perf_counter: new output ABI - part 1
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 *
8 * For licensing details see kernel-base/COPYING
9 */
10
11 #include <linux/fs.h>
12 #include <linux/cpu.h>
13 #include <linux/smp.h>
14 #include <linux/file.h>
15 #include <linux/poll.h>
16 #include <linux/sysfs.h>
17 #include <linux/ptrace.h>
18 #include <linux/percpu.h>
19 #include <linux/uaccess.h>
20 #include <linux/syscalls.h>
21 #include <linux/anon_inodes.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/perf_counter.h>
24 #include <linux/mm.h>
25 #include <linux/vmstat.h>
26 #include <linux/rculist.h>
27 #include <linux/hardirq.h>
28
29 #include <asm/irq_regs.h>
30
31 /*
32 * Each CPU has a list of per CPU counters:
33 */
34 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
35
36 int perf_max_counters __read_mostly = 1;
37 static int perf_reserved_percpu __read_mostly;
38 static int perf_overcommit __read_mostly = 1;
39
40 /*
41 * Mutex for (sysadmin-configurable) counter reservations:
42 */
43 static DEFINE_MUTEX(perf_resource_mutex);
44
45 /*
46 * Architecture provided APIs - weak aliases:
47 */
48 extern __weak const struct hw_perf_counter_ops *
49 hw_perf_counter_init(struct perf_counter *counter)
50 {
51 return NULL;
52 }
53
54 u64 __weak hw_perf_save_disable(void) { return 0; }
55 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
56 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
57 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58 struct perf_cpu_context *cpuctx,
59 struct perf_counter_context *ctx, int cpu)
60 {
61 return 0;
62 }
63
64 void __weak perf_counter_print_debug(void) { }
65
66 static void
67 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68 {
69 struct perf_counter *group_leader = counter->group_leader;
70
71 /*
72 * Depending on whether it is a standalone or sibling counter,
73 * add it straight to the context's counter list, or to the group
74 * leader's sibling list:
75 */
76 if (counter->group_leader == counter)
77 list_add_tail(&counter->list_entry, &ctx->counter_list);
78 else
79 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
80
81 list_add_rcu(&counter->event_entry, &ctx->event_list);
82 }
83
84 static void
85 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
86 {
87 struct perf_counter *sibling, *tmp;
88
89 list_del_init(&counter->list_entry);
90 list_del_rcu(&counter->event_entry);
91
92 /*
93 * If this was a group counter with sibling counters then
94 * upgrade the siblings to singleton counters by adding them
95 * to the context list directly:
96 */
97 list_for_each_entry_safe(sibling, tmp,
98 &counter->sibling_list, list_entry) {
99
100 list_move_tail(&sibling->list_entry, &ctx->counter_list);
101 sibling->group_leader = sibling;
102 }
103 }
104
105 static void
106 counter_sched_out(struct perf_counter *counter,
107 struct perf_cpu_context *cpuctx,
108 struct perf_counter_context *ctx)
109 {
110 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
111 return;
112
113 counter->state = PERF_COUNTER_STATE_INACTIVE;
114 counter->hw_ops->disable(counter);
115 counter->oncpu = -1;
116
117 if (!is_software_counter(counter))
118 cpuctx->active_oncpu--;
119 ctx->nr_active--;
120 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
121 cpuctx->exclusive = 0;
122 }
123
124 static void
125 group_sched_out(struct perf_counter *group_counter,
126 struct perf_cpu_context *cpuctx,
127 struct perf_counter_context *ctx)
128 {
129 struct perf_counter *counter;
130
131 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
132 return;
133
134 counter_sched_out(group_counter, cpuctx, ctx);
135
136 /*
137 * Schedule out siblings (if any):
138 */
139 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
140 counter_sched_out(counter, cpuctx, ctx);
141
142 if (group_counter->hw_event.exclusive)
143 cpuctx->exclusive = 0;
144 }
145
146 /*
147 * Cross CPU call to remove a performance counter
148 *
149 * We disable the counter on the hardware level first. After that we
150 * remove it from the context list.
151 */
152 static void __perf_counter_remove_from_context(void *info)
153 {
154 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
155 struct perf_counter *counter = info;
156 struct perf_counter_context *ctx = counter->ctx;
157 unsigned long flags;
158 u64 perf_flags;
159
160 /*
161 * If this is a task context, we need to check whether it is
162 * the current task context of this cpu. If not it has been
163 * scheduled out before the smp call arrived.
164 */
165 if (ctx->task && cpuctx->task_ctx != ctx)
166 return;
167
168 curr_rq_lock_irq_save(&flags);
169 spin_lock(&ctx->lock);
170
171 counter_sched_out(counter, cpuctx, ctx);
172
173 counter->task = NULL;
174 ctx->nr_counters--;
175
176 /*
177 * Protect the list operation against NMI by disabling the
178 * counters on a global level. NOP for non NMI based counters.
179 */
180 perf_flags = hw_perf_save_disable();
181 list_del_counter(counter, ctx);
182 hw_perf_restore(perf_flags);
183
184 if (!ctx->task) {
185 /*
186 * Allow more per task counters with respect to the
187 * reservation:
188 */
189 cpuctx->max_pertask =
190 min(perf_max_counters - ctx->nr_counters,
191 perf_max_counters - perf_reserved_percpu);
192 }
193
194 spin_unlock(&ctx->lock);
195 curr_rq_unlock_irq_restore(&flags);
196 }
197
198
199 /*
200 * Remove the counter from a task's (or a CPU's) list of counters.
201 *
202 * Must be called with counter->mutex and ctx->mutex held.
203 *
204 * CPU counters are removed with a smp call. For task counters we only
205 * call when the task is on a CPU.
206 */
207 static void perf_counter_remove_from_context(struct perf_counter *counter)
208 {
209 struct perf_counter_context *ctx = counter->ctx;
210 struct task_struct *task = ctx->task;
211
212 if (!task) {
213 /*
214 * Per cpu counters are removed via an smp call and
215 * the removal is always sucessful.
216 */
217 smp_call_function_single(counter->cpu,
218 __perf_counter_remove_from_context,
219 counter, 1);
220 return;
221 }
222
223 retry:
224 task_oncpu_function_call(task, __perf_counter_remove_from_context,
225 counter);
226
227 spin_lock_irq(&ctx->lock);
228 /*
229 * If the context is active we need to retry the smp call.
230 */
231 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
232 spin_unlock_irq(&ctx->lock);
233 goto retry;
234 }
235
236 /*
237 * The lock prevents that this context is scheduled in so we
238 * can remove the counter safely, if the call above did not
239 * succeed.
240 */
241 if (!list_empty(&counter->list_entry)) {
242 ctx->nr_counters--;
243 list_del_counter(counter, ctx);
244 counter->task = NULL;
245 }
246 spin_unlock_irq(&ctx->lock);
247 }
248
249 /*
250 * Cross CPU call to disable a performance counter
251 */
252 static void __perf_counter_disable(void *info)
253 {
254 struct perf_counter *counter = info;
255 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
256 struct perf_counter_context *ctx = counter->ctx;
257 unsigned long flags;
258
259 /*
260 * If this is a per-task counter, need to check whether this
261 * counter's task is the current task on this cpu.
262 */
263 if (ctx->task && cpuctx->task_ctx != ctx)
264 return;
265
266 curr_rq_lock_irq_save(&flags);
267 spin_lock(&ctx->lock);
268
269 /*
270 * If the counter is on, turn it off.
271 * If it is in error state, leave it in error state.
272 */
273 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
274 if (counter == counter->group_leader)
275 group_sched_out(counter, cpuctx, ctx);
276 else
277 counter_sched_out(counter, cpuctx, ctx);
278 counter->state = PERF_COUNTER_STATE_OFF;
279 }
280
281 spin_unlock(&ctx->lock);
282 curr_rq_unlock_irq_restore(&flags);
283 }
284
285 /*
286 * Disable a counter.
287 */
288 static void perf_counter_disable(struct perf_counter *counter)
289 {
290 struct perf_counter_context *ctx = counter->ctx;
291 struct task_struct *task = ctx->task;
292
293 if (!task) {
294 /*
295 * Disable the counter on the cpu that it's on
296 */
297 smp_call_function_single(counter->cpu, __perf_counter_disable,
298 counter, 1);
299 return;
300 }
301
302 retry:
303 task_oncpu_function_call(task, __perf_counter_disable, counter);
304
305 spin_lock_irq(&ctx->lock);
306 /*
307 * If the counter is still active, we need to retry the cross-call.
308 */
309 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
310 spin_unlock_irq(&ctx->lock);
311 goto retry;
312 }
313
314 /*
315 * Since we have the lock this context can't be scheduled
316 * in, so we can change the state safely.
317 */
318 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
319 counter->state = PERF_COUNTER_STATE_OFF;
320
321 spin_unlock_irq(&ctx->lock);
322 }
323
324 /*
325 * Disable a counter and all its children.
326 */
327 static void perf_counter_disable_family(struct perf_counter *counter)
328 {
329 struct perf_counter *child;
330
331 perf_counter_disable(counter);
332
333 /*
334 * Lock the mutex to protect the list of children
335 */
336 mutex_lock(&counter->mutex);
337 list_for_each_entry(child, &counter->child_list, child_list)
338 perf_counter_disable(child);
339 mutex_unlock(&counter->mutex);
340 }
341
342 static int
343 counter_sched_in(struct perf_counter *counter,
344 struct perf_cpu_context *cpuctx,
345 struct perf_counter_context *ctx,
346 int cpu)
347 {
348 if (counter->state <= PERF_COUNTER_STATE_OFF)
349 return 0;
350
351 counter->state = PERF_COUNTER_STATE_ACTIVE;
352 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
353 /*
354 * The new state must be visible before we turn it on in the hardware:
355 */
356 smp_wmb();
357
358 if (counter->hw_ops->enable(counter)) {
359 counter->state = PERF_COUNTER_STATE_INACTIVE;
360 counter->oncpu = -1;
361 return -EAGAIN;
362 }
363
364 if (!is_software_counter(counter))
365 cpuctx->active_oncpu++;
366 ctx->nr_active++;
367
368 if (counter->hw_event.exclusive)
369 cpuctx->exclusive = 1;
370
371 return 0;
372 }
373
374 /*
375 * Return 1 for a group consisting entirely of software counters,
376 * 0 if the group contains any hardware counters.
377 */
378 static int is_software_only_group(struct perf_counter *leader)
379 {
380 struct perf_counter *counter;
381
382 if (!is_software_counter(leader))
383 return 0;
384 list_for_each_entry(counter, &leader->sibling_list, list_entry)
385 if (!is_software_counter(counter))
386 return 0;
387 return 1;
388 }
389
390 /*
391 * Work out whether we can put this counter group on the CPU now.
392 */
393 static int group_can_go_on(struct perf_counter *counter,
394 struct perf_cpu_context *cpuctx,
395 int can_add_hw)
396 {
397 /*
398 * Groups consisting entirely of software counters can always go on.
399 */
400 if (is_software_only_group(counter))
401 return 1;
402 /*
403 * If an exclusive group is already on, no other hardware
404 * counters can go on.
405 */
406 if (cpuctx->exclusive)
407 return 0;
408 /*
409 * If this group is exclusive and there are already
410 * counters on the CPU, it can't go on.
411 */
412 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
413 return 0;
414 /*
415 * Otherwise, try to add it if all previous groups were able
416 * to go on.
417 */
418 return can_add_hw;
419 }
420
421 /*
422 * Cross CPU call to install and enable a performance counter
423 */
424 static void __perf_install_in_context(void *info)
425 {
426 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
427 struct perf_counter *counter = info;
428 struct perf_counter_context *ctx = counter->ctx;
429 struct perf_counter *leader = counter->group_leader;
430 int cpu = smp_processor_id();
431 unsigned long flags;
432 u64 perf_flags;
433 int err;
434
435 /*
436 * If this is a task context, we need to check whether it is
437 * the current task context of this cpu. If not it has been
438 * scheduled out before the smp call arrived.
439 */
440 if (ctx->task && cpuctx->task_ctx != ctx)
441 return;
442
443 curr_rq_lock_irq_save(&flags);
444 spin_lock(&ctx->lock);
445
446 /*
447 * Protect the list operation against NMI by disabling the
448 * counters on a global level. NOP for non NMI based counters.
449 */
450 perf_flags = hw_perf_save_disable();
451
452 list_add_counter(counter, ctx);
453 ctx->nr_counters++;
454 counter->prev_state = PERF_COUNTER_STATE_OFF;
455
456 /*
457 * Don't put the counter on if it is disabled or if
458 * it is in a group and the group isn't on.
459 */
460 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
461 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
462 goto unlock;
463
464 /*
465 * An exclusive counter can't go on if there are already active
466 * hardware counters, and no hardware counter can go on if there
467 * is already an exclusive counter on.
468 */
469 if (!group_can_go_on(counter, cpuctx, 1))
470 err = -EEXIST;
471 else
472 err = counter_sched_in(counter, cpuctx, ctx, cpu);
473
474 if (err) {
475 /*
476 * This counter couldn't go on. If it is in a group
477 * then we have to pull the whole group off.
478 * If the counter group is pinned then put it in error state.
479 */
480 if (leader != counter)
481 group_sched_out(leader, cpuctx, ctx);
482 if (leader->hw_event.pinned)
483 leader->state = PERF_COUNTER_STATE_ERROR;
484 }
485
486 if (!err && !ctx->task && cpuctx->max_pertask)
487 cpuctx->max_pertask--;
488
489 unlock:
490 hw_perf_restore(perf_flags);
491
492 spin_unlock(&ctx->lock);
493 curr_rq_unlock_irq_restore(&flags);
494 }
495
496 /*
497 * Attach a performance counter to a context
498 *
499 * First we add the counter to the list with the hardware enable bit
500 * in counter->hw_config cleared.
501 *
502 * If the counter is attached to a task which is on a CPU we use a smp
503 * call to enable it in the task context. The task might have been
504 * scheduled away, but we check this in the smp call again.
505 *
506 * Must be called with ctx->mutex held.
507 */
508 static void
509 perf_install_in_context(struct perf_counter_context *ctx,
510 struct perf_counter *counter,
511 int cpu)
512 {
513 struct task_struct *task = ctx->task;
514
515 if (!task) {
516 /*
517 * Per cpu counters are installed via an smp call and
518 * the install is always sucessful.
519 */
520 smp_call_function_single(cpu, __perf_install_in_context,
521 counter, 1);
522 return;
523 }
524
525 counter->task = task;
526 retry:
527 task_oncpu_function_call(task, __perf_install_in_context,
528 counter);
529
530 spin_lock_irq(&ctx->lock);
531 /*
532 * we need to retry the smp call.
533 */
534 if (ctx->is_active && list_empty(&counter->list_entry)) {
535 spin_unlock_irq(&ctx->lock);
536 goto retry;
537 }
538
539 /*
540 * The lock prevents that this context is scheduled in so we
541 * can add the counter safely, if it the call above did not
542 * succeed.
543 */
544 if (list_empty(&counter->list_entry)) {
545 list_add_counter(counter, ctx);
546 ctx->nr_counters++;
547 }
548 spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552 * Cross CPU call to enable a performance counter
553 */
554 static void __perf_counter_enable(void *info)
555 {
556 struct perf_counter *counter = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_counter_context *ctx = counter->ctx;
559 struct perf_counter *leader = counter->group_leader;
560 unsigned long flags;
561 int err;
562
563 /*
564 * If this is a per-task counter, need to check whether this
565 * counter's task is the current task on this cpu.
566 */
567 if (ctx->task && cpuctx->task_ctx != ctx)
568 return;
569
570 curr_rq_lock_irq_save(&flags);
571 spin_lock(&ctx->lock);
572
573 counter->prev_state = counter->state;
574 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
575 goto unlock;
576 counter->state = PERF_COUNTER_STATE_INACTIVE;
577
578 /*
579 * If the counter is in a group and isn't the group leader,
580 * then don't put it on unless the group is on.
581 */
582 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
583 goto unlock;
584
585 if (!group_can_go_on(counter, cpuctx, 1))
586 err = -EEXIST;
587 else
588 err = counter_sched_in(counter, cpuctx, ctx,
589 smp_processor_id());
590
591 if (err) {
592 /*
593 * If this counter can't go on and it's part of a
594 * group, then the whole group has to come off.
595 */
596 if (leader != counter)
597 group_sched_out(leader, cpuctx, ctx);
598 if (leader->hw_event.pinned)
599 leader->state = PERF_COUNTER_STATE_ERROR;
600 }
601
602 unlock:
603 spin_unlock(&ctx->lock);
604 curr_rq_unlock_irq_restore(&flags);
605 }
606
607 /*
608 * Enable a counter.
609 */
610 static void perf_counter_enable(struct perf_counter *counter)
611 {
612 struct perf_counter_context *ctx = counter->ctx;
613 struct task_struct *task = ctx->task;
614
615 if (!task) {
616 /*
617 * Enable the counter on the cpu that it's on
618 */
619 smp_call_function_single(counter->cpu, __perf_counter_enable,
620 counter, 1);
621 return;
622 }
623
624 spin_lock_irq(&ctx->lock);
625 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
626 goto out;
627
628 /*
629 * If the counter is in error state, clear that first.
630 * That way, if we see the counter in error state below, we
631 * know that it has gone back into error state, as distinct
632 * from the task having been scheduled away before the
633 * cross-call arrived.
634 */
635 if (counter->state == PERF_COUNTER_STATE_ERROR)
636 counter->state = PERF_COUNTER_STATE_OFF;
637
638 retry:
639 spin_unlock_irq(&ctx->lock);
640 task_oncpu_function_call(task, __perf_counter_enable, counter);
641
642 spin_lock_irq(&ctx->lock);
643
644 /*
645 * If the context is active and the counter is still off,
646 * we need to retry the cross-call.
647 */
648 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
649 goto retry;
650
651 /*
652 * Since we have the lock this context can't be scheduled
653 * in, so we can change the state safely.
654 */
655 if (counter->state == PERF_COUNTER_STATE_OFF)
656 counter->state = PERF_COUNTER_STATE_INACTIVE;
657 out:
658 spin_unlock_irq(&ctx->lock);
659 }
660
661 /*
662 * Enable a counter and all its children.
663 */
664 static void perf_counter_enable_family(struct perf_counter *counter)
665 {
666 struct perf_counter *child;
667
668 perf_counter_enable(counter);
669
670 /*
671 * Lock the mutex to protect the list of children
672 */
673 mutex_lock(&counter->mutex);
674 list_for_each_entry(child, &counter->child_list, child_list)
675 perf_counter_enable(child);
676 mutex_unlock(&counter->mutex);
677 }
678
679 void __perf_counter_sched_out(struct perf_counter_context *ctx,
680 struct perf_cpu_context *cpuctx)
681 {
682 struct perf_counter *counter;
683 u64 flags;
684
685 spin_lock(&ctx->lock);
686 ctx->is_active = 0;
687 if (likely(!ctx->nr_counters))
688 goto out;
689
690 flags = hw_perf_save_disable();
691 if (ctx->nr_active) {
692 list_for_each_entry(counter, &ctx->counter_list, list_entry)
693 group_sched_out(counter, cpuctx, ctx);
694 }
695 hw_perf_restore(flags);
696 out:
697 spin_unlock(&ctx->lock);
698 }
699
700 /*
701 * Called from scheduler to remove the counters of the current task,
702 * with interrupts disabled.
703 *
704 * We stop each counter and update the counter value in counter->count.
705 *
706 * This does not protect us against NMI, but disable()
707 * sets the disabled bit in the control field of counter _before_
708 * accessing the counter control register. If a NMI hits, then it will
709 * not restart the counter.
710 */
711 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
712 {
713 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
714 struct perf_counter_context *ctx = &task->perf_counter_ctx;
715 struct pt_regs *regs;
716
717 if (likely(!cpuctx->task_ctx))
718 return;
719
720 regs = task_pt_regs(task);
721 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
722 __perf_counter_sched_out(ctx, cpuctx);
723
724 cpuctx->task_ctx = NULL;
725 }
726
727 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
728 {
729 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
730 }
731
732 static int
733 group_sched_in(struct perf_counter *group_counter,
734 struct perf_cpu_context *cpuctx,
735 struct perf_counter_context *ctx,
736 int cpu)
737 {
738 struct perf_counter *counter, *partial_group;
739 int ret;
740
741 if (group_counter->state == PERF_COUNTER_STATE_OFF)
742 return 0;
743
744 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
745 if (ret)
746 return ret < 0 ? ret : 0;
747
748 group_counter->prev_state = group_counter->state;
749 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
750 return -EAGAIN;
751
752 /*
753 * Schedule in siblings as one group (if any):
754 */
755 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
756 counter->prev_state = counter->state;
757 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
758 partial_group = counter;
759 goto group_error;
760 }
761 }
762
763 return 0;
764
765 group_error:
766 /*
767 * Groups can be scheduled in as one unit only, so undo any
768 * partial group before returning:
769 */
770 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
771 if (counter == partial_group)
772 break;
773 counter_sched_out(counter, cpuctx, ctx);
774 }
775 counter_sched_out(group_counter, cpuctx, ctx);
776
777 return -EAGAIN;
778 }
779
780 static void
781 __perf_counter_sched_in(struct perf_counter_context *ctx,
782 struct perf_cpu_context *cpuctx, int cpu)
783 {
784 struct perf_counter *counter;
785 u64 flags;
786 int can_add_hw = 1;
787
788 spin_lock(&ctx->lock);
789 ctx->is_active = 1;
790 if (likely(!ctx->nr_counters))
791 goto out;
792
793 flags = hw_perf_save_disable();
794
795 /*
796 * First go through the list and put on any pinned groups
797 * in order to give them the best chance of going on.
798 */
799 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
800 if (counter->state <= PERF_COUNTER_STATE_OFF ||
801 !counter->hw_event.pinned)
802 continue;
803 if (counter->cpu != -1 && counter->cpu != cpu)
804 continue;
805
806 if (group_can_go_on(counter, cpuctx, 1))
807 group_sched_in(counter, cpuctx, ctx, cpu);
808
809 /*
810 * If this pinned group hasn't been scheduled,
811 * put it in error state.
812 */
813 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
814 counter->state = PERF_COUNTER_STATE_ERROR;
815 }
816
817 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
818 /*
819 * Ignore counters in OFF or ERROR state, and
820 * ignore pinned counters since we did them already.
821 */
822 if (counter->state <= PERF_COUNTER_STATE_OFF ||
823 counter->hw_event.pinned)
824 continue;
825
826 /*
827 * Listen to the 'cpu' scheduling filter constraint
828 * of counters:
829 */
830 if (counter->cpu != -1 && counter->cpu != cpu)
831 continue;
832
833 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
834 if (group_sched_in(counter, cpuctx, ctx, cpu))
835 can_add_hw = 0;
836 }
837 }
838 hw_perf_restore(flags);
839 out:
840 spin_unlock(&ctx->lock);
841 }
842
843 /*
844 * Called from scheduler to add the counters of the current task
845 * with interrupts disabled.
846 *
847 * We restore the counter value and then enable it.
848 *
849 * This does not protect us against NMI, but enable()
850 * sets the enabled bit in the control field of counter _before_
851 * accessing the counter control register. If a NMI hits, then it will
852 * keep the counter running.
853 */
854 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
855 {
856 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
857 struct perf_counter_context *ctx = &task->perf_counter_ctx;
858
859 __perf_counter_sched_in(ctx, cpuctx, cpu);
860 cpuctx->task_ctx = ctx;
861 }
862
863 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
864 {
865 struct perf_counter_context *ctx = &cpuctx->ctx;
866
867 __perf_counter_sched_in(ctx, cpuctx, cpu);
868 }
869
870 int perf_counter_task_disable(void)
871 {
872 struct task_struct *curr = current;
873 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
874 struct perf_counter *counter;
875 unsigned long flags;
876 u64 perf_flags;
877 int cpu;
878
879 if (likely(!ctx->nr_counters))
880 return 0;
881
882 curr_rq_lock_irq_save(&flags);
883 cpu = smp_processor_id();
884
885 /* force the update of the task clock: */
886 __task_delta_exec(curr, 1);
887
888 perf_counter_task_sched_out(curr, cpu);
889
890 spin_lock(&ctx->lock);
891
892 /*
893 * Disable all the counters:
894 */
895 perf_flags = hw_perf_save_disable();
896
897 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
898 if (counter->state != PERF_COUNTER_STATE_ERROR)
899 counter->state = PERF_COUNTER_STATE_OFF;
900 }
901
902 hw_perf_restore(perf_flags);
903
904 spin_unlock(&ctx->lock);
905
906 curr_rq_unlock_irq_restore(&flags);
907
908 return 0;
909 }
910
911 int perf_counter_task_enable(void)
912 {
913 struct task_struct *curr = current;
914 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
915 struct perf_counter *counter;
916 unsigned long flags;
917 u64 perf_flags;
918 int cpu;
919
920 if (likely(!ctx->nr_counters))
921 return 0;
922
923 curr_rq_lock_irq_save(&flags);
924 cpu = smp_processor_id();
925
926 /* force the update of the task clock: */
927 __task_delta_exec(curr, 1);
928
929 perf_counter_task_sched_out(curr, cpu);
930
931 spin_lock(&ctx->lock);
932
933 /*
934 * Disable all the counters:
935 */
936 perf_flags = hw_perf_save_disable();
937
938 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
939 if (counter->state > PERF_COUNTER_STATE_OFF)
940 continue;
941 counter->state = PERF_COUNTER_STATE_INACTIVE;
942 counter->hw_event.disabled = 0;
943 }
944 hw_perf_restore(perf_flags);
945
946 spin_unlock(&ctx->lock);
947
948 perf_counter_task_sched_in(curr, cpu);
949
950 curr_rq_unlock_irq_restore(&flags);
951
952 return 0;
953 }
954
955 /*
956 * Round-robin a context's counters:
957 */
958 static void rotate_ctx(struct perf_counter_context *ctx)
959 {
960 struct perf_counter *counter;
961 u64 perf_flags;
962
963 if (!ctx->nr_counters)
964 return;
965
966 spin_lock(&ctx->lock);
967 /*
968 * Rotate the first entry last (works just fine for group counters too):
969 */
970 perf_flags = hw_perf_save_disable();
971 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
972 list_move_tail(&counter->list_entry, &ctx->counter_list);
973 break;
974 }
975 hw_perf_restore(perf_flags);
976
977 spin_unlock(&ctx->lock);
978 }
979
980 void perf_counter_task_tick(struct task_struct *curr, int cpu)
981 {
982 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
983 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
984 const int rotate_percpu = 0;
985
986 if (rotate_percpu)
987 perf_counter_cpu_sched_out(cpuctx);
988 perf_counter_task_sched_out(curr, cpu);
989
990 if (rotate_percpu)
991 rotate_ctx(&cpuctx->ctx);
992 rotate_ctx(ctx);
993
994 if (rotate_percpu)
995 perf_counter_cpu_sched_in(cpuctx, cpu);
996 perf_counter_task_sched_in(curr, cpu);
997 }
998
999 /*
1000 * Cross CPU call to read the hardware counter
1001 */
1002 static void __read(void *info)
1003 {
1004 struct perf_counter *counter = info;
1005 unsigned long flags;
1006
1007 curr_rq_lock_irq_save(&flags);
1008 counter->hw_ops->read(counter);
1009 curr_rq_unlock_irq_restore(&flags);
1010 }
1011
1012 static u64 perf_counter_read(struct perf_counter *counter)
1013 {
1014 /*
1015 * If counter is enabled and currently active on a CPU, update the
1016 * value in the counter structure:
1017 */
1018 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1019 smp_call_function_single(counter->oncpu,
1020 __read, counter, 1);
1021 }
1022
1023 return atomic64_read(&counter->count);
1024 }
1025
1026 static void put_context(struct perf_counter_context *ctx)
1027 {
1028 if (ctx->task)
1029 put_task_struct(ctx->task);
1030 }
1031
1032 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1033 {
1034 struct perf_cpu_context *cpuctx;
1035 struct perf_counter_context *ctx;
1036 struct task_struct *task;
1037
1038 /*
1039 * If cpu is not a wildcard then this is a percpu counter:
1040 */
1041 if (cpu != -1) {
1042 /* Must be root to operate on a CPU counter: */
1043 if (!capable(CAP_SYS_ADMIN))
1044 return ERR_PTR(-EACCES);
1045
1046 if (cpu < 0 || cpu > num_possible_cpus())
1047 return ERR_PTR(-EINVAL);
1048
1049 /*
1050 * We could be clever and allow to attach a counter to an
1051 * offline CPU and activate it when the CPU comes up, but
1052 * that's for later.
1053 */
1054 if (!cpu_isset(cpu, cpu_online_map))
1055 return ERR_PTR(-ENODEV);
1056
1057 cpuctx = &per_cpu(perf_cpu_context, cpu);
1058 ctx = &cpuctx->ctx;
1059
1060 return ctx;
1061 }
1062
1063 rcu_read_lock();
1064 if (!pid)
1065 task = current;
1066 else
1067 task = find_task_by_vpid(pid);
1068 if (task)
1069 get_task_struct(task);
1070 rcu_read_unlock();
1071
1072 if (!task)
1073 return ERR_PTR(-ESRCH);
1074
1075 ctx = &task->perf_counter_ctx;
1076 ctx->task = task;
1077
1078 /* Reuse ptrace permission checks for now. */
1079 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1080 put_context(ctx);
1081 return ERR_PTR(-EACCES);
1082 }
1083
1084 return ctx;
1085 }
1086
1087 static void free_counter_rcu(struct rcu_head *head)
1088 {
1089 struct perf_counter *counter;
1090
1091 counter = container_of(head, struct perf_counter, rcu_head);
1092 kfree(counter);
1093 }
1094
1095 static void free_counter(struct perf_counter *counter)
1096 {
1097 if (counter->destroy)
1098 counter->destroy(counter);
1099
1100 call_rcu(&counter->rcu_head, free_counter_rcu);
1101 }
1102
1103 /*
1104 * Called when the last reference to the file is gone.
1105 */
1106 static int perf_release(struct inode *inode, struct file *file)
1107 {
1108 struct perf_counter *counter = file->private_data;
1109 struct perf_counter_context *ctx = counter->ctx;
1110
1111 file->private_data = NULL;
1112
1113 mutex_lock(&ctx->mutex);
1114 mutex_lock(&counter->mutex);
1115
1116 perf_counter_remove_from_context(counter);
1117
1118 mutex_unlock(&counter->mutex);
1119 mutex_unlock(&ctx->mutex);
1120
1121 free_counter(counter);
1122 put_context(ctx);
1123
1124 return 0;
1125 }
1126
1127 /*
1128 * Read the performance counter - simple non blocking version for now
1129 */
1130 static ssize_t
1131 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1132 {
1133 u64 cntval;
1134
1135 if (count < sizeof(cntval))
1136 return -EINVAL;
1137
1138 /*
1139 * Return end-of-file for a read on a counter that is in
1140 * error state (i.e. because it was pinned but it couldn't be
1141 * scheduled on to the CPU at some point).
1142 */
1143 if (counter->state == PERF_COUNTER_STATE_ERROR)
1144 return 0;
1145
1146 mutex_lock(&counter->mutex);
1147 cntval = perf_counter_read(counter);
1148 mutex_unlock(&counter->mutex);
1149
1150 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1151 }
1152
1153 static ssize_t
1154 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1155 {
1156 struct perf_counter *counter = file->private_data;
1157
1158 return perf_read_hw(counter, buf, count);
1159 }
1160
1161 static unsigned int perf_poll(struct file *file, poll_table *wait)
1162 {
1163 struct perf_counter *counter = file->private_data;
1164 unsigned int events = POLLIN;
1165
1166 poll_wait(file, &counter->waitq, wait);
1167
1168 return events;
1169 }
1170
1171 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1172 {
1173 struct perf_counter *counter = file->private_data;
1174 int err = 0;
1175
1176 switch (cmd) {
1177 case PERF_COUNTER_IOC_ENABLE:
1178 perf_counter_enable_family(counter);
1179 break;
1180 case PERF_COUNTER_IOC_DISABLE:
1181 perf_counter_disable_family(counter);
1182 break;
1183 default:
1184 err = -ENOTTY;
1185 }
1186 return err;
1187 }
1188
1189 static void __perf_counter_update_userpage(struct perf_counter *counter,
1190 struct perf_mmap_data *data)
1191 {
1192 struct perf_counter_mmap_page *userpg = data->user_page;
1193
1194 /*
1195 * Disable preemption so as to not let the corresponding user-space
1196 * spin too long if we get preempted.
1197 */
1198 preempt_disable();
1199 ++userpg->lock;
1200 smp_wmb();
1201 userpg->index = counter->hw.idx;
1202 userpg->offset = atomic64_read(&counter->count);
1203 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1204 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1205
1206 userpg->data_head = atomic_read(&data->head);
1207 smp_wmb();
1208 ++userpg->lock;
1209 preempt_enable();
1210 }
1211
1212 void perf_counter_update_userpage(struct perf_counter *counter)
1213 {
1214 struct perf_mmap_data *data;
1215
1216 rcu_read_lock();
1217 data = rcu_dereference(counter->data);
1218 if (data)
1219 __perf_counter_update_userpage(counter, data);
1220 rcu_read_unlock();
1221 }
1222
1223 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1224 {
1225 struct perf_counter *counter = vma->vm_file->private_data;
1226 struct perf_mmap_data *data;
1227 int ret = VM_FAULT_SIGBUS;
1228
1229 rcu_read_lock();
1230 data = rcu_dereference(counter->data);
1231 if (!data)
1232 goto unlock;
1233
1234 if (vmf->pgoff == 0) {
1235 vmf->page = virt_to_page(data->user_page);
1236 } else {
1237 int nr = vmf->pgoff - 1;
1238
1239 if ((unsigned)nr > data->nr_pages)
1240 goto unlock;
1241
1242 vmf->page = virt_to_page(data->data_pages[nr]);
1243 }
1244 get_page(vmf->page);
1245 ret = 0;
1246 unlock:
1247 rcu_read_unlock();
1248
1249 return ret;
1250 }
1251
1252 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1253 {
1254 struct perf_mmap_data *data;
1255 unsigned long size;
1256 int i;
1257
1258 WARN_ON(atomic_read(&counter->mmap_count));
1259
1260 size = sizeof(struct perf_mmap_data);
1261 size += nr_pages * sizeof(void *);
1262
1263 data = kzalloc(size, GFP_KERNEL);
1264 if (!data)
1265 goto fail;
1266
1267 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1268 if (!data->user_page)
1269 goto fail_user_page;
1270
1271 for (i = 0; i < nr_pages; i++) {
1272 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1273 if (!data->data_pages[i])
1274 goto fail_data_pages;
1275 }
1276
1277 data->nr_pages = nr_pages;
1278
1279 rcu_assign_pointer(counter->data, data);
1280
1281 return 0;
1282
1283 fail_data_pages:
1284 for (i--; i >= 0; i--)
1285 free_page((unsigned long)data->data_pages[i]);
1286
1287 free_page((unsigned long)data->user_page);
1288
1289 fail_user_page:
1290 kfree(data);
1291
1292 fail:
1293 return -ENOMEM;
1294 }
1295
1296 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1297 {
1298 struct perf_mmap_data *data = container_of(rcu_head,
1299 struct perf_mmap_data, rcu_head);
1300 int i;
1301
1302 free_page((unsigned long)data->user_page);
1303 for (i = 0; i < data->nr_pages; i++)
1304 free_page((unsigned long)data->data_pages[i]);
1305 kfree(data);
1306 }
1307
1308 static void perf_mmap_data_free(struct perf_counter *counter)
1309 {
1310 struct perf_mmap_data *data = counter->data;
1311
1312 WARN_ON(atomic_read(&counter->mmap_count));
1313
1314 rcu_assign_pointer(counter->data, NULL);
1315 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1316 }
1317
1318 static void perf_mmap_open(struct vm_area_struct *vma)
1319 {
1320 struct perf_counter *counter = vma->vm_file->private_data;
1321
1322 atomic_inc(&counter->mmap_count);
1323 }
1324
1325 static void perf_mmap_close(struct vm_area_struct *vma)
1326 {
1327 struct perf_counter *counter = vma->vm_file->private_data;
1328
1329 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1330 &counter->mmap_mutex)) {
1331 perf_mmap_data_free(counter);
1332 mutex_unlock(&counter->mmap_mutex);
1333 }
1334 }
1335
1336 static struct vm_operations_struct perf_mmap_vmops = {
1337 .open = perf_mmap_open,
1338 .close = perf_mmap_close,
1339 .fault = perf_mmap_fault,
1340 };
1341
1342 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1343 {
1344 struct perf_counter *counter = file->private_data;
1345 unsigned long vma_size;
1346 unsigned long nr_pages;
1347 unsigned long locked, lock_limit;
1348 int ret = 0;
1349
1350 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1351 return -EINVAL;
1352
1353 vma_size = vma->vm_end - vma->vm_start;
1354 nr_pages = (vma_size / PAGE_SIZE) - 1;
1355
1356 if (nr_pages == 0 || !is_power_of_2(nr_pages))
1357 return -EINVAL;
1358
1359 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1360 return -EINVAL;
1361
1362 if (vma->vm_pgoff != 0)
1363 return -EINVAL;
1364
1365 locked = vma_size >> PAGE_SHIFT;
1366 locked += vma->vm_mm->locked_vm;
1367
1368 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1369 lock_limit >>= PAGE_SHIFT;
1370
1371 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1372 return -EPERM;
1373
1374 mutex_lock(&counter->mmap_mutex);
1375 if (atomic_inc_not_zero(&counter->mmap_count))
1376 goto out;
1377
1378 WARN_ON(counter->data);
1379 ret = perf_mmap_data_alloc(counter, nr_pages);
1380 if (!ret)
1381 atomic_set(&counter->mmap_count, 1);
1382 out:
1383 mutex_unlock(&counter->mmap_mutex);
1384
1385 vma->vm_flags &= ~VM_MAYWRITE;
1386 vma->vm_flags |= VM_RESERVED;
1387 vma->vm_ops = &perf_mmap_vmops;
1388
1389 return ret;
1390 }
1391
1392 static const struct file_operations perf_fops = {
1393 .release = perf_release,
1394 .read = perf_read,
1395 .poll = perf_poll,
1396 .unlocked_ioctl = perf_ioctl,
1397 .compat_ioctl = perf_ioctl,
1398 .mmap = perf_mmap,
1399 };
1400
1401 /*
1402 * Output
1403 */
1404
1405 static int perf_output_write(struct perf_counter *counter, int nmi,
1406 void *buf, ssize_t size)
1407 {
1408 struct perf_mmap_data *data;
1409 unsigned int offset, head, nr;
1410 unsigned int len;
1411 int ret, wakeup;
1412
1413 rcu_read_lock();
1414 ret = -ENOSPC;
1415 data = rcu_dereference(counter->data);
1416 if (!data)
1417 goto out;
1418
1419 if (!data->nr_pages)
1420 goto out;
1421
1422 ret = -EINVAL;
1423 if (size > PAGE_SIZE)
1424 goto out;
1425
1426 do {
1427 offset = head = atomic_read(&data->head);
1428 head += sizeof(u64);
1429 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1430
1431 wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1432
1433 nr = (offset >> PAGE_SHIFT) & (data->nr_pages - 1);
1434 offset &= PAGE_SIZE - 1;
1435
1436 len = min_t(unsigned int, PAGE_SIZE - offset, size);
1437 memcpy(data->data_pages[nr] + offset, buf, len);
1438 size -= len;
1439
1440 if (size) {
1441 nr = (nr + 1) & (data->nr_pages - 1);
1442 memcpy(data->data_pages[nr], buf + len, size);
1443 }
1444
1445 /*
1446 * generate a poll() wakeup for every page boundary crossed
1447 */
1448 if (wakeup) {
1449 __perf_counter_update_userpage(counter, data);
1450 if (nmi) {
1451 counter->wakeup_pending = 1;
1452 set_perf_counter_pending();
1453 } else
1454 wake_up(&counter->waitq);
1455 }
1456 ret = 0;
1457 out:
1458 rcu_read_unlock();
1459
1460 return ret;
1461 }
1462
1463 static void perf_output_simple(struct perf_counter *counter,
1464 int nmi, struct pt_regs *regs)
1465 {
1466 u64 entry;
1467
1468 entry = instruction_pointer(regs);
1469
1470 perf_output_write(counter, nmi, &entry, sizeof(entry));
1471 }
1472
1473 struct group_entry {
1474 u64 event;
1475 u64 counter;
1476 };
1477
1478 static void perf_output_group(struct perf_counter *counter, int nmi)
1479 {
1480 struct perf_counter *leader, *sub;
1481
1482 leader = counter->group_leader;
1483 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1484 struct group_entry entry;
1485
1486 if (sub != counter)
1487 sub->hw_ops->read(sub);
1488
1489 entry.event = sub->hw_event.config;
1490 entry.counter = atomic64_read(&sub->count);
1491
1492 perf_output_write(counter, nmi, &entry, sizeof(entry));
1493 }
1494 }
1495
1496 void perf_counter_output(struct perf_counter *counter,
1497 int nmi, struct pt_regs *regs)
1498 {
1499 switch (counter->hw_event.record_type) {
1500 case PERF_RECORD_SIMPLE:
1501 return;
1502
1503 case PERF_RECORD_IRQ:
1504 perf_output_simple(counter, nmi, regs);
1505 break;
1506
1507 case PERF_RECORD_GROUP:
1508 perf_output_group(counter, nmi);
1509 break;
1510 }
1511 }
1512
1513 /*
1514 * Generic software counter infrastructure
1515 */
1516
1517 static void perf_swcounter_update(struct perf_counter *counter)
1518 {
1519 struct hw_perf_counter *hwc = &counter->hw;
1520 u64 prev, now;
1521 s64 delta;
1522
1523 again:
1524 prev = atomic64_read(&hwc->prev_count);
1525 now = atomic64_read(&hwc->count);
1526 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1527 goto again;
1528
1529 delta = now - prev;
1530
1531 atomic64_add(delta, &counter->count);
1532 atomic64_sub(delta, &hwc->period_left);
1533 }
1534
1535 static void perf_swcounter_set_period(struct perf_counter *counter)
1536 {
1537 struct hw_perf_counter *hwc = &counter->hw;
1538 s64 left = atomic64_read(&hwc->period_left);
1539 s64 period = hwc->irq_period;
1540
1541 if (unlikely(left <= -period)) {
1542 left = period;
1543 atomic64_set(&hwc->period_left, left);
1544 }
1545
1546 if (unlikely(left <= 0)) {
1547 left += period;
1548 atomic64_add(period, &hwc->period_left);
1549 }
1550
1551 atomic64_set(&hwc->prev_count, -left);
1552 atomic64_set(&hwc->count, -left);
1553 }
1554
1555 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1556 {
1557 struct perf_counter *counter;
1558 struct pt_regs *regs;
1559
1560 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1561 counter->hw_ops->read(counter);
1562
1563 regs = get_irq_regs();
1564 /*
1565 * In case we exclude kernel IPs or are somehow not in interrupt
1566 * context, provide the next best thing, the user IP.
1567 */
1568 if ((counter->hw_event.exclude_kernel || !regs) &&
1569 !counter->hw_event.exclude_user)
1570 regs = task_pt_regs(current);
1571
1572 if (regs)
1573 perf_counter_output(counter, 0, regs);
1574
1575 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1576
1577 return HRTIMER_RESTART;
1578 }
1579
1580 static void perf_swcounter_overflow(struct perf_counter *counter,
1581 int nmi, struct pt_regs *regs)
1582 {
1583 perf_swcounter_update(counter);
1584 perf_swcounter_set_period(counter);
1585 perf_counter_output(counter, nmi, regs);
1586 }
1587
1588 static int perf_swcounter_match(struct perf_counter *counter,
1589 enum perf_event_types type,
1590 u32 event, struct pt_regs *regs)
1591 {
1592 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1593 return 0;
1594
1595 if (perf_event_raw(&counter->hw_event))
1596 return 0;
1597
1598 if (perf_event_type(&counter->hw_event) != type)
1599 return 0;
1600
1601 if (perf_event_id(&counter->hw_event) != event)
1602 return 0;
1603
1604 if (counter->hw_event.exclude_user && user_mode(regs))
1605 return 0;
1606
1607 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1608 return 0;
1609
1610 return 1;
1611 }
1612
1613 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1614 int nmi, struct pt_regs *regs)
1615 {
1616 int neg = atomic64_add_negative(nr, &counter->hw.count);
1617 if (counter->hw.irq_period && !neg)
1618 perf_swcounter_overflow(counter, nmi, regs);
1619 }
1620
1621 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1622 enum perf_event_types type, u32 event,
1623 u64 nr, int nmi, struct pt_regs *regs)
1624 {
1625 struct perf_counter *counter;
1626
1627 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1628 return;
1629
1630 rcu_read_lock();
1631 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1632 if (perf_swcounter_match(counter, type, event, regs))
1633 perf_swcounter_add(counter, nr, nmi, regs);
1634 }
1635 rcu_read_unlock();
1636 }
1637
1638 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1639 {
1640 if (in_nmi())
1641 return &cpuctx->recursion[3];
1642
1643 if (in_irq())
1644 return &cpuctx->recursion[2];
1645
1646 if (in_softirq())
1647 return &cpuctx->recursion[1];
1648
1649 return &cpuctx->recursion[0];
1650 }
1651
1652 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1653 u64 nr, int nmi, struct pt_regs *regs)
1654 {
1655 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1656 int *recursion = perf_swcounter_recursion_context(cpuctx);
1657
1658 if (*recursion)
1659 goto out;
1660
1661 (*recursion)++;
1662 barrier();
1663
1664 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1665 if (cpuctx->task_ctx) {
1666 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1667 nr, nmi, regs);
1668 }
1669
1670 barrier();
1671 (*recursion)--;
1672
1673 out:
1674 put_cpu_var(perf_cpu_context);
1675 }
1676
1677 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1678 {
1679 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1680 }
1681
1682 static void perf_swcounter_read(struct perf_counter *counter)
1683 {
1684 perf_swcounter_update(counter);
1685 }
1686
1687 static int perf_swcounter_enable(struct perf_counter *counter)
1688 {
1689 perf_swcounter_set_period(counter);
1690 return 0;
1691 }
1692
1693 static void perf_swcounter_disable(struct perf_counter *counter)
1694 {
1695 perf_swcounter_update(counter);
1696 }
1697
1698 static const struct hw_perf_counter_ops perf_ops_generic = {
1699 .enable = perf_swcounter_enable,
1700 .disable = perf_swcounter_disable,
1701 .read = perf_swcounter_read,
1702 };
1703
1704 /*
1705 * Software counter: cpu wall time clock
1706 */
1707
1708 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1709 {
1710 int cpu = raw_smp_processor_id();
1711 s64 prev;
1712 u64 now;
1713
1714 now = cpu_clock(cpu);
1715 prev = atomic64_read(&counter->hw.prev_count);
1716 atomic64_set(&counter->hw.prev_count, now);
1717 atomic64_add(now - prev, &counter->count);
1718 }
1719
1720 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1721 {
1722 struct hw_perf_counter *hwc = &counter->hw;
1723 int cpu = raw_smp_processor_id();
1724
1725 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1726 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1727 hwc->hrtimer.function = perf_swcounter_hrtimer;
1728 if (hwc->irq_period) {
1729 __hrtimer_start_range_ns(&hwc->hrtimer,
1730 ns_to_ktime(hwc->irq_period), 0,
1731 HRTIMER_MODE_REL, 0);
1732 }
1733
1734 return 0;
1735 }
1736
1737 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1738 {
1739 hrtimer_cancel(&counter->hw.hrtimer);
1740 cpu_clock_perf_counter_update(counter);
1741 }
1742
1743 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1744 {
1745 cpu_clock_perf_counter_update(counter);
1746 }
1747
1748 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1749 .enable = cpu_clock_perf_counter_enable,
1750 .disable = cpu_clock_perf_counter_disable,
1751 .read = cpu_clock_perf_counter_read,
1752 };
1753
1754 /*
1755 * Software counter: task time clock
1756 */
1757
1758 /*
1759 * Called from within the scheduler:
1760 */
1761 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1762 {
1763 struct task_struct *curr = counter->task;
1764 u64 delta;
1765
1766 delta = __task_delta_exec(curr, update);
1767
1768 return curr->se.sum_exec_runtime + delta;
1769 }
1770
1771 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1772 {
1773 u64 prev;
1774 s64 delta;
1775
1776 prev = atomic64_read(&counter->hw.prev_count);
1777
1778 atomic64_set(&counter->hw.prev_count, now);
1779
1780 delta = now - prev;
1781
1782 atomic64_add(delta, &counter->count);
1783 }
1784
1785 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1786 {
1787 struct hw_perf_counter *hwc = &counter->hw;
1788
1789 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1790 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1791 hwc->hrtimer.function = perf_swcounter_hrtimer;
1792 if (hwc->irq_period) {
1793 __hrtimer_start_range_ns(&hwc->hrtimer,
1794 ns_to_ktime(hwc->irq_period), 0,
1795 HRTIMER_MODE_REL, 0);
1796 }
1797
1798 return 0;
1799 }
1800
1801 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1802 {
1803 hrtimer_cancel(&counter->hw.hrtimer);
1804 task_clock_perf_counter_update(counter,
1805 task_clock_perf_counter_val(counter, 0));
1806 }
1807
1808 static void task_clock_perf_counter_read(struct perf_counter *counter)
1809 {
1810 task_clock_perf_counter_update(counter,
1811 task_clock_perf_counter_val(counter, 1));
1812 }
1813
1814 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1815 .enable = task_clock_perf_counter_enable,
1816 .disable = task_clock_perf_counter_disable,
1817 .read = task_clock_perf_counter_read,
1818 };
1819
1820 /*
1821 * Software counter: cpu migrations
1822 */
1823
1824 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1825 {
1826 struct task_struct *curr = counter->ctx->task;
1827
1828 if (curr)
1829 return curr->se.nr_migrations;
1830 return cpu_nr_migrations(smp_processor_id());
1831 }
1832
1833 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1834 {
1835 u64 prev, now;
1836 s64 delta;
1837
1838 prev = atomic64_read(&counter->hw.prev_count);
1839 now = get_cpu_migrations(counter);
1840
1841 atomic64_set(&counter->hw.prev_count, now);
1842
1843 delta = now - prev;
1844
1845 atomic64_add(delta, &counter->count);
1846 }
1847
1848 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1849 {
1850 cpu_migrations_perf_counter_update(counter);
1851 }
1852
1853 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1854 {
1855 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1856 atomic64_set(&counter->hw.prev_count,
1857 get_cpu_migrations(counter));
1858 return 0;
1859 }
1860
1861 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1862 {
1863 cpu_migrations_perf_counter_update(counter);
1864 }
1865
1866 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1867 .enable = cpu_migrations_perf_counter_enable,
1868 .disable = cpu_migrations_perf_counter_disable,
1869 .read = cpu_migrations_perf_counter_read,
1870 };
1871
1872 #ifdef CONFIG_EVENT_PROFILE
1873 void perf_tpcounter_event(int event_id)
1874 {
1875 struct pt_regs *regs = get_irq_regs();
1876
1877 if (!regs)
1878 regs = task_pt_regs(current);
1879
1880 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
1881 }
1882
1883 extern int ftrace_profile_enable(int);
1884 extern void ftrace_profile_disable(int);
1885
1886 static void tp_perf_counter_destroy(struct perf_counter *counter)
1887 {
1888 ftrace_profile_disable(perf_event_id(&counter->hw_event));
1889 }
1890
1891 static const struct hw_perf_counter_ops *
1892 tp_perf_counter_init(struct perf_counter *counter)
1893 {
1894 int event_id = perf_event_id(&counter->hw_event);
1895 int ret;
1896
1897 ret = ftrace_profile_enable(event_id);
1898 if (ret)
1899 return NULL;
1900
1901 counter->destroy = tp_perf_counter_destroy;
1902 counter->hw.irq_period = counter->hw_event.irq_period;
1903
1904 return &perf_ops_generic;
1905 }
1906 #else
1907 static const struct hw_perf_counter_ops *
1908 tp_perf_counter_init(struct perf_counter *counter)
1909 {
1910 return NULL;
1911 }
1912 #endif
1913
1914 static const struct hw_perf_counter_ops *
1915 sw_perf_counter_init(struct perf_counter *counter)
1916 {
1917 struct perf_counter_hw_event *hw_event = &counter->hw_event;
1918 const struct hw_perf_counter_ops *hw_ops = NULL;
1919 struct hw_perf_counter *hwc = &counter->hw;
1920
1921 /*
1922 * Software counters (currently) can't in general distinguish
1923 * between user, kernel and hypervisor events.
1924 * However, context switches and cpu migrations are considered
1925 * to be kernel events, and page faults are never hypervisor
1926 * events.
1927 */
1928 switch (perf_event_id(&counter->hw_event)) {
1929 case PERF_COUNT_CPU_CLOCK:
1930 hw_ops = &perf_ops_cpu_clock;
1931
1932 if (hw_event->irq_period && hw_event->irq_period < 10000)
1933 hw_event->irq_period = 10000;
1934 break;
1935 case PERF_COUNT_TASK_CLOCK:
1936 /*
1937 * If the user instantiates this as a per-cpu counter,
1938 * use the cpu_clock counter instead.
1939 */
1940 if (counter->ctx->task)
1941 hw_ops = &perf_ops_task_clock;
1942 else
1943 hw_ops = &perf_ops_cpu_clock;
1944
1945 if (hw_event->irq_period && hw_event->irq_period < 10000)
1946 hw_event->irq_period = 10000;
1947 break;
1948 case PERF_COUNT_PAGE_FAULTS:
1949 case PERF_COUNT_PAGE_FAULTS_MIN:
1950 case PERF_COUNT_PAGE_FAULTS_MAJ:
1951 case PERF_COUNT_CONTEXT_SWITCHES:
1952 hw_ops = &perf_ops_generic;
1953 break;
1954 case PERF_COUNT_CPU_MIGRATIONS:
1955 if (!counter->hw_event.exclude_kernel)
1956 hw_ops = &perf_ops_cpu_migrations;
1957 break;
1958 }
1959
1960 if (hw_ops)
1961 hwc->irq_period = hw_event->irq_period;
1962
1963 return hw_ops;
1964 }
1965
1966 /*
1967 * Allocate and initialize a counter structure
1968 */
1969 static struct perf_counter *
1970 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1971 int cpu,
1972 struct perf_counter_context *ctx,
1973 struct perf_counter *group_leader,
1974 gfp_t gfpflags)
1975 {
1976 const struct hw_perf_counter_ops *hw_ops;
1977 struct perf_counter *counter;
1978
1979 counter = kzalloc(sizeof(*counter), gfpflags);
1980 if (!counter)
1981 return NULL;
1982
1983 /*
1984 * Single counters are their own group leaders, with an
1985 * empty sibling list:
1986 */
1987 if (!group_leader)
1988 group_leader = counter;
1989
1990 mutex_init(&counter->mutex);
1991 INIT_LIST_HEAD(&counter->list_entry);
1992 INIT_LIST_HEAD(&counter->event_entry);
1993 INIT_LIST_HEAD(&counter->sibling_list);
1994 init_waitqueue_head(&counter->waitq);
1995
1996 mutex_init(&counter->mmap_mutex);
1997
1998 INIT_LIST_HEAD(&counter->child_list);
1999
2000 counter->cpu = cpu;
2001 counter->hw_event = *hw_event;
2002 counter->wakeup_pending = 0;
2003 counter->group_leader = group_leader;
2004 counter->hw_ops = NULL;
2005 counter->ctx = ctx;
2006
2007 counter->state = PERF_COUNTER_STATE_INACTIVE;
2008 if (hw_event->disabled)
2009 counter->state = PERF_COUNTER_STATE_OFF;
2010
2011 hw_ops = NULL;
2012
2013 if (perf_event_raw(hw_event)) {
2014 hw_ops = hw_perf_counter_init(counter);
2015 goto done;
2016 }
2017
2018 switch (perf_event_type(hw_event)) {
2019 case PERF_TYPE_HARDWARE:
2020 hw_ops = hw_perf_counter_init(counter);
2021 break;
2022
2023 case PERF_TYPE_SOFTWARE:
2024 hw_ops = sw_perf_counter_init(counter);
2025 break;
2026
2027 case PERF_TYPE_TRACEPOINT:
2028 hw_ops = tp_perf_counter_init(counter);
2029 break;
2030 }
2031
2032 if (!hw_ops) {
2033 kfree(counter);
2034 return NULL;
2035 }
2036 done:
2037 counter->hw_ops = hw_ops;
2038
2039 return counter;
2040 }
2041
2042 /**
2043 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2044 *
2045 * @hw_event_uptr: event type attributes for monitoring/sampling
2046 * @pid: target pid
2047 * @cpu: target cpu
2048 * @group_fd: group leader counter fd
2049 */
2050 SYSCALL_DEFINE5(perf_counter_open,
2051 const struct perf_counter_hw_event __user *, hw_event_uptr,
2052 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2053 {
2054 struct perf_counter *counter, *group_leader;
2055 struct perf_counter_hw_event hw_event;
2056 struct perf_counter_context *ctx;
2057 struct file *counter_file = NULL;
2058 struct file *group_file = NULL;
2059 int fput_needed = 0;
2060 int fput_needed2 = 0;
2061 int ret;
2062
2063 /* for future expandability... */
2064 if (flags)
2065 return -EINVAL;
2066
2067 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2068 return -EFAULT;
2069
2070 /*
2071 * Get the target context (task or percpu):
2072 */
2073 ctx = find_get_context(pid, cpu);
2074 if (IS_ERR(ctx))
2075 return PTR_ERR(ctx);
2076
2077 /*
2078 * Look up the group leader (we will attach this counter to it):
2079 */
2080 group_leader = NULL;
2081 if (group_fd != -1) {
2082 ret = -EINVAL;
2083 group_file = fget_light(group_fd, &fput_needed);
2084 if (!group_file)
2085 goto err_put_context;
2086 if (group_file->f_op != &perf_fops)
2087 goto err_put_context;
2088
2089 group_leader = group_file->private_data;
2090 /*
2091 * Do not allow a recursive hierarchy (this new sibling
2092 * becoming part of another group-sibling):
2093 */
2094 if (group_leader->group_leader != group_leader)
2095 goto err_put_context;
2096 /*
2097 * Do not allow to attach to a group in a different
2098 * task or CPU context:
2099 */
2100 if (group_leader->ctx != ctx)
2101 goto err_put_context;
2102 /*
2103 * Only a group leader can be exclusive or pinned
2104 */
2105 if (hw_event.exclusive || hw_event.pinned)
2106 goto err_put_context;
2107 }
2108
2109 ret = -EINVAL;
2110 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2111 GFP_KERNEL);
2112 if (!counter)
2113 goto err_put_context;
2114
2115 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2116 if (ret < 0)
2117 goto err_free_put_context;
2118
2119 counter_file = fget_light(ret, &fput_needed2);
2120 if (!counter_file)
2121 goto err_free_put_context;
2122
2123 counter->filp = counter_file;
2124 mutex_lock(&ctx->mutex);
2125 perf_install_in_context(ctx, counter, cpu);
2126 mutex_unlock(&ctx->mutex);
2127
2128 fput_light(counter_file, fput_needed2);
2129
2130 out_fput:
2131 fput_light(group_file, fput_needed);
2132
2133 return ret;
2134
2135 err_free_put_context:
2136 kfree(counter);
2137
2138 err_put_context:
2139 put_context(ctx);
2140
2141 goto out_fput;
2142 }
2143
2144 /*
2145 * Initialize the perf_counter context in a task_struct:
2146 */
2147 static void
2148 __perf_counter_init_context(struct perf_counter_context *ctx,
2149 struct task_struct *task)
2150 {
2151 memset(ctx, 0, sizeof(*ctx));
2152 spin_lock_init(&ctx->lock);
2153 mutex_init(&ctx->mutex);
2154 INIT_LIST_HEAD(&ctx->counter_list);
2155 INIT_LIST_HEAD(&ctx->event_list);
2156 ctx->task = task;
2157 }
2158
2159 /*
2160 * inherit a counter from parent task to child task:
2161 */
2162 static struct perf_counter *
2163 inherit_counter(struct perf_counter *parent_counter,
2164 struct task_struct *parent,
2165 struct perf_counter_context *parent_ctx,
2166 struct task_struct *child,
2167 struct perf_counter *group_leader,
2168 struct perf_counter_context *child_ctx)
2169 {
2170 struct perf_counter *child_counter;
2171
2172 /*
2173 * Instead of creating recursive hierarchies of counters,
2174 * we link inherited counters back to the original parent,
2175 * which has a filp for sure, which we use as the reference
2176 * count:
2177 */
2178 if (parent_counter->parent)
2179 parent_counter = parent_counter->parent;
2180
2181 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2182 parent_counter->cpu, child_ctx,
2183 group_leader, GFP_KERNEL);
2184 if (!child_counter)
2185 return NULL;
2186
2187 /*
2188 * Link it up in the child's context:
2189 */
2190 child_counter->task = child;
2191 list_add_counter(child_counter, child_ctx);
2192 child_ctx->nr_counters++;
2193
2194 child_counter->parent = parent_counter;
2195 /*
2196 * inherit into child's child as well:
2197 */
2198 child_counter->hw_event.inherit = 1;
2199
2200 /*
2201 * Get a reference to the parent filp - we will fput it
2202 * when the child counter exits. This is safe to do because
2203 * we are in the parent and we know that the filp still
2204 * exists and has a nonzero count:
2205 */
2206 atomic_long_inc(&parent_counter->filp->f_count);
2207
2208 /*
2209 * Link this into the parent counter's child list
2210 */
2211 mutex_lock(&parent_counter->mutex);
2212 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2213
2214 /*
2215 * Make the child state follow the state of the parent counter,
2216 * not its hw_event.disabled bit. We hold the parent's mutex,
2217 * so we won't race with perf_counter_{en,dis}able_family.
2218 */
2219 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2220 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2221 else
2222 child_counter->state = PERF_COUNTER_STATE_OFF;
2223
2224 mutex_unlock(&parent_counter->mutex);
2225
2226 return child_counter;
2227 }
2228
2229 static int inherit_group(struct perf_counter *parent_counter,
2230 struct task_struct *parent,
2231 struct perf_counter_context *parent_ctx,
2232 struct task_struct *child,
2233 struct perf_counter_context *child_ctx)
2234 {
2235 struct perf_counter *leader;
2236 struct perf_counter *sub;
2237
2238 leader = inherit_counter(parent_counter, parent, parent_ctx,
2239 child, NULL, child_ctx);
2240 if (!leader)
2241 return -ENOMEM;
2242 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2243 if (!inherit_counter(sub, parent, parent_ctx,
2244 child, leader, child_ctx))
2245 return -ENOMEM;
2246 }
2247 return 0;
2248 }
2249
2250 static void sync_child_counter(struct perf_counter *child_counter,
2251 struct perf_counter *parent_counter)
2252 {
2253 u64 parent_val, child_val;
2254
2255 parent_val = atomic64_read(&parent_counter->count);
2256 child_val = atomic64_read(&child_counter->count);
2257
2258 /*
2259 * Add back the child's count to the parent's count:
2260 */
2261 atomic64_add(child_val, &parent_counter->count);
2262
2263 /*
2264 * Remove this counter from the parent's list
2265 */
2266 mutex_lock(&parent_counter->mutex);
2267 list_del_init(&child_counter->child_list);
2268 mutex_unlock(&parent_counter->mutex);
2269
2270 /*
2271 * Release the parent counter, if this was the last
2272 * reference to it.
2273 */
2274 fput(parent_counter->filp);
2275 }
2276
2277 static void
2278 __perf_counter_exit_task(struct task_struct *child,
2279 struct perf_counter *child_counter,
2280 struct perf_counter_context *child_ctx)
2281 {
2282 struct perf_counter *parent_counter;
2283 struct perf_counter *sub, *tmp;
2284
2285 /*
2286 * If we do not self-reap then we have to wait for the
2287 * child task to unschedule (it will happen for sure),
2288 * so that its counter is at its final count. (This
2289 * condition triggers rarely - child tasks usually get
2290 * off their CPU before the parent has a chance to
2291 * get this far into the reaping action)
2292 */
2293 if (child != current) {
2294 wait_task_inactive(child, 0);
2295 list_del_init(&child_counter->list_entry);
2296 } else {
2297 struct perf_cpu_context *cpuctx;
2298 unsigned long flags;
2299 u64 perf_flags;
2300
2301 /*
2302 * Disable and unlink this counter.
2303 *
2304 * Be careful about zapping the list - IRQ/NMI context
2305 * could still be processing it:
2306 */
2307 curr_rq_lock_irq_save(&flags);
2308 perf_flags = hw_perf_save_disable();
2309
2310 cpuctx = &__get_cpu_var(perf_cpu_context);
2311
2312 group_sched_out(child_counter, cpuctx, child_ctx);
2313
2314 list_del_init(&child_counter->list_entry);
2315
2316 child_ctx->nr_counters--;
2317
2318 hw_perf_restore(perf_flags);
2319 curr_rq_unlock_irq_restore(&flags);
2320 }
2321
2322 parent_counter = child_counter->parent;
2323 /*
2324 * It can happen that parent exits first, and has counters
2325 * that are still around due to the child reference. These
2326 * counters need to be zapped - but otherwise linger.
2327 */
2328 if (parent_counter) {
2329 sync_child_counter(child_counter, parent_counter);
2330 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2331 list_entry) {
2332 if (sub->parent) {
2333 sync_child_counter(sub, sub->parent);
2334 free_counter(sub);
2335 }
2336 }
2337 free_counter(child_counter);
2338 }
2339 }
2340
2341 /*
2342 * When a child task exits, feed back counter values to parent counters.
2343 *
2344 * Note: we may be running in child context, but the PID is not hashed
2345 * anymore so new counters will not be added.
2346 */
2347 void perf_counter_exit_task(struct task_struct *child)
2348 {
2349 struct perf_counter *child_counter, *tmp;
2350 struct perf_counter_context *child_ctx;
2351
2352 child_ctx = &child->perf_counter_ctx;
2353
2354 if (likely(!child_ctx->nr_counters))
2355 return;
2356
2357 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2358 list_entry)
2359 __perf_counter_exit_task(child, child_counter, child_ctx);
2360 }
2361
2362 /*
2363 * Initialize the perf_counter context in task_struct
2364 */
2365 void perf_counter_init_task(struct task_struct *child)
2366 {
2367 struct perf_counter_context *child_ctx, *parent_ctx;
2368 struct perf_counter *counter;
2369 struct task_struct *parent = current;
2370
2371 child_ctx = &child->perf_counter_ctx;
2372 parent_ctx = &parent->perf_counter_ctx;
2373
2374 __perf_counter_init_context(child_ctx, child);
2375
2376 /*
2377 * This is executed from the parent task context, so inherit
2378 * counters that have been marked for cloning:
2379 */
2380
2381 if (likely(!parent_ctx->nr_counters))
2382 return;
2383
2384 /*
2385 * Lock the parent list. No need to lock the child - not PID
2386 * hashed yet and not running, so nobody can access it.
2387 */
2388 mutex_lock(&parent_ctx->mutex);
2389
2390 /*
2391 * We dont have to disable NMIs - we are only looking at
2392 * the list, not manipulating it:
2393 */
2394 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2395 if (!counter->hw_event.inherit)
2396 continue;
2397
2398 if (inherit_group(counter, parent,
2399 parent_ctx, child, child_ctx))
2400 break;
2401 }
2402
2403 mutex_unlock(&parent_ctx->mutex);
2404 }
2405
2406 static void __cpuinit perf_counter_init_cpu(int cpu)
2407 {
2408 struct perf_cpu_context *cpuctx;
2409
2410 cpuctx = &per_cpu(perf_cpu_context, cpu);
2411 __perf_counter_init_context(&cpuctx->ctx, NULL);
2412
2413 mutex_lock(&perf_resource_mutex);
2414 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2415 mutex_unlock(&perf_resource_mutex);
2416
2417 hw_perf_counter_setup(cpu);
2418 }
2419
2420 #ifdef CONFIG_HOTPLUG_CPU
2421 static void __perf_counter_exit_cpu(void *info)
2422 {
2423 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2424 struct perf_counter_context *ctx = &cpuctx->ctx;
2425 struct perf_counter *counter, *tmp;
2426
2427 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2428 __perf_counter_remove_from_context(counter);
2429 }
2430 static void perf_counter_exit_cpu(int cpu)
2431 {
2432 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2433 struct perf_counter_context *ctx = &cpuctx->ctx;
2434
2435 mutex_lock(&ctx->mutex);
2436 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2437 mutex_unlock(&ctx->mutex);
2438 }
2439 #else
2440 static inline void perf_counter_exit_cpu(int cpu) { }
2441 #endif
2442
2443 static int __cpuinit
2444 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2445 {
2446 unsigned int cpu = (long)hcpu;
2447
2448 switch (action) {
2449
2450 case CPU_UP_PREPARE:
2451 case CPU_UP_PREPARE_FROZEN:
2452 perf_counter_init_cpu(cpu);
2453 break;
2454
2455 case CPU_DOWN_PREPARE:
2456 case CPU_DOWN_PREPARE_FROZEN:
2457 perf_counter_exit_cpu(cpu);
2458 break;
2459
2460 default:
2461 break;
2462 }
2463
2464 return NOTIFY_OK;
2465 }
2466
2467 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2468 .notifier_call = perf_cpu_notify,
2469 };
2470
2471 static int __init perf_counter_init(void)
2472 {
2473 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2474 (void *)(long)smp_processor_id());
2475 register_cpu_notifier(&perf_cpu_nb);
2476
2477 return 0;
2478 }
2479 early_initcall(perf_counter_init);
2480
2481 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2482 {
2483 return sprintf(buf, "%d\n", perf_reserved_percpu);
2484 }
2485
2486 static ssize_t
2487 perf_set_reserve_percpu(struct sysdev_class *class,
2488 const char *buf,
2489 size_t count)
2490 {
2491 struct perf_cpu_context *cpuctx;
2492 unsigned long val;
2493 int err, cpu, mpt;
2494
2495 err = strict_strtoul(buf, 10, &val);
2496 if (err)
2497 return err;
2498 if (val > perf_max_counters)
2499 return -EINVAL;
2500
2501 mutex_lock(&perf_resource_mutex);
2502 perf_reserved_percpu = val;
2503 for_each_online_cpu(cpu) {
2504 cpuctx = &per_cpu(perf_cpu_context, cpu);
2505 spin_lock_irq(&cpuctx->ctx.lock);
2506 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2507 perf_max_counters - perf_reserved_percpu);
2508 cpuctx->max_pertask = mpt;
2509 spin_unlock_irq(&cpuctx->ctx.lock);
2510 }
2511 mutex_unlock(&perf_resource_mutex);
2512
2513 return count;
2514 }
2515
2516 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2517 {
2518 return sprintf(buf, "%d\n", perf_overcommit);
2519 }
2520
2521 static ssize_t
2522 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2523 {
2524 unsigned long val;
2525 int err;
2526
2527 err = strict_strtoul(buf, 10, &val);
2528 if (err)
2529 return err;
2530 if (val > 1)
2531 return -EINVAL;
2532
2533 mutex_lock(&perf_resource_mutex);
2534 perf_overcommit = val;
2535 mutex_unlock(&perf_resource_mutex);
2536
2537 return count;
2538 }
2539
2540 static SYSDEV_CLASS_ATTR(
2541 reserve_percpu,
2542 0644,
2543 perf_show_reserve_percpu,
2544 perf_set_reserve_percpu
2545 );
2546
2547 static SYSDEV_CLASS_ATTR(
2548 overcommit,
2549 0644,
2550 perf_show_overcommit,
2551 perf_set_overcommit
2552 );
2553
2554 static struct attribute *perfclass_attrs[] = {
2555 &attr_reserve_percpu.attr,
2556 &attr_overcommit.attr,
2557 NULL
2558 };
2559
2560 static struct attribute_group perfclass_attr_group = {
2561 .attrs = perfclass_attrs,
2562 .name = "perf_counters",
2563 };
2564
2565 static int __init perf_counter_sysfs_init(void)
2566 {
2567 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2568 &perfclass_attr_group);
2569 }
2570 device_initcall(perf_counter_sysfs_init);