perf_counter: log full path names
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 *
8 * For licensing details see kernel-base/COPYING
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33 * Each CPU has a list of per CPU counters:
34 */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 static atomic_t nr_mmap_tracking __read_mostly;
42 static atomic_t nr_munmap_tracking __read_mostly;
43 static atomic_t nr_comm_tracking __read_mostly;
44
45 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
46
47 /*
48 * Mutex for (sysadmin-configurable) counter reservations:
49 */
50 static DEFINE_MUTEX(perf_resource_mutex);
51
52 /*
53 * Architecture provided APIs - weak aliases:
54 */
55 extern __weak const struct hw_perf_counter_ops *
56 hw_perf_counter_init(struct perf_counter *counter)
57 {
58 return NULL;
59 }
60
61 u64 __weak hw_perf_save_disable(void) { return 0; }
62 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
63 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
64 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
65 struct perf_cpu_context *cpuctx,
66 struct perf_counter_context *ctx, int cpu)
67 {
68 return 0;
69 }
70
71 void __weak perf_counter_print_debug(void) { }
72
73 static void
74 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
75 {
76 struct perf_counter *group_leader = counter->group_leader;
77
78 /*
79 * Depending on whether it is a standalone or sibling counter,
80 * add it straight to the context's counter list, or to the group
81 * leader's sibling list:
82 */
83 if (counter->group_leader == counter)
84 list_add_tail(&counter->list_entry, &ctx->counter_list);
85 else {
86 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
87 group_leader->nr_siblings++;
88 }
89
90 list_add_rcu(&counter->event_entry, &ctx->event_list);
91 }
92
93 static void
94 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
95 {
96 struct perf_counter *sibling, *tmp;
97
98 list_del_init(&counter->list_entry);
99 list_del_rcu(&counter->event_entry);
100
101 if (counter->group_leader != counter)
102 counter->group_leader->nr_siblings--;
103
104 /*
105 * If this was a group counter with sibling counters then
106 * upgrade the siblings to singleton counters by adding them
107 * to the context list directly:
108 */
109 list_for_each_entry_safe(sibling, tmp,
110 &counter->sibling_list, list_entry) {
111
112 list_move_tail(&sibling->list_entry, &ctx->counter_list);
113 sibling->group_leader = sibling;
114 }
115 }
116
117 static void
118 counter_sched_out(struct perf_counter *counter,
119 struct perf_cpu_context *cpuctx,
120 struct perf_counter_context *ctx)
121 {
122 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
123 return;
124
125 counter->state = PERF_COUNTER_STATE_INACTIVE;
126 counter->tstamp_stopped = ctx->time;
127 counter->hw_ops->disable(counter);
128 counter->oncpu = -1;
129
130 if (!is_software_counter(counter))
131 cpuctx->active_oncpu--;
132 ctx->nr_active--;
133 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
134 cpuctx->exclusive = 0;
135 }
136
137 static void
138 group_sched_out(struct perf_counter *group_counter,
139 struct perf_cpu_context *cpuctx,
140 struct perf_counter_context *ctx)
141 {
142 struct perf_counter *counter;
143
144 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
145 return;
146
147 counter_sched_out(group_counter, cpuctx, ctx);
148
149 /*
150 * Schedule out siblings (if any):
151 */
152 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
153 counter_sched_out(counter, cpuctx, ctx);
154
155 if (group_counter->hw_event.exclusive)
156 cpuctx->exclusive = 0;
157 }
158
159 /*
160 * Cross CPU call to remove a performance counter
161 *
162 * We disable the counter on the hardware level first. After that we
163 * remove it from the context list.
164 */
165 static void __perf_counter_remove_from_context(void *info)
166 {
167 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
168 struct perf_counter *counter = info;
169 struct perf_counter_context *ctx = counter->ctx;
170 unsigned long flags;
171 u64 perf_flags;
172
173 /*
174 * If this is a task context, we need to check whether it is
175 * the current task context of this cpu. If not it has been
176 * scheduled out before the smp call arrived.
177 */
178 if (ctx->task && cpuctx->task_ctx != ctx)
179 return;
180
181 spin_lock_irqsave(&ctx->lock, flags);
182
183 counter_sched_out(counter, cpuctx, ctx);
184
185 counter->task = NULL;
186 ctx->nr_counters--;
187
188 /*
189 * Protect the list operation against NMI by disabling the
190 * counters on a global level. NOP for non NMI based counters.
191 */
192 perf_flags = hw_perf_save_disable();
193 list_del_counter(counter, ctx);
194 hw_perf_restore(perf_flags);
195
196 if (!ctx->task) {
197 /*
198 * Allow more per task counters with respect to the
199 * reservation:
200 */
201 cpuctx->max_pertask =
202 min(perf_max_counters - ctx->nr_counters,
203 perf_max_counters - perf_reserved_percpu);
204 }
205
206 spin_unlock_irqrestore(&ctx->lock, flags);
207 }
208
209
210 /*
211 * Remove the counter from a task's (or a CPU's) list of counters.
212 *
213 * Must be called with counter->mutex and ctx->mutex held.
214 *
215 * CPU counters are removed with a smp call. For task counters we only
216 * call when the task is on a CPU.
217 */
218 static void perf_counter_remove_from_context(struct perf_counter *counter)
219 {
220 struct perf_counter_context *ctx = counter->ctx;
221 struct task_struct *task = ctx->task;
222
223 if (!task) {
224 /*
225 * Per cpu counters are removed via an smp call and
226 * the removal is always sucessful.
227 */
228 smp_call_function_single(counter->cpu,
229 __perf_counter_remove_from_context,
230 counter, 1);
231 return;
232 }
233
234 retry:
235 task_oncpu_function_call(task, __perf_counter_remove_from_context,
236 counter);
237
238 spin_lock_irq(&ctx->lock);
239 /*
240 * If the context is active we need to retry the smp call.
241 */
242 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
243 spin_unlock_irq(&ctx->lock);
244 goto retry;
245 }
246
247 /*
248 * The lock prevents that this context is scheduled in so we
249 * can remove the counter safely, if the call above did not
250 * succeed.
251 */
252 if (!list_empty(&counter->list_entry)) {
253 ctx->nr_counters--;
254 list_del_counter(counter, ctx);
255 counter->task = NULL;
256 }
257 spin_unlock_irq(&ctx->lock);
258 }
259
260 static inline u64 perf_clock(void)
261 {
262 return cpu_clock(smp_processor_id());
263 }
264
265 /*
266 * Update the record of the current time in a context.
267 */
268 static void update_context_time(struct perf_counter_context *ctx)
269 {
270 u64 now = perf_clock();
271
272 ctx->time += now - ctx->timestamp;
273 ctx->timestamp = now;
274 }
275
276 /*
277 * Update the total_time_enabled and total_time_running fields for a counter.
278 */
279 static void update_counter_times(struct perf_counter *counter)
280 {
281 struct perf_counter_context *ctx = counter->ctx;
282 u64 run_end;
283
284 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
285 return;
286
287 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
288
289 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290 run_end = counter->tstamp_stopped;
291 else
292 run_end = ctx->time;
293
294 counter->total_time_running = run_end - counter->tstamp_running;
295 }
296
297 /*
298 * Update total_time_enabled and total_time_running for all counters in a group.
299 */
300 static void update_group_times(struct perf_counter *leader)
301 {
302 struct perf_counter *counter;
303
304 update_counter_times(leader);
305 list_for_each_entry(counter, &leader->sibling_list, list_entry)
306 update_counter_times(counter);
307 }
308
309 /*
310 * Cross CPU call to disable a performance counter
311 */
312 static void __perf_counter_disable(void *info)
313 {
314 struct perf_counter *counter = info;
315 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316 struct perf_counter_context *ctx = counter->ctx;
317 unsigned long flags;
318
319 /*
320 * If this is a per-task counter, need to check whether this
321 * counter's task is the current task on this cpu.
322 */
323 if (ctx->task && cpuctx->task_ctx != ctx)
324 return;
325
326 spin_lock_irqsave(&ctx->lock, flags);
327
328 /*
329 * If the counter is on, turn it off.
330 * If it is in error state, leave it in error state.
331 */
332 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
333 update_context_time(ctx);
334 update_counter_times(counter);
335 if (counter == counter->group_leader)
336 group_sched_out(counter, cpuctx, ctx);
337 else
338 counter_sched_out(counter, cpuctx, ctx);
339 counter->state = PERF_COUNTER_STATE_OFF;
340 }
341
342 spin_unlock_irqrestore(&ctx->lock, flags);
343 }
344
345 /*
346 * Disable a counter.
347 */
348 static void perf_counter_disable(struct perf_counter *counter)
349 {
350 struct perf_counter_context *ctx = counter->ctx;
351 struct task_struct *task = ctx->task;
352
353 if (!task) {
354 /*
355 * Disable the counter on the cpu that it's on
356 */
357 smp_call_function_single(counter->cpu, __perf_counter_disable,
358 counter, 1);
359 return;
360 }
361
362 retry:
363 task_oncpu_function_call(task, __perf_counter_disable, counter);
364
365 spin_lock_irq(&ctx->lock);
366 /*
367 * If the counter is still active, we need to retry the cross-call.
368 */
369 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
370 spin_unlock_irq(&ctx->lock);
371 goto retry;
372 }
373
374 /*
375 * Since we have the lock this context can't be scheduled
376 * in, so we can change the state safely.
377 */
378 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
379 update_counter_times(counter);
380 counter->state = PERF_COUNTER_STATE_OFF;
381 }
382
383 spin_unlock_irq(&ctx->lock);
384 }
385
386 /*
387 * Disable a counter and all its children.
388 */
389 static void perf_counter_disable_family(struct perf_counter *counter)
390 {
391 struct perf_counter *child;
392
393 perf_counter_disable(counter);
394
395 /*
396 * Lock the mutex to protect the list of children
397 */
398 mutex_lock(&counter->mutex);
399 list_for_each_entry(child, &counter->child_list, child_list)
400 perf_counter_disable(child);
401 mutex_unlock(&counter->mutex);
402 }
403
404 static int
405 counter_sched_in(struct perf_counter *counter,
406 struct perf_cpu_context *cpuctx,
407 struct perf_counter_context *ctx,
408 int cpu)
409 {
410 if (counter->state <= PERF_COUNTER_STATE_OFF)
411 return 0;
412
413 counter->state = PERF_COUNTER_STATE_ACTIVE;
414 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
415 /*
416 * The new state must be visible before we turn it on in the hardware:
417 */
418 smp_wmb();
419
420 if (counter->hw_ops->enable(counter)) {
421 counter->state = PERF_COUNTER_STATE_INACTIVE;
422 counter->oncpu = -1;
423 return -EAGAIN;
424 }
425
426 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
427
428 if (!is_software_counter(counter))
429 cpuctx->active_oncpu++;
430 ctx->nr_active++;
431
432 if (counter->hw_event.exclusive)
433 cpuctx->exclusive = 1;
434
435 return 0;
436 }
437
438 /*
439 * Return 1 for a group consisting entirely of software counters,
440 * 0 if the group contains any hardware counters.
441 */
442 static int is_software_only_group(struct perf_counter *leader)
443 {
444 struct perf_counter *counter;
445
446 if (!is_software_counter(leader))
447 return 0;
448
449 list_for_each_entry(counter, &leader->sibling_list, list_entry)
450 if (!is_software_counter(counter))
451 return 0;
452
453 return 1;
454 }
455
456 /*
457 * Work out whether we can put this counter group on the CPU now.
458 */
459 static int group_can_go_on(struct perf_counter *counter,
460 struct perf_cpu_context *cpuctx,
461 int can_add_hw)
462 {
463 /*
464 * Groups consisting entirely of software counters can always go on.
465 */
466 if (is_software_only_group(counter))
467 return 1;
468 /*
469 * If an exclusive group is already on, no other hardware
470 * counters can go on.
471 */
472 if (cpuctx->exclusive)
473 return 0;
474 /*
475 * If this group is exclusive and there are already
476 * counters on the CPU, it can't go on.
477 */
478 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
479 return 0;
480 /*
481 * Otherwise, try to add it if all previous groups were able
482 * to go on.
483 */
484 return can_add_hw;
485 }
486
487 static void add_counter_to_ctx(struct perf_counter *counter,
488 struct perf_counter_context *ctx)
489 {
490 list_add_counter(counter, ctx);
491 ctx->nr_counters++;
492 counter->prev_state = PERF_COUNTER_STATE_OFF;
493 counter->tstamp_enabled = ctx->time;
494 counter->tstamp_running = ctx->time;
495 counter->tstamp_stopped = ctx->time;
496 }
497
498 /*
499 * Cross CPU call to install and enable a performance counter
500 */
501 static void __perf_install_in_context(void *info)
502 {
503 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504 struct perf_counter *counter = info;
505 struct perf_counter_context *ctx = counter->ctx;
506 struct perf_counter *leader = counter->group_leader;
507 int cpu = smp_processor_id();
508 unsigned long flags;
509 u64 perf_flags;
510 int err;
511
512 /*
513 * If this is a task context, we need to check whether it is
514 * the current task context of this cpu. If not it has been
515 * scheduled out before the smp call arrived.
516 */
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
519
520 spin_lock_irqsave(&ctx->lock, flags);
521 update_context_time(ctx);
522
523 /*
524 * Protect the list operation against NMI by disabling the
525 * counters on a global level. NOP for non NMI based counters.
526 */
527 perf_flags = hw_perf_save_disable();
528
529 add_counter_to_ctx(counter, ctx);
530
531 /*
532 * Don't put the counter on if it is disabled or if
533 * it is in a group and the group isn't on.
534 */
535 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
536 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
537 goto unlock;
538
539 /*
540 * An exclusive counter can't go on if there are already active
541 * hardware counters, and no hardware counter can go on if there
542 * is already an exclusive counter on.
543 */
544 if (!group_can_go_on(counter, cpuctx, 1))
545 err = -EEXIST;
546 else
547 err = counter_sched_in(counter, cpuctx, ctx, cpu);
548
549 if (err) {
550 /*
551 * This counter couldn't go on. If it is in a group
552 * then we have to pull the whole group off.
553 * If the counter group is pinned then put it in error state.
554 */
555 if (leader != counter)
556 group_sched_out(leader, cpuctx, ctx);
557 if (leader->hw_event.pinned) {
558 update_group_times(leader);
559 leader->state = PERF_COUNTER_STATE_ERROR;
560 }
561 }
562
563 if (!err && !ctx->task && cpuctx->max_pertask)
564 cpuctx->max_pertask--;
565
566 unlock:
567 hw_perf_restore(perf_flags);
568
569 spin_unlock_irqrestore(&ctx->lock, flags);
570 }
571
572 /*
573 * Attach a performance counter to a context
574 *
575 * First we add the counter to the list with the hardware enable bit
576 * in counter->hw_config cleared.
577 *
578 * If the counter is attached to a task which is on a CPU we use a smp
579 * call to enable it in the task context. The task might have been
580 * scheduled away, but we check this in the smp call again.
581 *
582 * Must be called with ctx->mutex held.
583 */
584 static void
585 perf_install_in_context(struct perf_counter_context *ctx,
586 struct perf_counter *counter,
587 int cpu)
588 {
589 struct task_struct *task = ctx->task;
590
591 if (!task) {
592 /*
593 * Per cpu counters are installed via an smp call and
594 * the install is always sucessful.
595 */
596 smp_call_function_single(cpu, __perf_install_in_context,
597 counter, 1);
598 return;
599 }
600
601 counter->task = task;
602 retry:
603 task_oncpu_function_call(task, __perf_install_in_context,
604 counter);
605
606 spin_lock_irq(&ctx->lock);
607 /*
608 * we need to retry the smp call.
609 */
610 if (ctx->is_active && list_empty(&counter->list_entry)) {
611 spin_unlock_irq(&ctx->lock);
612 goto retry;
613 }
614
615 /*
616 * The lock prevents that this context is scheduled in so we
617 * can add the counter safely, if it the call above did not
618 * succeed.
619 */
620 if (list_empty(&counter->list_entry))
621 add_counter_to_ctx(counter, ctx);
622 spin_unlock_irq(&ctx->lock);
623 }
624
625 /*
626 * Cross CPU call to enable a performance counter
627 */
628 static void __perf_counter_enable(void *info)
629 {
630 struct perf_counter *counter = info;
631 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
632 struct perf_counter_context *ctx = counter->ctx;
633 struct perf_counter *leader = counter->group_leader;
634 unsigned long flags;
635 int err;
636
637 /*
638 * If this is a per-task counter, need to check whether this
639 * counter's task is the current task on this cpu.
640 */
641 if (ctx->task && cpuctx->task_ctx != ctx)
642 return;
643
644 spin_lock_irqsave(&ctx->lock, flags);
645 update_context_time(ctx);
646
647 counter->prev_state = counter->state;
648 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
649 goto unlock;
650 counter->state = PERF_COUNTER_STATE_INACTIVE;
651 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
652
653 /*
654 * If the counter is in a group and isn't the group leader,
655 * then don't put it on unless the group is on.
656 */
657 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
658 goto unlock;
659
660 if (!group_can_go_on(counter, cpuctx, 1))
661 err = -EEXIST;
662 else
663 err = counter_sched_in(counter, cpuctx, ctx,
664 smp_processor_id());
665
666 if (err) {
667 /*
668 * If this counter can't go on and it's part of a
669 * group, then the whole group has to come off.
670 */
671 if (leader != counter)
672 group_sched_out(leader, cpuctx, ctx);
673 if (leader->hw_event.pinned) {
674 update_group_times(leader);
675 leader->state = PERF_COUNTER_STATE_ERROR;
676 }
677 }
678
679 unlock:
680 spin_unlock_irqrestore(&ctx->lock, flags);
681 }
682
683 /*
684 * Enable a counter.
685 */
686 static void perf_counter_enable(struct perf_counter *counter)
687 {
688 struct perf_counter_context *ctx = counter->ctx;
689 struct task_struct *task = ctx->task;
690
691 if (!task) {
692 /*
693 * Enable the counter on the cpu that it's on
694 */
695 smp_call_function_single(counter->cpu, __perf_counter_enable,
696 counter, 1);
697 return;
698 }
699
700 spin_lock_irq(&ctx->lock);
701 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
702 goto out;
703
704 /*
705 * If the counter is in error state, clear that first.
706 * That way, if we see the counter in error state below, we
707 * know that it has gone back into error state, as distinct
708 * from the task having been scheduled away before the
709 * cross-call arrived.
710 */
711 if (counter->state == PERF_COUNTER_STATE_ERROR)
712 counter->state = PERF_COUNTER_STATE_OFF;
713
714 retry:
715 spin_unlock_irq(&ctx->lock);
716 task_oncpu_function_call(task, __perf_counter_enable, counter);
717
718 spin_lock_irq(&ctx->lock);
719
720 /*
721 * If the context is active and the counter is still off,
722 * we need to retry the cross-call.
723 */
724 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
725 goto retry;
726
727 /*
728 * Since we have the lock this context can't be scheduled
729 * in, so we can change the state safely.
730 */
731 if (counter->state == PERF_COUNTER_STATE_OFF) {
732 counter->state = PERF_COUNTER_STATE_INACTIVE;
733 counter->tstamp_enabled =
734 ctx->time - counter->total_time_enabled;
735 }
736 out:
737 spin_unlock_irq(&ctx->lock);
738 }
739
740 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
741 {
742 atomic_add(refresh, &counter->event_limit);
743 perf_counter_enable(counter);
744 }
745
746 /*
747 * Enable a counter and all its children.
748 */
749 static void perf_counter_enable_family(struct perf_counter *counter)
750 {
751 struct perf_counter *child;
752
753 perf_counter_enable(counter);
754
755 /*
756 * Lock the mutex to protect the list of children
757 */
758 mutex_lock(&counter->mutex);
759 list_for_each_entry(child, &counter->child_list, child_list)
760 perf_counter_enable(child);
761 mutex_unlock(&counter->mutex);
762 }
763
764 void __perf_counter_sched_out(struct perf_counter_context *ctx,
765 struct perf_cpu_context *cpuctx)
766 {
767 struct perf_counter *counter;
768 u64 flags;
769
770 spin_lock(&ctx->lock);
771 ctx->is_active = 0;
772 if (likely(!ctx->nr_counters))
773 goto out;
774 update_context_time(ctx);
775
776 flags = hw_perf_save_disable();
777 if (ctx->nr_active) {
778 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779 group_sched_out(counter, cpuctx, ctx);
780 }
781 hw_perf_restore(flags);
782 out:
783 spin_unlock(&ctx->lock);
784 }
785
786 /*
787 * Called from scheduler to remove the counters of the current task,
788 * with interrupts disabled.
789 *
790 * We stop each counter and update the counter value in counter->count.
791 *
792 * This does not protect us against NMI, but disable()
793 * sets the disabled bit in the control field of counter _before_
794 * accessing the counter control register. If a NMI hits, then it will
795 * not restart the counter.
796 */
797 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798 {
799 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800 struct perf_counter_context *ctx = &task->perf_counter_ctx;
801 struct pt_regs *regs;
802
803 if (likely(!cpuctx->task_ctx))
804 return;
805
806 update_context_time(ctx);
807
808 regs = task_pt_regs(task);
809 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
810 __perf_counter_sched_out(ctx, cpuctx);
811
812 cpuctx->task_ctx = NULL;
813 }
814
815 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816 {
817 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 }
819
820 static int
821 group_sched_in(struct perf_counter *group_counter,
822 struct perf_cpu_context *cpuctx,
823 struct perf_counter_context *ctx,
824 int cpu)
825 {
826 struct perf_counter *counter, *partial_group;
827 int ret;
828
829 if (group_counter->state == PERF_COUNTER_STATE_OFF)
830 return 0;
831
832 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
833 if (ret)
834 return ret < 0 ? ret : 0;
835
836 group_counter->prev_state = group_counter->state;
837 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
838 return -EAGAIN;
839
840 /*
841 * Schedule in siblings as one group (if any):
842 */
843 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844 counter->prev_state = counter->state;
845 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
846 partial_group = counter;
847 goto group_error;
848 }
849 }
850
851 return 0;
852
853 group_error:
854 /*
855 * Groups can be scheduled in as one unit only, so undo any
856 * partial group before returning:
857 */
858 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
859 if (counter == partial_group)
860 break;
861 counter_sched_out(counter, cpuctx, ctx);
862 }
863 counter_sched_out(group_counter, cpuctx, ctx);
864
865 return -EAGAIN;
866 }
867
868 static void
869 __perf_counter_sched_in(struct perf_counter_context *ctx,
870 struct perf_cpu_context *cpuctx, int cpu)
871 {
872 struct perf_counter *counter;
873 u64 flags;
874 int can_add_hw = 1;
875
876 spin_lock(&ctx->lock);
877 ctx->is_active = 1;
878 if (likely(!ctx->nr_counters))
879 goto out;
880
881 ctx->timestamp = perf_clock();
882
883 flags = hw_perf_save_disable();
884
885 /*
886 * First go through the list and put on any pinned groups
887 * in order to give them the best chance of going on.
888 */
889 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
890 if (counter->state <= PERF_COUNTER_STATE_OFF ||
891 !counter->hw_event.pinned)
892 continue;
893 if (counter->cpu != -1 && counter->cpu != cpu)
894 continue;
895
896 if (group_can_go_on(counter, cpuctx, 1))
897 group_sched_in(counter, cpuctx, ctx, cpu);
898
899 /*
900 * If this pinned group hasn't been scheduled,
901 * put it in error state.
902 */
903 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
904 update_group_times(counter);
905 counter->state = PERF_COUNTER_STATE_ERROR;
906 }
907 }
908
909 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910 /*
911 * Ignore counters in OFF or ERROR state, and
912 * ignore pinned counters since we did them already.
913 */
914 if (counter->state <= PERF_COUNTER_STATE_OFF ||
915 counter->hw_event.pinned)
916 continue;
917
918 /*
919 * Listen to the 'cpu' scheduling filter constraint
920 * of counters:
921 */
922 if (counter->cpu != -1 && counter->cpu != cpu)
923 continue;
924
925 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926 if (group_sched_in(counter, cpuctx, ctx, cpu))
927 can_add_hw = 0;
928 }
929 }
930 hw_perf_restore(flags);
931 out:
932 spin_unlock(&ctx->lock);
933 }
934
935 /*
936 * Called from scheduler to add the counters of the current task
937 * with interrupts disabled.
938 *
939 * We restore the counter value and then enable it.
940 *
941 * This does not protect us against NMI, but enable()
942 * sets the enabled bit in the control field of counter _before_
943 * accessing the counter control register. If a NMI hits, then it will
944 * keep the counter running.
945 */
946 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
947 {
948 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
949 struct perf_counter_context *ctx = &task->perf_counter_ctx;
950
951 __perf_counter_sched_in(ctx, cpuctx, cpu);
952 cpuctx->task_ctx = ctx;
953 }
954
955 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
956 {
957 struct perf_counter_context *ctx = &cpuctx->ctx;
958
959 __perf_counter_sched_in(ctx, cpuctx, cpu);
960 }
961
962 int perf_counter_task_disable(void)
963 {
964 struct task_struct *curr = current;
965 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
966 struct perf_counter *counter;
967 unsigned long flags;
968 u64 perf_flags;
969 int cpu;
970
971 if (likely(!ctx->nr_counters))
972 return 0;
973
974 local_irq_save(flags);
975 cpu = smp_processor_id();
976
977 perf_counter_task_sched_out(curr, cpu);
978
979 spin_lock(&ctx->lock);
980
981 /*
982 * Disable all the counters:
983 */
984 perf_flags = hw_perf_save_disable();
985
986 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
987 if (counter->state != PERF_COUNTER_STATE_ERROR) {
988 update_group_times(counter);
989 counter->state = PERF_COUNTER_STATE_OFF;
990 }
991 }
992
993 hw_perf_restore(perf_flags);
994
995 spin_unlock_irqrestore(&ctx->lock, flags);
996
997 return 0;
998 }
999
1000 int perf_counter_task_enable(void)
1001 {
1002 struct task_struct *curr = current;
1003 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1004 struct perf_counter *counter;
1005 unsigned long flags;
1006 u64 perf_flags;
1007 int cpu;
1008
1009 if (likely(!ctx->nr_counters))
1010 return 0;
1011
1012 local_irq_save(flags);
1013 cpu = smp_processor_id();
1014
1015 perf_counter_task_sched_out(curr, cpu);
1016
1017 spin_lock(&ctx->lock);
1018
1019 /*
1020 * Disable all the counters:
1021 */
1022 perf_flags = hw_perf_save_disable();
1023
1024 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1025 if (counter->state > PERF_COUNTER_STATE_OFF)
1026 continue;
1027 counter->state = PERF_COUNTER_STATE_INACTIVE;
1028 counter->tstamp_enabled =
1029 ctx->time - counter->total_time_enabled;
1030 counter->hw_event.disabled = 0;
1031 }
1032 hw_perf_restore(perf_flags);
1033
1034 spin_unlock(&ctx->lock);
1035
1036 perf_counter_task_sched_in(curr, cpu);
1037
1038 local_irq_restore(flags);
1039
1040 return 0;
1041 }
1042
1043 /*
1044 * Round-robin a context's counters:
1045 */
1046 static void rotate_ctx(struct perf_counter_context *ctx)
1047 {
1048 struct perf_counter *counter;
1049 u64 perf_flags;
1050
1051 if (!ctx->nr_counters)
1052 return;
1053
1054 spin_lock(&ctx->lock);
1055 /*
1056 * Rotate the first entry last (works just fine for group counters too):
1057 */
1058 perf_flags = hw_perf_save_disable();
1059 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060 list_move_tail(&counter->list_entry, &ctx->counter_list);
1061 break;
1062 }
1063 hw_perf_restore(perf_flags);
1064
1065 spin_unlock(&ctx->lock);
1066 }
1067
1068 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1069 {
1070 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1071 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1072 const int rotate_percpu = 0;
1073
1074 if (rotate_percpu)
1075 perf_counter_cpu_sched_out(cpuctx);
1076 perf_counter_task_sched_out(curr, cpu);
1077
1078 if (rotate_percpu)
1079 rotate_ctx(&cpuctx->ctx);
1080 rotate_ctx(ctx);
1081
1082 if (rotate_percpu)
1083 perf_counter_cpu_sched_in(cpuctx, cpu);
1084 perf_counter_task_sched_in(curr, cpu);
1085 }
1086
1087 /*
1088 * Cross CPU call to read the hardware counter
1089 */
1090 static void __read(void *info)
1091 {
1092 struct perf_counter *counter = info;
1093 struct perf_counter_context *ctx = counter->ctx;
1094 unsigned long flags;
1095
1096 local_irq_save(flags);
1097 if (ctx->is_active)
1098 update_context_time(ctx);
1099 counter->hw_ops->read(counter);
1100 update_counter_times(counter);
1101 local_irq_restore(flags);
1102 }
1103
1104 static u64 perf_counter_read(struct perf_counter *counter)
1105 {
1106 /*
1107 * If counter is enabled and currently active on a CPU, update the
1108 * value in the counter structure:
1109 */
1110 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1111 smp_call_function_single(counter->oncpu,
1112 __read, counter, 1);
1113 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114 update_counter_times(counter);
1115 }
1116
1117 return atomic64_read(&counter->count);
1118 }
1119
1120 static void put_context(struct perf_counter_context *ctx)
1121 {
1122 if (ctx->task)
1123 put_task_struct(ctx->task);
1124 }
1125
1126 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1127 {
1128 struct perf_cpu_context *cpuctx;
1129 struct perf_counter_context *ctx;
1130 struct task_struct *task;
1131
1132 /*
1133 * If cpu is not a wildcard then this is a percpu counter:
1134 */
1135 if (cpu != -1) {
1136 /* Must be root to operate on a CPU counter: */
1137 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1138 return ERR_PTR(-EACCES);
1139
1140 if (cpu < 0 || cpu > num_possible_cpus())
1141 return ERR_PTR(-EINVAL);
1142
1143 /*
1144 * We could be clever and allow to attach a counter to an
1145 * offline CPU and activate it when the CPU comes up, but
1146 * that's for later.
1147 */
1148 if (!cpu_isset(cpu, cpu_online_map))
1149 return ERR_PTR(-ENODEV);
1150
1151 cpuctx = &per_cpu(perf_cpu_context, cpu);
1152 ctx = &cpuctx->ctx;
1153
1154 return ctx;
1155 }
1156
1157 rcu_read_lock();
1158 if (!pid)
1159 task = current;
1160 else
1161 task = find_task_by_vpid(pid);
1162 if (task)
1163 get_task_struct(task);
1164 rcu_read_unlock();
1165
1166 if (!task)
1167 return ERR_PTR(-ESRCH);
1168
1169 ctx = &task->perf_counter_ctx;
1170 ctx->task = task;
1171
1172 /* Reuse ptrace permission checks for now. */
1173 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1174 put_context(ctx);
1175 return ERR_PTR(-EACCES);
1176 }
1177
1178 return ctx;
1179 }
1180
1181 static void free_counter_rcu(struct rcu_head *head)
1182 {
1183 struct perf_counter *counter;
1184
1185 counter = container_of(head, struct perf_counter, rcu_head);
1186 kfree(counter);
1187 }
1188
1189 static void perf_pending_sync(struct perf_counter *counter);
1190
1191 static void free_counter(struct perf_counter *counter)
1192 {
1193 perf_pending_sync(counter);
1194
1195 if (counter->hw_event.mmap)
1196 atomic_dec(&nr_mmap_tracking);
1197 if (counter->hw_event.munmap)
1198 atomic_dec(&nr_munmap_tracking);
1199 if (counter->hw_event.comm)
1200 atomic_dec(&nr_comm_tracking);
1201
1202 if (counter->destroy)
1203 counter->destroy(counter);
1204
1205 call_rcu(&counter->rcu_head, free_counter_rcu);
1206 }
1207
1208 /*
1209 * Called when the last reference to the file is gone.
1210 */
1211 static int perf_release(struct inode *inode, struct file *file)
1212 {
1213 struct perf_counter *counter = file->private_data;
1214 struct perf_counter_context *ctx = counter->ctx;
1215
1216 file->private_data = NULL;
1217
1218 mutex_lock(&ctx->mutex);
1219 mutex_lock(&counter->mutex);
1220
1221 perf_counter_remove_from_context(counter);
1222
1223 mutex_unlock(&counter->mutex);
1224 mutex_unlock(&ctx->mutex);
1225
1226 free_counter(counter);
1227 put_context(ctx);
1228
1229 return 0;
1230 }
1231
1232 /*
1233 * Read the performance counter - simple non blocking version for now
1234 */
1235 static ssize_t
1236 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1237 {
1238 u64 values[3];
1239 int n;
1240
1241 /*
1242 * Return end-of-file for a read on a counter that is in
1243 * error state (i.e. because it was pinned but it couldn't be
1244 * scheduled on to the CPU at some point).
1245 */
1246 if (counter->state == PERF_COUNTER_STATE_ERROR)
1247 return 0;
1248
1249 mutex_lock(&counter->mutex);
1250 values[0] = perf_counter_read(counter);
1251 n = 1;
1252 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 values[n++] = counter->total_time_enabled +
1254 atomic64_read(&counter->child_total_time_enabled);
1255 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 values[n++] = counter->total_time_running +
1257 atomic64_read(&counter->child_total_time_running);
1258 mutex_unlock(&counter->mutex);
1259
1260 if (count < n * sizeof(u64))
1261 return -EINVAL;
1262 count = n * sizeof(u64);
1263
1264 if (copy_to_user(buf, values, count))
1265 return -EFAULT;
1266
1267 return count;
1268 }
1269
1270 static ssize_t
1271 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1272 {
1273 struct perf_counter *counter = file->private_data;
1274
1275 return perf_read_hw(counter, buf, count);
1276 }
1277
1278 static unsigned int perf_poll(struct file *file, poll_table *wait)
1279 {
1280 struct perf_counter *counter = file->private_data;
1281 struct perf_mmap_data *data;
1282 unsigned int events;
1283
1284 rcu_read_lock();
1285 data = rcu_dereference(counter->data);
1286 if (data)
1287 events = atomic_xchg(&data->wakeup, 0);
1288 else
1289 events = POLL_HUP;
1290 rcu_read_unlock();
1291
1292 poll_wait(file, &counter->waitq, wait);
1293
1294 return events;
1295 }
1296
1297 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1298 {
1299 struct perf_counter *counter = file->private_data;
1300 int err = 0;
1301
1302 switch (cmd) {
1303 case PERF_COUNTER_IOC_ENABLE:
1304 perf_counter_enable_family(counter);
1305 break;
1306 case PERF_COUNTER_IOC_DISABLE:
1307 perf_counter_disable_family(counter);
1308 break;
1309 case PERF_COUNTER_IOC_REFRESH:
1310 perf_counter_refresh(counter, arg);
1311 break;
1312 default:
1313 err = -ENOTTY;
1314 }
1315 return err;
1316 }
1317
1318 /*
1319 * Callers need to ensure there can be no nesting of this function, otherwise
1320 * the seqlock logic goes bad. We can not serialize this because the arch
1321 * code calls this from NMI context.
1322 */
1323 void perf_counter_update_userpage(struct perf_counter *counter)
1324 {
1325 struct perf_mmap_data *data;
1326 struct perf_counter_mmap_page *userpg;
1327
1328 rcu_read_lock();
1329 data = rcu_dereference(counter->data);
1330 if (!data)
1331 goto unlock;
1332
1333 userpg = data->user_page;
1334
1335 /*
1336 * Disable preemption so as to not let the corresponding user-space
1337 * spin too long if we get preempted.
1338 */
1339 preempt_disable();
1340 ++userpg->lock;
1341 barrier();
1342 userpg->index = counter->hw.idx;
1343 userpg->offset = atomic64_read(&counter->count);
1344 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1345 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1346
1347 barrier();
1348 ++userpg->lock;
1349 preempt_enable();
1350 unlock:
1351 rcu_read_unlock();
1352 }
1353
1354 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1355 {
1356 struct perf_counter *counter = vma->vm_file->private_data;
1357 struct perf_mmap_data *data;
1358 int ret = VM_FAULT_SIGBUS;
1359
1360 rcu_read_lock();
1361 data = rcu_dereference(counter->data);
1362 if (!data)
1363 goto unlock;
1364
1365 if (vmf->pgoff == 0) {
1366 vmf->page = virt_to_page(data->user_page);
1367 } else {
1368 int nr = vmf->pgoff - 1;
1369
1370 if ((unsigned)nr > data->nr_pages)
1371 goto unlock;
1372
1373 vmf->page = virt_to_page(data->data_pages[nr]);
1374 }
1375 get_page(vmf->page);
1376 ret = 0;
1377 unlock:
1378 rcu_read_unlock();
1379
1380 return ret;
1381 }
1382
1383 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1384 {
1385 struct perf_mmap_data *data;
1386 unsigned long size;
1387 int i;
1388
1389 WARN_ON(atomic_read(&counter->mmap_count));
1390
1391 size = sizeof(struct perf_mmap_data);
1392 size += nr_pages * sizeof(void *);
1393
1394 data = kzalloc(size, GFP_KERNEL);
1395 if (!data)
1396 goto fail;
1397
1398 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1399 if (!data->user_page)
1400 goto fail_user_page;
1401
1402 for (i = 0; i < nr_pages; i++) {
1403 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1404 if (!data->data_pages[i])
1405 goto fail_data_pages;
1406 }
1407
1408 data->nr_pages = nr_pages;
1409
1410 rcu_assign_pointer(counter->data, data);
1411
1412 return 0;
1413
1414 fail_data_pages:
1415 for (i--; i >= 0; i--)
1416 free_page((unsigned long)data->data_pages[i]);
1417
1418 free_page((unsigned long)data->user_page);
1419
1420 fail_user_page:
1421 kfree(data);
1422
1423 fail:
1424 return -ENOMEM;
1425 }
1426
1427 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1428 {
1429 struct perf_mmap_data *data = container_of(rcu_head,
1430 struct perf_mmap_data, rcu_head);
1431 int i;
1432
1433 free_page((unsigned long)data->user_page);
1434 for (i = 0; i < data->nr_pages; i++)
1435 free_page((unsigned long)data->data_pages[i]);
1436 kfree(data);
1437 }
1438
1439 static void perf_mmap_data_free(struct perf_counter *counter)
1440 {
1441 struct perf_mmap_data *data = counter->data;
1442
1443 WARN_ON(atomic_read(&counter->mmap_count));
1444
1445 rcu_assign_pointer(counter->data, NULL);
1446 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1447 }
1448
1449 static void perf_mmap_open(struct vm_area_struct *vma)
1450 {
1451 struct perf_counter *counter = vma->vm_file->private_data;
1452
1453 atomic_inc(&counter->mmap_count);
1454 }
1455
1456 static void perf_mmap_close(struct vm_area_struct *vma)
1457 {
1458 struct perf_counter *counter = vma->vm_file->private_data;
1459
1460 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1461 &counter->mmap_mutex)) {
1462 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1463 perf_mmap_data_free(counter);
1464 mutex_unlock(&counter->mmap_mutex);
1465 }
1466 }
1467
1468 static struct vm_operations_struct perf_mmap_vmops = {
1469 .open = perf_mmap_open,
1470 .close = perf_mmap_close,
1471 .fault = perf_mmap_fault,
1472 };
1473
1474 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1475 {
1476 struct perf_counter *counter = file->private_data;
1477 unsigned long vma_size;
1478 unsigned long nr_pages;
1479 unsigned long locked, lock_limit;
1480 int ret = 0;
1481
1482 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1483 return -EINVAL;
1484
1485 vma_size = vma->vm_end - vma->vm_start;
1486 nr_pages = (vma_size / PAGE_SIZE) - 1;
1487
1488 /*
1489 * If we have data pages ensure they're a power-of-two number, so we
1490 * can do bitmasks instead of modulo.
1491 */
1492 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1493 return -EINVAL;
1494
1495 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1496 return -EINVAL;
1497
1498 if (vma->vm_pgoff != 0)
1499 return -EINVAL;
1500
1501 mutex_lock(&counter->mmap_mutex);
1502 if (atomic_inc_not_zero(&counter->mmap_count)) {
1503 if (nr_pages != counter->data->nr_pages)
1504 ret = -EINVAL;
1505 goto unlock;
1506 }
1507
1508 locked = vma->vm_mm->locked_vm;
1509 locked += nr_pages + 1;
1510
1511 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1512 lock_limit >>= PAGE_SHIFT;
1513
1514 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1515 ret = -EPERM;
1516 goto unlock;
1517 }
1518
1519 WARN_ON(counter->data);
1520 ret = perf_mmap_data_alloc(counter, nr_pages);
1521 if (ret)
1522 goto unlock;
1523
1524 atomic_set(&counter->mmap_count, 1);
1525 vma->vm_mm->locked_vm += nr_pages + 1;
1526 unlock:
1527 mutex_unlock(&counter->mmap_mutex);
1528
1529 vma->vm_flags &= ~VM_MAYWRITE;
1530 vma->vm_flags |= VM_RESERVED;
1531 vma->vm_ops = &perf_mmap_vmops;
1532
1533 return ret;
1534 }
1535
1536 static int perf_fasync(int fd, struct file *filp, int on)
1537 {
1538 struct perf_counter *counter = filp->private_data;
1539 struct inode *inode = filp->f_path.dentry->d_inode;
1540 int retval;
1541
1542 mutex_lock(&inode->i_mutex);
1543 retval = fasync_helper(fd, filp, on, &counter->fasync);
1544 mutex_unlock(&inode->i_mutex);
1545
1546 if (retval < 0)
1547 return retval;
1548
1549 return 0;
1550 }
1551
1552 static const struct file_operations perf_fops = {
1553 .release = perf_release,
1554 .read = perf_read,
1555 .poll = perf_poll,
1556 .unlocked_ioctl = perf_ioctl,
1557 .compat_ioctl = perf_ioctl,
1558 .mmap = perf_mmap,
1559 .fasync = perf_fasync,
1560 };
1561
1562 /*
1563 * Perf counter wakeup
1564 *
1565 * If there's data, ensure we set the poll() state and publish everything
1566 * to user-space before waking everybody up.
1567 */
1568
1569 void perf_counter_wakeup(struct perf_counter *counter)
1570 {
1571 struct perf_mmap_data *data;
1572
1573 rcu_read_lock();
1574 data = rcu_dereference(counter->data);
1575 if (data) {
1576 atomic_set(&data->wakeup, POLL_IN);
1577 /*
1578 * Ensure all data writes are issued before updating the
1579 * user-space data head information. The matching rmb()
1580 * will be in userspace after reading this value.
1581 */
1582 smp_wmb();
1583 data->user_page->data_head = atomic_read(&data->head);
1584 }
1585 rcu_read_unlock();
1586
1587 wake_up_all(&counter->waitq);
1588
1589 if (counter->pending_kill) {
1590 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1591 counter->pending_kill = 0;
1592 }
1593 }
1594
1595 /*
1596 * Pending wakeups
1597 *
1598 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1599 *
1600 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1601 * single linked list and use cmpxchg() to add entries lockless.
1602 */
1603
1604 static void perf_pending_counter(struct perf_pending_entry *entry)
1605 {
1606 struct perf_counter *counter = container_of(entry,
1607 struct perf_counter, pending);
1608
1609 if (counter->pending_disable) {
1610 counter->pending_disable = 0;
1611 perf_counter_disable(counter);
1612 }
1613
1614 if (counter->pending_wakeup) {
1615 counter->pending_wakeup = 0;
1616 perf_counter_wakeup(counter);
1617 }
1618 }
1619
1620 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1621
1622 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1623 PENDING_TAIL,
1624 };
1625
1626 static void perf_pending_queue(struct perf_pending_entry *entry,
1627 void (*func)(struct perf_pending_entry *))
1628 {
1629 struct perf_pending_entry **head;
1630
1631 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1632 return;
1633
1634 entry->func = func;
1635
1636 head = &get_cpu_var(perf_pending_head);
1637
1638 do {
1639 entry->next = *head;
1640 } while (cmpxchg(head, entry->next, entry) != entry->next);
1641
1642 set_perf_counter_pending();
1643
1644 put_cpu_var(perf_pending_head);
1645 }
1646
1647 static int __perf_pending_run(void)
1648 {
1649 struct perf_pending_entry *list;
1650 int nr = 0;
1651
1652 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1653 while (list != PENDING_TAIL) {
1654 void (*func)(struct perf_pending_entry *);
1655 struct perf_pending_entry *entry = list;
1656
1657 list = list->next;
1658
1659 func = entry->func;
1660 entry->next = NULL;
1661 /*
1662 * Ensure we observe the unqueue before we issue the wakeup,
1663 * so that we won't be waiting forever.
1664 * -- see perf_not_pending().
1665 */
1666 smp_wmb();
1667
1668 func(entry);
1669 nr++;
1670 }
1671
1672 return nr;
1673 }
1674
1675 static inline int perf_not_pending(struct perf_counter *counter)
1676 {
1677 /*
1678 * If we flush on whatever cpu we run, there is a chance we don't
1679 * need to wait.
1680 */
1681 get_cpu();
1682 __perf_pending_run();
1683 put_cpu();
1684
1685 /*
1686 * Ensure we see the proper queue state before going to sleep
1687 * so that we do not miss the wakeup. -- see perf_pending_handle()
1688 */
1689 smp_rmb();
1690 return counter->pending.next == NULL;
1691 }
1692
1693 static void perf_pending_sync(struct perf_counter *counter)
1694 {
1695 wait_event(counter->waitq, perf_not_pending(counter));
1696 }
1697
1698 void perf_counter_do_pending(void)
1699 {
1700 __perf_pending_run();
1701 }
1702
1703 /*
1704 * Callchain support -- arch specific
1705 */
1706
1707 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1708 {
1709 return NULL;
1710 }
1711
1712 /*
1713 * Output
1714 */
1715
1716 struct perf_output_handle {
1717 struct perf_counter *counter;
1718 struct perf_mmap_data *data;
1719 unsigned int offset;
1720 unsigned int head;
1721 int wakeup;
1722 int nmi;
1723 int overflow;
1724 };
1725
1726 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1727 {
1728 if (handle->nmi) {
1729 handle->counter->pending_wakeup = 1;
1730 perf_pending_queue(&handle->counter->pending,
1731 perf_pending_counter);
1732 } else
1733 perf_counter_wakeup(handle->counter);
1734 }
1735
1736 static int perf_output_begin(struct perf_output_handle *handle,
1737 struct perf_counter *counter, unsigned int size,
1738 int nmi, int overflow)
1739 {
1740 struct perf_mmap_data *data;
1741 unsigned int offset, head;
1742
1743 rcu_read_lock();
1744 data = rcu_dereference(counter->data);
1745 if (!data)
1746 goto out;
1747
1748 handle->counter = counter;
1749 handle->nmi = nmi;
1750 handle->overflow = overflow;
1751
1752 if (!data->nr_pages)
1753 goto fail;
1754
1755 do {
1756 offset = head = atomic_read(&data->head);
1757 head += size;
1758 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1759
1760 handle->data = data;
1761 handle->offset = offset;
1762 handle->head = head;
1763 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1764
1765 return 0;
1766
1767 fail:
1768 __perf_output_wakeup(handle);
1769 out:
1770 rcu_read_unlock();
1771
1772 return -ENOSPC;
1773 }
1774
1775 static void perf_output_copy(struct perf_output_handle *handle,
1776 void *buf, unsigned int len)
1777 {
1778 unsigned int pages_mask;
1779 unsigned int offset;
1780 unsigned int size;
1781 void **pages;
1782
1783 offset = handle->offset;
1784 pages_mask = handle->data->nr_pages - 1;
1785 pages = handle->data->data_pages;
1786
1787 do {
1788 unsigned int page_offset;
1789 int nr;
1790
1791 nr = (offset >> PAGE_SHIFT) & pages_mask;
1792 page_offset = offset & (PAGE_SIZE - 1);
1793 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1794
1795 memcpy(pages[nr] + page_offset, buf, size);
1796
1797 len -= size;
1798 buf += size;
1799 offset += size;
1800 } while (len);
1801
1802 handle->offset = offset;
1803
1804 WARN_ON_ONCE(handle->offset > handle->head);
1805 }
1806
1807 #define perf_output_put(handle, x) \
1808 perf_output_copy((handle), &(x), sizeof(x))
1809
1810 static void perf_output_end(struct perf_output_handle *handle)
1811 {
1812 int wakeup_events = handle->counter->hw_event.wakeup_events;
1813
1814 if (handle->overflow && wakeup_events) {
1815 int events = atomic_inc_return(&handle->data->events);
1816 if (events >= wakeup_events) {
1817 atomic_sub(wakeup_events, &handle->data->events);
1818 __perf_output_wakeup(handle);
1819 }
1820 } else if (handle->wakeup)
1821 __perf_output_wakeup(handle);
1822 rcu_read_unlock();
1823 }
1824
1825 static void perf_counter_output(struct perf_counter *counter,
1826 int nmi, struct pt_regs *regs, u64 addr)
1827 {
1828 int ret;
1829 u64 record_type = counter->hw_event.record_type;
1830 struct perf_output_handle handle;
1831 struct perf_event_header header;
1832 u64 ip;
1833 struct {
1834 u32 pid, tid;
1835 } tid_entry;
1836 struct {
1837 u64 event;
1838 u64 counter;
1839 } group_entry;
1840 struct perf_callchain_entry *callchain = NULL;
1841 int callchain_size = 0;
1842 u64 time;
1843
1844 header.type = 0;
1845 header.size = sizeof(header);
1846
1847 header.misc = PERF_EVENT_MISC_OVERFLOW;
1848 header.misc |= user_mode(regs) ?
1849 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1850
1851 if (record_type & PERF_RECORD_IP) {
1852 ip = instruction_pointer(regs);
1853 header.type |= PERF_RECORD_IP;
1854 header.size += sizeof(ip);
1855 }
1856
1857 if (record_type & PERF_RECORD_TID) {
1858 /* namespace issues */
1859 tid_entry.pid = current->group_leader->pid;
1860 tid_entry.tid = current->pid;
1861
1862 header.type |= PERF_RECORD_TID;
1863 header.size += sizeof(tid_entry);
1864 }
1865
1866 if (record_type & PERF_RECORD_TIME) {
1867 /*
1868 * Maybe do better on x86 and provide cpu_clock_nmi()
1869 */
1870 time = sched_clock();
1871
1872 header.type |= PERF_RECORD_TIME;
1873 header.size += sizeof(u64);
1874 }
1875
1876 if (record_type & PERF_RECORD_ADDR) {
1877 header.type |= PERF_RECORD_ADDR;
1878 header.size += sizeof(u64);
1879 }
1880
1881 if (record_type & PERF_RECORD_GROUP) {
1882 header.type |= PERF_RECORD_GROUP;
1883 header.size += sizeof(u64) +
1884 counter->nr_siblings * sizeof(group_entry);
1885 }
1886
1887 if (record_type & PERF_RECORD_CALLCHAIN) {
1888 callchain = perf_callchain(regs);
1889
1890 if (callchain) {
1891 callchain_size = (1 + callchain->nr) * sizeof(u64);
1892
1893 header.type |= PERF_RECORD_CALLCHAIN;
1894 header.size += callchain_size;
1895 }
1896 }
1897
1898 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1899 if (ret)
1900 return;
1901
1902 perf_output_put(&handle, header);
1903
1904 if (record_type & PERF_RECORD_IP)
1905 perf_output_put(&handle, ip);
1906
1907 if (record_type & PERF_RECORD_TID)
1908 perf_output_put(&handle, tid_entry);
1909
1910 if (record_type & PERF_RECORD_TIME)
1911 perf_output_put(&handle, time);
1912
1913 if (record_type & PERF_RECORD_ADDR)
1914 perf_output_put(&handle, addr);
1915
1916 if (record_type & PERF_RECORD_GROUP) {
1917 struct perf_counter *leader, *sub;
1918 u64 nr = counter->nr_siblings;
1919
1920 perf_output_put(&handle, nr);
1921
1922 leader = counter->group_leader;
1923 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1924 if (sub != counter)
1925 sub->hw_ops->read(sub);
1926
1927 group_entry.event = sub->hw_event.config;
1928 group_entry.counter = atomic64_read(&sub->count);
1929
1930 perf_output_put(&handle, group_entry);
1931 }
1932 }
1933
1934 if (callchain)
1935 perf_output_copy(&handle, callchain, callchain_size);
1936
1937 perf_output_end(&handle);
1938 }
1939
1940 /*
1941 * comm tracking
1942 */
1943
1944 struct perf_comm_event {
1945 struct task_struct *task;
1946 char *comm;
1947 int comm_size;
1948
1949 struct {
1950 struct perf_event_header header;
1951
1952 u32 pid;
1953 u32 tid;
1954 } event;
1955 };
1956
1957 static void perf_counter_comm_output(struct perf_counter *counter,
1958 struct perf_comm_event *comm_event)
1959 {
1960 struct perf_output_handle handle;
1961 int size = comm_event->event.header.size;
1962 int ret = perf_output_begin(&handle, counter, size, 0, 0);
1963
1964 if (ret)
1965 return;
1966
1967 perf_output_put(&handle, comm_event->event);
1968 perf_output_copy(&handle, comm_event->comm,
1969 comm_event->comm_size);
1970 perf_output_end(&handle);
1971 }
1972
1973 static int perf_counter_comm_match(struct perf_counter *counter,
1974 struct perf_comm_event *comm_event)
1975 {
1976 if (counter->hw_event.comm &&
1977 comm_event->event.header.type == PERF_EVENT_COMM)
1978 return 1;
1979
1980 return 0;
1981 }
1982
1983 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
1984 struct perf_comm_event *comm_event)
1985 {
1986 struct perf_counter *counter;
1987
1988 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1989 return;
1990
1991 rcu_read_lock();
1992 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1993 if (perf_counter_comm_match(counter, comm_event))
1994 perf_counter_comm_output(counter, comm_event);
1995 }
1996 rcu_read_unlock();
1997 }
1998
1999 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2000 {
2001 struct perf_cpu_context *cpuctx;
2002 unsigned int size;
2003 char *comm = comm_event->task->comm;
2004
2005 size = ALIGN(strlen(comm)+1, sizeof(u64));
2006
2007 comm_event->comm = comm;
2008 comm_event->comm_size = size;
2009
2010 comm_event->event.header.size = sizeof(comm_event->event) + size;
2011
2012 cpuctx = &get_cpu_var(perf_cpu_context);
2013 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2014 put_cpu_var(perf_cpu_context);
2015
2016 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2017 }
2018
2019 void perf_counter_comm(struct task_struct *task)
2020 {
2021 struct perf_comm_event comm_event;
2022
2023 if (!atomic_read(&nr_comm_tracking))
2024 return;
2025
2026 comm_event = (struct perf_comm_event){
2027 .task = task,
2028 .event = {
2029 .header = { .type = PERF_EVENT_COMM, },
2030 .pid = task->group_leader->pid,
2031 .tid = task->pid,
2032 },
2033 };
2034
2035 perf_counter_comm_event(&comm_event);
2036 }
2037
2038 /*
2039 * mmap tracking
2040 */
2041
2042 struct perf_mmap_event {
2043 struct file *file;
2044 char *file_name;
2045 int file_size;
2046
2047 struct {
2048 struct perf_event_header header;
2049
2050 u32 pid;
2051 u32 tid;
2052 u64 start;
2053 u64 len;
2054 u64 pgoff;
2055 } event;
2056 };
2057
2058 static void perf_counter_mmap_output(struct perf_counter *counter,
2059 struct perf_mmap_event *mmap_event)
2060 {
2061 struct perf_output_handle handle;
2062 int size = mmap_event->event.header.size;
2063 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2064
2065 if (ret)
2066 return;
2067
2068 perf_output_put(&handle, mmap_event->event);
2069 perf_output_copy(&handle, mmap_event->file_name,
2070 mmap_event->file_size);
2071 perf_output_end(&handle);
2072 }
2073
2074 static int perf_counter_mmap_match(struct perf_counter *counter,
2075 struct perf_mmap_event *mmap_event)
2076 {
2077 if (counter->hw_event.mmap &&
2078 mmap_event->event.header.type == PERF_EVENT_MMAP)
2079 return 1;
2080
2081 if (counter->hw_event.munmap &&
2082 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2083 return 1;
2084
2085 return 0;
2086 }
2087
2088 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2089 struct perf_mmap_event *mmap_event)
2090 {
2091 struct perf_counter *counter;
2092
2093 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2094 return;
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2098 if (perf_counter_mmap_match(counter, mmap_event))
2099 perf_counter_mmap_output(counter, mmap_event);
2100 }
2101 rcu_read_unlock();
2102 }
2103
2104 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2105 {
2106 struct perf_cpu_context *cpuctx;
2107 struct file *file = mmap_event->file;
2108 unsigned int size;
2109 char tmp[16];
2110 char *buf = NULL;
2111 char *name;
2112
2113 if (file) {
2114 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2115 if (!buf) {
2116 name = strncpy(tmp, "//enomem", sizeof(tmp));
2117 goto got_name;
2118 }
2119 name = d_path(&file->f_path, buf, PATH_MAX);
2120 if (IS_ERR(name)) {
2121 name = strncpy(tmp, "//toolong", sizeof(tmp));
2122 goto got_name;
2123 }
2124 } else {
2125 name = strncpy(tmp, "//anon", sizeof(tmp));
2126 goto got_name;
2127 }
2128
2129 got_name:
2130 size = ALIGN(strlen(name)+1, sizeof(u64));
2131
2132 mmap_event->file_name = name;
2133 mmap_event->file_size = size;
2134
2135 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2136
2137 cpuctx = &get_cpu_var(perf_cpu_context);
2138 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2139 put_cpu_var(perf_cpu_context);
2140
2141 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2142
2143 kfree(buf);
2144 }
2145
2146 void perf_counter_mmap(unsigned long addr, unsigned long len,
2147 unsigned long pgoff, struct file *file)
2148 {
2149 struct perf_mmap_event mmap_event;
2150
2151 if (!atomic_read(&nr_mmap_tracking))
2152 return;
2153
2154 mmap_event = (struct perf_mmap_event){
2155 .file = file,
2156 .event = {
2157 .header = { .type = PERF_EVENT_MMAP, },
2158 .pid = current->group_leader->pid,
2159 .tid = current->pid,
2160 .start = addr,
2161 .len = len,
2162 .pgoff = pgoff,
2163 },
2164 };
2165
2166 perf_counter_mmap_event(&mmap_event);
2167 }
2168
2169 void perf_counter_munmap(unsigned long addr, unsigned long len,
2170 unsigned long pgoff, struct file *file)
2171 {
2172 struct perf_mmap_event mmap_event;
2173
2174 if (!atomic_read(&nr_munmap_tracking))
2175 return;
2176
2177 mmap_event = (struct perf_mmap_event){
2178 .file = file,
2179 .event = {
2180 .header = { .type = PERF_EVENT_MUNMAP, },
2181 .pid = current->group_leader->pid,
2182 .tid = current->pid,
2183 .start = addr,
2184 .len = len,
2185 .pgoff = pgoff,
2186 },
2187 };
2188
2189 perf_counter_mmap_event(&mmap_event);
2190 }
2191
2192 /*
2193 * Generic counter overflow handling.
2194 */
2195
2196 int perf_counter_overflow(struct perf_counter *counter,
2197 int nmi, struct pt_regs *regs, u64 addr)
2198 {
2199 int events = atomic_read(&counter->event_limit);
2200 int ret = 0;
2201
2202 counter->pending_kill = POLL_IN;
2203 if (events && atomic_dec_and_test(&counter->event_limit)) {
2204 ret = 1;
2205 counter->pending_kill = POLL_HUP;
2206 if (nmi) {
2207 counter->pending_disable = 1;
2208 perf_pending_queue(&counter->pending,
2209 perf_pending_counter);
2210 } else
2211 perf_counter_disable(counter);
2212 }
2213
2214 perf_counter_output(counter, nmi, regs, addr);
2215 return ret;
2216 }
2217
2218 /*
2219 * Generic software counter infrastructure
2220 */
2221
2222 static void perf_swcounter_update(struct perf_counter *counter)
2223 {
2224 struct hw_perf_counter *hwc = &counter->hw;
2225 u64 prev, now;
2226 s64 delta;
2227
2228 again:
2229 prev = atomic64_read(&hwc->prev_count);
2230 now = atomic64_read(&hwc->count);
2231 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2232 goto again;
2233
2234 delta = now - prev;
2235
2236 atomic64_add(delta, &counter->count);
2237 atomic64_sub(delta, &hwc->period_left);
2238 }
2239
2240 static void perf_swcounter_set_period(struct perf_counter *counter)
2241 {
2242 struct hw_perf_counter *hwc = &counter->hw;
2243 s64 left = atomic64_read(&hwc->period_left);
2244 s64 period = hwc->irq_period;
2245
2246 if (unlikely(left <= -period)) {
2247 left = period;
2248 atomic64_set(&hwc->period_left, left);
2249 }
2250
2251 if (unlikely(left <= 0)) {
2252 left += period;
2253 atomic64_add(period, &hwc->period_left);
2254 }
2255
2256 atomic64_set(&hwc->prev_count, -left);
2257 atomic64_set(&hwc->count, -left);
2258 }
2259
2260 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2261 {
2262 enum hrtimer_restart ret = HRTIMER_RESTART;
2263 struct perf_counter *counter;
2264 struct pt_regs *regs;
2265
2266 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2267 counter->hw_ops->read(counter);
2268
2269 regs = get_irq_regs();
2270 /*
2271 * In case we exclude kernel IPs or are somehow not in interrupt
2272 * context, provide the next best thing, the user IP.
2273 */
2274 if ((counter->hw_event.exclude_kernel || !regs) &&
2275 !counter->hw_event.exclude_user)
2276 regs = task_pt_regs(current);
2277
2278 if (regs) {
2279 if (perf_counter_overflow(counter, 0, regs, 0))
2280 ret = HRTIMER_NORESTART;
2281 }
2282
2283 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2284
2285 return ret;
2286 }
2287
2288 static void perf_swcounter_overflow(struct perf_counter *counter,
2289 int nmi, struct pt_regs *regs, u64 addr)
2290 {
2291 perf_swcounter_update(counter);
2292 perf_swcounter_set_period(counter);
2293 if (perf_counter_overflow(counter, nmi, regs, addr))
2294 /* soft-disable the counter */
2295 ;
2296
2297 }
2298
2299 static int perf_swcounter_match(struct perf_counter *counter,
2300 enum perf_event_types type,
2301 u32 event, struct pt_regs *regs)
2302 {
2303 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2304 return 0;
2305
2306 if (perf_event_raw(&counter->hw_event))
2307 return 0;
2308
2309 if (perf_event_type(&counter->hw_event) != type)
2310 return 0;
2311
2312 if (perf_event_id(&counter->hw_event) != event)
2313 return 0;
2314
2315 if (counter->hw_event.exclude_user && user_mode(regs))
2316 return 0;
2317
2318 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2319 return 0;
2320
2321 return 1;
2322 }
2323
2324 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2325 int nmi, struct pt_regs *regs, u64 addr)
2326 {
2327 int neg = atomic64_add_negative(nr, &counter->hw.count);
2328 if (counter->hw.irq_period && !neg)
2329 perf_swcounter_overflow(counter, nmi, regs, addr);
2330 }
2331
2332 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2333 enum perf_event_types type, u32 event,
2334 u64 nr, int nmi, struct pt_regs *regs,
2335 u64 addr)
2336 {
2337 struct perf_counter *counter;
2338
2339 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2340 return;
2341
2342 rcu_read_lock();
2343 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2344 if (perf_swcounter_match(counter, type, event, regs))
2345 perf_swcounter_add(counter, nr, nmi, regs, addr);
2346 }
2347 rcu_read_unlock();
2348 }
2349
2350 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2351 {
2352 if (in_nmi())
2353 return &cpuctx->recursion[3];
2354
2355 if (in_irq())
2356 return &cpuctx->recursion[2];
2357
2358 if (in_softirq())
2359 return &cpuctx->recursion[1];
2360
2361 return &cpuctx->recursion[0];
2362 }
2363
2364 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2365 u64 nr, int nmi, struct pt_regs *regs,
2366 u64 addr)
2367 {
2368 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2369 int *recursion = perf_swcounter_recursion_context(cpuctx);
2370
2371 if (*recursion)
2372 goto out;
2373
2374 (*recursion)++;
2375 barrier();
2376
2377 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2378 nr, nmi, regs, addr);
2379 if (cpuctx->task_ctx) {
2380 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2381 nr, nmi, regs, addr);
2382 }
2383
2384 barrier();
2385 (*recursion)--;
2386
2387 out:
2388 put_cpu_var(perf_cpu_context);
2389 }
2390
2391 void
2392 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2393 {
2394 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2395 }
2396
2397 static void perf_swcounter_read(struct perf_counter *counter)
2398 {
2399 perf_swcounter_update(counter);
2400 }
2401
2402 static int perf_swcounter_enable(struct perf_counter *counter)
2403 {
2404 perf_swcounter_set_period(counter);
2405 return 0;
2406 }
2407
2408 static void perf_swcounter_disable(struct perf_counter *counter)
2409 {
2410 perf_swcounter_update(counter);
2411 }
2412
2413 static const struct hw_perf_counter_ops perf_ops_generic = {
2414 .enable = perf_swcounter_enable,
2415 .disable = perf_swcounter_disable,
2416 .read = perf_swcounter_read,
2417 };
2418
2419 /*
2420 * Software counter: cpu wall time clock
2421 */
2422
2423 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2424 {
2425 int cpu = raw_smp_processor_id();
2426 s64 prev;
2427 u64 now;
2428
2429 now = cpu_clock(cpu);
2430 prev = atomic64_read(&counter->hw.prev_count);
2431 atomic64_set(&counter->hw.prev_count, now);
2432 atomic64_add(now - prev, &counter->count);
2433 }
2434
2435 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2436 {
2437 struct hw_perf_counter *hwc = &counter->hw;
2438 int cpu = raw_smp_processor_id();
2439
2440 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2441 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2442 hwc->hrtimer.function = perf_swcounter_hrtimer;
2443 if (hwc->irq_period) {
2444 __hrtimer_start_range_ns(&hwc->hrtimer,
2445 ns_to_ktime(hwc->irq_period), 0,
2446 HRTIMER_MODE_REL, 0);
2447 }
2448
2449 return 0;
2450 }
2451
2452 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2453 {
2454 hrtimer_cancel(&counter->hw.hrtimer);
2455 cpu_clock_perf_counter_update(counter);
2456 }
2457
2458 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2459 {
2460 cpu_clock_perf_counter_update(counter);
2461 }
2462
2463 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2464 .enable = cpu_clock_perf_counter_enable,
2465 .disable = cpu_clock_perf_counter_disable,
2466 .read = cpu_clock_perf_counter_read,
2467 };
2468
2469 /*
2470 * Software counter: task time clock
2471 */
2472
2473 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2474 {
2475 u64 prev;
2476 s64 delta;
2477
2478 prev = atomic64_xchg(&counter->hw.prev_count, now);
2479 delta = now - prev;
2480 atomic64_add(delta, &counter->count);
2481 }
2482
2483 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2484 {
2485 struct hw_perf_counter *hwc = &counter->hw;
2486 u64 now;
2487
2488 now = counter->ctx->time;
2489
2490 atomic64_set(&hwc->prev_count, now);
2491 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2492 hwc->hrtimer.function = perf_swcounter_hrtimer;
2493 if (hwc->irq_period) {
2494 __hrtimer_start_range_ns(&hwc->hrtimer,
2495 ns_to_ktime(hwc->irq_period), 0,
2496 HRTIMER_MODE_REL, 0);
2497 }
2498
2499 return 0;
2500 }
2501
2502 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2503 {
2504 hrtimer_cancel(&counter->hw.hrtimer);
2505 task_clock_perf_counter_update(counter, counter->ctx->time);
2506
2507 }
2508
2509 static void task_clock_perf_counter_read(struct perf_counter *counter)
2510 {
2511 u64 time;
2512
2513 if (!in_nmi()) {
2514 update_context_time(counter->ctx);
2515 time = counter->ctx->time;
2516 } else {
2517 u64 now = perf_clock();
2518 u64 delta = now - counter->ctx->timestamp;
2519 time = counter->ctx->time + delta;
2520 }
2521
2522 task_clock_perf_counter_update(counter, time);
2523 }
2524
2525 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2526 .enable = task_clock_perf_counter_enable,
2527 .disable = task_clock_perf_counter_disable,
2528 .read = task_clock_perf_counter_read,
2529 };
2530
2531 /*
2532 * Software counter: cpu migrations
2533 */
2534
2535 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2536 {
2537 struct task_struct *curr = counter->ctx->task;
2538
2539 if (curr)
2540 return curr->se.nr_migrations;
2541 return cpu_nr_migrations(smp_processor_id());
2542 }
2543
2544 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2545 {
2546 u64 prev, now;
2547 s64 delta;
2548
2549 prev = atomic64_read(&counter->hw.prev_count);
2550 now = get_cpu_migrations(counter);
2551
2552 atomic64_set(&counter->hw.prev_count, now);
2553
2554 delta = now - prev;
2555
2556 atomic64_add(delta, &counter->count);
2557 }
2558
2559 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2560 {
2561 cpu_migrations_perf_counter_update(counter);
2562 }
2563
2564 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2565 {
2566 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2567 atomic64_set(&counter->hw.prev_count,
2568 get_cpu_migrations(counter));
2569 return 0;
2570 }
2571
2572 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2573 {
2574 cpu_migrations_perf_counter_update(counter);
2575 }
2576
2577 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2578 .enable = cpu_migrations_perf_counter_enable,
2579 .disable = cpu_migrations_perf_counter_disable,
2580 .read = cpu_migrations_perf_counter_read,
2581 };
2582
2583 #ifdef CONFIG_EVENT_PROFILE
2584 void perf_tpcounter_event(int event_id)
2585 {
2586 struct pt_regs *regs = get_irq_regs();
2587
2588 if (!regs)
2589 regs = task_pt_regs(current);
2590
2591 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2592 }
2593
2594 extern int ftrace_profile_enable(int);
2595 extern void ftrace_profile_disable(int);
2596
2597 static void tp_perf_counter_destroy(struct perf_counter *counter)
2598 {
2599 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2600 }
2601
2602 static const struct hw_perf_counter_ops *
2603 tp_perf_counter_init(struct perf_counter *counter)
2604 {
2605 int event_id = perf_event_id(&counter->hw_event);
2606 int ret;
2607
2608 ret = ftrace_profile_enable(event_id);
2609 if (ret)
2610 return NULL;
2611
2612 counter->destroy = tp_perf_counter_destroy;
2613 counter->hw.irq_period = counter->hw_event.irq_period;
2614
2615 return &perf_ops_generic;
2616 }
2617 #else
2618 static const struct hw_perf_counter_ops *
2619 tp_perf_counter_init(struct perf_counter *counter)
2620 {
2621 return NULL;
2622 }
2623 #endif
2624
2625 static const struct hw_perf_counter_ops *
2626 sw_perf_counter_init(struct perf_counter *counter)
2627 {
2628 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2629 const struct hw_perf_counter_ops *hw_ops = NULL;
2630 struct hw_perf_counter *hwc = &counter->hw;
2631
2632 /*
2633 * Software counters (currently) can't in general distinguish
2634 * between user, kernel and hypervisor events.
2635 * However, context switches and cpu migrations are considered
2636 * to be kernel events, and page faults are never hypervisor
2637 * events.
2638 */
2639 switch (perf_event_id(&counter->hw_event)) {
2640 case PERF_COUNT_CPU_CLOCK:
2641 hw_ops = &perf_ops_cpu_clock;
2642
2643 if (hw_event->irq_period && hw_event->irq_period < 10000)
2644 hw_event->irq_period = 10000;
2645 break;
2646 case PERF_COUNT_TASK_CLOCK:
2647 /*
2648 * If the user instantiates this as a per-cpu counter,
2649 * use the cpu_clock counter instead.
2650 */
2651 if (counter->ctx->task)
2652 hw_ops = &perf_ops_task_clock;
2653 else
2654 hw_ops = &perf_ops_cpu_clock;
2655
2656 if (hw_event->irq_period && hw_event->irq_period < 10000)
2657 hw_event->irq_period = 10000;
2658 break;
2659 case PERF_COUNT_PAGE_FAULTS:
2660 case PERF_COUNT_PAGE_FAULTS_MIN:
2661 case PERF_COUNT_PAGE_FAULTS_MAJ:
2662 case PERF_COUNT_CONTEXT_SWITCHES:
2663 hw_ops = &perf_ops_generic;
2664 break;
2665 case PERF_COUNT_CPU_MIGRATIONS:
2666 if (!counter->hw_event.exclude_kernel)
2667 hw_ops = &perf_ops_cpu_migrations;
2668 break;
2669 }
2670
2671 if (hw_ops)
2672 hwc->irq_period = hw_event->irq_period;
2673
2674 return hw_ops;
2675 }
2676
2677 /*
2678 * Allocate and initialize a counter structure
2679 */
2680 static struct perf_counter *
2681 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2682 int cpu,
2683 struct perf_counter_context *ctx,
2684 struct perf_counter *group_leader,
2685 gfp_t gfpflags)
2686 {
2687 const struct hw_perf_counter_ops *hw_ops;
2688 struct perf_counter *counter;
2689 long err;
2690
2691 counter = kzalloc(sizeof(*counter), gfpflags);
2692 if (!counter)
2693 return ERR_PTR(-ENOMEM);
2694
2695 /*
2696 * Single counters are their own group leaders, with an
2697 * empty sibling list:
2698 */
2699 if (!group_leader)
2700 group_leader = counter;
2701
2702 mutex_init(&counter->mutex);
2703 INIT_LIST_HEAD(&counter->list_entry);
2704 INIT_LIST_HEAD(&counter->event_entry);
2705 INIT_LIST_HEAD(&counter->sibling_list);
2706 init_waitqueue_head(&counter->waitq);
2707
2708 mutex_init(&counter->mmap_mutex);
2709
2710 INIT_LIST_HEAD(&counter->child_list);
2711
2712 counter->cpu = cpu;
2713 counter->hw_event = *hw_event;
2714 counter->group_leader = group_leader;
2715 counter->hw_ops = NULL;
2716 counter->ctx = ctx;
2717
2718 counter->state = PERF_COUNTER_STATE_INACTIVE;
2719 if (hw_event->disabled)
2720 counter->state = PERF_COUNTER_STATE_OFF;
2721
2722 hw_ops = NULL;
2723
2724 if (perf_event_raw(hw_event)) {
2725 hw_ops = hw_perf_counter_init(counter);
2726 goto done;
2727 }
2728
2729 switch (perf_event_type(hw_event)) {
2730 case PERF_TYPE_HARDWARE:
2731 hw_ops = hw_perf_counter_init(counter);
2732 break;
2733
2734 case PERF_TYPE_SOFTWARE:
2735 hw_ops = sw_perf_counter_init(counter);
2736 break;
2737
2738 case PERF_TYPE_TRACEPOINT:
2739 hw_ops = tp_perf_counter_init(counter);
2740 break;
2741 }
2742 done:
2743 err = 0;
2744 if (!hw_ops)
2745 err = -EINVAL;
2746 else if (IS_ERR(hw_ops))
2747 err = PTR_ERR(hw_ops);
2748
2749 if (err) {
2750 kfree(counter);
2751 return ERR_PTR(err);
2752 }
2753
2754 counter->hw_ops = hw_ops;
2755
2756 if (counter->hw_event.mmap)
2757 atomic_inc(&nr_mmap_tracking);
2758 if (counter->hw_event.munmap)
2759 atomic_inc(&nr_munmap_tracking);
2760 if (counter->hw_event.comm)
2761 atomic_inc(&nr_comm_tracking);
2762
2763 return counter;
2764 }
2765
2766 /**
2767 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2768 *
2769 * @hw_event_uptr: event type attributes for monitoring/sampling
2770 * @pid: target pid
2771 * @cpu: target cpu
2772 * @group_fd: group leader counter fd
2773 */
2774 SYSCALL_DEFINE5(perf_counter_open,
2775 const struct perf_counter_hw_event __user *, hw_event_uptr,
2776 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2777 {
2778 struct perf_counter *counter, *group_leader;
2779 struct perf_counter_hw_event hw_event;
2780 struct perf_counter_context *ctx;
2781 struct file *counter_file = NULL;
2782 struct file *group_file = NULL;
2783 int fput_needed = 0;
2784 int fput_needed2 = 0;
2785 int ret;
2786
2787 /* for future expandability... */
2788 if (flags)
2789 return -EINVAL;
2790
2791 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2792 return -EFAULT;
2793
2794 /*
2795 * Get the target context (task or percpu):
2796 */
2797 ctx = find_get_context(pid, cpu);
2798 if (IS_ERR(ctx))
2799 return PTR_ERR(ctx);
2800
2801 /*
2802 * Look up the group leader (we will attach this counter to it):
2803 */
2804 group_leader = NULL;
2805 if (group_fd != -1) {
2806 ret = -EINVAL;
2807 group_file = fget_light(group_fd, &fput_needed);
2808 if (!group_file)
2809 goto err_put_context;
2810 if (group_file->f_op != &perf_fops)
2811 goto err_put_context;
2812
2813 group_leader = group_file->private_data;
2814 /*
2815 * Do not allow a recursive hierarchy (this new sibling
2816 * becoming part of another group-sibling):
2817 */
2818 if (group_leader->group_leader != group_leader)
2819 goto err_put_context;
2820 /*
2821 * Do not allow to attach to a group in a different
2822 * task or CPU context:
2823 */
2824 if (group_leader->ctx != ctx)
2825 goto err_put_context;
2826 /*
2827 * Only a group leader can be exclusive or pinned
2828 */
2829 if (hw_event.exclusive || hw_event.pinned)
2830 goto err_put_context;
2831 }
2832
2833 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2834 GFP_KERNEL);
2835 ret = PTR_ERR(counter);
2836 if (IS_ERR(counter))
2837 goto err_put_context;
2838
2839 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2840 if (ret < 0)
2841 goto err_free_put_context;
2842
2843 counter_file = fget_light(ret, &fput_needed2);
2844 if (!counter_file)
2845 goto err_free_put_context;
2846
2847 counter->filp = counter_file;
2848 mutex_lock(&ctx->mutex);
2849 perf_install_in_context(ctx, counter, cpu);
2850 mutex_unlock(&ctx->mutex);
2851
2852 fput_light(counter_file, fput_needed2);
2853
2854 out_fput:
2855 fput_light(group_file, fput_needed);
2856
2857 return ret;
2858
2859 err_free_put_context:
2860 kfree(counter);
2861
2862 err_put_context:
2863 put_context(ctx);
2864
2865 goto out_fput;
2866 }
2867
2868 /*
2869 * Initialize the perf_counter context in a task_struct:
2870 */
2871 static void
2872 __perf_counter_init_context(struct perf_counter_context *ctx,
2873 struct task_struct *task)
2874 {
2875 memset(ctx, 0, sizeof(*ctx));
2876 spin_lock_init(&ctx->lock);
2877 mutex_init(&ctx->mutex);
2878 INIT_LIST_HEAD(&ctx->counter_list);
2879 INIT_LIST_HEAD(&ctx->event_list);
2880 ctx->task = task;
2881 }
2882
2883 /*
2884 * inherit a counter from parent task to child task:
2885 */
2886 static struct perf_counter *
2887 inherit_counter(struct perf_counter *parent_counter,
2888 struct task_struct *parent,
2889 struct perf_counter_context *parent_ctx,
2890 struct task_struct *child,
2891 struct perf_counter *group_leader,
2892 struct perf_counter_context *child_ctx)
2893 {
2894 struct perf_counter *child_counter;
2895
2896 /*
2897 * Instead of creating recursive hierarchies of counters,
2898 * we link inherited counters back to the original parent,
2899 * which has a filp for sure, which we use as the reference
2900 * count:
2901 */
2902 if (parent_counter->parent)
2903 parent_counter = parent_counter->parent;
2904
2905 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2906 parent_counter->cpu, child_ctx,
2907 group_leader, GFP_KERNEL);
2908 if (IS_ERR(child_counter))
2909 return child_counter;
2910
2911 /*
2912 * Link it up in the child's context:
2913 */
2914 child_counter->task = child;
2915 add_counter_to_ctx(child_counter, child_ctx);
2916
2917 child_counter->parent = parent_counter;
2918 /*
2919 * inherit into child's child as well:
2920 */
2921 child_counter->hw_event.inherit = 1;
2922
2923 /*
2924 * Get a reference to the parent filp - we will fput it
2925 * when the child counter exits. This is safe to do because
2926 * we are in the parent and we know that the filp still
2927 * exists and has a nonzero count:
2928 */
2929 atomic_long_inc(&parent_counter->filp->f_count);
2930
2931 /*
2932 * Link this into the parent counter's child list
2933 */
2934 mutex_lock(&parent_counter->mutex);
2935 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2936
2937 /*
2938 * Make the child state follow the state of the parent counter,
2939 * not its hw_event.disabled bit. We hold the parent's mutex,
2940 * so we won't race with perf_counter_{en,dis}able_family.
2941 */
2942 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2943 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2944 else
2945 child_counter->state = PERF_COUNTER_STATE_OFF;
2946
2947 mutex_unlock(&parent_counter->mutex);
2948
2949 return child_counter;
2950 }
2951
2952 static int inherit_group(struct perf_counter *parent_counter,
2953 struct task_struct *parent,
2954 struct perf_counter_context *parent_ctx,
2955 struct task_struct *child,
2956 struct perf_counter_context *child_ctx)
2957 {
2958 struct perf_counter *leader;
2959 struct perf_counter *sub;
2960 struct perf_counter *child_ctr;
2961
2962 leader = inherit_counter(parent_counter, parent, parent_ctx,
2963 child, NULL, child_ctx);
2964 if (IS_ERR(leader))
2965 return PTR_ERR(leader);
2966 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2967 child_ctr = inherit_counter(sub, parent, parent_ctx,
2968 child, leader, child_ctx);
2969 if (IS_ERR(child_ctr))
2970 return PTR_ERR(child_ctr);
2971 }
2972 return 0;
2973 }
2974
2975 static void sync_child_counter(struct perf_counter *child_counter,
2976 struct perf_counter *parent_counter)
2977 {
2978 u64 parent_val, child_val;
2979
2980 parent_val = atomic64_read(&parent_counter->count);
2981 child_val = atomic64_read(&child_counter->count);
2982
2983 /*
2984 * Add back the child's count to the parent's count:
2985 */
2986 atomic64_add(child_val, &parent_counter->count);
2987 atomic64_add(child_counter->total_time_enabled,
2988 &parent_counter->child_total_time_enabled);
2989 atomic64_add(child_counter->total_time_running,
2990 &parent_counter->child_total_time_running);
2991
2992 /*
2993 * Remove this counter from the parent's list
2994 */
2995 mutex_lock(&parent_counter->mutex);
2996 list_del_init(&child_counter->child_list);
2997 mutex_unlock(&parent_counter->mutex);
2998
2999 /*
3000 * Release the parent counter, if this was the last
3001 * reference to it.
3002 */
3003 fput(parent_counter->filp);
3004 }
3005
3006 static void
3007 __perf_counter_exit_task(struct task_struct *child,
3008 struct perf_counter *child_counter,
3009 struct perf_counter_context *child_ctx)
3010 {
3011 struct perf_counter *parent_counter;
3012 struct perf_counter *sub, *tmp;
3013
3014 /*
3015 * If we do not self-reap then we have to wait for the
3016 * child task to unschedule (it will happen for sure),
3017 * so that its counter is at its final count. (This
3018 * condition triggers rarely - child tasks usually get
3019 * off their CPU before the parent has a chance to
3020 * get this far into the reaping action)
3021 */
3022 if (child != current) {
3023 wait_task_inactive(child, 0);
3024 list_del_init(&child_counter->list_entry);
3025 update_counter_times(child_counter);
3026 } else {
3027 struct perf_cpu_context *cpuctx;
3028 unsigned long flags;
3029 u64 perf_flags;
3030
3031 /*
3032 * Disable and unlink this counter.
3033 *
3034 * Be careful about zapping the list - IRQ/NMI context
3035 * could still be processing it:
3036 */
3037 local_irq_save(flags);
3038 perf_flags = hw_perf_save_disable();
3039
3040 cpuctx = &__get_cpu_var(perf_cpu_context);
3041
3042 group_sched_out(child_counter, cpuctx, child_ctx);
3043 update_counter_times(child_counter);
3044
3045 list_del_init(&child_counter->list_entry);
3046
3047 child_ctx->nr_counters--;
3048
3049 hw_perf_restore(perf_flags);
3050 local_irq_restore(flags);
3051 }
3052
3053 parent_counter = child_counter->parent;
3054 /*
3055 * It can happen that parent exits first, and has counters
3056 * that are still around due to the child reference. These
3057 * counters need to be zapped - but otherwise linger.
3058 */
3059 if (parent_counter) {
3060 sync_child_counter(child_counter, parent_counter);
3061 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3062 list_entry) {
3063 if (sub->parent) {
3064 sync_child_counter(sub, sub->parent);
3065 free_counter(sub);
3066 }
3067 }
3068 free_counter(child_counter);
3069 }
3070 }
3071
3072 /*
3073 * When a child task exits, feed back counter values to parent counters.
3074 *
3075 * Note: we may be running in child context, but the PID is not hashed
3076 * anymore so new counters will not be added.
3077 */
3078 void perf_counter_exit_task(struct task_struct *child)
3079 {
3080 struct perf_counter *child_counter, *tmp;
3081 struct perf_counter_context *child_ctx;
3082
3083 child_ctx = &child->perf_counter_ctx;
3084
3085 if (likely(!child_ctx->nr_counters))
3086 return;
3087
3088 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3089 list_entry)
3090 __perf_counter_exit_task(child, child_counter, child_ctx);
3091 }
3092
3093 /*
3094 * Initialize the perf_counter context in task_struct
3095 */
3096 void perf_counter_init_task(struct task_struct *child)
3097 {
3098 struct perf_counter_context *child_ctx, *parent_ctx;
3099 struct perf_counter *counter;
3100 struct task_struct *parent = current;
3101
3102 child_ctx = &child->perf_counter_ctx;
3103 parent_ctx = &parent->perf_counter_ctx;
3104
3105 __perf_counter_init_context(child_ctx, child);
3106
3107 /*
3108 * This is executed from the parent task context, so inherit
3109 * counters that have been marked for cloning:
3110 */
3111
3112 if (likely(!parent_ctx->nr_counters))
3113 return;
3114
3115 /*
3116 * Lock the parent list. No need to lock the child - not PID
3117 * hashed yet and not running, so nobody can access it.
3118 */
3119 mutex_lock(&parent_ctx->mutex);
3120
3121 /*
3122 * We dont have to disable NMIs - we are only looking at
3123 * the list, not manipulating it:
3124 */
3125 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3126 if (!counter->hw_event.inherit)
3127 continue;
3128
3129 if (inherit_group(counter, parent,
3130 parent_ctx, child, child_ctx))
3131 break;
3132 }
3133
3134 mutex_unlock(&parent_ctx->mutex);
3135 }
3136
3137 static void __cpuinit perf_counter_init_cpu(int cpu)
3138 {
3139 struct perf_cpu_context *cpuctx;
3140
3141 cpuctx = &per_cpu(perf_cpu_context, cpu);
3142 __perf_counter_init_context(&cpuctx->ctx, NULL);
3143
3144 mutex_lock(&perf_resource_mutex);
3145 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3146 mutex_unlock(&perf_resource_mutex);
3147
3148 hw_perf_counter_setup(cpu);
3149 }
3150
3151 #ifdef CONFIG_HOTPLUG_CPU
3152 static void __perf_counter_exit_cpu(void *info)
3153 {
3154 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3155 struct perf_counter_context *ctx = &cpuctx->ctx;
3156 struct perf_counter *counter, *tmp;
3157
3158 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3159 __perf_counter_remove_from_context(counter);
3160 }
3161 static void perf_counter_exit_cpu(int cpu)
3162 {
3163 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3164 struct perf_counter_context *ctx = &cpuctx->ctx;
3165
3166 mutex_lock(&ctx->mutex);
3167 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3168 mutex_unlock(&ctx->mutex);
3169 }
3170 #else
3171 static inline void perf_counter_exit_cpu(int cpu) { }
3172 #endif
3173
3174 static int __cpuinit
3175 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3176 {
3177 unsigned int cpu = (long)hcpu;
3178
3179 switch (action) {
3180
3181 case CPU_UP_PREPARE:
3182 case CPU_UP_PREPARE_FROZEN:
3183 perf_counter_init_cpu(cpu);
3184 break;
3185
3186 case CPU_DOWN_PREPARE:
3187 case CPU_DOWN_PREPARE_FROZEN:
3188 perf_counter_exit_cpu(cpu);
3189 break;
3190
3191 default:
3192 break;
3193 }
3194
3195 return NOTIFY_OK;
3196 }
3197
3198 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3199 .notifier_call = perf_cpu_notify,
3200 };
3201
3202 static int __init perf_counter_init(void)
3203 {
3204 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3205 (void *)(long)smp_processor_id());
3206 register_cpu_notifier(&perf_cpu_nb);
3207
3208 return 0;
3209 }
3210 early_initcall(perf_counter_init);
3211
3212 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3213 {
3214 return sprintf(buf, "%d\n", perf_reserved_percpu);
3215 }
3216
3217 static ssize_t
3218 perf_set_reserve_percpu(struct sysdev_class *class,
3219 const char *buf,
3220 size_t count)
3221 {
3222 struct perf_cpu_context *cpuctx;
3223 unsigned long val;
3224 int err, cpu, mpt;
3225
3226 err = strict_strtoul(buf, 10, &val);
3227 if (err)
3228 return err;
3229 if (val > perf_max_counters)
3230 return -EINVAL;
3231
3232 mutex_lock(&perf_resource_mutex);
3233 perf_reserved_percpu = val;
3234 for_each_online_cpu(cpu) {
3235 cpuctx = &per_cpu(perf_cpu_context, cpu);
3236 spin_lock_irq(&cpuctx->ctx.lock);
3237 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3238 perf_max_counters - perf_reserved_percpu);
3239 cpuctx->max_pertask = mpt;
3240 spin_unlock_irq(&cpuctx->ctx.lock);
3241 }
3242 mutex_unlock(&perf_resource_mutex);
3243
3244 return count;
3245 }
3246
3247 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3248 {
3249 return sprintf(buf, "%d\n", perf_overcommit);
3250 }
3251
3252 static ssize_t
3253 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3254 {
3255 unsigned long val;
3256 int err;
3257
3258 err = strict_strtoul(buf, 10, &val);
3259 if (err)
3260 return err;
3261 if (val > 1)
3262 return -EINVAL;
3263
3264 mutex_lock(&perf_resource_mutex);
3265 perf_overcommit = val;
3266 mutex_unlock(&perf_resource_mutex);
3267
3268 return count;
3269 }
3270
3271 static SYSDEV_CLASS_ATTR(
3272 reserve_percpu,
3273 0644,
3274 perf_show_reserve_percpu,
3275 perf_set_reserve_percpu
3276 );
3277
3278 static SYSDEV_CLASS_ATTR(
3279 overcommit,
3280 0644,
3281 perf_show_overcommit,
3282 perf_set_overcommit
3283 );
3284
3285 static struct attribute *perfclass_attrs[] = {
3286 &attr_reserve_percpu.attr,
3287 &attr_overcommit.attr,
3288 NULL
3289 };
3290
3291 static struct attribute_group perfclass_attr_group = {
3292 .attrs = perfclass_attrs,
3293 .name = "perf_counters",
3294 };
3295
3296 static int __init perf_counter_sysfs_init(void)
3297 {
3298 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3299 &perfclass_attr_group);
3300 }
3301 device_initcall(perf_counter_sysfs_init);