against both of those.
5487 */
5488 synchronize_srcu(&pmus_srcu);
5489 synchronize_rcu();
5490
5491 free_percpu(pmu->pmu_disable_count);
5492 if (pmu->type >= PERF_TYPE_MAX)
5493 idr_remove(&pmu_idr, pmu->type);
5494 device_del(pmu->dev);
5495 put_device(pmu->dev);
5496 free_pmu_context(pmu);
5497 }
5498
5499 struct pmu *perf_init_event(struct perf_event *event)
5500 {
5501 struct pmu *pmu = NULL;
5502 int idx;
5503
5504 idx = srcu_read_lock(&pmus_srcu);
5505
5506 rcu_read_lock();
5507 pmu = idr_find(&pmu_idr, event->attr.type);
5508 rcu_read_unlock();
5509 if (pmu)
5510 goto unlock;
5511
5512 list_for_each_entry_rcu(pmu, &pmus, entry) {
5513 int ret = pmu->event_init(event);
5514 if (!ret)
5515 goto unlock;
5516
5517 if (ret != -ENOENT) {
5518 pmu = ERR_PTR(ret);
5519 goto unlock;
5520 }
5521 }
5522 pmu = ERR_PTR(-ENOENT);
5523 unlock:
5524 srcu_read_unlock(&pmus_srcu, idx);
5525
5526 return pmu;
5527 }
5528
5529 /*
5530 * Allocate and initialize a event structure
5531 */
5532 static struct perf_event *
5533 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5534 struct task_struct *task,
5535 struct perf_event *group_leader,
5536 struct perf_event *parent_event,
5537 perf_overflow_handler_t overflow_handler)
5538 {
5539 struct pmu *pmu;
5540 struct perf_event *event;
5541 struct hw_perf_event *hwc;
5542 long err;
5543
5544 event = kzalloc(sizeof(*event), GFP_KERNEL);
5545 if (!event)
5546 return ERR_PTR(-ENOMEM);
5547
5548 /*
5549 * Single events are their own group leaders, with an
5550 * empty sibling list:
5551 */
5552 if (!group_leader)
5553 group_leader = event;
5554
5555 mutex_init(&event->child_mutex);
5556 INIT_LIST_HEAD(&event->child_list);
5557
5558 INIT_LIST_HEAD(&event->group_entry);
5559 INIT_LIST_HEAD(&event->event_entry);
5560 INIT_LIST_HEAD(&event->sibling_list);
5561 init_waitqueue_head(&event->waitq);
5562 init_irq_work(&event->pending, perf_pending_event);
5563
5564 mutex_init(&event->mmap_mutex);
5565
5566 event->cpu = cpu;
5567 event->attr = *attr;
5568 event->group_leader = group_leader;
5569 event->pmu = NULL;
5570 event->oncpu = -1;
5571
5572 event->parent = parent_event;
5573
5574 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5575 event->id = atomic64_inc_return(&perf_event_id);
5576
5577 event->state = PERF_EVENT_STATE_INACTIVE;
5578
5579 if (task) {
5580 event->attach_state = PERF_ATTACH_TASK;
5581 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5582 /*
5583 * hw_breakpoint is a bit difficult here..
5584 */
5585 if (attr->type == PERF_TYPE_BREAKPOINT)
5586 event->hw.bp_target = task;
5587 #endif
5588 }
5589
5590 if (!overflow_handler && parent_event)
5591 overflow_handler = parent_event->overflow_handler;
5592
5593 event->overflow_handler = overflow_handler;
5594
5595 if (attr->disabled)
5596 event->state = PERF_EVENT_STATE_OFF;
5597
5598 pmu = NULL;
5599
5600 hwc = &event->hw;
5601 hwc->sample_period = attr->sample_period;
5602 if (attr->freq && attr->sample_freq)
5603 hwc->sample_period = 1;
5604 hwc->last_period = hwc->sample_period;
5605
5606 local64_set(&hwc->period_left, hwc->sample_period);
5607
5608 /*
5609 * we currently do not support PERF_FORMAT_GROUP on inherited events
5610 */
5611 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5612 goto done;
5613
5614 pmu = perf_init_event(event);
5615
5616 done:
5617 err = 0;
5618 if (!pmu)
5619 err = -EINVAL;
5620 else if (IS_ERR(pmu))
5621 err = PTR_ERR(pmu);
5622
5623 if (err) {
5624 if (event->ns)
5625 put_pid_ns(event->ns);
5626 kfree(event);
5627 return ERR_PTR(err);
5628 }
5629
5630 event->pmu = pmu;
5631
5632 if (!event->parent) {
5633 if (event->attach_state & PERF_ATTACH_TASK)
5634 jump_label_inc(&perf_task_events);
5635 if (event->attr.mmap || event->attr.mmap_data)
5636 atomic_inc(&nr_mmap_events);
5637 if (event->attr.comm)
5638 atomic_inc(&nr_comm_events);
5639 if (event->attr.task)
5640 atomic_inc(&nr_task_events);
5641 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5642 err = get_callchain_buffers();
5643 if (err) {
5644 free_event(event);
5645 return ERR_PTR(err);
5646 }
5647 }
5648 }
5649
5650 return event;
5651 }
5652
5653 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5654 struct perf_event_attr *attr)
5655 {
5656 u32 size;
5657 int ret;
5658
5659 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5660 return -EFAULT;
5661
5662 /*
5663 * zero the full structure, so that a short copy will be nice.
5664 */
5665 memset(attr, 0, sizeof(*attr));
5666
5667 ret = get_user(size, &uattr->size);
5668 if (ret)
5669 return ret;
5670
5671 if (size > PAGE_SIZE) /* silly large */
5672 goto err_size;
5673
5674 if (!size) /* abi compat */
5675 size = PERF_ATTR_SIZE_VER0;
5676
5677 if (size < PERF_ATTR_SIZE_VER0)
5678 goto err_size;
5679
5680 /*
5681 * If we're handed a bigger struct than we know of,
5682 * ensure all the unknown bits are 0 - i.e. new
5683 * user-space does not rely on any kernel feature
5684 * extensions we dont know about yet.
5685 */
5686 if (size > sizeof(*attr)) {
5687 unsigned char __user *addr;
5688 unsigned char __user *end;
5689 unsigned char val;
5690
5691 addr = (void __user *)uattr + sizeof(*attr);
5692 end = (void __user *)uattr + size;
5693
5694 for (; addr < end; addr++) {
5695 ret = get_user(val, addr);
5696 if (ret)
5697 return ret;
5698 if (val)
5699 goto err_size;
5700 }
5701 size = sizeof(*attr);
5702 }
5703
5704 ret = copy_from_user(attr, uattr, size);
5705 if (ret)
5706 return -EFAULT;
5707
5708 /*
5709 * If the type exists, the corresponding creation will verify
5710 * the attr->config.
5711 */
5712 if (attr->type >= PERF_TYPE_MAX)
5713 return -EINVAL;
5714
5715 if (attr->__reserved_1)
5716 return -EINVAL;
5717
5718 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5719 return -EINVAL;
5720
5721 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5722 return -EINVAL;
5723
5724 out:
5725 return ret;
5726
5727 err_size:
5728 put_user(sizeof(*attr), &uattr->size);
5729 ret = -E2BIG;
5730 goto out;
5731 }
5732
5733 static int
5734 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5735 {
5736 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5737 int ret = -EINVAL;
5738
5739 if (!output_event)
5740 goto set;
5741
5742 /* don't allow circular references */
5743 if (event == output_event)
5744 goto out;
5745
5746 /*
5747 * Don't allow cross-cpu buffers
5748 */
5749 if (output_event->cpu != event->cpu)
5750 goto out;
5751
5752 /*
5753 * If its not a per-cpu buffer, it must be the same task.
5754 */
5755 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5756 goto out;
5757
5758 set:
5759 mutex_lock(&event->mmap_mutex);
5760 /* Can't redirect output if we've got an active mmap() */
5761 if (atomic_read(&event->mmap_count))
5762 goto unlock;
5763
5764 if (output_event) {
5765 /* get the buffer we want to redirect to */
5766 buffer = perf_buffer_get(output_event);
5767 if (!buffer)
5768 goto unlock;
5769 }
5770
5771 old_buffer = event->buffer;
5772 rcu_assign_pointer(event->buffer, buffer);
5773 ret = 0;
5774 unlock:
5775 mutex_unlock(&event->mmap_mutex);
5776
5777 if (old_buffer)
5778 perf_buffer_put(old_buffer);
5779 out:
5780 return ret;
5781 }
5782
5783 /**
5784 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5785 *
5786 * @attr_uptr: event_id type attributes for monitoring/sampling
5787 * @pid: target pid
5788 * @cpu: target cpu
5789 * @group_fd: group leader event fd
5790 */
5791 SYSCALL_DEFINE5(perf_event_open,
5792 struct perf_event_attr __user *, attr_uptr,
5793 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5794 {
5795 struct perf_event *group_leader = NULL, *output_event = NULL;
5796 struct perf_event *event, *sibling;
5797 struct perf_event_attr attr;
5798 struct perf_event_context *ctx;
5799 struct file *event_file = NULL;
5800 struct file *group_file = NULL;
5801 struct task_struct *task = NULL;
5802 struct pmu *pmu;
5803 int event_fd;
5804 int move_group = 0;
5805 int fput_needed = 0;
5806 int err;
5807
5808 /* for future expandability... */
5809 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5810 return -EINVAL;
5811
5812 err = perf_copy_attr(attr_uptr, &attr);
5813 if (err)
5814 return err;
5815
5816 if (!attr.exclude_kernel) {
5817 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5818 return -EACCES;
5819 }
5820
5821 if (attr.freq) {
5822 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5823 return -EINVAL;
5824 }
5825
5826 event_fd = get_unused_fd_flags(O_RDWR);
5827 if (event_fd < 0)
5828 return event_fd;
5829
5830 if (group_fd != -1) {
5831 group_leader = perf_fget_light(group_fd, &fput_needed);
5832 if (IS_ERR(group_leader)) {
5833 err = PTR_ERR(group_leader);
5834 goto err_fd;
5835 }
5836 group_file = group_leader->filp;
5837 if (flags & PERF_FLAG_FD_OUTPUT)
5838 output_event = group_leader;
5839 if (flags & PERF_FLAG_FD_NO_GROUP)
5840 group_leader = NULL;
5841 }
5842
5843 if (pid != -1) {
5844 task = find_lively_task_by_vpid(pid);
5845 if (IS_ERR(task)) {
5846 err = PTR_ERR(task);
5847 goto err_group_fd;
5848 }
5849 }
5850
5851 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5852 if (IS_ERR(event)) {
5853 err = PTR_ERR(event);
5854 goto err_task;
5855 }
5856
5857 /*
5858 * Special case software events and allow them to be part of
5859 * any hardware group.
5860 */
5861 pmu = event->pmu;
5862
5863 if (group_leader &&
5864 (is_software_event(event) != is_software_event(group_leader))) {
5865 if (is_software_event(event)) {
5866 /*
5867 * If event and group_leader are not both a software
5868 * event, and event is, then group leader is not.
5869 *
5870 * Allow the addition of software events to !software
5871 * groups, this is safe because software events never
5872 * fail to schedule.
5873 */
5874 pmu = group_leader->pmu;
5875 } else if (is_software_event(group_leader) &&
5876 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5877 /*
5878 * In case the group is a pure software group, and we
5879 * try to add a hardware event, move the whole group to
5880 * the hardware context.
5881 */
5882 move_group = 1;
5883 }
5884 }
5885
5886 /*
5887 * Get the target context (task or percpu):
5888 */
5889 ctx = find_get_context(pmu, task, cpu);
5890 if (IS_ERR(ctx)) {
5891 err = PTR_ERR(ctx);
5892 goto err_alloc;
5893 }
5894
5895 /*
5896 * Look up the group leader (we will attach this event to it):
5897 */
5898 if (group_leader) {
5899 err = -EINVAL;
5900
5901 /*
5902 * Do not allow a recursive hierarchy (this new sibling
5903 * becoming part of another group-sibling):
5904 */
5905 if (group_leader->group_leader != group_leader)
5906 goto err_context;
5907 /*
5908 * Do not allow to attach to a group in a different
5909 * task or CPU context:
5910 */
5911 if (move_group) {
5912 if (group_leader->ctx->type != ctx->type)
5913 goto err_context;
5914 } else {
5915 if (group_leader->ctx != ctx)
5916 goto err_context;
5917 }
5918
5919 /*
5920 * Only a group leader can be exclusive or pinned
5921 */
5922 if (attr.exclusive || attr.pinned)
5923 goto err_context;
5924 }
5925
5926 if (output_event) {
5927 err = perf_event_set_output(event, output_event);
5928 if (err)
5929 goto err_context;
5930 }
5931
5932 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5933 if (IS_ERR(event_file)) {
5934 err = PTR_ERR(event_file);
5935 goto err_context;
5936 }
5937
5938 if (move_group) {
5939 struct perf_event_context *gctx = group_leader->ctx;
5940
5941 mutex_lock(&gctx->mutex);
5942 perf_event_remove_from_context(group_leader);
5943 list_for_each_entry(sibling, &group_leader->sibling_list,
5944 group_entry) {
5945 perf_event_remove_from_context(sibling);
5946 put_ctx(gctx);
5947 }
5948 mutex_unlock(&gctx->mutex);
5949 put_ctx(gctx);
5950 }
5951
5952 event->filp = event_file;
5953 WARN_ON_ONCE(ctx->parent_ctx);
5954 mutex_lock(&ctx->mutex);
5955
5956 if (move_group) {
5957 perf_install_in_context(ctx, group_leader, cpu);
5958 get_ctx(ctx);
5959 list_for_each_entry(sibling, &group_leader->sibling_list,
5960 group_entry) {
5961 perf_install_in_context(ctx, sibling, cpu);
5962 get_ctx(ctx);
5963 }
5964 }
5965
5966 perf_install_in_context(ctx, event, cpu);
5967 ++ctx->generation;
5968 mutex_unlock(&ctx->mutex);
5969
5970 event->owner = current;
5971
5972 mutex_lock(&current->perf_event_mutex);
5973 list_add_tail(&event->owner_entry, &current->perf_event_list);
5974 mutex_unlock(&current->perf_event_mutex);
5975
5976 /*
5977 * Precalculate sample_data sizes
5978 */
5979 perf_event__header_size(event);
5980 perf_event__id_header_size(event);
5981
5982 /*
5983 * Drop the reference on the group_event after placing the
5984 * new event on the sibling_list. This ensures destruction
5985 * of the group leader will find the pointer to itself in
5986 * perf_group_detach().
5987 */
5988 fput_light(group_file, fput_needed);
5989 fd_install(event_fd, event_file);
5990 return event_fd;
5991
5992 err_context:
5993 put_ctx(ctx);
5994 err_alloc:
5995 free_event(event);
5996 err_task:
5997 if (task)
5998 put_task_struct(task);
5999 err_group_fd:
6000 fput_light(group_file, fput_needed);
6001 err_fd:
6002 put_unused_fd(event_fd);
6003 return err;
6004 }
6005
6006 /**
6007 * perf_event_create_kernel_counter
6008 *
6009 * @attr: attributes of the counter to create
6010 * @cpu: cpu in which the counter is bound
6011 * @task: task to profile (NULL for percpu)
6012 */
6013 struct perf_event *
6014 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6015 struct task_struct *task,
6016 perf_overflow_handler_t overflow_handler)
6017 {
6018 struct perf_event_context *ctx;
6019 struct perf_event *event;
6020 int err;
6021
6022 /*
6023 * Get the target context (task or percpu):
6024 */
6025
6026 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6027 if (IS_ERR(event)) {
6028 err = PTR_ERR(event);
6029 goto err;
6030 }
6031
6032 ctx = find_get_context(event->pmu, task, cpu);
6033 if (IS_ERR(ctx)) {
6034 err = PTR_ERR(ctx);
6035 goto err_free;
6036 }
6037
6038 event->filp = NULL;
6039 WARN_ON_ONCE(ctx->parent_ctx);
6040 mutex_lock(&ctx->mutex);
6041 perf_install_in_context(ctx, event, cpu);
6042 ++ctx->generation;
6043 mutex_unlock(&ctx->mutex);
6044
6045 return event;
6046
6047 err_free:
6048 free_event(event);
6049 err:
6050 return ERR_PTR(err);
6051 }
6052 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6053
6054 static void sync_child_event(struct perf_event *child_event,
6055 struct task_struct *child)
6056 {
6057 struct perf_event *parent_event = child_event->parent;
6058 u64 child_val;
6059
6060 if (child_event->attr.inherit_stat)
6061 perf_event_read_event(child_event, child);
6062
6063 child_val = perf_event_count(child_event);
6064
6065 /*
6066 * Add back the child's count to the parent's count:
6067 */
6068 atomic64_add(child_val, &parent_event->child_count);
6069 atomic64_add(child_event->total_time_enabled,
6070 &parent_event->child_total_time_enabled);
6071 atomic64_add(child_event->total_time_running,
6072 &parent_event->child_total_time_running);
6073
6074 /*
6075 * Remove this event from the parent's list
6076 */
6077 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6078 mutex_lock(&parent_event->child_mutex);
6079 list_del_init(&child_event->child_list);
6080 mutex_unlock(&parent_event->child_mutex);
6081
6082 /*
6083 * Release the parent event, if this was the last
6084 * reference to it.
6085 */
6086 fput(parent_event->filp);
6087 }
6088
6089 static void
6090 __perf_event_exit_task(struct perf_event *child_event,
6091 struct perf_event_context *child_ctx,
6092 struct task_struct *child)
6093 {
6094 struct perf_event *parent_event;
6095
6096 perf_event_remove_from_context(child_event);
6097
6098 parent_event = child_event->parent;
6099 /*
6100 * It can happen that parent exits first, and has events
6101 * that are still around due to the child reference. These
6102 * events need to be zapped - but otherwise linger.
6103 */
6104 if (parent_event) {
6105 sync_child_event(child_event, child);
6106 free_event(child_event);
6107 }
6108 }
6109
6110 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6111 {
6112 struct perf_event *child_event, *tmp;
6113 struct perf_event_context *child_ctx;
6114 unsigned long flags;
6115
6116 if (likely(!child->perf_event_ctxp[ctxn])) {
6117 perf_event_task(child, NULL, 0);
6118 return;
6119 }
6120
6121 local_irq_save(flags);
6122 /*
6123 * We can't reschedule here because interrupts are disabled,
6124 * and either child is current or it is a task that can't be
6125 * scheduled, so we are now safe from rescheduling changing
6126 * our context.
6127 */
6128 child_ctx = child->perf_event_ctxp[ctxn];
6129 task_ctx_sched_out(child_ctx, EVENT_ALL);
6130
6131 /*
6132 * Take the context lock here so that if find_get_context is
6133 * reading child->perf_event_ctxp, we wait until it has
6134 * incremented the context's refcount before we do put_ctx below.
6135 */
6136 raw_spin_lock(&child_ctx->lock);
6137 child->perf_event_ctxp[ctxn] = NULL;
6138 /*
6139 * If this context is a clone; unclone it so it can't get
6140 * swapped to another process while we're removing all
6141 * the events from it.
6142 */
6143 unclone_ctx(child_ctx);
6144 update_context_time(child_ctx);
6145 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6146
6147 /*
6148 * Report the task dead after unscheduling the events so that we
6149 * won't get any samples after PERF_RECORD_EXIT. We can however still
6150 * get a few PERF_RECORD_READ events.
6151 */
6152 perf_event_task(child, child_ctx, 0);
6153
6154 /*
6155 * We can recurse on the same lock type through:
6156 *
6157 * __perf_event_exit_task()
6158 * sync_child_event()
6159 * fput(parent_event->filp)
6160 * perf_release()
6161 * mutex_lock(&ctx->mutex)
6162 *
6163 * But since its the parent context it won't be the same instance.
6164 */
6165 mutex_lock(&child_ctx->mutex);
6166
6167 again:
6168 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6169 group_entry)
6170 __perf_event_exit_task(child_event, child_ctx, child);
6171
6172 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6173 group_entry)
6174 __perf_event_exit_task(child_event, child_ctx, child);
6175
6176 /*
6177 * If the last event was a group event, it will have appended all
6178 * its siblings to the list, but we obtained 'tmp' before that which
6179 * will still point to the list head terminating the iteration.
6180 */
6181 if (!list_empty(&child_ctx->pinned_groups) ||
6182 !list_empty(&child_ctx->flexible_groups))
6183 goto again;
6184
6185 mutex_unlock(&child_ctx->mutex);
6186
6187 put_ctx(child_ctx);
6188 }
6189
6190 /*
6191 * When a child task exits, feed back event values to parent events.
6192 */
6193 void perf_event_exit_task(struct task_struct *child)
6194 {
6195 struct perf_event *event, *tmp;
6196 int ctxn;
6197
6198 mutex_lock(&child->perf_event_mutex);
6199 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6200 owner_entry) {
6201 list_del_init(&event->owner_entry);
6202
6203 /*
6204 * Ensure the list deletion is visible before we clear
6205 * the owner, closes a race against perf_release() where
6206 * we need to serialize on the owner->perf_event_mutex.
6207 */
6208 smp_wmb();
6209 event->owner = NULL;
6210 }
6211 mutex_unlock(&child->perf_event_mutex);
6212
6213 for_each_task_context_nr(ctxn)
6214 perf_event_exit_task_context(child, ctxn);
6215 }
6216
6217 static void perf_free_event(struct perf_event *event,
6218 struct perf_event_context *ctx)
6219 {
6220 struct perf_event *parent = event->parent;
6221
6222 if (WARN_ON_ONCE(!parent))
6223 return;
6224
6225 mutex_lock(&parent->child_mutex);
6226 list_del_init(&event->child_list);
6227 mutex_unlock(&parent->child_mutex);
6228
6229 fput(parent->filp);
6230
6231 perf_group_detach(event);
6232 list_del_event(event, ctx);
6233 free_event(event);
6234 }
6235
6236 /*
6237 * free an unexposed, unused context as created by inheritance by
6238 * perf_event_init_task below, used by fork() in case of fail.
6239 */
6240 void perf_event_free_task(struct task_struct *task)
6241 {
6242 struct perf_event_context *ctx;
6243 struct perf_event *event, *tmp;
6244 int ctxn;
6245
6246 for_each_task_context_nr(ctxn) {
6247 ctx = task->perf_event_ctxp[ctxn];
6248 if (!ctx)
6249 continue;
6250
6251 mutex_lock(&ctx->mutex);
6252 again:
6253 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6254 group_entry)
6255 perf_free_event(event, ctx);
6256
6257 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6258 group_entry)
6259 perf_free_event(event, ctx);
6260
6261 if (!list_empty(&ctx->pinned_groups) ||
6262 !list_empty(&ctx->flexible_groups))
6263 goto again;
6264
6265 mutex_unlock(&ctx->mutex);
6266
6267 put_ctx(ctx);
6268 }
6269 }
6270
6271 void perf_event_delayed_put(struct task_struct *task)
6272 {
6273 int ctxn;
6274
6275 for_each_task_context_nr(ctxn)
6276 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6277 }
6278
6279 /*
6280 * inherit a event from parent task to child task:
6281 */
6282 static struct perf_event *
6283 inherit_event(struct perf_event *parent_event,
6284 struct task_struct *parent,
6285 struct perf_event_context *parent_ctx,
6286 struct task_struct *child,
6287 struct perf_event *group_leader,
6288 struct perf_event_context *child_ctx)
6289 {
6290 struct perf_event *child_event;
6291 unsigned long flags;
6292
6293 /*
6294 * Instead of creating recursive hierarchies of events,
6295 * we link inherited events back to the original parent,
6296 * which has a filp for sure, which we use as the reference
6297 * count:
6298 */
6299 if (parent_event->parent)
6300 parent_event = parent_event->parent;
6301
6302 child_event = perf_event_alloc(&parent_event->attr,
6303 parent_event->cpu,
6304 child,
6305 group_leader, parent_event,
6306 NULL);
6307 if (IS_ERR(child_event))
6308 return child_event;
6309 get_ctx(child_ctx);
6310
6311 /*
6312 * Make the child state follow the state of the parent event,
6313 * not its attr.disabled bit. We hold the parent's mutex,
6314 * so we won't race with perf_event_{en, dis}able_family.
6315 */
6316 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6317 child_event->state = PERF_EVENT_STATE_INACTIVE;
6318 else
6319 child_event->state = PERF_EVENT_STATE_OFF;
6320
6321 if (parent_event->attr.freq) {
6322 u64 sample_period = parent_event->hw.sample_period;
6323 struct hw_perf_event *hwc = &child_event->hw;
6324
6325 hwc->sample_period = sample_period;
6326 hwc->last_period = sample_period;
6327
6328 local64_set(&hwc->period_left, sample_period);
6329 }
6330
6331 child_event->ctx = child_ctx;
6332 child_event->overflow_handler = parent_event->overflow_handler;
6333
6334 /*
6335 * Precalculate sample_data sizes
6336 */
6337 perf_event__header_size(child_event);
6338 perf_event__id_header_size(child_event);
6339
6340 /*
6341 * Link it up in the child's context:
6342 */
6343 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6344 add_event_to_ctx(child_event, child_ctx);
6345 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6346
6347 /*
6348 * Get a reference to the parent filp - we will fput it
6349 * when the child event exits. This is safe to do because
6350 * we are in the parent and we know that the filp still
6351 * exists and has a nonzero count:
6352 */
6353 atomic_long_inc(&parent_event->filp->f_count);
6354
6355 /*
6356 * Link this into the parent event's child list
6357 */
6358 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6359 mutex_lock(&parent_event->child_mutex);
6360 list_add_tail(&child_event->child_list, &parent_event->child_list);
6361 mutex_unlock(&parent_event->child_mutex);
6362
6363 return child_event;
6364 }
6365
6366 static int inherit_group(struct perf_event *parent_event,
6367 struct task_struct *parent,
6368 struct perf_event_context *parent_ctx,
6369 struct task_struct *child,
6370 struct perf_event_context *child_ctx)
6371 {
6372 struct perf_event *leader;
6373 struct perf_event *sub;
6374 struct perf_event *child_ctr;
6375
6376 leader = inherit_event(parent_event, parent, parent_ctx,
6377 child, NULL, child_ctx);
6378 if (IS_ERR(leader))
6379 return PTR_ERR(leader);
6380 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6381 child_ctr = inherit_event(sub, parent, parent_ctx,
6382 child, leader, child_ctx);
6383 if (IS_ERR(child_ctr))
6384 return PTR_ERR(child_ctr);
6385 }
6386 return 0;
6387 }
6388
6389 static int
6390 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6391 struct perf_event_context *parent_ctx,
6392 struct task_struct *child, int ctxn,
6393 int *inherited_all)
6394 {
6395 int ret;
6396 struct perf_event_context *child_ctx;
6397
6398 if (!event->attr.inherit) {
6399 *inherited_all = 0;
6400 return 0;
6401 }
6402
6403 child_ctx = child->perf_event_ctxp[ctxn];
6404 if (!child_ctx) {
6405 /*
6406 * This is executed from the parent task context, so
6407 * inherit events that have been marked for cloning.
6408 * First allocate and initialize a context for the
6409 * child.
6410 */
6411
6412 child_ctx = alloc_perf_context(event->pmu, child);
6413 if (!child_ctx)
6414 return -ENOMEM;
6415
6416 child->perf_event_ctxp[ctxn] = child_ctx;
6417 }
6418
6419 ret = inherit_group(event, parent, parent_ctx,
6420 child, child_ctx);
6421
6422 if (ret)
6423 *inherited_all = 0;
6424
6425 return ret;
6426 }
6427
6428 /*
6429 * Initialize the perf_event context in task_struct
6430 */
6431 int perf_event_init_context(struct task_struct *child, int ctxn)
6432 {
6433 struct perf_event_context *child_ctx, *parent_ctx;
6434 struct perf_event_context *cloned_ctx;
6435 struct perf_event *event;
6436 struct task_struct *parent = current;
6437 int inherited_all = 1;
6438 unsigned long flags;
6439 int ret = 0;
6440
6441 child->perf_event_ctxp[ctxn] = NULL;
6442
6443 mutex_init(&child->perf_event_mutex);
6444 INIT_LIST_HEAD(&child->perf_event_list);
6445
6446 if (likely(!parent->perf_event_ctxp[ctxn]))
6447 return 0;
6448
6449 /*
6450 * If the parent's context is a clone, pin it so it won't get
6451 * swapped under us.
6452 */
6453 parent_ctx = perf_pin_task_context(parent, ctxn);
6454
6455 /*
6456 * No need to check if parent_ctx != NULL here; since we saw
6457 * it non-NULL earlier, the only reason for it to become NULL
6458 * is if we exit, and since we're currently in the middle of
6459 * a fork we can't be exiting at the same time.
6460 */
6461
6462 /*
6463 * Lock the parent list. No need to lock the child - not PID
6464 * hashed yet and not running, so nobody can access it.
6465 */
6466 mutex_lock(&parent_ctx->mutex);
6467
6468 /*
6469 * We dont have to disable NMIs - we are only looking at
6470 * the list, not manipulating it:
6471 */
6472 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6473 ret = inherit_task_group(event, parent, parent_ctx,
6474 child, ctxn, &inherited_all);
6475 if (ret)
6476 break;
6477 }
6478
6479 /*
6480 * We can't hold ctx->lock when iterating the ->flexible_group list due
6481 * to allocations, but we need to prevent rotation because
6482 * rotate_ctx() will change the list from interrupt context.
6483 */
6484 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6485 parent_ctx->rotate_disable = 1;
6486 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6487
6488 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6489 ret = inherit_task_group(event, parent, parent_ctx,
6490 child, ctxn, &inherited_all);
6491 if (ret)
6492 break;
6493 }
6494
6495 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6496 parent_ctx->rotate_disable = 0;
6497 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6498
6499 child_ctx = child->perf_event_ctxp[ctxn];
6500
6501 if (child_ctx && inherited_all) {
6502 /*
6503 * Mark the child context as a clone of the parent
6504 * context, or of whatever the parent is a clone of.
6505 * Note that if the parent is a clone, it could get
6506 * uncloned at any point, but that doesn't matter
6507 * because the list of events and the generation
6508 * count can't have changed since we took the mutex.
6509 */
6510 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6511 if (cloned_ctx) {
6512 child_ctx->parent_ctx = cloned_ctx;
6513 child_ctx->parent_gen = parent_ctx->parent_gen;
6514 } else {
6515 child_ctx->parent_ctx = parent_ctx;
6516 child_ctx->parent_gen = parent_ctx->generation;
6517 }
6518 get_ctx(child_ctx->parent_ctx);
6519 }
6520
6521 mutex_unlock(&parent_ctx->mutex);
6522
6523 perf_unpin_context(parent_ctx);
6524
6525 return ret;
6526 }
6527
6528 /*
6529 * Initialize the perf_event context in task_struct
6530 */
6531 int perf_event_init_task(struct task_struct *child)
6532 {
6533 int ctxn, ret;
6534
6535 for_each_task_context_nr(ctxn) {
6536 ret = perf_event_init_context(child, ctxn);
6537 if (ret)
6538 return ret;
6539 }
6540
6541 return 0;
6542 }
6543
6544 static void __init perf_event_init_all_cpus(void)
6545 {
6546 struct swevent_htable *swhash;
6547 int cpu;
6548
6549 for_each_possible_cpu(cpu) {
6550 swhash = &per_cpu(swevent_htable, cpu);
6551 mutex_init(&swhash->hlist_mutex);
6552 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6553 }
6554 }
6555
6556 static void __cpuinit perf_event_init_cpu(int cpu)
6557 {
6558 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6559
6560 mutex_lock(&swhash->hlist_mutex);
6561 if (swhash->hlist_refcount > 0) {
6562 struct swevent_hlist *hlist;
6563
6564 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6565 WARN_ON(!hlist);
6566 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6567 }
6568 mutex_unlock(&swhash->hlist_mutex);
6569 }
6570
6571 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6572 static void perf_pmu_rotate_stop(struct pmu *pmu)
6573 {
6574 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6575
6576 WARN_ON(!irqs_disabled());
6577
6578 list_del_init(&cpuctx->rotation_list);
6579 }
6580
6581 static void __perf_event_exit_context(void *__info)
6582 {
6583 struct perf_event_context *ctx = __info;
6584 struct perf_event *event, *tmp;
6585
6586 perf_pmu_rotate_stop(ctx->pmu);
6587
6588 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6589 __perf_event_remove_from_context(event);
6590 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6591 __perf_event_remove_from_context(event);
6592 }
6593
6594 static void perf_event_exit_cpu_context(int cpu)
6595 {
6596 struct perf_event_context *ctx;
6597 struct pmu *pmu;
6598 int idx;
6599
6600 idx = srcu_read_lock(&pmus_srcu);
6601 list_for_each_entry_rcu(pmu, &pmus, entry) {
6602 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6603
6604 mutex_lock(&ctx->mutex);
6605 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6606 mutex_unlock(&ctx->mutex);
6607 }
6608 srcu_read_unlock(&pmus_srcu, idx);
6609 }
6610
6611 static void perf_event_exit_cpu(int cpu)
6612 {
6613 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6614
6615 mutex_lock(&swhash->hlist_mutex);
6616 swevent_hlist_release(swhash);
6617 mutex_unlock(&swhash->hlist_mutex);
6618
6619 perf_event_exit_cpu_context(cpu);
6620 }
6621 #else
6622 static inline void perf_event_exit_cpu(int cpu) { }
6623 #endif
6624
6625 static int
6626 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6627 {
6628 int cpu;
6629
6630 for_each_online_cpu(cpu)
6631 perf_event_exit_cpu(cpu);
6632
6633 return NOTIFY_OK;
6634 }
6635
6636 /*
6637 * Run the perf reboot notifier at the very last possible moment so that
6638 * the generic watchdog code runs as long as possible.
6639 */
6640 static struct notifier_block perf_reboot_notifier = {
6641 .notifier_call = perf_reboot,
6642 .priority = INT_MIN,
6643 };
6644
6645 static int __cpuinit
6646 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6647 {
6648 unsigned int cpu = (long)hcpu;
6649
6650 switch (action & ~CPU_TASKS_FROZEN) {
6651
6652 case CPU_UP_PREPARE:
6653 case CPU_DOWN_FAILED:
6654 perf_event_init_cpu(cpu);
6655 break;
6656
6657 case CPU_UP_CANCELED:
6658 case CPU_DOWN_PREPARE:
6659 perf_event_exit_cpu(cpu);
6660 break;
6661
6662 default:
6663 break;
6664 }
6665
6666 return NOTIFY_OK;
6667 }
6668
6669 void __init perf_event_init(void)
6670 {
6671 int ret;
6672
6673 idr_init(&pmu_idr);
6674
6675 perf_event_init_all_cpus();
6676 init_srcu_struct(&pmus_srcu);
6677 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6678 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6679 perf_pmu_register(&perf_task_clock, NULL, -1);
6680 perf_tp_register();
6681 perf_cpu_notifier(perf_cpu_notify);
6682 register_reboot_notifier(&perf_reboot_notifier);
6683
6684 ret = init_hw_breakpoint();
6685 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6686 }
6687
6688 static int __init perf_event_sysfs_init(void)
6689 {
6690 struct pmu *pmu;
6691 int ret;
6692
6693 mutex_lock(&pmus_lock);
6694
6695 ret = bus_register(&pmu_bus);
6696 if (ret)
6697 goto unlock;
6698
6699 list_for_each_entry(pmu, &pmus, entry) {
6700 if (!pmu->name || pmu->type < 0)
6701 continue;
6702
6703 ret = pmu_dev_alloc(pmu);
6704 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6705 }
6706 pmu_bus_running = 1;
6707 ret = 0;
6708
6709 unlock:
6710 mutex_unlock(&pmus_lock);
6711
6712 return ret;
6713 }
6714 device_initcall(perf_event_sysfs_init);