perf_counter: hook up the tracepoint events
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23 #include <linux/mm.h>
24 #include <linux/vmstat.h>
25 #include <linux/rculist.h>
26
27 #include <asm/irq_regs.h>
28
29 /*
30 * Each CPU has a list of per CPU counters:
31 */
32 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
33
34 int perf_max_counters __read_mostly = 1;
35 static int perf_reserved_percpu __read_mostly;
36 static int perf_overcommit __read_mostly = 1;
37
38 /*
39 * Mutex for (sysadmin-configurable) counter reservations:
40 */
41 static DEFINE_MUTEX(perf_resource_mutex);
42
43 /*
44 * Architecture provided APIs - weak aliases:
45 */
46 extern __weak const struct hw_perf_counter_ops *
47 hw_perf_counter_init(struct perf_counter *counter)
48 {
49 return NULL;
50 }
51
52 u64 __weak hw_perf_save_disable(void) { return 0; }
53 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
54 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
55 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
56 struct perf_cpu_context *cpuctx,
57 struct perf_counter_context *ctx, int cpu)
58 {
59 return 0;
60 }
61
62 void __weak perf_counter_print_debug(void) { }
63
64 static void
65 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
66 {
67 struct perf_counter *group_leader = counter->group_leader;
68
69 /*
70 * Depending on whether it is a standalone or sibling counter,
71 * add it straight to the context's counter list, or to the group
72 * leader's sibling list:
73 */
74 if (counter->group_leader == counter)
75 list_add_tail(&counter->list_entry, &ctx->counter_list);
76 else
77 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
78
79 list_add_rcu(&counter->event_entry, &ctx->event_list);
80 }
81
82 static void
83 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
84 {
85 struct perf_counter *sibling, *tmp;
86
87 list_del_init(&counter->list_entry);
88 list_del_rcu(&counter->event_entry);
89
90 /*
91 * If this was a group counter with sibling counters then
92 * upgrade the siblings to singleton counters by adding them
93 * to the context list directly:
94 */
95 list_for_each_entry_safe(sibling, tmp,
96 &counter->sibling_list, list_entry) {
97
98 list_move_tail(&sibling->list_entry, &ctx->counter_list);
99 sibling->group_leader = sibling;
100 }
101 }
102
103 static void
104 counter_sched_out(struct perf_counter *counter,
105 struct perf_cpu_context *cpuctx,
106 struct perf_counter_context *ctx)
107 {
108 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
109 return;
110
111 counter->state = PERF_COUNTER_STATE_INACTIVE;
112 counter->hw_ops->disable(counter);
113 counter->oncpu = -1;
114
115 if (!is_software_counter(counter))
116 cpuctx->active_oncpu--;
117 ctx->nr_active--;
118 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
119 cpuctx->exclusive = 0;
120 }
121
122 static void
123 group_sched_out(struct perf_counter *group_counter,
124 struct perf_cpu_context *cpuctx,
125 struct perf_counter_context *ctx)
126 {
127 struct perf_counter *counter;
128
129 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
130 return;
131
132 counter_sched_out(group_counter, cpuctx, ctx);
133
134 /*
135 * Schedule out siblings (if any):
136 */
137 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
138 counter_sched_out(counter, cpuctx, ctx);
139
140 if (group_counter->hw_event.exclusive)
141 cpuctx->exclusive = 0;
142 }
143
144 /*
145 * Cross CPU call to remove a performance counter
146 *
147 * We disable the counter on the hardware level first. After that we
148 * remove it from the context list.
149 */
150 static void __perf_counter_remove_from_context(void *info)
151 {
152 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
153 struct perf_counter *counter = info;
154 struct perf_counter_context *ctx = counter->ctx;
155 unsigned long flags;
156 u64 perf_flags;
157
158 /*
159 * If this is a task context, we need to check whether it is
160 * the current task context of this cpu. If not it has been
161 * scheduled out before the smp call arrived.
162 */
163 if (ctx->task && cpuctx->task_ctx != ctx)
164 return;
165
166 curr_rq_lock_irq_save(&flags);
167 spin_lock(&ctx->lock);
168
169 counter_sched_out(counter, cpuctx, ctx);
170
171 counter->task = NULL;
172 ctx->nr_counters--;
173
174 /*
175 * Protect the list operation against NMI by disabling the
176 * counters on a global level. NOP for non NMI based counters.
177 */
178 perf_flags = hw_perf_save_disable();
179 list_del_counter(counter, ctx);
180 hw_perf_restore(perf_flags);
181
182 if (!ctx->task) {
183 /*
184 * Allow more per task counters with respect to the
185 * reservation:
186 */
187 cpuctx->max_pertask =
188 min(perf_max_counters - ctx->nr_counters,
189 perf_max_counters - perf_reserved_percpu);
190 }
191
192 spin_unlock(&ctx->lock);
193 curr_rq_unlock_irq_restore(&flags);
194 }
195
196
197 /*
198 * Remove the counter from a task's (or a CPU's) list of counters.
199 *
200 * Must be called with counter->mutex and ctx->mutex held.
201 *
202 * CPU counters are removed with a smp call. For task counters we only
203 * call when the task is on a CPU.
204 */
205 static void perf_counter_remove_from_context(struct perf_counter *counter)
206 {
207 struct perf_counter_context *ctx = counter->ctx;
208 struct task_struct *task = ctx->task;
209
210 if (!task) {
211 /*
212 * Per cpu counters are removed via an smp call and
213 * the removal is always sucessful.
214 */
215 smp_call_function_single(counter->cpu,
216 __perf_counter_remove_from_context,
217 counter, 1);
218 return;
219 }
220
221 retry:
222 task_oncpu_function_call(task, __perf_counter_remove_from_context,
223 counter);
224
225 spin_lock_irq(&ctx->lock);
226 /*
227 * If the context is active we need to retry the smp call.
228 */
229 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
230 spin_unlock_irq(&ctx->lock);
231 goto retry;
232 }
233
234 /*
235 * The lock prevents that this context is scheduled in so we
236 * can remove the counter safely, if the call above did not
237 * succeed.
238 */
239 if (!list_empty(&counter->list_entry)) {
240 ctx->nr_counters--;
241 list_del_counter(counter, ctx);
242 counter->task = NULL;
243 }
244 spin_unlock_irq(&ctx->lock);
245 }
246
247 /*
248 * Cross CPU call to disable a performance counter
249 */
250 static void __perf_counter_disable(void *info)
251 {
252 struct perf_counter *counter = info;
253 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
254 struct perf_counter_context *ctx = counter->ctx;
255 unsigned long flags;
256
257 /*
258 * If this is a per-task counter, need to check whether this
259 * counter's task is the current task on this cpu.
260 */
261 if (ctx->task && cpuctx->task_ctx != ctx)
262 return;
263
264 curr_rq_lock_irq_save(&flags);
265 spin_lock(&ctx->lock);
266
267 /*
268 * If the counter is on, turn it off.
269 * If it is in error state, leave it in error state.
270 */
271 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
272 if (counter == counter->group_leader)
273 group_sched_out(counter, cpuctx, ctx);
274 else
275 counter_sched_out(counter, cpuctx, ctx);
276 counter->state = PERF_COUNTER_STATE_OFF;
277 }
278
279 spin_unlock(&ctx->lock);
280 curr_rq_unlock_irq_restore(&flags);
281 }
282
283 /*
284 * Disable a counter.
285 */
286 static void perf_counter_disable(struct perf_counter *counter)
287 {
288 struct perf_counter_context *ctx = counter->ctx;
289 struct task_struct *task = ctx->task;
290
291 if (!task) {
292 /*
293 * Disable the counter on the cpu that it's on
294 */
295 smp_call_function_single(counter->cpu, __perf_counter_disable,
296 counter, 1);
297 return;
298 }
299
300 retry:
301 task_oncpu_function_call(task, __perf_counter_disable, counter);
302
303 spin_lock_irq(&ctx->lock);
304 /*
305 * If the counter is still active, we need to retry the cross-call.
306 */
307 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
308 spin_unlock_irq(&ctx->lock);
309 goto retry;
310 }
311
312 /*
313 * Since we have the lock this context can't be scheduled
314 * in, so we can change the state safely.
315 */
316 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
317 counter->state = PERF_COUNTER_STATE_OFF;
318
319 spin_unlock_irq(&ctx->lock);
320 }
321
322 /*
323 * Disable a counter and all its children.
324 */
325 static void perf_counter_disable_family(struct perf_counter *counter)
326 {
327 struct perf_counter *child;
328
329 perf_counter_disable(counter);
330
331 /*
332 * Lock the mutex to protect the list of children
333 */
334 mutex_lock(&counter->mutex);
335 list_for_each_entry(child, &counter->child_list, child_list)
336 perf_counter_disable(child);
337 mutex_unlock(&counter->mutex);
338 }
339
340 static int
341 counter_sched_in(struct perf_counter *counter,
342 struct perf_cpu_context *cpuctx,
343 struct perf_counter_context *ctx,
344 int cpu)
345 {
346 if (counter->state <= PERF_COUNTER_STATE_OFF)
347 return 0;
348
349 counter->state = PERF_COUNTER_STATE_ACTIVE;
350 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
351 /*
352 * The new state must be visible before we turn it on in the hardware:
353 */
354 smp_wmb();
355
356 if (counter->hw_ops->enable(counter)) {
357 counter->state = PERF_COUNTER_STATE_INACTIVE;
358 counter->oncpu = -1;
359 return -EAGAIN;
360 }
361
362 if (!is_software_counter(counter))
363 cpuctx->active_oncpu++;
364 ctx->nr_active++;
365
366 if (counter->hw_event.exclusive)
367 cpuctx->exclusive = 1;
368
369 return 0;
370 }
371
372 /*
373 * Return 1 for a group consisting entirely of software counters,
374 * 0 if the group contains any hardware counters.
375 */
376 static int is_software_only_group(struct perf_counter *leader)
377 {
378 struct perf_counter *counter;
379
380 if (!is_software_counter(leader))
381 return 0;
382 list_for_each_entry(counter, &leader->sibling_list, list_entry)
383 if (!is_software_counter(counter))
384 return 0;
385 return 1;
386 }
387
388 /*
389 * Work out whether we can put this counter group on the CPU now.
390 */
391 static int group_can_go_on(struct perf_counter *counter,
392 struct perf_cpu_context *cpuctx,
393 int can_add_hw)
394 {
395 /*
396 * Groups consisting entirely of software counters can always go on.
397 */
398 if (is_software_only_group(counter))
399 return 1;
400 /*
401 * If an exclusive group is already on, no other hardware
402 * counters can go on.
403 */
404 if (cpuctx->exclusive)
405 return 0;
406 /*
407 * If this group is exclusive and there are already
408 * counters on the CPU, it can't go on.
409 */
410 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
411 return 0;
412 /*
413 * Otherwise, try to add it if all previous groups were able
414 * to go on.
415 */
416 return can_add_hw;
417 }
418
419 /*
420 * Cross CPU call to install and enable a performance counter
421 */
422 static void __perf_install_in_context(void *info)
423 {
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_counter *counter = info;
426 struct perf_counter_context *ctx = counter->ctx;
427 struct perf_counter *leader = counter->group_leader;
428 int cpu = smp_processor_id();
429 unsigned long flags;
430 u64 perf_flags;
431 int err;
432
433 /*
434 * If this is a task context, we need to check whether it is
435 * the current task context of this cpu. If not it has been
436 * scheduled out before the smp call arrived.
437 */
438 if (ctx->task && cpuctx->task_ctx != ctx)
439 return;
440
441 curr_rq_lock_irq_save(&flags);
442 spin_lock(&ctx->lock);
443
444 /*
445 * Protect the list operation against NMI by disabling the
446 * counters on a global level. NOP for non NMI based counters.
447 */
448 perf_flags = hw_perf_save_disable();
449
450 list_add_counter(counter, ctx);
451 ctx->nr_counters++;
452 counter->prev_state = PERF_COUNTER_STATE_OFF;
453
454 /*
455 * Don't put the counter on if it is disabled or if
456 * it is in a group and the group isn't on.
457 */
458 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
459 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
460 goto unlock;
461
462 /*
463 * An exclusive counter can't go on if there are already active
464 * hardware counters, and no hardware counter can go on if there
465 * is already an exclusive counter on.
466 */
467 if (!group_can_go_on(counter, cpuctx, 1))
468 err = -EEXIST;
469 else
470 err = counter_sched_in(counter, cpuctx, ctx, cpu);
471
472 if (err) {
473 /*
474 * This counter couldn't go on. If it is in a group
475 * then we have to pull the whole group off.
476 * If the counter group is pinned then put it in error state.
477 */
478 if (leader != counter)
479 group_sched_out(leader, cpuctx, ctx);
480 if (leader->hw_event.pinned)
481 leader->state = PERF_COUNTER_STATE_ERROR;
482 }
483
484 if (!err && !ctx->task && cpuctx->max_pertask)
485 cpuctx->max_pertask--;
486
487 unlock:
488 hw_perf_restore(perf_flags);
489
490 spin_unlock(&ctx->lock);
491 curr_rq_unlock_irq_restore(&flags);
492 }
493
494 /*
495 * Attach a performance counter to a context
496 *
497 * First we add the counter to the list with the hardware enable bit
498 * in counter->hw_config cleared.
499 *
500 * If the counter is attached to a task which is on a CPU we use a smp
501 * call to enable it in the task context. The task might have been
502 * scheduled away, but we check this in the smp call again.
503 *
504 * Must be called with ctx->mutex held.
505 */
506 static void
507 perf_install_in_context(struct perf_counter_context *ctx,
508 struct perf_counter *counter,
509 int cpu)
510 {
511 struct task_struct *task = ctx->task;
512
513 if (!task) {
514 /*
515 * Per cpu counters are installed via an smp call and
516 * the install is always sucessful.
517 */
518 smp_call_function_single(cpu, __perf_install_in_context,
519 counter, 1);
520 return;
521 }
522
523 counter->task = task;
524 retry:
525 task_oncpu_function_call(task, __perf_install_in_context,
526 counter);
527
528 spin_lock_irq(&ctx->lock);
529 /*
530 * we need to retry the smp call.
531 */
532 if (ctx->is_active && list_empty(&counter->list_entry)) {
533 spin_unlock_irq(&ctx->lock);
534 goto retry;
535 }
536
537 /*
538 * The lock prevents that this context is scheduled in so we
539 * can add the counter safely, if it the call above did not
540 * succeed.
541 */
542 if (list_empty(&counter->list_entry)) {
543 list_add_counter(counter, ctx);
544 ctx->nr_counters++;
545 }
546 spin_unlock_irq(&ctx->lock);
547 }
548
549 /*
550 * Cross CPU call to enable a performance counter
551 */
552 static void __perf_counter_enable(void *info)
553 {
554 struct perf_counter *counter = info;
555 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
556 struct perf_counter_context *ctx = counter->ctx;
557 struct perf_counter *leader = counter->group_leader;
558 unsigned long flags;
559 int err;
560
561 /*
562 * If this is a per-task counter, need to check whether this
563 * counter's task is the current task on this cpu.
564 */
565 if (ctx->task && cpuctx->task_ctx != ctx)
566 return;
567
568 curr_rq_lock_irq_save(&flags);
569 spin_lock(&ctx->lock);
570
571 counter->prev_state = counter->state;
572 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
573 goto unlock;
574 counter->state = PERF_COUNTER_STATE_INACTIVE;
575
576 /*
577 * If the counter is in a group and isn't the group leader,
578 * then don't put it on unless the group is on.
579 */
580 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
581 goto unlock;
582
583 if (!group_can_go_on(counter, cpuctx, 1))
584 err = -EEXIST;
585 else
586 err = counter_sched_in(counter, cpuctx, ctx,
587 smp_processor_id());
588
589 if (err) {
590 /*
591 * If this counter can't go on and it's part of a
592 * group, then the whole group has to come off.
593 */
594 if (leader != counter)
595 group_sched_out(leader, cpuctx, ctx);
596 if (leader->hw_event.pinned)
597 leader->state = PERF_COUNTER_STATE_ERROR;
598 }
599
600 unlock:
601 spin_unlock(&ctx->lock);
602 curr_rq_unlock_irq_restore(&flags);
603 }
604
605 /*
606 * Enable a counter.
607 */
608 static void perf_counter_enable(struct perf_counter *counter)
609 {
610 struct perf_counter_context *ctx = counter->ctx;
611 struct task_struct *task = ctx->task;
612
613 if (!task) {
614 /*
615 * Enable the counter on the cpu that it's on
616 */
617 smp_call_function_single(counter->cpu, __perf_counter_enable,
618 counter, 1);
619 return;
620 }
621
622 spin_lock_irq(&ctx->lock);
623 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
624 goto out;
625
626 /*
627 * If the counter is in error state, clear that first.
628 * That way, if we see the counter in error state below, we
629 * know that it has gone back into error state, as distinct
630 * from the task having been scheduled away before the
631 * cross-call arrived.
632 */
633 if (counter->state == PERF_COUNTER_STATE_ERROR)
634 counter->state = PERF_COUNTER_STATE_OFF;
635
636 retry:
637 spin_unlock_irq(&ctx->lock);
638 task_oncpu_function_call(task, __perf_counter_enable, counter);
639
640 spin_lock_irq(&ctx->lock);
641
642 /*
643 * If the context is active and the counter is still off,
644 * we need to retry the cross-call.
645 */
646 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
647 goto retry;
648
649 /*
650 * Since we have the lock this context can't be scheduled
651 * in, so we can change the state safely.
652 */
653 if (counter->state == PERF_COUNTER_STATE_OFF)
654 counter->state = PERF_COUNTER_STATE_INACTIVE;
655 out:
656 spin_unlock_irq(&ctx->lock);
657 }
658
659 /*
660 * Enable a counter and all its children.
661 */
662 static void perf_counter_enable_family(struct perf_counter *counter)
663 {
664 struct perf_counter *child;
665
666 perf_counter_enable(counter);
667
668 /*
669 * Lock the mutex to protect the list of children
670 */
671 mutex_lock(&counter->mutex);
672 list_for_each_entry(child, &counter->child_list, child_list)
673 perf_counter_enable(child);
674 mutex_unlock(&counter->mutex);
675 }
676
677 void __perf_counter_sched_out(struct perf_counter_context *ctx,
678 struct perf_cpu_context *cpuctx)
679 {
680 struct perf_counter *counter;
681 u64 flags;
682
683 spin_lock(&ctx->lock);
684 ctx->is_active = 0;
685 if (likely(!ctx->nr_counters))
686 goto out;
687
688 flags = hw_perf_save_disable();
689 if (ctx->nr_active) {
690 list_for_each_entry(counter, &ctx->counter_list, list_entry)
691 group_sched_out(counter, cpuctx, ctx);
692 }
693 hw_perf_restore(flags);
694 out:
695 spin_unlock(&ctx->lock);
696 }
697
698 /*
699 * Called from scheduler to remove the counters of the current task,
700 * with interrupts disabled.
701 *
702 * We stop each counter and update the counter value in counter->count.
703 *
704 * This does not protect us against NMI, but disable()
705 * sets the disabled bit in the control field of counter _before_
706 * accessing the counter control register. If a NMI hits, then it will
707 * not restart the counter.
708 */
709 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
710 {
711 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
712 struct perf_counter_context *ctx = &task->perf_counter_ctx;
713 struct pt_regs *regs;
714
715 if (likely(!cpuctx->task_ctx))
716 return;
717
718 regs = task_pt_regs(task);
719 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
720 __perf_counter_sched_out(ctx, cpuctx);
721
722 cpuctx->task_ctx = NULL;
723 }
724
725 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
726 {
727 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
728 }
729
730 static int
731 group_sched_in(struct perf_counter *group_counter,
732 struct perf_cpu_context *cpuctx,
733 struct perf_counter_context *ctx,
734 int cpu)
735 {
736 struct perf_counter *counter, *partial_group;
737 int ret;
738
739 if (group_counter->state == PERF_COUNTER_STATE_OFF)
740 return 0;
741
742 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
743 if (ret)
744 return ret < 0 ? ret : 0;
745
746 group_counter->prev_state = group_counter->state;
747 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
748 return -EAGAIN;
749
750 /*
751 * Schedule in siblings as one group (if any):
752 */
753 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
754 counter->prev_state = counter->state;
755 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
756 partial_group = counter;
757 goto group_error;
758 }
759 }
760
761 return 0;
762
763 group_error:
764 /*
765 * Groups can be scheduled in as one unit only, so undo any
766 * partial group before returning:
767 */
768 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
769 if (counter == partial_group)
770 break;
771 counter_sched_out(counter, cpuctx, ctx);
772 }
773 counter_sched_out(group_counter, cpuctx, ctx);
774
775 return -EAGAIN;
776 }
777
778 static void
779 __perf_counter_sched_in(struct perf_counter_context *ctx,
780 struct perf_cpu_context *cpuctx, int cpu)
781 {
782 struct perf_counter *counter;
783 u64 flags;
784 int can_add_hw = 1;
785
786 spin_lock(&ctx->lock);
787 ctx->is_active = 1;
788 if (likely(!ctx->nr_counters))
789 goto out;
790
791 flags = hw_perf_save_disable();
792
793 /*
794 * First go through the list and put on any pinned groups
795 * in order to give them the best chance of going on.
796 */
797 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
798 if (counter->state <= PERF_COUNTER_STATE_OFF ||
799 !counter->hw_event.pinned)
800 continue;
801 if (counter->cpu != -1 && counter->cpu != cpu)
802 continue;
803
804 if (group_can_go_on(counter, cpuctx, 1))
805 group_sched_in(counter, cpuctx, ctx, cpu);
806
807 /*
808 * If this pinned group hasn't been scheduled,
809 * put it in error state.
810 */
811 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
812 counter->state = PERF_COUNTER_STATE_ERROR;
813 }
814
815 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
816 /*
817 * Ignore counters in OFF or ERROR state, and
818 * ignore pinned counters since we did them already.
819 */
820 if (counter->state <= PERF_COUNTER_STATE_OFF ||
821 counter->hw_event.pinned)
822 continue;
823
824 /*
825 * Listen to the 'cpu' scheduling filter constraint
826 * of counters:
827 */
828 if (counter->cpu != -1 && counter->cpu != cpu)
829 continue;
830
831 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
832 if (group_sched_in(counter, cpuctx, ctx, cpu))
833 can_add_hw = 0;
834 }
835 }
836 hw_perf_restore(flags);
837 out:
838 spin_unlock(&ctx->lock);
839 }
840
841 /*
842 * Called from scheduler to add the counters of the current task
843 * with interrupts disabled.
844 *
845 * We restore the counter value and then enable it.
846 *
847 * This does not protect us against NMI, but enable()
848 * sets the enabled bit in the control field of counter _before_
849 * accessing the counter control register. If a NMI hits, then it will
850 * keep the counter running.
851 */
852 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
853 {
854 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
855 struct perf_counter_context *ctx = &task->perf_counter_ctx;
856
857 __perf_counter_sched_in(ctx, cpuctx, cpu);
858 cpuctx->task_ctx = ctx;
859 }
860
861 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
862 {
863 struct perf_counter_context *ctx = &cpuctx->ctx;
864
865 __perf_counter_sched_in(ctx, cpuctx, cpu);
866 }
867
868 int perf_counter_task_disable(void)
869 {
870 struct task_struct *curr = current;
871 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
872 struct perf_counter *counter;
873 unsigned long flags;
874 u64 perf_flags;
875 int cpu;
876
877 if (likely(!ctx->nr_counters))
878 return 0;
879
880 curr_rq_lock_irq_save(&flags);
881 cpu = smp_processor_id();
882
883 /* force the update of the task clock: */
884 __task_delta_exec(curr, 1);
885
886 perf_counter_task_sched_out(curr, cpu);
887
888 spin_lock(&ctx->lock);
889
890 /*
891 * Disable all the counters:
892 */
893 perf_flags = hw_perf_save_disable();
894
895 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
896 if (counter->state != PERF_COUNTER_STATE_ERROR)
897 counter->state = PERF_COUNTER_STATE_OFF;
898 }
899
900 hw_perf_restore(perf_flags);
901
902 spin_unlock(&ctx->lock);
903
904 curr_rq_unlock_irq_restore(&flags);
905
906 return 0;
907 }
908
909 int perf_counter_task_enable(void)
910 {
911 struct task_struct *curr = current;
912 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
913 struct perf_counter *counter;
914 unsigned long flags;
915 u64 perf_flags;
916 int cpu;
917
918 if (likely(!ctx->nr_counters))
919 return 0;
920
921 curr_rq_lock_irq_save(&flags);
922 cpu = smp_processor_id();
923
924 /* force the update of the task clock: */
925 __task_delta_exec(curr, 1);
926
927 perf_counter_task_sched_out(curr, cpu);
928
929 spin_lock(&ctx->lock);
930
931 /*
932 * Disable all the counters:
933 */
934 perf_flags = hw_perf_save_disable();
935
936 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
937 if (counter->state > PERF_COUNTER_STATE_OFF)
938 continue;
939 counter->state = PERF_COUNTER_STATE_INACTIVE;
940 counter->hw_event.disabled = 0;
941 }
942 hw_perf_restore(perf_flags);
943
944 spin_unlock(&ctx->lock);
945
946 perf_counter_task_sched_in(curr, cpu);
947
948 curr_rq_unlock_irq_restore(&flags);
949
950 return 0;
951 }
952
953 /*
954 * Round-robin a context's counters:
955 */
956 static void rotate_ctx(struct perf_counter_context *ctx)
957 {
958 struct perf_counter *counter;
959 u64 perf_flags;
960
961 if (!ctx->nr_counters)
962 return;
963
964 spin_lock(&ctx->lock);
965 /*
966 * Rotate the first entry last (works just fine for group counters too):
967 */
968 perf_flags = hw_perf_save_disable();
969 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
970 list_move_tail(&counter->list_entry, &ctx->counter_list);
971 break;
972 }
973 hw_perf_restore(perf_flags);
974
975 spin_unlock(&ctx->lock);
976 }
977
978 void perf_counter_task_tick(struct task_struct *curr, int cpu)
979 {
980 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
981 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
982 const int rotate_percpu = 0;
983
984 if (rotate_percpu)
985 perf_counter_cpu_sched_out(cpuctx);
986 perf_counter_task_sched_out(curr, cpu);
987
988 if (rotate_percpu)
989 rotate_ctx(&cpuctx->ctx);
990 rotate_ctx(ctx);
991
992 if (rotate_percpu)
993 perf_counter_cpu_sched_in(cpuctx, cpu);
994 perf_counter_task_sched_in(curr, cpu);
995 }
996
997 /*
998 * Cross CPU call to read the hardware counter
999 */
1000 static void __read(void *info)
1001 {
1002 struct perf_counter *counter = info;
1003 unsigned long flags;
1004
1005 curr_rq_lock_irq_save(&flags);
1006 counter->hw_ops->read(counter);
1007 curr_rq_unlock_irq_restore(&flags);
1008 }
1009
1010 static u64 perf_counter_read(struct perf_counter *counter)
1011 {
1012 /*
1013 * If counter is enabled and currently active on a CPU, update the
1014 * value in the counter structure:
1015 */
1016 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1017 smp_call_function_single(counter->oncpu,
1018 __read, counter, 1);
1019 }
1020
1021 return atomic64_read(&counter->count);
1022 }
1023
1024 /*
1025 * Cross CPU call to switch performance data pointers
1026 */
1027 static void __perf_switch_irq_data(void *info)
1028 {
1029 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1030 struct perf_counter *counter = info;
1031 struct perf_counter_context *ctx = counter->ctx;
1032 struct perf_data *oldirqdata = counter->irqdata;
1033
1034 /*
1035 * If this is a task context, we need to check whether it is
1036 * the current task context of this cpu. If not it has been
1037 * scheduled out before the smp call arrived.
1038 */
1039 if (ctx->task) {
1040 if (cpuctx->task_ctx != ctx)
1041 return;
1042 spin_lock(&ctx->lock);
1043 }
1044
1045 /* Change the pointer NMI safe */
1046 atomic_long_set((atomic_long_t *)&counter->irqdata,
1047 (unsigned long) counter->usrdata);
1048 counter->usrdata = oldirqdata;
1049
1050 if (ctx->task)
1051 spin_unlock(&ctx->lock);
1052 }
1053
1054 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1055 {
1056 struct perf_counter_context *ctx = counter->ctx;
1057 struct perf_data *oldirqdata = counter->irqdata;
1058 struct task_struct *task = ctx->task;
1059
1060 if (!task) {
1061 smp_call_function_single(counter->cpu,
1062 __perf_switch_irq_data,
1063 counter, 1);
1064 return counter->usrdata;
1065 }
1066
1067 retry:
1068 spin_lock_irq(&ctx->lock);
1069 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1070 counter->irqdata = counter->usrdata;
1071 counter->usrdata = oldirqdata;
1072 spin_unlock_irq(&ctx->lock);
1073 return oldirqdata;
1074 }
1075 spin_unlock_irq(&ctx->lock);
1076 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1077 /* Might have failed, because task was scheduled out */
1078 if (counter->irqdata == oldirqdata)
1079 goto retry;
1080
1081 return counter->usrdata;
1082 }
1083
1084 static void put_context(struct perf_counter_context *ctx)
1085 {
1086 if (ctx->task)
1087 put_task_struct(ctx->task);
1088 }
1089
1090 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1091 {
1092 struct perf_cpu_context *cpuctx;
1093 struct perf_counter_context *ctx;
1094 struct task_struct *task;
1095
1096 /*
1097 * If cpu is not a wildcard then this is a percpu counter:
1098 */
1099 if (cpu != -1) {
1100 /* Must be root to operate on a CPU counter: */
1101 if (!capable(CAP_SYS_ADMIN))
1102 return ERR_PTR(-EACCES);
1103
1104 if (cpu < 0 || cpu > num_possible_cpus())
1105 return ERR_PTR(-EINVAL);
1106
1107 /*
1108 * We could be clever and allow to attach a counter to an
1109 * offline CPU and activate it when the CPU comes up, but
1110 * that's for later.
1111 */
1112 if (!cpu_isset(cpu, cpu_online_map))
1113 return ERR_PTR(-ENODEV);
1114
1115 cpuctx = &per_cpu(perf_cpu_context, cpu);
1116 ctx = &cpuctx->ctx;
1117
1118 return ctx;
1119 }
1120
1121 rcu_read_lock();
1122 if (!pid)
1123 task = current;
1124 else
1125 task = find_task_by_vpid(pid);
1126 if (task)
1127 get_task_struct(task);
1128 rcu_read_unlock();
1129
1130 if (!task)
1131 return ERR_PTR(-ESRCH);
1132
1133 ctx = &task->perf_counter_ctx;
1134 ctx->task = task;
1135
1136 /* Reuse ptrace permission checks for now. */
1137 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1138 put_context(ctx);
1139 return ERR_PTR(-EACCES);
1140 }
1141
1142 return ctx;
1143 }
1144
1145 static void free_counter_rcu(struct rcu_head *head)
1146 {
1147 struct perf_counter *counter;
1148
1149 counter = container_of(head, struct perf_counter, rcu_head);
1150 kfree(counter);
1151 }
1152
1153 static void free_counter(struct perf_counter *counter)
1154 {
1155 if (counter->destroy)
1156 counter->destroy(counter);
1157
1158 call_rcu(&counter->rcu_head, free_counter_rcu);
1159 }
1160
1161 /*
1162 * Called when the last reference to the file is gone.
1163 */
1164 static int perf_release(struct inode *inode, struct file *file)
1165 {
1166 struct perf_counter *counter = file->private_data;
1167 struct perf_counter_context *ctx = counter->ctx;
1168
1169 file->private_data = NULL;
1170
1171 mutex_lock(&ctx->mutex);
1172 mutex_lock(&counter->mutex);
1173
1174 perf_counter_remove_from_context(counter);
1175
1176 mutex_unlock(&counter->mutex);
1177 mutex_unlock(&ctx->mutex);
1178
1179 free_counter(counter);
1180 put_context(ctx);
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Read the performance counter - simple non blocking version for now
1187 */
1188 static ssize_t
1189 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1190 {
1191 u64 cntval;
1192
1193 if (count != sizeof(cntval))
1194 return -EINVAL;
1195
1196 /*
1197 * Return end-of-file for a read on a counter that is in
1198 * error state (i.e. because it was pinned but it couldn't be
1199 * scheduled on to the CPU at some point).
1200 */
1201 if (counter->state == PERF_COUNTER_STATE_ERROR)
1202 return 0;
1203
1204 mutex_lock(&counter->mutex);
1205 cntval = perf_counter_read(counter);
1206 mutex_unlock(&counter->mutex);
1207
1208 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1209 }
1210
1211 static ssize_t
1212 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1213 {
1214 if (!usrdata->len)
1215 return 0;
1216
1217 count = min(count, (size_t)usrdata->len);
1218 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1219 return -EFAULT;
1220
1221 /* Adjust the counters */
1222 usrdata->len -= count;
1223 if (!usrdata->len)
1224 usrdata->rd_idx = 0;
1225 else
1226 usrdata->rd_idx += count;
1227
1228 return count;
1229 }
1230
1231 static ssize_t
1232 perf_read_irq_data(struct perf_counter *counter,
1233 char __user *buf,
1234 size_t count,
1235 int nonblocking)
1236 {
1237 struct perf_data *irqdata, *usrdata;
1238 DECLARE_WAITQUEUE(wait, current);
1239 ssize_t res, res2;
1240
1241 irqdata = counter->irqdata;
1242 usrdata = counter->usrdata;
1243
1244 if (usrdata->len + irqdata->len >= count)
1245 goto read_pending;
1246
1247 if (nonblocking)
1248 return -EAGAIN;
1249
1250 spin_lock_irq(&counter->waitq.lock);
1251 __add_wait_queue(&counter->waitq, &wait);
1252 for (;;) {
1253 set_current_state(TASK_INTERRUPTIBLE);
1254 if (usrdata->len + irqdata->len >= count)
1255 break;
1256
1257 if (signal_pending(current))
1258 break;
1259
1260 if (counter->state == PERF_COUNTER_STATE_ERROR)
1261 break;
1262
1263 spin_unlock_irq(&counter->waitq.lock);
1264 schedule();
1265 spin_lock_irq(&counter->waitq.lock);
1266 }
1267 __remove_wait_queue(&counter->waitq, &wait);
1268 __set_current_state(TASK_RUNNING);
1269 spin_unlock_irq(&counter->waitq.lock);
1270
1271 if (usrdata->len + irqdata->len < count &&
1272 counter->state != PERF_COUNTER_STATE_ERROR)
1273 return -ERESTARTSYS;
1274 read_pending:
1275 mutex_lock(&counter->mutex);
1276
1277 /* Drain pending data first: */
1278 res = perf_copy_usrdata(usrdata, buf, count);
1279 if (res < 0 || res == count)
1280 goto out;
1281
1282 /* Switch irq buffer: */
1283 usrdata = perf_switch_irq_data(counter);
1284 res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1285 if (res2 < 0) {
1286 if (!res)
1287 res = -EFAULT;
1288 } else {
1289 res += res2;
1290 }
1291 out:
1292 mutex_unlock(&counter->mutex);
1293
1294 return res;
1295 }
1296
1297 static ssize_t
1298 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1299 {
1300 struct perf_counter *counter = file->private_data;
1301
1302 switch (counter->hw_event.record_type) {
1303 case PERF_RECORD_SIMPLE:
1304 return perf_read_hw(counter, buf, count);
1305
1306 case PERF_RECORD_IRQ:
1307 case PERF_RECORD_GROUP:
1308 return perf_read_irq_data(counter, buf, count,
1309 file->f_flags & O_NONBLOCK);
1310 }
1311 return -EINVAL;
1312 }
1313
1314 static unsigned int perf_poll(struct file *file, poll_table *wait)
1315 {
1316 struct perf_counter *counter = file->private_data;
1317 unsigned int events = 0;
1318 unsigned long flags;
1319
1320 poll_wait(file, &counter->waitq, wait);
1321
1322 spin_lock_irqsave(&counter->waitq.lock, flags);
1323 if (counter->usrdata->len || counter->irqdata->len)
1324 events |= POLLIN;
1325 spin_unlock_irqrestore(&counter->waitq.lock, flags);
1326
1327 return events;
1328 }
1329
1330 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1331 {
1332 struct perf_counter *counter = file->private_data;
1333 int err = 0;
1334
1335 switch (cmd) {
1336 case PERF_COUNTER_IOC_ENABLE:
1337 perf_counter_enable_family(counter);
1338 break;
1339 case PERF_COUNTER_IOC_DISABLE:
1340 perf_counter_disable_family(counter);
1341 break;
1342 default:
1343 err = -ENOTTY;
1344 }
1345 return err;
1346 }
1347
1348 static const struct file_operations perf_fops = {
1349 .release = perf_release,
1350 .read = perf_read,
1351 .poll = perf_poll,
1352 .unlocked_ioctl = perf_ioctl,
1353 .compat_ioctl = perf_ioctl,
1354 };
1355
1356 /*
1357 * Generic software counter infrastructure
1358 */
1359
1360 static void perf_swcounter_update(struct perf_counter *counter)
1361 {
1362 struct hw_perf_counter *hwc = &counter->hw;
1363 u64 prev, now;
1364 s64 delta;
1365
1366 again:
1367 prev = atomic64_read(&hwc->prev_count);
1368 now = atomic64_read(&hwc->count);
1369 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1370 goto again;
1371
1372 delta = now - prev;
1373
1374 atomic64_add(delta, &counter->count);
1375 atomic64_sub(delta, &hwc->period_left);
1376 }
1377
1378 static void perf_swcounter_set_period(struct perf_counter *counter)
1379 {
1380 struct hw_perf_counter *hwc = &counter->hw;
1381 s64 left = atomic64_read(&hwc->period_left);
1382 s64 period = hwc->irq_period;
1383
1384 if (unlikely(left <= -period)) {
1385 left = period;
1386 atomic64_set(&hwc->period_left, left);
1387 }
1388
1389 if (unlikely(left <= 0)) {
1390 left += period;
1391 atomic64_add(period, &hwc->period_left);
1392 }
1393
1394 atomic64_set(&hwc->prev_count, -left);
1395 atomic64_set(&hwc->count, -left);
1396 }
1397
1398 static void perf_swcounter_save_and_restart(struct perf_counter *counter)
1399 {
1400 perf_swcounter_update(counter);
1401 perf_swcounter_set_period(counter);
1402 }
1403
1404 static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
1405 {
1406 struct perf_data *irqdata = counter->irqdata;
1407
1408 if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
1409 irqdata->overrun++;
1410 } else {
1411 u64 *p = (u64 *) &irqdata->data[irqdata->len];
1412
1413 *p = data;
1414 irqdata->len += sizeof(u64);
1415 }
1416 }
1417
1418 static void perf_swcounter_handle_group(struct perf_counter *sibling)
1419 {
1420 struct perf_counter *counter, *group_leader = sibling->group_leader;
1421
1422 list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
1423 counter->hw_ops->read(counter);
1424 perf_swcounter_store_irq(sibling, counter->hw_event.type);
1425 perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
1426 }
1427 }
1428
1429 static void perf_swcounter_interrupt(struct perf_counter *counter,
1430 int nmi, struct pt_regs *regs)
1431 {
1432 switch (counter->hw_event.record_type) {
1433 case PERF_RECORD_SIMPLE:
1434 break;
1435
1436 case PERF_RECORD_IRQ:
1437 perf_swcounter_store_irq(counter, instruction_pointer(regs));
1438 break;
1439
1440 case PERF_RECORD_GROUP:
1441 perf_swcounter_handle_group(counter);
1442 break;
1443 }
1444
1445 if (nmi) {
1446 counter->wakeup_pending = 1;
1447 set_perf_counter_pending();
1448 } else
1449 wake_up(&counter->waitq);
1450 }
1451
1452 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1453 {
1454 struct perf_counter *counter;
1455 struct pt_regs *regs;
1456
1457 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1458 counter->hw_ops->read(counter);
1459
1460 regs = get_irq_regs();
1461 /*
1462 * In case we exclude kernel IPs or are somehow not in interrupt
1463 * context, provide the next best thing, the user IP.
1464 */
1465 if ((counter->hw_event.exclude_kernel || !regs) &&
1466 !counter->hw_event.exclude_user)
1467 regs = task_pt_regs(current);
1468
1469 if (regs)
1470 perf_swcounter_interrupt(counter, 0, regs);
1471
1472 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1473
1474 return HRTIMER_RESTART;
1475 }
1476
1477 static void perf_swcounter_overflow(struct perf_counter *counter,
1478 int nmi, struct pt_regs *regs)
1479 {
1480 perf_swcounter_save_and_restart(counter);
1481 perf_swcounter_interrupt(counter, nmi, regs);
1482 }
1483
1484 static int perf_swcounter_match(struct perf_counter *counter,
1485 enum hw_event_types event,
1486 struct pt_regs *regs)
1487 {
1488 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1489 return 0;
1490
1491 if (counter->hw_event.raw)
1492 return 0;
1493
1494 if (counter->hw_event.type != event)
1495 return 0;
1496
1497 if (counter->hw_event.exclude_user && user_mode(regs))
1498 return 0;
1499
1500 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1501 return 0;
1502
1503 return 1;
1504 }
1505
1506 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1507 int nmi, struct pt_regs *regs)
1508 {
1509 int neg = atomic64_add_negative(nr, &counter->hw.count);
1510 if (counter->hw.irq_period && !neg)
1511 perf_swcounter_overflow(counter, nmi, regs);
1512 }
1513
1514 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1515 enum hw_event_types event, u64 nr,
1516 int nmi, struct pt_regs *regs)
1517 {
1518 struct perf_counter *counter;
1519
1520 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1521 return;
1522
1523 rcu_read_lock();
1524 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1525 if (perf_swcounter_match(counter, event, regs))
1526 perf_swcounter_add(counter, nr, nmi, regs);
1527 }
1528 rcu_read_unlock();
1529 }
1530
1531 void perf_swcounter_event(enum hw_event_types event, u64 nr,
1532 int nmi, struct pt_regs *regs)
1533 {
1534 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1535
1536 perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
1537 if (cpuctx->task_ctx)
1538 perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);
1539
1540 put_cpu_var(perf_cpu_context);
1541 }
1542
1543 static void perf_swcounter_read(struct perf_counter *counter)
1544 {
1545 perf_swcounter_update(counter);
1546 }
1547
1548 static int perf_swcounter_enable(struct perf_counter *counter)
1549 {
1550 perf_swcounter_set_period(counter);
1551 return 0;
1552 }
1553
1554 static void perf_swcounter_disable(struct perf_counter *counter)
1555 {
1556 perf_swcounter_update(counter);
1557 }
1558
1559 static const struct hw_perf_counter_ops perf_ops_generic = {
1560 .enable = perf_swcounter_enable,
1561 .disable = perf_swcounter_disable,
1562 .read = perf_swcounter_read,
1563 };
1564
1565 /*
1566 * Software counter: cpu wall time clock
1567 */
1568
1569 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1570 {
1571 int cpu = raw_smp_processor_id();
1572 s64 prev;
1573 u64 now;
1574
1575 now = cpu_clock(cpu);
1576 prev = atomic64_read(&counter->hw.prev_count);
1577 atomic64_set(&counter->hw.prev_count, now);
1578 atomic64_add(now - prev, &counter->count);
1579 }
1580
1581 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1582 {
1583 struct hw_perf_counter *hwc = &counter->hw;
1584 int cpu = raw_smp_processor_id();
1585
1586 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1587 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1588 hwc->hrtimer.function = perf_swcounter_hrtimer;
1589 if (hwc->irq_period) {
1590 __hrtimer_start_range_ns(&hwc->hrtimer,
1591 ns_to_ktime(hwc->irq_period), 0,
1592 HRTIMER_MODE_REL, 0);
1593 }
1594
1595 return 0;
1596 }
1597
1598 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1599 {
1600 hrtimer_cancel(&counter->hw.hrtimer);
1601 cpu_clock_perf_counter_update(counter);
1602 }
1603
1604 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1605 {
1606 cpu_clock_perf_counter_update(counter);
1607 }
1608
1609 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1610 .enable = cpu_clock_perf_counter_enable,
1611 .disable = cpu_clock_perf_counter_disable,
1612 .read = cpu_clock_perf_counter_read,
1613 };
1614
1615 /*
1616 * Software counter: task time clock
1617 */
1618
1619 /*
1620 * Called from within the scheduler:
1621 */
1622 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1623 {
1624 struct task_struct *curr = counter->task;
1625 u64 delta;
1626
1627 delta = __task_delta_exec(curr, update);
1628
1629 return curr->se.sum_exec_runtime + delta;
1630 }
1631
1632 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1633 {
1634 u64 prev;
1635 s64 delta;
1636
1637 prev = atomic64_read(&counter->hw.prev_count);
1638
1639 atomic64_set(&counter->hw.prev_count, now);
1640
1641 delta = now - prev;
1642
1643 atomic64_add(delta, &counter->count);
1644 }
1645
1646 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1647 {
1648 struct hw_perf_counter *hwc = &counter->hw;
1649
1650 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1651 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1652 hwc->hrtimer.function = perf_swcounter_hrtimer;
1653 if (hwc->irq_period) {
1654 __hrtimer_start_range_ns(&hwc->hrtimer,
1655 ns_to_ktime(hwc->irq_period), 0,
1656 HRTIMER_MODE_REL, 0);
1657 }
1658
1659 return 0;
1660 }
1661
1662 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1663 {
1664 hrtimer_cancel(&counter->hw.hrtimer);
1665 task_clock_perf_counter_update(counter,
1666 task_clock_perf_counter_val(counter, 0));
1667 }
1668
1669 static void task_clock_perf_counter_read(struct perf_counter *counter)
1670 {
1671 task_clock_perf_counter_update(counter,
1672 task_clock_perf_counter_val(counter, 1));
1673 }
1674
1675 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1676 .enable = task_clock_perf_counter_enable,
1677 .disable = task_clock_perf_counter_disable,
1678 .read = task_clock_perf_counter_read,
1679 };
1680
1681 /*
1682 * Software counter: cpu migrations
1683 */
1684
1685 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1686 {
1687 struct task_struct *curr = counter->ctx->task;
1688
1689 if (curr)
1690 return curr->se.nr_migrations;
1691 return cpu_nr_migrations(smp_processor_id());
1692 }
1693
1694 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1695 {
1696 u64 prev, now;
1697 s64 delta;
1698
1699 prev = atomic64_read(&counter->hw.prev_count);
1700 now = get_cpu_migrations(counter);
1701
1702 atomic64_set(&counter->hw.prev_count, now);
1703
1704 delta = now - prev;
1705
1706 atomic64_add(delta, &counter->count);
1707 }
1708
1709 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1710 {
1711 cpu_migrations_perf_counter_update(counter);
1712 }
1713
1714 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1715 {
1716 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1717 atomic64_set(&counter->hw.prev_count,
1718 get_cpu_migrations(counter));
1719 return 0;
1720 }
1721
1722 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1723 {
1724 cpu_migrations_perf_counter_update(counter);
1725 }
1726
1727 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1728 .enable = cpu_migrations_perf_counter_enable,
1729 .disable = cpu_migrations_perf_counter_disable,
1730 .read = cpu_migrations_perf_counter_read,
1731 };
1732
1733 #ifdef CONFIG_EVENT_PROFILE
1734 void perf_tpcounter_event(int event_id)
1735 {
1736 perf_swcounter_event(PERF_TP_EVENTS_MIN + event_id, 1, 1,
1737 task_pt_regs(current));
1738 }
1739
1740 extern int ftrace_profile_enable(int);
1741 extern void ftrace_profile_disable(int);
1742
1743 static void tp_perf_counter_destroy(struct perf_counter *counter)
1744 {
1745 int event_id = counter->hw_event.type - PERF_TP_EVENTS_MIN;
1746
1747 ftrace_profile_disable(event_id);
1748 }
1749
1750 static const struct hw_perf_counter_ops *
1751 tp_perf_counter_init(struct perf_counter *counter)
1752 {
1753 int event_id = counter->hw_event.type - PERF_TP_EVENTS_MIN;
1754 int ret;
1755
1756 ret = ftrace_profile_enable(event_id);
1757 if (ret)
1758 return NULL;
1759
1760 counter->destroy = tp_perf_counter_destroy;
1761
1762 return &perf_ops_generic;
1763 }
1764 #else
1765 static const struct hw_perf_counter_ops *
1766 tp_perf_counter_init(struct perf_counter *counter)
1767 {
1768 return NULL;
1769 }
1770 #endif
1771
1772 static const struct hw_perf_counter_ops *
1773 sw_perf_counter_init(struct perf_counter *counter)
1774 {
1775 struct perf_counter_hw_event *hw_event = &counter->hw_event;
1776 const struct hw_perf_counter_ops *hw_ops = NULL;
1777 struct hw_perf_counter *hwc = &counter->hw;
1778
1779 /*
1780 * Software counters (currently) can't in general distinguish
1781 * between user, kernel and hypervisor events.
1782 * However, context switches and cpu migrations are considered
1783 * to be kernel events, and page faults are never hypervisor
1784 * events.
1785 */
1786 switch (counter->hw_event.type) {
1787 case PERF_COUNT_CPU_CLOCK:
1788 hw_ops = &perf_ops_cpu_clock;
1789
1790 if (hw_event->irq_period && hw_event->irq_period < 10000)
1791 hw_event->irq_period = 10000;
1792 break;
1793 case PERF_COUNT_TASK_CLOCK:
1794 /*
1795 * If the user instantiates this as a per-cpu counter,
1796 * use the cpu_clock counter instead.
1797 */
1798 if (counter->ctx->task)
1799 hw_ops = &perf_ops_task_clock;
1800 else
1801 hw_ops = &perf_ops_cpu_clock;
1802
1803 if (hw_event->irq_period && hw_event->irq_period < 10000)
1804 hw_event->irq_period = 10000;
1805 break;
1806 case PERF_COUNT_PAGE_FAULTS:
1807 case PERF_COUNT_PAGE_FAULTS_MIN:
1808 case PERF_COUNT_PAGE_FAULTS_MAJ:
1809 case PERF_COUNT_CONTEXT_SWITCHES:
1810 hw_ops = &perf_ops_generic;
1811 break;
1812 case PERF_COUNT_CPU_MIGRATIONS:
1813 if (!counter->hw_event.exclude_kernel)
1814 hw_ops = &perf_ops_cpu_migrations;
1815 break;
1816 default:
1817 hw_ops = tp_perf_counter_init(counter);
1818 break;
1819 }
1820
1821 if (hw_ops)
1822 hwc->irq_period = hw_event->irq_period;
1823
1824 return hw_ops;
1825 }
1826
1827 /*
1828 * Allocate and initialize a counter structure
1829 */
1830 static struct perf_counter *
1831 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1832 int cpu,
1833 struct perf_counter_context *ctx,
1834 struct perf_counter *group_leader,
1835 gfp_t gfpflags)
1836 {
1837 const struct hw_perf_counter_ops *hw_ops;
1838 struct perf_counter *counter;
1839
1840 counter = kzalloc(sizeof(*counter), gfpflags);
1841 if (!counter)
1842 return NULL;
1843
1844 /*
1845 * Single counters are their own group leaders, with an
1846 * empty sibling list:
1847 */
1848 if (!group_leader)
1849 group_leader = counter;
1850
1851 mutex_init(&counter->mutex);
1852 INIT_LIST_HEAD(&counter->list_entry);
1853 INIT_LIST_HEAD(&counter->event_entry);
1854 INIT_LIST_HEAD(&counter->sibling_list);
1855 init_waitqueue_head(&counter->waitq);
1856
1857 INIT_LIST_HEAD(&counter->child_list);
1858
1859 counter->irqdata = &counter->data[0];
1860 counter->usrdata = &counter->data[1];
1861 counter->cpu = cpu;
1862 counter->hw_event = *hw_event;
1863 counter->wakeup_pending = 0;
1864 counter->group_leader = group_leader;
1865 counter->hw_ops = NULL;
1866 counter->ctx = ctx;
1867
1868 counter->state = PERF_COUNTER_STATE_INACTIVE;
1869 if (hw_event->disabled)
1870 counter->state = PERF_COUNTER_STATE_OFF;
1871
1872 hw_ops = NULL;
1873 if (!hw_event->raw && hw_event->type < 0)
1874 hw_ops = sw_perf_counter_init(counter);
1875 else
1876 hw_ops = hw_perf_counter_init(counter);
1877
1878 if (!hw_ops) {
1879 kfree(counter);
1880 return NULL;
1881 }
1882 counter->hw_ops = hw_ops;
1883
1884 return counter;
1885 }
1886
1887 /**
1888 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
1889 *
1890 * @hw_event_uptr: event type attributes for monitoring/sampling
1891 * @pid: target pid
1892 * @cpu: target cpu
1893 * @group_fd: group leader counter fd
1894 */
1895 SYSCALL_DEFINE5(perf_counter_open,
1896 const struct perf_counter_hw_event __user *, hw_event_uptr,
1897 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
1898 {
1899 struct perf_counter *counter, *group_leader;
1900 struct perf_counter_hw_event hw_event;
1901 struct perf_counter_context *ctx;
1902 struct file *counter_file = NULL;
1903 struct file *group_file = NULL;
1904 int fput_needed = 0;
1905 int fput_needed2 = 0;
1906 int ret;
1907
1908 /* for future expandability... */
1909 if (flags)
1910 return -EINVAL;
1911
1912 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1913 return -EFAULT;
1914
1915 /*
1916 * Get the target context (task or percpu):
1917 */
1918 ctx = find_get_context(pid, cpu);
1919 if (IS_ERR(ctx))
1920 return PTR_ERR(ctx);
1921
1922 /*
1923 * Look up the group leader (we will attach this counter to it):
1924 */
1925 group_leader = NULL;
1926 if (group_fd != -1) {
1927 ret = -EINVAL;
1928 group_file = fget_light(group_fd, &fput_needed);
1929 if (!group_file)
1930 goto err_put_context;
1931 if (group_file->f_op != &perf_fops)
1932 goto err_put_context;
1933
1934 group_leader = group_file->private_data;
1935 /*
1936 * Do not allow a recursive hierarchy (this new sibling
1937 * becoming part of another group-sibling):
1938 */
1939 if (group_leader->group_leader != group_leader)
1940 goto err_put_context;
1941 /*
1942 * Do not allow to attach to a group in a different
1943 * task or CPU context:
1944 */
1945 if (group_leader->ctx != ctx)
1946 goto err_put_context;
1947 /*
1948 * Only a group leader can be exclusive or pinned
1949 */
1950 if (hw_event.exclusive || hw_event.pinned)
1951 goto err_put_context;
1952 }
1953
1954 ret = -EINVAL;
1955 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
1956 GFP_KERNEL);
1957 if (!counter)
1958 goto err_put_context;
1959
1960 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1961 if (ret < 0)
1962 goto err_free_put_context;
1963
1964 counter_file = fget_light(ret, &fput_needed2);
1965 if (!counter_file)
1966 goto err_free_put_context;
1967
1968 counter->filp = counter_file;
1969 mutex_lock(&ctx->mutex);
1970 perf_install_in_context(ctx, counter, cpu);
1971 mutex_unlock(&ctx->mutex);
1972
1973 fput_light(counter_file, fput_needed2);
1974
1975 out_fput:
1976 fput_light(group_file, fput_needed);
1977
1978 return ret;
1979
1980 err_free_put_context:
1981 kfree(counter);
1982
1983 err_put_context:
1984 put_context(ctx);
1985
1986 goto out_fput;
1987 }
1988
1989 /*
1990 * Initialize the perf_counter context in a task_struct:
1991 */
1992 static void
1993 __perf_counter_init_context(struct perf_counter_context *ctx,
1994 struct task_struct *task)
1995 {
1996 memset(ctx, 0, sizeof(*ctx));
1997 spin_lock_init(&ctx->lock);
1998 mutex_init(&ctx->mutex);
1999 INIT_LIST_HEAD(&ctx->counter_list);
2000 INIT_LIST_HEAD(&ctx->event_list);
2001 ctx->task = task;
2002 }
2003
2004 /*
2005 * inherit a counter from parent task to child task:
2006 */
2007 static struct perf_counter *
2008 inherit_counter(struct perf_counter *parent_counter,
2009 struct task_struct *parent,
2010 struct perf_counter_context *parent_ctx,
2011 struct task_struct *child,
2012 struct perf_counter *group_leader,
2013 struct perf_counter_context *child_ctx)
2014 {
2015 struct perf_counter *child_counter;
2016
2017 /*
2018 * Instead of creating recursive hierarchies of counters,
2019 * we link inherited counters back to the original parent,
2020 * which has a filp for sure, which we use as the reference
2021 * count:
2022 */
2023 if (parent_counter->parent)
2024 parent_counter = parent_counter->parent;
2025
2026 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2027 parent_counter->cpu, child_ctx,
2028 group_leader, GFP_KERNEL);
2029 if (!child_counter)
2030 return NULL;
2031
2032 /*
2033 * Link it up in the child's context:
2034 */
2035 child_counter->task = child;
2036 list_add_counter(child_counter, child_ctx);
2037 child_ctx->nr_counters++;
2038
2039 child_counter->parent = parent_counter;
2040 /*
2041 * inherit into child's child as well:
2042 */
2043 child_counter->hw_event.inherit = 1;
2044
2045 /*
2046 * Get a reference to the parent filp - we will fput it
2047 * when the child counter exits. This is safe to do because
2048 * we are in the parent and we know that the filp still
2049 * exists and has a nonzero count:
2050 */
2051 atomic_long_inc(&parent_counter->filp->f_count);
2052
2053 /*
2054 * Link this into the parent counter's child list
2055 */
2056 mutex_lock(&parent_counter->mutex);
2057 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2058
2059 /*
2060 * Make the child state follow the state of the parent counter,
2061 * not its hw_event.disabled bit. We hold the parent's mutex,
2062 * so we won't race with perf_counter_{en,dis}able_family.
2063 */
2064 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2065 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2066 else
2067 child_counter->state = PERF_COUNTER_STATE_OFF;
2068
2069 mutex_unlock(&parent_counter->mutex);
2070
2071 return child_counter;
2072 }
2073
2074 static int inherit_group(struct perf_counter *parent_counter,
2075 struct task_struct *parent,
2076 struct perf_counter_context *parent_ctx,
2077 struct task_struct *child,
2078 struct perf_counter_context *child_ctx)
2079 {
2080 struct perf_counter *leader;
2081 struct perf_counter *sub;
2082
2083 leader = inherit_counter(parent_counter, parent, parent_ctx,
2084 child, NULL, child_ctx);
2085 if (!leader)
2086 return -ENOMEM;
2087 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2088 if (!inherit_counter(sub, parent, parent_ctx,
2089 child, leader, child_ctx))
2090 return -ENOMEM;
2091 }
2092 return 0;
2093 }
2094
2095 static void sync_child_counter(struct perf_counter *child_counter,
2096 struct perf_counter *parent_counter)
2097 {
2098 u64 parent_val, child_val;
2099
2100 parent_val = atomic64_read(&parent_counter->count);
2101 child_val = atomic64_read(&child_counter->count);
2102
2103 /*
2104 * Add back the child's count to the parent's count:
2105 */
2106 atomic64_add(child_val, &parent_counter->count);
2107
2108 /*
2109 * Remove this counter from the parent's list
2110 */
2111 mutex_lock(&parent_counter->mutex);
2112 list_del_init(&child_counter->child_list);
2113 mutex_unlock(&parent_counter->mutex);
2114
2115 /*
2116 * Release the parent counter, if this was the last
2117 * reference to it.
2118 */
2119 fput(parent_counter->filp);
2120 }
2121
2122 static void
2123 __perf_counter_exit_task(struct task_struct *child,
2124 struct perf_counter *child_counter,
2125 struct perf_counter_context *child_ctx)
2126 {
2127 struct perf_counter *parent_counter;
2128 struct perf_counter *sub, *tmp;
2129
2130 /*
2131 * If we do not self-reap then we have to wait for the
2132 * child task to unschedule (it will happen for sure),
2133 * so that its counter is at its final count. (This
2134 * condition triggers rarely - child tasks usually get
2135 * off their CPU before the parent has a chance to
2136 * get this far into the reaping action)
2137 */
2138 if (child != current) {
2139 wait_task_inactive(child, 0);
2140 list_del_init(&child_counter->list_entry);
2141 } else {
2142 struct perf_cpu_context *cpuctx;
2143 unsigned long flags;
2144 u64 perf_flags;
2145
2146 /*
2147 * Disable and unlink this counter.
2148 *
2149 * Be careful about zapping the list - IRQ/NMI context
2150 * could still be processing it:
2151 */
2152 curr_rq_lock_irq_save(&flags);
2153 perf_flags = hw_perf_save_disable();
2154
2155 cpuctx = &__get_cpu_var(perf_cpu_context);
2156
2157 group_sched_out(child_counter, cpuctx, child_ctx);
2158
2159 list_del_init(&child_counter->list_entry);
2160
2161 child_ctx->nr_counters--;
2162
2163 hw_perf_restore(perf_flags);
2164 curr_rq_unlock_irq_restore(&flags);
2165 }
2166
2167 parent_counter = child_counter->parent;
2168 /*
2169 * It can happen that parent exits first, and has counters
2170 * that are still around due to the child reference. These
2171 * counters need to be zapped - but otherwise linger.
2172 */
2173 if (parent_counter) {
2174 sync_child_counter(child_counter, parent_counter);
2175 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2176 list_entry) {
2177 if (sub->parent) {
2178 sync_child_counter(sub, sub->parent);
2179 free_counter(sub);
2180 }
2181 }
2182 free_counter(child_counter);
2183 }
2184 }
2185
2186 /*
2187 * When a child task exits, feed back counter values to parent counters.
2188 *
2189 * Note: we may be running in child context, but the PID is not hashed
2190 * anymore so new counters will not be added.
2191 */
2192 void perf_counter_exit_task(struct task_struct *child)
2193 {
2194 struct perf_counter *child_counter, *tmp;
2195 struct perf_counter_context *child_ctx;
2196
2197 child_ctx = &child->perf_counter_ctx;
2198
2199 if (likely(!child_ctx->nr_counters))
2200 return;
2201
2202 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2203 list_entry)
2204 __perf_counter_exit_task(child, child_counter, child_ctx);
2205 }
2206
2207 /*
2208 * Initialize the perf_counter context in task_struct
2209 */
2210 void perf_counter_init_task(struct task_struct *child)
2211 {
2212 struct perf_counter_context *child_ctx, *parent_ctx;
2213 struct perf_counter *counter;
2214 struct task_struct *parent = current;
2215
2216 child_ctx = &child->perf_counter_ctx;
2217 parent_ctx = &parent->perf_counter_ctx;
2218
2219 __perf_counter_init_context(child_ctx, child);
2220
2221 /*
2222 * This is executed from the parent task context, so inherit
2223 * counters that have been marked for cloning:
2224 */
2225
2226 if (likely(!parent_ctx->nr_counters))
2227 return;
2228
2229 /*
2230 * Lock the parent list. No need to lock the child - not PID
2231 * hashed yet and not running, so nobody can access it.
2232 */
2233 mutex_lock(&parent_ctx->mutex);
2234
2235 /*
2236 * We dont have to disable NMIs - we are only looking at
2237 * the list, not manipulating it:
2238 */
2239 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2240 if (!counter->hw_event.inherit)
2241 continue;
2242
2243 if (inherit_group(counter, parent,
2244 parent_ctx, child, child_ctx))
2245 break;
2246 }
2247
2248 mutex_unlock(&parent_ctx->mutex);
2249 }
2250
2251 static void __cpuinit perf_counter_init_cpu(int cpu)
2252 {
2253 struct perf_cpu_context *cpuctx;
2254
2255 cpuctx = &per_cpu(perf_cpu_context, cpu);
2256 __perf_counter_init_context(&cpuctx->ctx, NULL);
2257
2258 mutex_lock(&perf_resource_mutex);
2259 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2260 mutex_unlock(&perf_resource_mutex);
2261
2262 hw_perf_counter_setup(cpu);
2263 }
2264
2265 #ifdef CONFIG_HOTPLUG_CPU
2266 static void __perf_counter_exit_cpu(void *info)
2267 {
2268 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2269 struct perf_counter_context *ctx = &cpuctx->ctx;
2270 struct perf_counter *counter, *tmp;
2271
2272 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2273 __perf_counter_remove_from_context(counter);
2274 }
2275 static void perf_counter_exit_cpu(int cpu)
2276 {
2277 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2278 struct perf_counter_context *ctx = &cpuctx->ctx;
2279
2280 mutex_lock(&ctx->mutex);
2281 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2282 mutex_unlock(&ctx->mutex);
2283 }
2284 #else
2285 static inline void perf_counter_exit_cpu(int cpu) { }
2286 #endif
2287
2288 static int __cpuinit
2289 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2290 {
2291 unsigned int cpu = (long)hcpu;
2292
2293 switch (action) {
2294
2295 case CPU_UP_PREPARE:
2296 case CPU_UP_PREPARE_FROZEN:
2297 perf_counter_init_cpu(cpu);
2298 break;
2299
2300 case CPU_DOWN_PREPARE:
2301 case CPU_DOWN_PREPARE_FROZEN:
2302 perf_counter_exit_cpu(cpu);
2303 break;
2304
2305 default:
2306 break;
2307 }
2308
2309 return NOTIFY_OK;
2310 }
2311
2312 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2313 .notifier_call = perf_cpu_notify,
2314 };
2315
2316 static int __init perf_counter_init(void)
2317 {
2318 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2319 (void *)(long)smp_processor_id());
2320 register_cpu_notifier(&perf_cpu_nb);
2321
2322 return 0;
2323 }
2324 early_initcall(perf_counter_init);
2325
2326 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2327 {
2328 return sprintf(buf, "%d\n", perf_reserved_percpu);
2329 }
2330
2331 static ssize_t
2332 perf_set_reserve_percpu(struct sysdev_class *class,
2333 const char *buf,
2334 size_t count)
2335 {
2336 struct perf_cpu_context *cpuctx;
2337 unsigned long val;
2338 int err, cpu, mpt;
2339
2340 err = strict_strtoul(buf, 10, &val);
2341 if (err)
2342 return err;
2343 if (val > perf_max_counters)
2344 return -EINVAL;
2345
2346 mutex_lock(&perf_resource_mutex);
2347 perf_reserved_percpu = val;
2348 for_each_online_cpu(cpu) {
2349 cpuctx = &per_cpu(perf_cpu_context, cpu);
2350 spin_lock_irq(&cpuctx->ctx.lock);
2351 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2352 perf_max_counters - perf_reserved_percpu);
2353 cpuctx->max_pertask = mpt;
2354 spin_unlock_irq(&cpuctx->ctx.lock);
2355 }
2356 mutex_unlock(&perf_resource_mutex);
2357
2358 return count;
2359 }
2360
2361 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2362 {
2363 return sprintf(buf, "%d\n", perf_overcommit);
2364 }
2365
2366 static ssize_t
2367 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2368 {
2369 unsigned long val;
2370 int err;
2371
2372 err = strict_strtoul(buf, 10, &val);
2373 if (err)
2374 return err;
2375 if (val > 1)
2376 return -EINVAL;
2377
2378 mutex_lock(&perf_resource_mutex);
2379 perf_overcommit = val;
2380 mutex_unlock(&perf_resource_mutex);
2381
2382 return count;
2383 }
2384
2385 static SYSDEV_CLASS_ATTR(
2386 reserve_percpu,
2387 0644,
2388 perf_show_reserve_percpu,
2389 perf_set_reserve_percpu
2390 );
2391
2392 static SYSDEV_CLASS_ATTR(
2393 overcommit,
2394 0644,
2395 perf_show_overcommit,
2396 perf_set_overcommit
2397 );
2398
2399 static struct attribute *perfclass_attrs[] = {
2400 &attr_reserve_percpu.attr,
2401 &attr_overcommit.attr,
2402 NULL
2403 };
2404
2405 static struct attribute_group perfclass_attr_group = {
2406 .attrs = perfclass_attrs,
2407 .name = "perf_counters",
2408 };
2409
2410 static int __init perf_counter_sysfs_init(void)
2411 {
2412 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2413 &perfclass_attr_group);
2414 }
2415 device_initcall(perf_counter_sysfs_init);