perf_counter: move the event overflow output bits to record_type
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 *
8 * For licensing details see kernel-base/COPYING
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33 * Each CPU has a list of per CPU counters:
34 */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42 * Mutex for (sysadmin-configurable) counter reservations:
43 */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47 * Architecture provided APIs - weak aliases:
48 */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52 return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void) { return 0; }
56 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59 struct perf_cpu_context *cpuctx,
60 struct perf_counter_context *ctx, int cpu)
61 {
62 return 0;
63 }
64
65 void __weak perf_counter_print_debug(void) { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70 struct perf_counter *group_leader = counter->group_leader;
71
72 /*
73 * Depending on whether it is a standalone or sibling counter,
74 * add it straight to the context's counter list, or to the group
75 * leader's sibling list:
76 */
77 if (counter->group_leader == counter)
78 list_add_tail(&counter->list_entry, &ctx->counter_list);
79 else {
80 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81 group_leader->nr_siblings++;
82 }
83
84 list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90 struct perf_counter *sibling, *tmp;
91
92 list_del_init(&counter->list_entry);
93 list_del_rcu(&counter->event_entry);
94
95 if (counter->group_leader != counter)
96 counter->group_leader->nr_siblings--;
97
98 /*
99 * If this was a group counter with sibling counters then
100 * upgrade the siblings to singleton counters by adding them
101 * to the context list directly:
102 */
103 list_for_each_entry_safe(sibling, tmp,
104 &counter->sibling_list, list_entry) {
105
106 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 sibling->group_leader = sibling;
108 }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113 struct perf_cpu_context *cpuctx,
114 struct perf_counter_context *ctx)
115 {
116 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117 return;
118
119 counter->state = PERF_COUNTER_STATE_INACTIVE;
120 counter->tstamp_stopped = ctx->time_now;
121 counter->hw_ops->disable(counter);
122 counter->oncpu = -1;
123
124 if (!is_software_counter(counter))
125 cpuctx->active_oncpu--;
126 ctx->nr_active--;
127 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133 struct perf_cpu_context *cpuctx,
134 struct perf_counter_context *ctx)
135 {
136 struct perf_counter *counter;
137
138 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139 return;
140
141 counter_sched_out(group_counter, cpuctx, ctx);
142
143 /*
144 * Schedule out siblings (if any):
145 */
146 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147 counter_sched_out(counter, cpuctx, ctx);
148
149 if (group_counter->hw_event.exclusive)
150 cpuctx->exclusive = 0;
151 }
152
153 /*
154 * Cross CPU call to remove a performance counter
155 *
156 * We disable the counter on the hardware level first. After that we
157 * remove it from the context list.
158 */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162 struct perf_counter *counter = info;
163 struct perf_counter_context *ctx = counter->ctx;
164 unsigned long flags;
165 u64 perf_flags;
166
167 /*
168 * If this is a task context, we need to check whether it is
169 * the current task context of this cpu. If not it has been
170 * scheduled out before the smp call arrived.
171 */
172 if (ctx->task && cpuctx->task_ctx != ctx)
173 return;
174
175 curr_rq_lock_irq_save(&flags);
176 spin_lock(&ctx->lock);
177
178 counter_sched_out(counter, cpuctx, ctx);
179
180 counter->task = NULL;
181 ctx->nr_counters--;
182
183 /*
184 * Protect the list operation against NMI by disabling the
185 * counters on a global level. NOP for non NMI based counters.
186 */
187 perf_flags = hw_perf_save_disable();
188 list_del_counter(counter, ctx);
189 hw_perf_restore(perf_flags);
190
191 if (!ctx->task) {
192 /*
193 * Allow more per task counters with respect to the
194 * reservation:
195 */
196 cpuctx->max_pertask =
197 min(perf_max_counters - ctx->nr_counters,
198 perf_max_counters - perf_reserved_percpu);
199 }
200
201 spin_unlock(&ctx->lock);
202 curr_rq_unlock_irq_restore(&flags);
203 }
204
205
206 /*
207 * Remove the counter from a task's (or a CPU's) list of counters.
208 *
209 * Must be called with counter->mutex and ctx->mutex held.
210 *
211 * CPU counters are removed with a smp call. For task counters we only
212 * call when the task is on a CPU.
213 */
214 static void perf_counter_remove_from_context(struct perf_counter *counter)
215 {
216 struct perf_counter_context *ctx = counter->ctx;
217 struct task_struct *task = ctx->task;
218
219 if (!task) {
220 /*
221 * Per cpu counters are removed via an smp call and
222 * the removal is always sucessful.
223 */
224 smp_call_function_single(counter->cpu,
225 __perf_counter_remove_from_context,
226 counter, 1);
227 return;
228 }
229
230 retry:
231 task_oncpu_function_call(task, __perf_counter_remove_from_context,
232 counter);
233
234 spin_lock_irq(&ctx->lock);
235 /*
236 * If the context is active we need to retry the smp call.
237 */
238 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
239 spin_unlock_irq(&ctx->lock);
240 goto retry;
241 }
242
243 /*
244 * The lock prevents that this context is scheduled in so we
245 * can remove the counter safely, if the call above did not
246 * succeed.
247 */
248 if (!list_empty(&counter->list_entry)) {
249 ctx->nr_counters--;
250 list_del_counter(counter, ctx);
251 counter->task = NULL;
252 }
253 spin_unlock_irq(&ctx->lock);
254 }
255
256 /*
257 * Get the current time for this context.
258 * If this is a task context, we use the task's task clock,
259 * or for a per-cpu context, we use the cpu clock.
260 */
261 static u64 get_context_time(struct perf_counter_context *ctx, int update)
262 {
263 struct task_struct *curr = ctx->task;
264
265 if (!curr)
266 return cpu_clock(smp_processor_id());
267
268 return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
269 }
270
271 /*
272 * Update the record of the current time in a context.
273 */
274 static void update_context_time(struct perf_counter_context *ctx, int update)
275 {
276 ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
277 }
278
279 /*
280 * Update the total_time_enabled and total_time_running fields for a counter.
281 */
282 static void update_counter_times(struct perf_counter *counter)
283 {
284 struct perf_counter_context *ctx = counter->ctx;
285 u64 run_end;
286
287 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
288 counter->total_time_enabled = ctx->time_now -
289 counter->tstamp_enabled;
290 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
291 run_end = counter->tstamp_stopped;
292 else
293 run_end = ctx->time_now;
294 counter->total_time_running = run_end - counter->tstamp_running;
295 }
296 }
297
298 /*
299 * Update total_time_enabled and total_time_running for all counters in a group.
300 */
301 static void update_group_times(struct perf_counter *leader)
302 {
303 struct perf_counter *counter;
304
305 update_counter_times(leader);
306 list_for_each_entry(counter, &leader->sibling_list, list_entry)
307 update_counter_times(counter);
308 }
309
310 /*
311 * Cross CPU call to disable a performance counter
312 */
313 static void __perf_counter_disable(void *info)
314 {
315 struct perf_counter *counter = info;
316 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
317 struct perf_counter_context *ctx = counter->ctx;
318 unsigned long flags;
319
320 /*
321 * If this is a per-task counter, need to check whether this
322 * counter's task is the current task on this cpu.
323 */
324 if (ctx->task && cpuctx->task_ctx != ctx)
325 return;
326
327 curr_rq_lock_irq_save(&flags);
328 spin_lock(&ctx->lock);
329
330 /*
331 * If the counter is on, turn it off.
332 * If it is in error state, leave it in error state.
333 */
334 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335 update_context_time(ctx, 1);
336 update_counter_times(counter);
337 if (counter == counter->group_leader)
338 group_sched_out(counter, cpuctx, ctx);
339 else
340 counter_sched_out(counter, cpuctx, ctx);
341 counter->state = PERF_COUNTER_STATE_OFF;
342 }
343
344 spin_unlock(&ctx->lock);
345 curr_rq_unlock_irq_restore(&flags);
346 }
347
348 /*
349 * Disable a counter.
350 */
351 static void perf_counter_disable(struct perf_counter *counter)
352 {
353 struct perf_counter_context *ctx = counter->ctx;
354 struct task_struct *task = ctx->task;
355
356 if (!task) {
357 /*
358 * Disable the counter on the cpu that it's on
359 */
360 smp_call_function_single(counter->cpu, __perf_counter_disable,
361 counter, 1);
362 return;
363 }
364
365 retry:
366 task_oncpu_function_call(task, __perf_counter_disable, counter);
367
368 spin_lock_irq(&ctx->lock);
369 /*
370 * If the counter is still active, we need to retry the cross-call.
371 */
372 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
373 spin_unlock_irq(&ctx->lock);
374 goto retry;
375 }
376
377 /*
378 * Since we have the lock this context can't be scheduled
379 * in, so we can change the state safely.
380 */
381 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
382 update_counter_times(counter);
383 counter->state = PERF_COUNTER_STATE_OFF;
384 }
385
386 spin_unlock_irq(&ctx->lock);
387 }
388
389 /*
390 * Disable a counter and all its children.
391 */
392 static void perf_counter_disable_family(struct perf_counter *counter)
393 {
394 struct perf_counter *child;
395
396 perf_counter_disable(counter);
397
398 /*
399 * Lock the mutex to protect the list of children
400 */
401 mutex_lock(&counter->mutex);
402 list_for_each_entry(child, &counter->child_list, child_list)
403 perf_counter_disable(child);
404 mutex_unlock(&counter->mutex);
405 }
406
407 static int
408 counter_sched_in(struct perf_counter *counter,
409 struct perf_cpu_context *cpuctx,
410 struct perf_counter_context *ctx,
411 int cpu)
412 {
413 if (counter->state <= PERF_COUNTER_STATE_OFF)
414 return 0;
415
416 counter->state = PERF_COUNTER_STATE_ACTIVE;
417 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
418 /*
419 * The new state must be visible before we turn it on in the hardware:
420 */
421 smp_wmb();
422
423 if (counter->hw_ops->enable(counter)) {
424 counter->state = PERF_COUNTER_STATE_INACTIVE;
425 counter->oncpu = -1;
426 return -EAGAIN;
427 }
428
429 counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
430
431 if (!is_software_counter(counter))
432 cpuctx->active_oncpu++;
433 ctx->nr_active++;
434
435 if (counter->hw_event.exclusive)
436 cpuctx->exclusive = 1;
437
438 return 0;
439 }
440
441 /*
442 * Return 1 for a group consisting entirely of software counters,
443 * 0 if the group contains any hardware counters.
444 */
445 static int is_software_only_group(struct perf_counter *leader)
446 {
447 struct perf_counter *counter;
448
449 if (!is_software_counter(leader))
450 return 0;
451
452 list_for_each_entry(counter, &leader->sibling_list, list_entry)
453 if (!is_software_counter(counter))
454 return 0;
455
456 return 1;
457 }
458
459 /*
460 * Work out whether we can put this counter group on the CPU now.
461 */
462 static int group_can_go_on(struct perf_counter *counter,
463 struct perf_cpu_context *cpuctx,
464 int can_add_hw)
465 {
466 /*
467 * Groups consisting entirely of software counters can always go on.
468 */
469 if (is_software_only_group(counter))
470 return 1;
471 /*
472 * If an exclusive group is already on, no other hardware
473 * counters can go on.
474 */
475 if (cpuctx->exclusive)
476 return 0;
477 /*
478 * If this group is exclusive and there are already
479 * counters on the CPU, it can't go on.
480 */
481 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
482 return 0;
483 /*
484 * Otherwise, try to add it if all previous groups were able
485 * to go on.
486 */
487 return can_add_hw;
488 }
489
490 static void add_counter_to_ctx(struct perf_counter *counter,
491 struct perf_counter_context *ctx)
492 {
493 list_add_counter(counter, ctx);
494 ctx->nr_counters++;
495 counter->prev_state = PERF_COUNTER_STATE_OFF;
496 counter->tstamp_enabled = ctx->time_now;
497 counter->tstamp_running = ctx->time_now;
498 counter->tstamp_stopped = ctx->time_now;
499 }
500
501 /*
502 * Cross CPU call to install and enable a performance counter
503 */
504 static void __perf_install_in_context(void *info)
505 {
506 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
507 struct perf_counter *counter = info;
508 struct perf_counter_context *ctx = counter->ctx;
509 struct perf_counter *leader = counter->group_leader;
510 int cpu = smp_processor_id();
511 unsigned long flags;
512 u64 perf_flags;
513 int err;
514
515 /*
516 * If this is a task context, we need to check whether it is
517 * the current task context of this cpu. If not it has been
518 * scheduled out before the smp call arrived.
519 */
520 if (ctx->task && cpuctx->task_ctx != ctx)
521 return;
522
523 curr_rq_lock_irq_save(&flags);
524 spin_lock(&ctx->lock);
525 update_context_time(ctx, 1);
526
527 /*
528 * Protect the list operation against NMI by disabling the
529 * counters on a global level. NOP for non NMI based counters.
530 */
531 perf_flags = hw_perf_save_disable();
532
533 add_counter_to_ctx(counter, ctx);
534
535 /*
536 * Don't put the counter on if it is disabled or if
537 * it is in a group and the group isn't on.
538 */
539 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
540 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
541 goto unlock;
542
543 /*
544 * An exclusive counter can't go on if there are already active
545 * hardware counters, and no hardware counter can go on if there
546 * is already an exclusive counter on.
547 */
548 if (!group_can_go_on(counter, cpuctx, 1))
549 err = -EEXIST;
550 else
551 err = counter_sched_in(counter, cpuctx, ctx, cpu);
552
553 if (err) {
554 /*
555 * This counter couldn't go on. If it is in a group
556 * then we have to pull the whole group off.
557 * If the counter group is pinned then put it in error state.
558 */
559 if (leader != counter)
560 group_sched_out(leader, cpuctx, ctx);
561 if (leader->hw_event.pinned) {
562 update_group_times(leader);
563 leader->state = PERF_COUNTER_STATE_ERROR;
564 }
565 }
566
567 if (!err && !ctx->task && cpuctx->max_pertask)
568 cpuctx->max_pertask--;
569
570 unlock:
571 hw_perf_restore(perf_flags);
572
573 spin_unlock(&ctx->lock);
574 curr_rq_unlock_irq_restore(&flags);
575 }
576
577 /*
578 * Attach a performance counter to a context
579 *
580 * First we add the counter to the list with the hardware enable bit
581 * in counter->hw_config cleared.
582 *
583 * If the counter is attached to a task which is on a CPU we use a smp
584 * call to enable it in the task context. The task might have been
585 * scheduled away, but we check this in the smp call again.
586 *
587 * Must be called with ctx->mutex held.
588 */
589 static void
590 perf_install_in_context(struct perf_counter_context *ctx,
591 struct perf_counter *counter,
592 int cpu)
593 {
594 struct task_struct *task = ctx->task;
595
596 if (!task) {
597 /*
598 * Per cpu counters are installed via an smp call and
599 * the install is always sucessful.
600 */
601 smp_call_function_single(cpu, __perf_install_in_context,
602 counter, 1);
603 return;
604 }
605
606 counter->task = task;
607 retry:
608 task_oncpu_function_call(task, __perf_install_in_context,
609 counter);
610
611 spin_lock_irq(&ctx->lock);
612 /*
613 * we need to retry the smp call.
614 */
615 if (ctx->is_active && list_empty(&counter->list_entry)) {
616 spin_unlock_irq(&ctx->lock);
617 goto retry;
618 }
619
620 /*
621 * The lock prevents that this context is scheduled in so we
622 * can add the counter safely, if it the call above did not
623 * succeed.
624 */
625 if (list_empty(&counter->list_entry))
626 add_counter_to_ctx(counter, ctx);
627 spin_unlock_irq(&ctx->lock);
628 }
629
630 /*
631 * Cross CPU call to enable a performance counter
632 */
633 static void __perf_counter_enable(void *info)
634 {
635 struct perf_counter *counter = info;
636 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
637 struct perf_counter_context *ctx = counter->ctx;
638 struct perf_counter *leader = counter->group_leader;
639 unsigned long flags;
640 int err;
641
642 /*
643 * If this is a per-task counter, need to check whether this
644 * counter's task is the current task on this cpu.
645 */
646 if (ctx->task && cpuctx->task_ctx != ctx)
647 return;
648
649 curr_rq_lock_irq_save(&flags);
650 spin_lock(&ctx->lock);
651 update_context_time(ctx, 1);
652
653 counter->prev_state = counter->state;
654 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
655 goto unlock;
656 counter->state = PERF_COUNTER_STATE_INACTIVE;
657 counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
658
659 /*
660 * If the counter is in a group and isn't the group leader,
661 * then don't put it on unless the group is on.
662 */
663 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
664 goto unlock;
665
666 if (!group_can_go_on(counter, cpuctx, 1))
667 err = -EEXIST;
668 else
669 err = counter_sched_in(counter, cpuctx, ctx,
670 smp_processor_id());
671
672 if (err) {
673 /*
674 * If this counter can't go on and it's part of a
675 * group, then the whole group has to come off.
676 */
677 if (leader != counter)
678 group_sched_out(leader, cpuctx, ctx);
679 if (leader->hw_event.pinned) {
680 update_group_times(leader);
681 leader->state = PERF_COUNTER_STATE_ERROR;
682 }
683 }
684
685 unlock:
686 spin_unlock(&ctx->lock);
687 curr_rq_unlock_irq_restore(&flags);
688 }
689
690 /*
691 * Enable a counter.
692 */
693 static void perf_counter_enable(struct perf_counter *counter)
694 {
695 struct perf_counter_context *ctx = counter->ctx;
696 struct task_struct *task = ctx->task;
697
698 if (!task) {
699 /*
700 * Enable the counter on the cpu that it's on
701 */
702 smp_call_function_single(counter->cpu, __perf_counter_enable,
703 counter, 1);
704 return;
705 }
706
707 spin_lock_irq(&ctx->lock);
708 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
709 goto out;
710
711 /*
712 * If the counter is in error state, clear that first.
713 * That way, if we see the counter in error state below, we
714 * know that it has gone back into error state, as distinct
715 * from the task having been scheduled away before the
716 * cross-call arrived.
717 */
718 if (counter->state == PERF_COUNTER_STATE_ERROR)
719 counter->state = PERF_COUNTER_STATE_OFF;
720
721 retry:
722 spin_unlock_irq(&ctx->lock);
723 task_oncpu_function_call(task, __perf_counter_enable, counter);
724
725 spin_lock_irq(&ctx->lock);
726
727 /*
728 * If the context is active and the counter is still off,
729 * we need to retry the cross-call.
730 */
731 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
732 goto retry;
733
734 /*
735 * Since we have the lock this context can't be scheduled
736 * in, so we can change the state safely.
737 */
738 if (counter->state == PERF_COUNTER_STATE_OFF) {
739 counter->state = PERF_COUNTER_STATE_INACTIVE;
740 counter->tstamp_enabled = ctx->time_now -
741 counter->total_time_enabled;
742 }
743 out:
744 spin_unlock_irq(&ctx->lock);
745 }
746
747 /*
748 * Enable a counter and all its children.
749 */
750 static void perf_counter_enable_family(struct perf_counter *counter)
751 {
752 struct perf_counter *child;
753
754 perf_counter_enable(counter);
755
756 /*
757 * Lock the mutex to protect the list of children
758 */
759 mutex_lock(&counter->mutex);
760 list_for_each_entry(child, &counter->child_list, child_list)
761 perf_counter_enable(child);
762 mutex_unlock(&counter->mutex);
763 }
764
765 void __perf_counter_sched_out(struct perf_counter_context *ctx,
766 struct perf_cpu_context *cpuctx)
767 {
768 struct perf_counter *counter;
769 u64 flags;
770
771 spin_lock(&ctx->lock);
772 ctx->is_active = 0;
773 if (likely(!ctx->nr_counters))
774 goto out;
775 update_context_time(ctx, 0);
776
777 flags = hw_perf_save_disable();
778 if (ctx->nr_active) {
779 list_for_each_entry(counter, &ctx->counter_list, list_entry)
780 group_sched_out(counter, cpuctx, ctx);
781 }
782 hw_perf_restore(flags);
783 out:
784 spin_unlock(&ctx->lock);
785 }
786
787 /*
788 * Called from scheduler to remove the counters of the current task,
789 * with interrupts disabled.
790 *
791 * We stop each counter and update the counter value in counter->count.
792 *
793 * This does not protect us against NMI, but disable()
794 * sets the disabled bit in the control field of counter _before_
795 * accessing the counter control register. If a NMI hits, then it will
796 * not restart the counter.
797 */
798 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
799 {
800 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
801 struct perf_counter_context *ctx = &task->perf_counter_ctx;
802 struct pt_regs *regs;
803
804 if (likely(!cpuctx->task_ctx))
805 return;
806
807 regs = task_pt_regs(task);
808 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
809 __perf_counter_sched_out(ctx, cpuctx);
810
811 cpuctx->task_ctx = NULL;
812 }
813
814 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
815 {
816 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
817 }
818
819 static int
820 group_sched_in(struct perf_counter *group_counter,
821 struct perf_cpu_context *cpuctx,
822 struct perf_counter_context *ctx,
823 int cpu)
824 {
825 struct perf_counter *counter, *partial_group;
826 int ret;
827
828 if (group_counter->state == PERF_COUNTER_STATE_OFF)
829 return 0;
830
831 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
832 if (ret)
833 return ret < 0 ? ret : 0;
834
835 group_counter->prev_state = group_counter->state;
836 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
837 return -EAGAIN;
838
839 /*
840 * Schedule in siblings as one group (if any):
841 */
842 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
843 counter->prev_state = counter->state;
844 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
845 partial_group = counter;
846 goto group_error;
847 }
848 }
849
850 return 0;
851
852 group_error:
853 /*
854 * Groups can be scheduled in as one unit only, so undo any
855 * partial group before returning:
856 */
857 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
858 if (counter == partial_group)
859 break;
860 counter_sched_out(counter, cpuctx, ctx);
861 }
862 counter_sched_out(group_counter, cpuctx, ctx);
863
864 return -EAGAIN;
865 }
866
867 static void
868 __perf_counter_sched_in(struct perf_counter_context *ctx,
869 struct perf_cpu_context *cpuctx, int cpu)
870 {
871 struct perf_counter *counter;
872 u64 flags;
873 int can_add_hw = 1;
874
875 spin_lock(&ctx->lock);
876 ctx->is_active = 1;
877 if (likely(!ctx->nr_counters))
878 goto out;
879
880 /*
881 * Add any time since the last sched_out to the lost time
882 * so it doesn't get included in the total_time_enabled and
883 * total_time_running measures for counters in the context.
884 */
885 ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
886
887 flags = hw_perf_save_disable();
888
889 /*
890 * First go through the list and put on any pinned groups
891 * in order to give them the best chance of going on.
892 */
893 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
894 if (counter->state <= PERF_COUNTER_STATE_OFF ||
895 !counter->hw_event.pinned)
896 continue;
897 if (counter->cpu != -1 && counter->cpu != cpu)
898 continue;
899
900 if (group_can_go_on(counter, cpuctx, 1))
901 group_sched_in(counter, cpuctx, ctx, cpu);
902
903 /*
904 * If this pinned group hasn't been scheduled,
905 * put it in error state.
906 */
907 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
908 update_group_times(counter);
909 counter->state = PERF_COUNTER_STATE_ERROR;
910 }
911 }
912
913 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
914 /*
915 * Ignore counters in OFF or ERROR state, and
916 * ignore pinned counters since we did them already.
917 */
918 if (counter->state <= PERF_COUNTER_STATE_OFF ||
919 counter->hw_event.pinned)
920 continue;
921
922 /*
923 * Listen to the 'cpu' scheduling filter constraint
924 * of counters:
925 */
926 if (counter->cpu != -1 && counter->cpu != cpu)
927 continue;
928
929 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
930 if (group_sched_in(counter, cpuctx, ctx, cpu))
931 can_add_hw = 0;
932 }
933 }
934 hw_perf_restore(flags);
935 out:
936 spin_unlock(&ctx->lock);
937 }
938
939 /*
940 * Called from scheduler to add the counters of the current task
941 * with interrupts disabled.
942 *
943 * We restore the counter value and then enable it.
944 *
945 * This does not protect us against NMI, but enable()
946 * sets the enabled bit in the control field of counter _before_
947 * accessing the counter control register. If a NMI hits, then it will
948 * keep the counter running.
949 */
950 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
951 {
952 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
953 struct perf_counter_context *ctx = &task->perf_counter_ctx;
954
955 __perf_counter_sched_in(ctx, cpuctx, cpu);
956 cpuctx->task_ctx = ctx;
957 }
958
959 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
960 {
961 struct perf_counter_context *ctx = &cpuctx->ctx;
962
963 __perf_counter_sched_in(ctx, cpuctx, cpu);
964 }
965
966 int perf_counter_task_disable(void)
967 {
968 struct task_struct *curr = current;
969 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
970 struct perf_counter *counter;
971 unsigned long flags;
972 u64 perf_flags;
973 int cpu;
974
975 if (likely(!ctx->nr_counters))
976 return 0;
977
978 curr_rq_lock_irq_save(&flags);
979 cpu = smp_processor_id();
980
981 /* force the update of the task clock: */
982 __task_delta_exec(curr, 1);
983
984 perf_counter_task_sched_out(curr, cpu);
985
986 spin_lock(&ctx->lock);
987
988 /*
989 * Disable all the counters:
990 */
991 perf_flags = hw_perf_save_disable();
992
993 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994 if (counter->state != PERF_COUNTER_STATE_ERROR) {
995 update_group_times(counter);
996 counter->state = PERF_COUNTER_STATE_OFF;
997 }
998 }
999
1000 hw_perf_restore(perf_flags);
1001
1002 spin_unlock(&ctx->lock);
1003
1004 curr_rq_unlock_irq_restore(&flags);
1005
1006 return 0;
1007 }
1008
1009 int perf_counter_task_enable(void)
1010 {
1011 struct task_struct *curr = current;
1012 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1013 struct perf_counter *counter;
1014 unsigned long flags;
1015 u64 perf_flags;
1016 int cpu;
1017
1018 if (likely(!ctx->nr_counters))
1019 return 0;
1020
1021 curr_rq_lock_irq_save(&flags);
1022 cpu = smp_processor_id();
1023
1024 /* force the update of the task clock: */
1025 __task_delta_exec(curr, 1);
1026
1027 perf_counter_task_sched_out(curr, cpu);
1028
1029 spin_lock(&ctx->lock);
1030
1031 /*
1032 * Disable all the counters:
1033 */
1034 perf_flags = hw_perf_save_disable();
1035
1036 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1037 if (counter->state > PERF_COUNTER_STATE_OFF)
1038 continue;
1039 counter->state = PERF_COUNTER_STATE_INACTIVE;
1040 counter->tstamp_enabled = ctx->time_now -
1041 counter->total_time_enabled;
1042 counter->hw_event.disabled = 0;
1043 }
1044 hw_perf_restore(perf_flags);
1045
1046 spin_unlock(&ctx->lock);
1047
1048 perf_counter_task_sched_in(curr, cpu);
1049
1050 curr_rq_unlock_irq_restore(&flags);
1051
1052 return 0;
1053 }
1054
1055 /*
1056 * Round-robin a context's counters:
1057 */
1058 static void rotate_ctx(struct perf_counter_context *ctx)
1059 {
1060 struct perf_counter *counter;
1061 u64 perf_flags;
1062
1063 if (!ctx->nr_counters)
1064 return;
1065
1066 spin_lock(&ctx->lock);
1067 /*
1068 * Rotate the first entry last (works just fine for group counters too):
1069 */
1070 perf_flags = hw_perf_save_disable();
1071 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1072 list_move_tail(&counter->list_entry, &ctx->counter_list);
1073 break;
1074 }
1075 hw_perf_restore(perf_flags);
1076
1077 spin_unlock(&ctx->lock);
1078 }
1079
1080 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1081 {
1082 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1083 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1084 const int rotate_percpu = 0;
1085
1086 if (rotate_percpu)
1087 perf_counter_cpu_sched_out(cpuctx);
1088 perf_counter_task_sched_out(curr, cpu);
1089
1090 if (rotate_percpu)
1091 rotate_ctx(&cpuctx->ctx);
1092 rotate_ctx(ctx);
1093
1094 if (rotate_percpu)
1095 perf_counter_cpu_sched_in(cpuctx, cpu);
1096 perf_counter_task_sched_in(curr, cpu);
1097 }
1098
1099 /*
1100 * Cross CPU call to read the hardware counter
1101 */
1102 static void __read(void *info)
1103 {
1104 struct perf_counter *counter = info;
1105 struct perf_counter_context *ctx = counter->ctx;
1106 unsigned long flags;
1107
1108 curr_rq_lock_irq_save(&flags);
1109 if (ctx->is_active)
1110 update_context_time(ctx, 1);
1111 counter->hw_ops->read(counter);
1112 update_counter_times(counter);
1113 curr_rq_unlock_irq_restore(&flags);
1114 }
1115
1116 static u64 perf_counter_read(struct perf_counter *counter)
1117 {
1118 /*
1119 * If counter is enabled and currently active on a CPU, update the
1120 * value in the counter structure:
1121 */
1122 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1123 smp_call_function_single(counter->oncpu,
1124 __read, counter, 1);
1125 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1126 update_counter_times(counter);
1127 }
1128
1129 return atomic64_read(&counter->count);
1130 }
1131
1132 static void put_context(struct perf_counter_context *ctx)
1133 {
1134 if (ctx->task)
1135 put_task_struct(ctx->task);
1136 }
1137
1138 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1139 {
1140 struct perf_cpu_context *cpuctx;
1141 struct perf_counter_context *ctx;
1142 struct task_struct *task;
1143
1144 /*
1145 * If cpu is not a wildcard then this is a percpu counter:
1146 */
1147 if (cpu != -1) {
1148 /* Must be root to operate on a CPU counter: */
1149 if (!capable(CAP_SYS_ADMIN))
1150 return ERR_PTR(-EACCES);
1151
1152 if (cpu < 0 || cpu > num_possible_cpus())
1153 return ERR_PTR(-EINVAL);
1154
1155 /*
1156 * We could be clever and allow to attach a counter to an
1157 * offline CPU and activate it when the CPU comes up, but
1158 * that's for later.
1159 */
1160 if (!cpu_isset(cpu, cpu_online_map))
1161 return ERR_PTR(-ENODEV);
1162
1163 cpuctx = &per_cpu(perf_cpu_context, cpu);
1164 ctx = &cpuctx->ctx;
1165
1166 return ctx;
1167 }
1168
1169 rcu_read_lock();
1170 if (!pid)
1171 task = current;
1172 else
1173 task = find_task_by_vpid(pid);
1174 if (task)
1175 get_task_struct(task);
1176 rcu_read_unlock();
1177
1178 if (!task)
1179 return ERR_PTR(-ESRCH);
1180
1181 ctx = &task->perf_counter_ctx;
1182 ctx->task = task;
1183
1184 /* Reuse ptrace permission checks for now. */
1185 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1186 put_context(ctx);
1187 return ERR_PTR(-EACCES);
1188 }
1189
1190 return ctx;
1191 }
1192
1193 static void free_counter_rcu(struct rcu_head *head)
1194 {
1195 struct perf_counter *counter;
1196
1197 counter = container_of(head, struct perf_counter, rcu_head);
1198 kfree(counter);
1199 }
1200
1201 static void perf_pending_sync(struct perf_counter *counter);
1202
1203 static void free_counter(struct perf_counter *counter)
1204 {
1205 perf_pending_sync(counter);
1206
1207 if (counter->destroy)
1208 counter->destroy(counter);
1209
1210 call_rcu(&counter->rcu_head, free_counter_rcu);
1211 }
1212
1213 /*
1214 * Called when the last reference to the file is gone.
1215 */
1216 static int perf_release(struct inode *inode, struct file *file)
1217 {
1218 struct perf_counter *counter = file->private_data;
1219 struct perf_counter_context *ctx = counter->ctx;
1220
1221 file->private_data = NULL;
1222
1223 mutex_lock(&ctx->mutex);
1224 mutex_lock(&counter->mutex);
1225
1226 perf_counter_remove_from_context(counter);
1227
1228 mutex_unlock(&counter->mutex);
1229 mutex_unlock(&ctx->mutex);
1230
1231 free_counter(counter);
1232 put_context(ctx);
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * Read the performance counter - simple non blocking version for now
1239 */
1240 static ssize_t
1241 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1242 {
1243 u64 values[3];
1244 int n;
1245
1246 /*
1247 * Return end-of-file for a read on a counter that is in
1248 * error state (i.e. because it was pinned but it couldn't be
1249 * scheduled on to the CPU at some point).
1250 */
1251 if (counter->state == PERF_COUNTER_STATE_ERROR)
1252 return 0;
1253
1254 mutex_lock(&counter->mutex);
1255 values[0] = perf_counter_read(counter);
1256 n = 1;
1257 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1258 values[n++] = counter->total_time_enabled +
1259 atomic64_read(&counter->child_total_time_enabled);
1260 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1261 values[n++] = counter->total_time_running +
1262 atomic64_read(&counter->child_total_time_running);
1263 mutex_unlock(&counter->mutex);
1264
1265 if (count < n * sizeof(u64))
1266 return -EINVAL;
1267 count = n * sizeof(u64);
1268
1269 if (copy_to_user(buf, values, count))
1270 return -EFAULT;
1271
1272 return count;
1273 }
1274
1275 static ssize_t
1276 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1277 {
1278 struct perf_counter *counter = file->private_data;
1279
1280 return perf_read_hw(counter, buf, count);
1281 }
1282
1283 static unsigned int perf_poll(struct file *file, poll_table *wait)
1284 {
1285 struct perf_counter *counter = file->private_data;
1286 struct perf_mmap_data *data;
1287 unsigned int events;
1288
1289 rcu_read_lock();
1290 data = rcu_dereference(counter->data);
1291 if (data)
1292 events = atomic_xchg(&data->wakeup, 0);
1293 else
1294 events = POLL_HUP;
1295 rcu_read_unlock();
1296
1297 poll_wait(file, &counter->waitq, wait);
1298
1299 return events;
1300 }
1301
1302 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1303 {
1304 struct perf_counter *counter = file->private_data;
1305 int err = 0;
1306
1307 switch (cmd) {
1308 case PERF_COUNTER_IOC_ENABLE:
1309 perf_counter_enable_family(counter);
1310 break;
1311 case PERF_COUNTER_IOC_DISABLE:
1312 perf_counter_disable_family(counter);
1313 break;
1314 default:
1315 err = -ENOTTY;
1316 }
1317 return err;
1318 }
1319
1320 /*
1321 * Callers need to ensure there can be no nesting of this function, otherwise
1322 * the seqlock logic goes bad. We can not serialize this because the arch
1323 * code calls this from NMI context.
1324 */
1325 void perf_counter_update_userpage(struct perf_counter *counter)
1326 {
1327 struct perf_mmap_data *data;
1328 struct perf_counter_mmap_page *userpg;
1329
1330 rcu_read_lock();
1331 data = rcu_dereference(counter->data);
1332 if (!data)
1333 goto unlock;
1334
1335 userpg = data->user_page;
1336
1337 /*
1338 * Disable preemption so as to not let the corresponding user-space
1339 * spin too long if we get preempted.
1340 */
1341 preempt_disable();
1342 ++userpg->lock;
1343 smp_wmb();
1344 userpg->index = counter->hw.idx;
1345 userpg->offset = atomic64_read(&counter->count);
1346 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1347 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1348
1349 smp_wmb();
1350 ++userpg->lock;
1351 preempt_enable();
1352 unlock:
1353 rcu_read_unlock();
1354 }
1355
1356 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1357 {
1358 struct perf_counter *counter = vma->vm_file->private_data;
1359 struct perf_mmap_data *data;
1360 int ret = VM_FAULT_SIGBUS;
1361
1362 rcu_read_lock();
1363 data = rcu_dereference(counter->data);
1364 if (!data)
1365 goto unlock;
1366
1367 if (vmf->pgoff == 0) {
1368 vmf->page = virt_to_page(data->user_page);
1369 } else {
1370 int nr = vmf->pgoff - 1;
1371
1372 if ((unsigned)nr > data->nr_pages)
1373 goto unlock;
1374
1375 vmf->page = virt_to_page(data->data_pages[nr]);
1376 }
1377 get_page(vmf->page);
1378 ret = 0;
1379 unlock:
1380 rcu_read_unlock();
1381
1382 return ret;
1383 }
1384
1385 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1386 {
1387 struct perf_mmap_data *data;
1388 unsigned long size;
1389 int i;
1390
1391 WARN_ON(atomic_read(&counter->mmap_count));
1392
1393 size = sizeof(struct perf_mmap_data);
1394 size += nr_pages * sizeof(void *);
1395
1396 data = kzalloc(size, GFP_KERNEL);
1397 if (!data)
1398 goto fail;
1399
1400 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1401 if (!data->user_page)
1402 goto fail_user_page;
1403
1404 for (i = 0; i < nr_pages; i++) {
1405 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1406 if (!data->data_pages[i])
1407 goto fail_data_pages;
1408 }
1409
1410 data->nr_pages = nr_pages;
1411
1412 rcu_assign_pointer(counter->data, data);
1413
1414 return 0;
1415
1416 fail_data_pages:
1417 for (i--; i >= 0; i--)
1418 free_page((unsigned long)data->data_pages[i]);
1419
1420 free_page((unsigned long)data->user_page);
1421
1422 fail_user_page:
1423 kfree(data);
1424
1425 fail:
1426 return -ENOMEM;
1427 }
1428
1429 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1430 {
1431 struct perf_mmap_data *data = container_of(rcu_head,
1432 struct perf_mmap_data, rcu_head);
1433 int i;
1434
1435 free_page((unsigned long)data->user_page);
1436 for (i = 0; i < data->nr_pages; i++)
1437 free_page((unsigned long)data->data_pages[i]);
1438 kfree(data);
1439 }
1440
1441 static void perf_mmap_data_free(struct perf_counter *counter)
1442 {
1443 struct perf_mmap_data *data = counter->data;
1444
1445 WARN_ON(atomic_read(&counter->mmap_count));
1446
1447 rcu_assign_pointer(counter->data, NULL);
1448 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1449 }
1450
1451 static void perf_mmap_open(struct vm_area_struct *vma)
1452 {
1453 struct perf_counter *counter = vma->vm_file->private_data;
1454
1455 atomic_inc(&counter->mmap_count);
1456 }
1457
1458 static void perf_mmap_close(struct vm_area_struct *vma)
1459 {
1460 struct perf_counter *counter = vma->vm_file->private_data;
1461
1462 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1463 &counter->mmap_mutex)) {
1464 perf_mmap_data_free(counter);
1465 mutex_unlock(&counter->mmap_mutex);
1466 }
1467 }
1468
1469 static struct vm_operations_struct perf_mmap_vmops = {
1470 .open = perf_mmap_open,
1471 .close = perf_mmap_close,
1472 .fault = perf_mmap_fault,
1473 };
1474
1475 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1476 {
1477 struct perf_counter *counter = file->private_data;
1478 unsigned long vma_size;
1479 unsigned long nr_pages;
1480 unsigned long locked, lock_limit;
1481 int ret = 0;
1482
1483 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1484 return -EINVAL;
1485
1486 vma_size = vma->vm_end - vma->vm_start;
1487 nr_pages = (vma_size / PAGE_SIZE) - 1;
1488
1489 /*
1490 * If we have data pages ensure they're a power-of-two number, so we
1491 * can do bitmasks instead of modulo.
1492 */
1493 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1494 return -EINVAL;
1495
1496 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1497 return -EINVAL;
1498
1499 if (vma->vm_pgoff != 0)
1500 return -EINVAL;
1501
1502 locked = vma_size >> PAGE_SHIFT;
1503 locked += vma->vm_mm->locked_vm;
1504
1505 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1506 lock_limit >>= PAGE_SHIFT;
1507
1508 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1509 return -EPERM;
1510
1511 mutex_lock(&counter->mmap_mutex);
1512 if (atomic_inc_not_zero(&counter->mmap_count))
1513 goto out;
1514
1515 WARN_ON(counter->data);
1516 ret = perf_mmap_data_alloc(counter, nr_pages);
1517 if (!ret)
1518 atomic_set(&counter->mmap_count, 1);
1519 out:
1520 mutex_unlock(&counter->mmap_mutex);
1521
1522 vma->vm_flags &= ~VM_MAYWRITE;
1523 vma->vm_flags |= VM_RESERVED;
1524 vma->vm_ops = &perf_mmap_vmops;
1525
1526 return ret;
1527 }
1528
1529 static const struct file_operations perf_fops = {
1530 .release = perf_release,
1531 .read = perf_read,
1532 .poll = perf_poll,
1533 .unlocked_ioctl = perf_ioctl,
1534 .compat_ioctl = perf_ioctl,
1535 .mmap = perf_mmap,
1536 };
1537
1538 /*
1539 * Perf counter wakeup
1540 *
1541 * If there's data, ensure we set the poll() state and publish everything
1542 * to user-space before waking everybody up.
1543 */
1544
1545 void perf_counter_wakeup(struct perf_counter *counter)
1546 {
1547 struct perf_mmap_data *data;
1548
1549 rcu_read_lock();
1550 data = rcu_dereference(counter->data);
1551 if (data) {
1552 (void)atomic_xchg(&data->wakeup, POLL_IN);
1553 /*
1554 * Ensure all data writes are issued before updating the
1555 * user-space data head information. The matching rmb()
1556 * will be in userspace after reading this value.
1557 */
1558 smp_wmb();
1559 data->user_page->data_head = atomic_read(&data->head);
1560 }
1561 rcu_read_unlock();
1562
1563 wake_up_all(&counter->waitq);
1564 }
1565
1566 /*
1567 * Pending wakeups
1568 *
1569 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1570 *
1571 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1572 * single linked list and use cmpxchg() to add entries lockless.
1573 */
1574
1575 #define PENDING_TAIL ((struct perf_wakeup_entry *)-1UL)
1576
1577 static DEFINE_PER_CPU(struct perf_wakeup_entry *, perf_wakeup_head) = {
1578 PENDING_TAIL,
1579 };
1580
1581 static void perf_pending_queue(struct perf_counter *counter)
1582 {
1583 struct perf_wakeup_entry **head;
1584 struct perf_wakeup_entry *prev, *next;
1585
1586 if (cmpxchg(&counter->wakeup.next, NULL, PENDING_TAIL) != NULL)
1587 return;
1588
1589 head = &get_cpu_var(perf_wakeup_head);
1590
1591 do {
1592 prev = counter->wakeup.next = *head;
1593 next = &counter->wakeup;
1594 } while (cmpxchg(head, prev, next) != prev);
1595
1596 set_perf_counter_pending();
1597
1598 put_cpu_var(perf_wakeup_head);
1599 }
1600
1601 static int __perf_pending_run(void)
1602 {
1603 struct perf_wakeup_entry *list;
1604 int nr = 0;
1605
1606 list = xchg(&__get_cpu_var(perf_wakeup_head), PENDING_TAIL);
1607 while (list != PENDING_TAIL) {
1608 struct perf_counter *counter = container_of(list,
1609 struct perf_counter, wakeup);
1610
1611 list = list->next;
1612
1613 counter->wakeup.next = NULL;
1614 /*
1615 * Ensure we observe the unqueue before we issue the wakeup,
1616 * so that we won't be waiting forever.
1617 * -- see perf_not_pending().
1618 */
1619 smp_wmb();
1620
1621 perf_counter_wakeup(counter);
1622 nr++;
1623 }
1624
1625 return nr;
1626 }
1627
1628 static inline int perf_not_pending(struct perf_counter *counter)
1629 {
1630 /*
1631 * If we flush on whatever cpu we run, there is a chance we don't
1632 * need to wait.
1633 */
1634 get_cpu();
1635 __perf_pending_run();
1636 put_cpu();
1637
1638 /*
1639 * Ensure we see the proper queue state before going to sleep
1640 * so that we do not miss the wakeup. -- see perf_pending_handle()
1641 */
1642 smp_rmb();
1643 return counter->wakeup.next == NULL;
1644 }
1645
1646 static void perf_pending_sync(struct perf_counter *counter)
1647 {
1648 wait_event(counter->waitq, perf_not_pending(counter));
1649 }
1650
1651 void perf_counter_do_pending(void)
1652 {
1653 __perf_pending_run();
1654 }
1655
1656 /*
1657 * Callchain support -- arch specific
1658 */
1659
1660 struct perf_callchain_entry *
1661 __attribute__((weak))
1662 perf_callchain(struct pt_regs *regs)
1663 {
1664 return NULL;
1665 }
1666
1667 /*
1668 * Output
1669 */
1670
1671 struct perf_output_handle {
1672 struct perf_counter *counter;
1673 struct perf_mmap_data *data;
1674 unsigned int offset;
1675 unsigned int head;
1676 int wakeup;
1677 int nmi;
1678 };
1679
1680 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1681 {
1682 if (handle->nmi)
1683 perf_pending_queue(handle->counter);
1684 else
1685 perf_counter_wakeup(handle->counter);
1686 }
1687
1688 static int perf_output_begin(struct perf_output_handle *handle,
1689 struct perf_counter *counter, unsigned int size,
1690 int nmi)
1691 {
1692 struct perf_mmap_data *data;
1693 unsigned int offset, head;
1694
1695 rcu_read_lock();
1696 data = rcu_dereference(counter->data);
1697 if (!data)
1698 goto out;
1699
1700 handle->counter = counter;
1701 handle->nmi = nmi;
1702
1703 if (!data->nr_pages)
1704 goto fail;
1705
1706 do {
1707 offset = head = atomic_read(&data->head);
1708 head += size;
1709 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1710
1711 handle->data = data;
1712 handle->offset = offset;
1713 handle->head = head;
1714 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1715
1716 return 0;
1717
1718 fail:
1719 __perf_output_wakeup(handle);
1720 out:
1721 rcu_read_unlock();
1722
1723 return -ENOSPC;
1724 }
1725
1726 static void perf_output_copy(struct perf_output_handle *handle,
1727 void *buf, unsigned int len)
1728 {
1729 unsigned int pages_mask;
1730 unsigned int offset;
1731 unsigned int size;
1732 void **pages;
1733
1734 offset = handle->offset;
1735 pages_mask = handle->data->nr_pages - 1;
1736 pages = handle->data->data_pages;
1737
1738 do {
1739 unsigned int page_offset;
1740 int nr;
1741
1742 nr = (offset >> PAGE_SHIFT) & pages_mask;
1743 page_offset = offset & (PAGE_SIZE - 1);
1744 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1745
1746 memcpy(pages[nr] + page_offset, buf, size);
1747
1748 len -= size;
1749 buf += size;
1750 offset += size;
1751 } while (len);
1752
1753 handle->offset = offset;
1754
1755 WARN_ON_ONCE(handle->offset > handle->head);
1756 }
1757
1758 #define perf_output_put(handle, x) \
1759 perf_output_copy((handle), &(x), sizeof(x))
1760
1761 static void perf_output_end(struct perf_output_handle *handle)
1762 {
1763 if (handle->wakeup)
1764 __perf_output_wakeup(handle);
1765 rcu_read_unlock();
1766 }
1767
1768 void perf_counter_output(struct perf_counter *counter,
1769 int nmi, struct pt_regs *regs)
1770 {
1771 int ret;
1772 u64 record_type = counter->hw_event.record_type;
1773 struct perf_output_handle handle;
1774 struct perf_event_header header;
1775 u64 ip;
1776 struct {
1777 u32 pid, tid;
1778 } tid_entry;
1779 struct {
1780 u64 event;
1781 u64 counter;
1782 } group_entry;
1783 struct perf_callchain_entry *callchain = NULL;
1784 int callchain_size = 0;
1785
1786 header.type = PERF_EVENT_COUNTER_OVERFLOW;
1787 header.size = sizeof(header);
1788
1789 if (record_type & PERF_RECORD_IP) {
1790 ip = instruction_pointer(regs);
1791 header.type |= __PERF_EVENT_IP;
1792 header.size += sizeof(ip);
1793 }
1794
1795 if (record_type & PERF_RECORD_TID) {
1796 /* namespace issues */
1797 tid_entry.pid = current->group_leader->pid;
1798 tid_entry.tid = current->pid;
1799
1800 header.type |= __PERF_EVENT_TID;
1801 header.size += sizeof(tid_entry);
1802 }
1803
1804 if (record_type & PERF_RECORD_GROUP) {
1805 header.type |= __PERF_EVENT_GROUP;
1806 header.size += sizeof(u64) +
1807 counter->nr_siblings * sizeof(group_entry);
1808 }
1809
1810 if (record_type & PERF_RECORD_CALLCHAIN) {
1811 callchain = perf_callchain(regs);
1812
1813 if (callchain) {
1814 callchain_size = (1 + callchain->nr) * sizeof(u64);
1815
1816 header.type |= __PERF_EVENT_CALLCHAIN;
1817 header.size += callchain_size;
1818 }
1819 }
1820
1821 ret = perf_output_begin(&handle, counter, header.size, nmi);
1822 if (ret)
1823 return;
1824
1825 perf_output_put(&handle, header);
1826
1827 if (record_type & PERF_RECORD_IP)
1828 perf_output_put(&handle, ip);
1829
1830 if (record_type & PERF_RECORD_TID)
1831 perf_output_put(&handle, tid_entry);
1832
1833 if (record_type & PERF_RECORD_GROUP) {
1834 struct perf_counter *leader, *sub;
1835 u64 nr = counter->nr_siblings;
1836
1837 perf_output_put(&handle, nr);
1838
1839 leader = counter->group_leader;
1840 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1841 if (sub != counter)
1842 sub->hw_ops->read(sub);
1843
1844 group_entry.event = sub->hw_event.config;
1845 group_entry.counter = atomic64_read(&sub->count);
1846
1847 perf_output_put(&handle, group_entry);
1848 }
1849 }
1850
1851 if (callchain)
1852 perf_output_copy(&handle, callchain, callchain_size);
1853
1854 perf_output_end(&handle);
1855 }
1856
1857 /*
1858 * mmap tracking
1859 */
1860
1861 struct perf_mmap_event {
1862 struct file *file;
1863 char *file_name;
1864 int file_size;
1865
1866 struct {
1867 struct perf_event_header header;
1868
1869 u32 pid;
1870 u32 tid;
1871 u64 start;
1872 u64 len;
1873 u64 pgoff;
1874 } event;
1875 };
1876
1877 static void perf_counter_mmap_output(struct perf_counter *counter,
1878 struct perf_mmap_event *mmap_event)
1879 {
1880 struct perf_output_handle handle;
1881 int size = mmap_event->event.header.size;
1882 int ret = perf_output_begin(&handle, counter, size, 0);
1883
1884 if (ret)
1885 return;
1886
1887 perf_output_put(&handle, mmap_event->event);
1888 perf_output_copy(&handle, mmap_event->file_name,
1889 mmap_event->file_size);
1890 perf_output_end(&handle);
1891 }
1892
1893 static int perf_counter_mmap_match(struct perf_counter *counter,
1894 struct perf_mmap_event *mmap_event)
1895 {
1896 if (counter->hw_event.mmap &&
1897 mmap_event->event.header.type == PERF_EVENT_MMAP)
1898 return 1;
1899
1900 if (counter->hw_event.munmap &&
1901 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
1902 return 1;
1903
1904 return 0;
1905 }
1906
1907 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
1908 struct perf_mmap_event *mmap_event)
1909 {
1910 struct perf_counter *counter;
1911
1912 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1913 return;
1914
1915 rcu_read_lock();
1916 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1917 if (perf_counter_mmap_match(counter, mmap_event))
1918 perf_counter_mmap_output(counter, mmap_event);
1919 }
1920 rcu_read_unlock();
1921 }
1922
1923 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
1924 {
1925 struct perf_cpu_context *cpuctx;
1926 struct file *file = mmap_event->file;
1927 unsigned int size;
1928 char tmp[16];
1929 char *buf = NULL;
1930 char *name;
1931
1932 if (file) {
1933 buf = kzalloc(PATH_MAX, GFP_KERNEL);
1934 if (!buf) {
1935 name = strncpy(tmp, "//enomem", sizeof(tmp));
1936 goto got_name;
1937 }
1938 name = dentry_path(file->f_dentry, buf, PATH_MAX);
1939 if (IS_ERR(name)) {
1940 name = strncpy(tmp, "//toolong", sizeof(tmp));
1941 goto got_name;
1942 }
1943 } else {
1944 name = strncpy(tmp, "//anon", sizeof(tmp));
1945 goto got_name;
1946 }
1947
1948 got_name:
1949 size = ALIGN(strlen(name), sizeof(u64));
1950
1951 mmap_event->file_name = name;
1952 mmap_event->file_size = size;
1953
1954 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
1955
1956 cpuctx = &get_cpu_var(perf_cpu_context);
1957 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
1958 put_cpu_var(perf_cpu_context);
1959
1960 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
1961
1962 kfree(buf);
1963 }
1964
1965 void perf_counter_mmap(unsigned long addr, unsigned long len,
1966 unsigned long pgoff, struct file *file)
1967 {
1968 struct perf_mmap_event mmap_event = {
1969 .file = file,
1970 .event = {
1971 .header = { .type = PERF_EVENT_MMAP, },
1972 .pid = current->group_leader->pid,
1973 .tid = current->pid,
1974 .start = addr,
1975 .len = len,
1976 .pgoff = pgoff,
1977 },
1978 };
1979
1980 perf_counter_mmap_event(&mmap_event);
1981 }
1982
1983 void perf_counter_munmap(unsigned long addr, unsigned long len,
1984 unsigned long pgoff, struct file *file)
1985 {
1986 struct perf_mmap_event mmap_event = {
1987 .file = file,
1988 .event = {
1989 .header = { .type = PERF_EVENT_MUNMAP, },
1990 .pid = current->group_leader->pid,
1991 .tid = current->pid,
1992 .start = addr,
1993 .len = len,
1994 .pgoff = pgoff,
1995 },
1996 };
1997
1998 perf_counter_mmap_event(&mmap_event);
1999 }
2000
2001 /*
2002 * Generic software counter infrastructure
2003 */
2004
2005 static void perf_swcounter_update(struct perf_counter *counter)
2006 {
2007 struct hw_perf_counter *hwc = &counter->hw;
2008 u64 prev, now;
2009 s64 delta;
2010
2011 again:
2012 prev = atomic64_read(&hwc->prev_count);
2013 now = atomic64_read(&hwc->count);
2014 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2015 goto again;
2016
2017 delta = now - prev;
2018
2019 atomic64_add(delta, &counter->count);
2020 atomic64_sub(delta, &hwc->period_left);
2021 }
2022
2023 static void perf_swcounter_set_period(struct perf_counter *counter)
2024 {
2025 struct hw_perf_counter *hwc = &counter->hw;
2026 s64 left = atomic64_read(&hwc->period_left);
2027 s64 period = hwc->irq_period;
2028
2029 if (unlikely(left <= -period)) {
2030 left = period;
2031 atomic64_set(&hwc->period_left, left);
2032 }
2033
2034 if (unlikely(left <= 0)) {
2035 left += period;
2036 atomic64_add(period, &hwc->period_left);
2037 }
2038
2039 atomic64_set(&hwc->prev_count, -left);
2040 atomic64_set(&hwc->count, -left);
2041 }
2042
2043 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2044 {
2045 struct perf_counter *counter;
2046 struct pt_regs *regs;
2047
2048 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2049 counter->hw_ops->read(counter);
2050
2051 regs = get_irq_regs();
2052 /*
2053 * In case we exclude kernel IPs or are somehow not in interrupt
2054 * context, provide the next best thing, the user IP.
2055 */
2056 if ((counter->hw_event.exclude_kernel || !regs) &&
2057 !counter->hw_event.exclude_user)
2058 regs = task_pt_regs(current);
2059
2060 if (regs)
2061 perf_counter_output(counter, 0, regs);
2062
2063 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2064
2065 return HRTIMER_RESTART;
2066 }
2067
2068 static void perf_swcounter_overflow(struct perf_counter *counter,
2069 int nmi, struct pt_regs *regs)
2070 {
2071 perf_swcounter_update(counter);
2072 perf_swcounter_set_period(counter);
2073 perf_counter_output(counter, nmi, regs);
2074 }
2075
2076 static int perf_swcounter_match(struct perf_counter *counter,
2077 enum perf_event_types type,
2078 u32 event, struct pt_regs *regs)
2079 {
2080 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2081 return 0;
2082
2083 if (perf_event_raw(&counter->hw_event))
2084 return 0;
2085
2086 if (perf_event_type(&counter->hw_event) != type)
2087 return 0;
2088
2089 if (perf_event_id(&counter->hw_event) != event)
2090 return 0;
2091
2092 if (counter->hw_event.exclude_user && user_mode(regs))
2093 return 0;
2094
2095 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2096 return 0;
2097
2098 return 1;
2099 }
2100
2101 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2102 int nmi, struct pt_regs *regs)
2103 {
2104 int neg = atomic64_add_negative(nr, &counter->hw.count);
2105 if (counter->hw.irq_period && !neg)
2106 perf_swcounter_overflow(counter, nmi, regs);
2107 }
2108
2109 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2110 enum perf_event_types type, u32 event,
2111 u64 nr, int nmi, struct pt_regs *regs)
2112 {
2113 struct perf_counter *counter;
2114
2115 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2116 return;
2117
2118 rcu_read_lock();
2119 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2120 if (perf_swcounter_match(counter, type, event, regs))
2121 perf_swcounter_add(counter, nr, nmi, regs);
2122 }
2123 rcu_read_unlock();
2124 }
2125
2126 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2127 {
2128 if (in_nmi())
2129 return &cpuctx->recursion[3];
2130
2131 if (in_irq())
2132 return &cpuctx->recursion[2];
2133
2134 if (in_softirq())
2135 return &cpuctx->recursion[1];
2136
2137 return &cpuctx->recursion[0];
2138 }
2139
2140 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2141 u64 nr, int nmi, struct pt_regs *regs)
2142 {
2143 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2144 int *recursion = perf_swcounter_recursion_context(cpuctx);
2145
2146 if (*recursion)
2147 goto out;
2148
2149 (*recursion)++;
2150 barrier();
2151
2152 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
2153 if (cpuctx->task_ctx) {
2154 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2155 nr, nmi, regs);
2156 }
2157
2158 barrier();
2159 (*recursion)--;
2160
2161 out:
2162 put_cpu_var(perf_cpu_context);
2163 }
2164
2165 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2166 {
2167 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2168 }
2169
2170 static void perf_swcounter_read(struct perf_counter *counter)
2171 {
2172 perf_swcounter_update(counter);
2173 }
2174
2175 static int perf_swcounter_enable(struct perf_counter *counter)
2176 {
2177 perf_swcounter_set_period(counter);
2178 return 0;
2179 }
2180
2181 static void perf_swcounter_disable(struct perf_counter *counter)
2182 {
2183 perf_swcounter_update(counter);
2184 }
2185
2186 static const struct hw_perf_counter_ops perf_ops_generic = {
2187 .enable = perf_swcounter_enable,
2188 .disable = perf_swcounter_disable,
2189 .read = perf_swcounter_read,
2190 };
2191
2192 /*
2193 * Software counter: cpu wall time clock
2194 */
2195
2196 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2197 {
2198 int cpu = raw_smp_processor_id();
2199 s64 prev;
2200 u64 now;
2201
2202 now = cpu_clock(cpu);
2203 prev = atomic64_read(&counter->hw.prev_count);
2204 atomic64_set(&counter->hw.prev_count, now);
2205 atomic64_add(now - prev, &counter->count);
2206 }
2207
2208 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2209 {
2210 struct hw_perf_counter *hwc = &counter->hw;
2211 int cpu = raw_smp_processor_id();
2212
2213 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2214 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2215 hwc->hrtimer.function = perf_swcounter_hrtimer;
2216 if (hwc->irq_period) {
2217 __hrtimer_start_range_ns(&hwc->hrtimer,
2218 ns_to_ktime(hwc->irq_period), 0,
2219 HRTIMER_MODE_REL, 0);
2220 }
2221
2222 return 0;
2223 }
2224
2225 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2226 {
2227 hrtimer_cancel(&counter->hw.hrtimer);
2228 cpu_clock_perf_counter_update(counter);
2229 }
2230
2231 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2232 {
2233 cpu_clock_perf_counter_update(counter);
2234 }
2235
2236 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2237 .enable = cpu_clock_perf_counter_enable,
2238 .disable = cpu_clock_perf_counter_disable,
2239 .read = cpu_clock_perf_counter_read,
2240 };
2241
2242 /*
2243 * Software counter: task time clock
2244 */
2245
2246 /*
2247 * Called from within the scheduler:
2248 */
2249 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2250 {
2251 struct task_struct *curr = counter->task;
2252 u64 delta;
2253
2254 delta = __task_delta_exec(curr, update);
2255
2256 return curr->se.sum_exec_runtime + delta;
2257 }
2258
2259 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2260 {
2261 u64 prev;
2262 s64 delta;
2263
2264 prev = atomic64_read(&counter->hw.prev_count);
2265
2266 atomic64_set(&counter->hw.prev_count, now);
2267
2268 delta = now - prev;
2269
2270 atomic64_add(delta, &counter->count);
2271 }
2272
2273 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2274 {
2275 struct hw_perf_counter *hwc = &counter->hw;
2276
2277 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2278 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2279 hwc->hrtimer.function = perf_swcounter_hrtimer;
2280 if (hwc->irq_period) {
2281 __hrtimer_start_range_ns(&hwc->hrtimer,
2282 ns_to_ktime(hwc->irq_period), 0,
2283 HRTIMER_MODE_REL, 0);
2284 }
2285
2286 return 0;
2287 }
2288
2289 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2290 {
2291 hrtimer_cancel(&counter->hw.hrtimer);
2292 task_clock_perf_counter_update(counter,
2293 task_clock_perf_counter_val(counter, 0));
2294 }
2295
2296 static void task_clock_perf_counter_read(struct perf_counter *counter)
2297 {
2298 task_clock_perf_counter_update(counter,
2299 task_clock_perf_counter_val(counter, 1));
2300 }
2301
2302 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2303 .enable = task_clock_perf_counter_enable,
2304 .disable = task_clock_perf_counter_disable,
2305 .read = task_clock_perf_counter_read,
2306 };
2307
2308 /*
2309 * Software counter: cpu migrations
2310 */
2311
2312 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2313 {
2314 struct task_struct *curr = counter->ctx->task;
2315
2316 if (curr)
2317 return curr->se.nr_migrations;
2318 return cpu_nr_migrations(smp_processor_id());
2319 }
2320
2321 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2322 {
2323 u64 prev, now;
2324 s64 delta;
2325
2326 prev = atomic64_read(&counter->hw.prev_count);
2327 now = get_cpu_migrations(counter);
2328
2329 atomic64_set(&counter->hw.prev_count, now);
2330
2331 delta = now - prev;
2332
2333 atomic64_add(delta, &counter->count);
2334 }
2335
2336 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2337 {
2338 cpu_migrations_perf_counter_update(counter);
2339 }
2340
2341 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2342 {
2343 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2344 atomic64_set(&counter->hw.prev_count,
2345 get_cpu_migrations(counter));
2346 return 0;
2347 }
2348
2349 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2350 {
2351 cpu_migrations_perf_counter_update(counter);
2352 }
2353
2354 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2355 .enable = cpu_migrations_perf_counter_enable,
2356 .disable = cpu_migrations_perf_counter_disable,
2357 .read = cpu_migrations_perf_counter_read,
2358 };
2359
2360 #ifdef CONFIG_EVENT_PROFILE
2361 void perf_tpcounter_event(int event_id)
2362 {
2363 struct pt_regs *regs = get_irq_regs();
2364
2365 if (!regs)
2366 regs = task_pt_regs(current);
2367
2368 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2369 }
2370
2371 extern int ftrace_profile_enable(int);
2372 extern void ftrace_profile_disable(int);
2373
2374 static void tp_perf_counter_destroy(struct perf_counter *counter)
2375 {
2376 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2377 }
2378
2379 static const struct hw_perf_counter_ops *
2380 tp_perf_counter_init(struct perf_counter *counter)
2381 {
2382 int event_id = perf_event_id(&counter->hw_event);
2383 int ret;
2384
2385 ret = ftrace_profile_enable(event_id);
2386 if (ret)
2387 return NULL;
2388
2389 counter->destroy = tp_perf_counter_destroy;
2390 counter->hw.irq_period = counter->hw_event.irq_period;
2391
2392 return &perf_ops_generic;
2393 }
2394 #else
2395 static const struct hw_perf_counter_ops *
2396 tp_perf_counter_init(struct perf_counter *counter)
2397 {
2398 return NULL;
2399 }
2400 #endif
2401
2402 static const struct hw_perf_counter_ops *
2403 sw_perf_counter_init(struct perf_counter *counter)
2404 {
2405 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2406 const struct hw_perf_counter_ops *hw_ops = NULL;
2407 struct hw_perf_counter *hwc = &counter->hw;
2408
2409 /*
2410 * Software counters (currently) can't in general distinguish
2411 * between user, kernel and hypervisor events.
2412 * However, context switches and cpu migrations are considered
2413 * to be kernel events, and page faults are never hypervisor
2414 * events.
2415 */
2416 switch (perf_event_id(&counter->hw_event)) {
2417 case PERF_COUNT_CPU_CLOCK:
2418 hw_ops = &perf_ops_cpu_clock;
2419
2420 if (hw_event->irq_period && hw_event->irq_period < 10000)
2421 hw_event->irq_period = 10000;
2422 break;
2423 case PERF_COUNT_TASK_CLOCK:
2424 /*
2425 * If the user instantiates this as a per-cpu counter,
2426 * use the cpu_clock counter instead.
2427 */
2428 if (counter->ctx->task)
2429 hw_ops = &perf_ops_task_clock;
2430 else
2431 hw_ops = &perf_ops_cpu_clock;
2432
2433 if (hw_event->irq_period && hw_event->irq_period < 10000)
2434 hw_event->irq_period = 10000;
2435 break;
2436 case PERF_COUNT_PAGE_FAULTS:
2437 case PERF_COUNT_PAGE_FAULTS_MIN:
2438 case PERF_COUNT_PAGE_FAULTS_MAJ:
2439 case PERF_COUNT_CONTEXT_SWITCHES:
2440 hw_ops = &perf_ops_generic;
2441 break;
2442 case PERF_COUNT_CPU_MIGRATIONS:
2443 if (!counter->hw_event.exclude_kernel)
2444 hw_ops = &perf_ops_cpu_migrations;
2445 break;
2446 }
2447
2448 if (hw_ops)
2449 hwc->irq_period = hw_event->irq_period;
2450
2451 return hw_ops;
2452 }
2453
2454 /*
2455 * Allocate and initialize a counter structure
2456 */
2457 static struct perf_counter *
2458 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2459 int cpu,
2460 struct perf_counter_context *ctx,
2461 struct perf_counter *group_leader,
2462 gfp_t gfpflags)
2463 {
2464 const struct hw_perf_counter_ops *hw_ops;
2465 struct perf_counter *counter;
2466 long err;
2467
2468 counter = kzalloc(sizeof(*counter), gfpflags);
2469 if (!counter)
2470 return ERR_PTR(-ENOMEM);
2471
2472 /*
2473 * Single counters are their own group leaders, with an
2474 * empty sibling list:
2475 */
2476 if (!group_leader)
2477 group_leader = counter;
2478
2479 mutex_init(&counter->mutex);
2480 INIT_LIST_HEAD(&counter->list_entry);
2481 INIT_LIST_HEAD(&counter->event_entry);
2482 INIT_LIST_HEAD(&counter->sibling_list);
2483 init_waitqueue_head(&counter->waitq);
2484
2485 mutex_init(&counter->mmap_mutex);
2486
2487 INIT_LIST_HEAD(&counter->child_list);
2488
2489 counter->cpu = cpu;
2490 counter->hw_event = *hw_event;
2491 counter->group_leader = group_leader;
2492 counter->hw_ops = NULL;
2493 counter->ctx = ctx;
2494
2495 counter->state = PERF_COUNTER_STATE_INACTIVE;
2496 if (hw_event->disabled)
2497 counter->state = PERF_COUNTER_STATE_OFF;
2498
2499 hw_ops = NULL;
2500
2501 if (perf_event_raw(hw_event)) {
2502 hw_ops = hw_perf_counter_init(counter);
2503 goto done;
2504 }
2505
2506 switch (perf_event_type(hw_event)) {
2507 case PERF_TYPE_HARDWARE:
2508 hw_ops = hw_perf_counter_init(counter);
2509 break;
2510
2511 case PERF_TYPE_SOFTWARE:
2512 hw_ops = sw_perf_counter_init(counter);
2513 break;
2514
2515 case PERF_TYPE_TRACEPOINT:
2516 hw_ops = tp_perf_counter_init(counter);
2517 break;
2518 }
2519 done:
2520 err = 0;
2521 if (!hw_ops)
2522 err = -EINVAL;
2523 else if (IS_ERR(hw_ops))
2524 err = PTR_ERR(hw_ops);
2525
2526 if (err) {
2527 kfree(counter);
2528 return ERR_PTR(err);
2529 }
2530
2531 counter->hw_ops = hw_ops;
2532
2533 return counter;
2534 }
2535
2536 /**
2537 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2538 *
2539 * @hw_event_uptr: event type attributes for monitoring/sampling
2540 * @pid: target pid
2541 * @cpu: target cpu
2542 * @group_fd: group leader counter fd
2543 */
2544 SYSCALL_DEFINE5(perf_counter_open,
2545 const struct perf_counter_hw_event __user *, hw_event_uptr,
2546 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2547 {
2548 struct perf_counter *counter, *group_leader;
2549 struct perf_counter_hw_event hw_event;
2550 struct perf_counter_context *ctx;
2551 struct file *counter_file = NULL;
2552 struct file *group_file = NULL;
2553 int fput_needed = 0;
2554 int fput_needed2 = 0;
2555 int ret;
2556
2557 /* for future expandability... */
2558 if (flags)
2559 return -EINVAL;
2560
2561 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2562 return -EFAULT;
2563
2564 /*
2565 * Get the target context (task or percpu):
2566 */
2567 ctx = find_get_context(pid, cpu);
2568 if (IS_ERR(ctx))
2569 return PTR_ERR(ctx);
2570
2571 /*
2572 * Look up the group leader (we will attach this counter to it):
2573 */
2574 group_leader = NULL;
2575 if (group_fd != -1) {
2576 ret = -EINVAL;
2577 group_file = fget_light(group_fd, &fput_needed);
2578 if (!group_file)
2579 goto err_put_context;
2580 if (group_file->f_op != &perf_fops)
2581 goto err_put_context;
2582
2583 group_leader = group_file->private_data;
2584 /*
2585 * Do not allow a recursive hierarchy (this new sibling
2586 * becoming part of another group-sibling):
2587 */
2588 if (group_leader->group_leader != group_leader)
2589 goto err_put_context;
2590 /*
2591 * Do not allow to attach to a group in a different
2592 * task or CPU context:
2593 */
2594 if (group_leader->ctx != ctx)
2595 goto err_put_context;
2596 /*
2597 * Only a group leader can be exclusive or pinned
2598 */
2599 if (hw_event.exclusive || hw_event.pinned)
2600 goto err_put_context;
2601 }
2602
2603 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2604 GFP_KERNEL);
2605 ret = PTR_ERR(counter);
2606 if (IS_ERR(counter))
2607 goto err_put_context;
2608
2609 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2610 if (ret < 0)
2611 goto err_free_put_context;
2612
2613 counter_file = fget_light(ret, &fput_needed2);
2614 if (!counter_file)
2615 goto err_free_put_context;
2616
2617 counter->filp = counter_file;
2618 mutex_lock(&ctx->mutex);
2619 perf_install_in_context(ctx, counter, cpu);
2620 mutex_unlock(&ctx->mutex);
2621
2622 fput_light(counter_file, fput_needed2);
2623
2624 out_fput:
2625 fput_light(group_file, fput_needed);
2626
2627 return ret;
2628
2629 err_free_put_context:
2630 kfree(counter);
2631
2632 err_put_context:
2633 put_context(ctx);
2634
2635 goto out_fput;
2636 }
2637
2638 /*
2639 * Initialize the perf_counter context in a task_struct:
2640 */
2641 static void
2642 __perf_counter_init_context(struct perf_counter_context *ctx,
2643 struct task_struct *task)
2644 {
2645 memset(ctx, 0, sizeof(*ctx));
2646 spin_lock_init(&ctx->lock);
2647 mutex_init(&ctx->mutex);
2648 INIT_LIST_HEAD(&ctx->counter_list);
2649 INIT_LIST_HEAD(&ctx->event_list);
2650 ctx->task = task;
2651 }
2652
2653 /*
2654 * inherit a counter from parent task to child task:
2655 */
2656 static struct perf_counter *
2657 inherit_counter(struct perf_counter *parent_counter,
2658 struct task_struct *parent,
2659 struct perf_counter_context *parent_ctx,
2660 struct task_struct *child,
2661 struct perf_counter *group_leader,
2662 struct perf_counter_context *child_ctx)
2663 {
2664 struct perf_counter *child_counter;
2665
2666 /*
2667 * Instead of creating recursive hierarchies of counters,
2668 * we link inherited counters back to the original parent,
2669 * which has a filp for sure, which we use as the reference
2670 * count:
2671 */
2672 if (parent_counter->parent)
2673 parent_counter = parent_counter->parent;
2674
2675 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2676 parent_counter->cpu, child_ctx,
2677 group_leader, GFP_KERNEL);
2678 if (IS_ERR(child_counter))
2679 return child_counter;
2680
2681 /*
2682 * Link it up in the child's context:
2683 */
2684 child_counter->task = child;
2685 add_counter_to_ctx(child_counter, child_ctx);
2686
2687 child_counter->parent = parent_counter;
2688 /*
2689 * inherit into child's child as well:
2690 */
2691 child_counter->hw_event.inherit = 1;
2692
2693 /*
2694 * Get a reference to the parent filp - we will fput it
2695 * when the child counter exits. This is safe to do because
2696 * we are in the parent and we know that the filp still
2697 * exists and has a nonzero count:
2698 */
2699 atomic_long_inc(&parent_counter->filp->f_count);
2700
2701 /*
2702 * Link this into the parent counter's child list
2703 */
2704 mutex_lock(&parent_counter->mutex);
2705 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2706
2707 /*
2708 * Make the child state follow the state of the parent counter,
2709 * not its hw_event.disabled bit. We hold the parent's mutex,
2710 * so we won't race with perf_counter_{en,dis}able_family.
2711 */
2712 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2713 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2714 else
2715 child_counter->state = PERF_COUNTER_STATE_OFF;
2716
2717 mutex_unlock(&parent_counter->mutex);
2718
2719 return child_counter;
2720 }
2721
2722 static int inherit_group(struct perf_counter *parent_counter,
2723 struct task_struct *parent,
2724 struct perf_counter_context *parent_ctx,
2725 struct task_struct *child,
2726 struct perf_counter_context *child_ctx)
2727 {
2728 struct perf_counter *leader;
2729 struct perf_counter *sub;
2730 struct perf_counter *child_ctr;
2731
2732 leader = inherit_counter(parent_counter, parent, parent_ctx,
2733 child, NULL, child_ctx);
2734 if (IS_ERR(leader))
2735 return PTR_ERR(leader);
2736 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2737 child_ctr = inherit_counter(sub, parent, parent_ctx,
2738 child, leader, child_ctx);
2739 if (IS_ERR(child_ctr))
2740 return PTR_ERR(child_ctr);
2741 }
2742 return 0;
2743 }
2744
2745 static void sync_child_counter(struct perf_counter *child_counter,
2746 struct perf_counter *parent_counter)
2747 {
2748 u64 parent_val, child_val;
2749
2750 parent_val = atomic64_read(&parent_counter->count);
2751 child_val = atomic64_read(&child_counter->count);
2752
2753 /*
2754 * Add back the child's count to the parent's count:
2755 */
2756 atomic64_add(child_val, &parent_counter->count);
2757 atomic64_add(child_counter->total_time_enabled,
2758 &parent_counter->child_total_time_enabled);
2759 atomic64_add(child_counter->total_time_running,
2760 &parent_counter->child_total_time_running);
2761
2762 /*
2763 * Remove this counter from the parent's list
2764 */
2765 mutex_lock(&parent_counter->mutex);
2766 list_del_init(&child_counter->child_list);
2767 mutex_unlock(&parent_counter->mutex);
2768
2769 /*
2770 * Release the parent counter, if this was the last
2771 * reference to it.
2772 */
2773 fput(parent_counter->filp);
2774 }
2775
2776 static void
2777 __perf_counter_exit_task(struct task_struct *child,
2778 struct perf_counter *child_counter,
2779 struct perf_counter_context *child_ctx)
2780 {
2781 struct perf_counter *parent_counter;
2782 struct perf_counter *sub, *tmp;
2783
2784 /*
2785 * If we do not self-reap then we have to wait for the
2786 * child task to unschedule (it will happen for sure),
2787 * so that its counter is at its final count. (This
2788 * condition triggers rarely - child tasks usually get
2789 * off their CPU before the parent has a chance to
2790 * get this far into the reaping action)
2791 */
2792 if (child != current) {
2793 wait_task_inactive(child, 0);
2794 list_del_init(&child_counter->list_entry);
2795 update_counter_times(child_counter);
2796 } else {
2797 struct perf_cpu_context *cpuctx;
2798 unsigned long flags;
2799 u64 perf_flags;
2800
2801 /*
2802 * Disable and unlink this counter.
2803 *
2804 * Be careful about zapping the list - IRQ/NMI context
2805 * could still be processing it:
2806 */
2807 curr_rq_lock_irq_save(&flags);
2808 perf_flags = hw_perf_save_disable();
2809
2810 cpuctx = &__get_cpu_var(perf_cpu_context);
2811
2812 group_sched_out(child_counter, cpuctx, child_ctx);
2813 update_counter_times(child_counter);
2814
2815 list_del_init(&child_counter->list_entry);
2816
2817 child_ctx->nr_counters--;
2818
2819 hw_perf_restore(perf_flags);
2820 curr_rq_unlock_irq_restore(&flags);
2821 }
2822
2823 parent_counter = child_counter->parent;
2824 /*
2825 * It can happen that parent exits first, and has counters
2826 * that are still around due to the child reference. These
2827 * counters need to be zapped - but otherwise linger.
2828 */
2829 if (parent_counter) {
2830 sync_child_counter(child_counter, parent_counter);
2831 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2832 list_entry) {
2833 if (sub->parent) {
2834 sync_child_counter(sub, sub->parent);
2835 free_counter(sub);
2836 }
2837 }
2838 free_counter(child_counter);
2839 }
2840 }
2841
2842 /*
2843 * When a child task exits, feed back counter values to parent counters.
2844 *
2845 * Note: we may be running in child context, but the PID is not hashed
2846 * anymore so new counters will not be added.
2847 */
2848 void perf_counter_exit_task(struct task_struct *child)
2849 {
2850 struct perf_counter *child_counter, *tmp;
2851 struct perf_counter_context *child_ctx;
2852
2853 child_ctx = &child->perf_counter_ctx;
2854
2855 if (likely(!child_ctx->nr_counters))
2856 return;
2857
2858 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2859 list_entry)
2860 __perf_counter_exit_task(child, child_counter, child_ctx);
2861 }
2862
2863 /*
2864 * Initialize the perf_counter context in task_struct
2865 */
2866 void perf_counter_init_task(struct task_struct *child)
2867 {
2868 struct perf_counter_context *child_ctx, *parent_ctx;
2869 struct perf_counter *counter;
2870 struct task_struct *parent = current;
2871
2872 child_ctx = &child->perf_counter_ctx;
2873 parent_ctx = &parent->perf_counter_ctx;
2874
2875 __perf_counter_init_context(child_ctx, child);
2876
2877 /*
2878 * This is executed from the parent task context, so inherit
2879 * counters that have been marked for cloning:
2880 */
2881
2882 if (likely(!parent_ctx->nr_counters))
2883 return;
2884
2885 /*
2886 * Lock the parent list. No need to lock the child - not PID
2887 * hashed yet and not running, so nobody can access it.
2888 */
2889 mutex_lock(&parent_ctx->mutex);
2890
2891 /*
2892 * We dont have to disable NMIs - we are only looking at
2893 * the list, not manipulating it:
2894 */
2895 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2896 if (!counter->hw_event.inherit)
2897 continue;
2898
2899 if (inherit_group(counter, parent,
2900 parent_ctx, child, child_ctx))
2901 break;
2902 }
2903
2904 mutex_unlock(&parent_ctx->mutex);
2905 }
2906
2907 static void __cpuinit perf_counter_init_cpu(int cpu)
2908 {
2909 struct perf_cpu_context *cpuctx;
2910
2911 cpuctx = &per_cpu(perf_cpu_context, cpu);
2912 __perf_counter_init_context(&cpuctx->ctx, NULL);
2913
2914 mutex_lock(&perf_resource_mutex);
2915 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2916 mutex_unlock(&perf_resource_mutex);
2917
2918 hw_perf_counter_setup(cpu);
2919 }
2920
2921 #ifdef CONFIG_HOTPLUG_CPU
2922 static void __perf_counter_exit_cpu(void *info)
2923 {
2924 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2925 struct perf_counter_context *ctx = &cpuctx->ctx;
2926 struct perf_counter *counter, *tmp;
2927
2928 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2929 __perf_counter_remove_from_context(counter);
2930 }
2931 static void perf_counter_exit_cpu(int cpu)
2932 {
2933 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2934 struct perf_counter_context *ctx = &cpuctx->ctx;
2935
2936 mutex_lock(&ctx->mutex);
2937 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2938 mutex_unlock(&ctx->mutex);
2939 }
2940 #else
2941 static inline void perf_counter_exit_cpu(int cpu) { }
2942 #endif
2943
2944 static int __cpuinit
2945 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2946 {
2947 unsigned int cpu = (long)hcpu;
2948
2949 switch (action) {
2950
2951 case CPU_UP_PREPARE:
2952 case CPU_UP_PREPARE_FROZEN:
2953 perf_counter_init_cpu(cpu);
2954 break;
2955
2956 case CPU_DOWN_PREPARE:
2957 case CPU_DOWN_PREPARE_FROZEN:
2958 perf_counter_exit_cpu(cpu);
2959 break;
2960
2961 default:
2962 break;
2963 }
2964
2965 return NOTIFY_OK;
2966 }
2967
2968 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2969 .notifier_call = perf_cpu_notify,
2970 };
2971
2972 static int __init perf_counter_init(void)
2973 {
2974 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2975 (void *)(long)smp_processor_id());
2976 register_cpu_notifier(&perf_cpu_nb);
2977
2978 return 0;
2979 }
2980 early_initcall(perf_counter_init);
2981
2982 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2983 {
2984 return sprintf(buf, "%d\n", perf_reserved_percpu);
2985 }
2986
2987 static ssize_t
2988 perf_set_reserve_percpu(struct sysdev_class *class,
2989 const char *buf,
2990 size_t count)
2991 {
2992 struct perf_cpu_context *cpuctx;
2993 unsigned long val;
2994 int err, cpu, mpt;
2995
2996 err = strict_strtoul(buf, 10, &val);
2997 if (err)
2998 return err;
2999 if (val > perf_max_counters)
3000 return -EINVAL;
3001
3002 mutex_lock(&perf_resource_mutex);
3003 perf_reserved_percpu = val;
3004 for_each_online_cpu(cpu) {
3005 cpuctx = &per_cpu(perf_cpu_context, cpu);
3006 spin_lock_irq(&cpuctx->ctx.lock);
3007 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3008 perf_max_counters - perf_reserved_percpu);
3009 cpuctx->max_pertask = mpt;
3010 spin_unlock_irq(&cpuctx->ctx.lock);
3011 }
3012 mutex_unlock(&perf_resource_mutex);
3013
3014 return count;
3015 }
3016
3017 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3018 {
3019 return sprintf(buf, "%d\n", perf_overcommit);
3020 }
3021
3022 static ssize_t
3023 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3024 {
3025 unsigned long val;
3026 int err;
3027
3028 err = strict_strtoul(buf, 10, &val);
3029 if (err)
3030 return err;
3031 if (val > 1)
3032 return -EINVAL;
3033
3034 mutex_lock(&perf_resource_mutex);
3035 perf_overcommit = val;
3036 mutex_unlock(&perf_resource_mutex);
3037
3038 return count;
3039 }
3040
3041 static SYSDEV_CLASS_ATTR(
3042 reserve_percpu,
3043 0644,
3044 perf_show_reserve_percpu,
3045 perf_set_reserve_percpu
3046 );
3047
3048 static SYSDEV_CLASS_ATTR(
3049 overcommit,
3050 0644,
3051 perf_show_overcommit,
3052 perf_set_overcommit
3053 );
3054
3055 static struct attribute *perfclass_attrs[] = {
3056 &attr_reserve_percpu.attr,
3057 &attr_overcommit.attr,
3058 NULL
3059 };
3060
3061 static struct attribute_group perfclass_attr_group = {
3062 .attrs = perfclass_attrs,
3063 .name = "perf_counters",
3064 };
3065
3066 static int __init perf_counter_sysfs_init(void)
3067 {
3068 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3069 &perfclass_attr_group);
3070 }
3071 device_initcall(perf_counter_sysfs_init);