perf_counter: allow for data addresses to be recorded
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 *
8 * For licensing details see kernel-base/COPYING
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33 * Each CPU has a list of per CPU counters:
34 */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42 * Mutex for (sysadmin-configurable) counter reservations:
43 */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47 * Architecture provided APIs - weak aliases:
48 */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52 return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void) { return 0; }
56 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59 struct perf_cpu_context *cpuctx,
60 struct perf_counter_context *ctx, int cpu)
61 {
62 return 0;
63 }
64
65 void __weak perf_counter_print_debug(void) { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70 struct perf_counter *group_leader = counter->group_leader;
71
72 /*
73 * Depending on whether it is a standalone or sibling counter,
74 * add it straight to the context's counter list, or to the group
75 * leader's sibling list:
76 */
77 if (counter->group_leader == counter)
78 list_add_tail(&counter->list_entry, &ctx->counter_list);
79 else {
80 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81 group_leader->nr_siblings++;
82 }
83
84 list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90 struct perf_counter *sibling, *tmp;
91
92 list_del_init(&counter->list_entry);
93 list_del_rcu(&counter->event_entry);
94
95 if (counter->group_leader != counter)
96 counter->group_leader->nr_siblings--;
97
98 /*
99 * If this was a group counter with sibling counters then
100 * upgrade the siblings to singleton counters by adding them
101 * to the context list directly:
102 */
103 list_for_each_entry_safe(sibling, tmp,
104 &counter->sibling_list, list_entry) {
105
106 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 sibling->group_leader = sibling;
108 }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113 struct perf_cpu_context *cpuctx,
114 struct perf_counter_context *ctx)
115 {
116 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117 return;
118
119 counter->state = PERF_COUNTER_STATE_INACTIVE;
120 counter->tstamp_stopped = ctx->time;
121 counter->hw_ops->disable(counter);
122 counter->oncpu = -1;
123
124 if (!is_software_counter(counter))
125 cpuctx->active_oncpu--;
126 ctx->nr_active--;
127 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133 struct perf_cpu_context *cpuctx,
134 struct perf_counter_context *ctx)
135 {
136 struct perf_counter *counter;
137
138 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139 return;
140
141 counter_sched_out(group_counter, cpuctx, ctx);
142
143 /*
144 * Schedule out siblings (if any):
145 */
146 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147 counter_sched_out(counter, cpuctx, ctx);
148
149 if (group_counter->hw_event.exclusive)
150 cpuctx->exclusive = 0;
151 }
152
153 /*
154 * Cross CPU call to remove a performance counter
155 *
156 * We disable the counter on the hardware level first. After that we
157 * remove it from the context list.
158 */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162 struct perf_counter *counter = info;
163 struct perf_counter_context *ctx = counter->ctx;
164 unsigned long flags;
165 u64 perf_flags;
166
167 /*
168 * If this is a task context, we need to check whether it is
169 * the current task context of this cpu. If not it has been
170 * scheduled out before the smp call arrived.
171 */
172 if (ctx->task && cpuctx->task_ctx != ctx)
173 return;
174
175 spin_lock_irqsave(&ctx->lock, flags);
176
177 counter_sched_out(counter, cpuctx, ctx);
178
179 counter->task = NULL;
180 ctx->nr_counters--;
181
182 /*
183 * Protect the list operation against NMI by disabling the
184 * counters on a global level. NOP for non NMI based counters.
185 */
186 perf_flags = hw_perf_save_disable();
187 list_del_counter(counter, ctx);
188 hw_perf_restore(perf_flags);
189
190 if (!ctx->task) {
191 /*
192 * Allow more per task counters with respect to the
193 * reservation:
194 */
195 cpuctx->max_pertask =
196 min(perf_max_counters - ctx->nr_counters,
197 perf_max_counters - perf_reserved_percpu);
198 }
199
200 spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202
203
204 /*
205 * Remove the counter from a task's (or a CPU's) list of counters.
206 *
207 * Must be called with counter->mutex and ctx->mutex held.
208 *
209 * CPU counters are removed with a smp call. For task counters we only
210 * call when the task is on a CPU.
211 */
212 static void perf_counter_remove_from_context(struct perf_counter *counter)
213 {
214 struct perf_counter_context *ctx = counter->ctx;
215 struct task_struct *task = ctx->task;
216
217 if (!task) {
218 /*
219 * Per cpu counters are removed via an smp call and
220 * the removal is always sucessful.
221 */
222 smp_call_function_single(counter->cpu,
223 __perf_counter_remove_from_context,
224 counter, 1);
225 return;
226 }
227
228 retry:
229 task_oncpu_function_call(task, __perf_counter_remove_from_context,
230 counter);
231
232 spin_lock_irq(&ctx->lock);
233 /*
234 * If the context is active we need to retry the smp call.
235 */
236 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
237 spin_unlock_irq(&ctx->lock);
238 goto retry;
239 }
240
241 /*
242 * The lock prevents that this context is scheduled in so we
243 * can remove the counter safely, if the call above did not
244 * succeed.
245 */
246 if (!list_empty(&counter->list_entry)) {
247 ctx->nr_counters--;
248 list_del_counter(counter, ctx);
249 counter->task = NULL;
250 }
251 spin_unlock_irq(&ctx->lock);
252 }
253
254 static inline u64 perf_clock(void)
255 {
256 return cpu_clock(smp_processor_id());
257 }
258
259 /*
260 * Update the record of the current time in a context.
261 */
262 static void update_context_time(struct perf_counter_context *ctx)
263 {
264 u64 now = perf_clock();
265
266 ctx->time += now - ctx->timestamp;
267 ctx->timestamp = now;
268 }
269
270 /*
271 * Update the total_time_enabled and total_time_running fields for a counter.
272 */
273 static void update_counter_times(struct perf_counter *counter)
274 {
275 struct perf_counter_context *ctx = counter->ctx;
276 u64 run_end;
277
278 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
279 return;
280
281 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
282
283 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
284 run_end = counter->tstamp_stopped;
285 else
286 run_end = ctx->time;
287
288 counter->total_time_running = run_end - counter->tstamp_running;
289 }
290
291 /*
292 * Update total_time_enabled and total_time_running for all counters in a group.
293 */
294 static void update_group_times(struct perf_counter *leader)
295 {
296 struct perf_counter *counter;
297
298 update_counter_times(leader);
299 list_for_each_entry(counter, &leader->sibling_list, list_entry)
300 update_counter_times(counter);
301 }
302
303 /*
304 * Cross CPU call to disable a performance counter
305 */
306 static void __perf_counter_disable(void *info)
307 {
308 struct perf_counter *counter = info;
309 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
310 struct perf_counter_context *ctx = counter->ctx;
311 unsigned long flags;
312
313 /*
314 * If this is a per-task counter, need to check whether this
315 * counter's task is the current task on this cpu.
316 */
317 if (ctx->task && cpuctx->task_ctx != ctx)
318 return;
319
320 spin_lock_irqsave(&ctx->lock, flags);
321
322 /*
323 * If the counter is on, turn it off.
324 * If it is in error state, leave it in error state.
325 */
326 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
327 update_context_time(ctx);
328 update_counter_times(counter);
329 if (counter == counter->group_leader)
330 group_sched_out(counter, cpuctx, ctx);
331 else
332 counter_sched_out(counter, cpuctx, ctx);
333 counter->state = PERF_COUNTER_STATE_OFF;
334 }
335
336 spin_unlock_irqrestore(&ctx->lock, flags);
337 }
338
339 /*
340 * Disable a counter.
341 */
342 static void perf_counter_disable(struct perf_counter *counter)
343 {
344 struct perf_counter_context *ctx = counter->ctx;
345 struct task_struct *task = ctx->task;
346
347 if (!task) {
348 /*
349 * Disable the counter on the cpu that it's on
350 */
351 smp_call_function_single(counter->cpu, __perf_counter_disable,
352 counter, 1);
353 return;
354 }
355
356 retry:
357 task_oncpu_function_call(task, __perf_counter_disable, counter);
358
359 spin_lock_irq(&ctx->lock);
360 /*
361 * If the counter is still active, we need to retry the cross-call.
362 */
363 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
364 spin_unlock_irq(&ctx->lock);
365 goto retry;
366 }
367
368 /*
369 * Since we have the lock this context can't be scheduled
370 * in, so we can change the state safely.
371 */
372 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
373 update_counter_times(counter);
374 counter->state = PERF_COUNTER_STATE_OFF;
375 }
376
377 spin_unlock_irq(&ctx->lock);
378 }
379
380 /*
381 * Disable a counter and all its children.
382 */
383 static void perf_counter_disable_family(struct perf_counter *counter)
384 {
385 struct perf_counter *child;
386
387 perf_counter_disable(counter);
388
389 /*
390 * Lock the mutex to protect the list of children
391 */
392 mutex_lock(&counter->mutex);
393 list_for_each_entry(child, &counter->child_list, child_list)
394 perf_counter_disable(child);
395 mutex_unlock(&counter->mutex);
396 }
397
398 static int
399 counter_sched_in(struct perf_counter *counter,
400 struct perf_cpu_context *cpuctx,
401 struct perf_counter_context *ctx,
402 int cpu)
403 {
404 if (counter->state <= PERF_COUNTER_STATE_OFF)
405 return 0;
406
407 counter->state = PERF_COUNTER_STATE_ACTIVE;
408 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
409 /*
410 * The new state must be visible before we turn it on in the hardware:
411 */
412 smp_wmb();
413
414 if (counter->hw_ops->enable(counter)) {
415 counter->state = PERF_COUNTER_STATE_INACTIVE;
416 counter->oncpu = -1;
417 return -EAGAIN;
418 }
419
420 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
421
422 if (!is_software_counter(counter))
423 cpuctx->active_oncpu++;
424 ctx->nr_active++;
425
426 if (counter->hw_event.exclusive)
427 cpuctx->exclusive = 1;
428
429 return 0;
430 }
431
432 /*
433 * Return 1 for a group consisting entirely of software counters,
434 * 0 if the group contains any hardware counters.
435 */
436 static int is_software_only_group(struct perf_counter *leader)
437 {
438 struct perf_counter *counter;
439
440 if (!is_software_counter(leader))
441 return 0;
442
443 list_for_each_entry(counter, &leader->sibling_list, list_entry)
444 if (!is_software_counter(counter))
445 return 0;
446
447 return 1;
448 }
449
450 /*
451 * Work out whether we can put this counter group on the CPU now.
452 */
453 static int group_can_go_on(struct perf_counter *counter,
454 struct perf_cpu_context *cpuctx,
455 int can_add_hw)
456 {
457 /*
458 * Groups consisting entirely of software counters can always go on.
459 */
460 if (is_software_only_group(counter))
461 return 1;
462 /*
463 * If an exclusive group is already on, no other hardware
464 * counters can go on.
465 */
466 if (cpuctx->exclusive)
467 return 0;
468 /*
469 * If this group is exclusive and there are already
470 * counters on the CPU, it can't go on.
471 */
472 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
473 return 0;
474 /*
475 * Otherwise, try to add it if all previous groups were able
476 * to go on.
477 */
478 return can_add_hw;
479 }
480
481 static void add_counter_to_ctx(struct perf_counter *counter,
482 struct perf_counter_context *ctx)
483 {
484 list_add_counter(counter, ctx);
485 ctx->nr_counters++;
486 counter->prev_state = PERF_COUNTER_STATE_OFF;
487 counter->tstamp_enabled = ctx->time;
488 counter->tstamp_running = ctx->time;
489 counter->tstamp_stopped = ctx->time;
490 }
491
492 /*
493 * Cross CPU call to install and enable a performance counter
494 */
495 static void __perf_install_in_context(void *info)
496 {
497 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
498 struct perf_counter *counter = info;
499 struct perf_counter_context *ctx = counter->ctx;
500 struct perf_counter *leader = counter->group_leader;
501 int cpu = smp_processor_id();
502 unsigned long flags;
503 u64 perf_flags;
504 int err;
505
506 /*
507 * If this is a task context, we need to check whether it is
508 * the current task context of this cpu. If not it has been
509 * scheduled out before the smp call arrived.
510 */
511 if (ctx->task && cpuctx->task_ctx != ctx)
512 return;
513
514 spin_lock_irqsave(&ctx->lock, flags);
515 update_context_time(ctx);
516
517 /*
518 * Protect the list operation against NMI by disabling the
519 * counters on a global level. NOP for non NMI based counters.
520 */
521 perf_flags = hw_perf_save_disable();
522
523 add_counter_to_ctx(counter, ctx);
524
525 /*
526 * Don't put the counter on if it is disabled or if
527 * it is in a group and the group isn't on.
528 */
529 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
530 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
531 goto unlock;
532
533 /*
534 * An exclusive counter can't go on if there are already active
535 * hardware counters, and no hardware counter can go on if there
536 * is already an exclusive counter on.
537 */
538 if (!group_can_go_on(counter, cpuctx, 1))
539 err = -EEXIST;
540 else
541 err = counter_sched_in(counter, cpuctx, ctx, cpu);
542
543 if (err) {
544 /*
545 * This counter couldn't go on. If it is in a group
546 * then we have to pull the whole group off.
547 * If the counter group is pinned then put it in error state.
548 */
549 if (leader != counter)
550 group_sched_out(leader, cpuctx, ctx);
551 if (leader->hw_event.pinned) {
552 update_group_times(leader);
553 leader->state = PERF_COUNTER_STATE_ERROR;
554 }
555 }
556
557 if (!err && !ctx->task && cpuctx->max_pertask)
558 cpuctx->max_pertask--;
559
560 unlock:
561 hw_perf_restore(perf_flags);
562
563 spin_unlock_irqrestore(&ctx->lock, flags);
564 }
565
566 /*
567 * Attach a performance counter to a context
568 *
569 * First we add the counter to the list with the hardware enable bit
570 * in counter->hw_config cleared.
571 *
572 * If the counter is attached to a task which is on a CPU we use a smp
573 * call to enable it in the task context. The task might have been
574 * scheduled away, but we check this in the smp call again.
575 *
576 * Must be called with ctx->mutex held.
577 */
578 static void
579 perf_install_in_context(struct perf_counter_context *ctx,
580 struct perf_counter *counter,
581 int cpu)
582 {
583 struct task_struct *task = ctx->task;
584
585 if (!task) {
586 /*
587 * Per cpu counters are installed via an smp call and
588 * the install is always sucessful.
589 */
590 smp_call_function_single(cpu, __perf_install_in_context,
591 counter, 1);
592 return;
593 }
594
595 counter->task = task;
596 retry:
597 task_oncpu_function_call(task, __perf_install_in_context,
598 counter);
599
600 spin_lock_irq(&ctx->lock);
601 /*
602 * we need to retry the smp call.
603 */
604 if (ctx->is_active && list_empty(&counter->list_entry)) {
605 spin_unlock_irq(&ctx->lock);
606 goto retry;
607 }
608
609 /*
610 * The lock prevents that this context is scheduled in so we
611 * can add the counter safely, if it the call above did not
612 * succeed.
613 */
614 if (list_empty(&counter->list_entry))
615 add_counter_to_ctx(counter, ctx);
616 spin_unlock_irq(&ctx->lock);
617 }
618
619 /*
620 * Cross CPU call to enable a performance counter
621 */
622 static void __perf_counter_enable(void *info)
623 {
624 struct perf_counter *counter = info;
625 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
626 struct perf_counter_context *ctx = counter->ctx;
627 struct perf_counter *leader = counter->group_leader;
628 unsigned long flags;
629 int err;
630
631 /*
632 * If this is a per-task counter, need to check whether this
633 * counter's task is the current task on this cpu.
634 */
635 if (ctx->task && cpuctx->task_ctx != ctx)
636 return;
637
638 spin_lock_irqsave(&ctx->lock, flags);
639 update_context_time(ctx);
640
641 counter->prev_state = counter->state;
642 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
643 goto unlock;
644 counter->state = PERF_COUNTER_STATE_INACTIVE;
645 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
646
647 /*
648 * If the counter is in a group and isn't the group leader,
649 * then don't put it on unless the group is on.
650 */
651 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
652 goto unlock;
653
654 if (!group_can_go_on(counter, cpuctx, 1))
655 err = -EEXIST;
656 else
657 err = counter_sched_in(counter, cpuctx, ctx,
658 smp_processor_id());
659
660 if (err) {
661 /*
662 * If this counter can't go on and it's part of a
663 * group, then the whole group has to come off.
664 */
665 if (leader != counter)
666 group_sched_out(leader, cpuctx, ctx);
667 if (leader->hw_event.pinned) {
668 update_group_times(leader);
669 leader->state = PERF_COUNTER_STATE_ERROR;
670 }
671 }
672
673 unlock:
674 spin_unlock_irqrestore(&ctx->lock, flags);
675 }
676
677 /*
678 * Enable a counter.
679 */
680 static void perf_counter_enable(struct perf_counter *counter)
681 {
682 struct perf_counter_context *ctx = counter->ctx;
683 struct task_struct *task = ctx->task;
684
685 if (!task) {
686 /*
687 * Enable the counter on the cpu that it's on
688 */
689 smp_call_function_single(counter->cpu, __perf_counter_enable,
690 counter, 1);
691 return;
692 }
693
694 spin_lock_irq(&ctx->lock);
695 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
696 goto out;
697
698 /*
699 * If the counter is in error state, clear that first.
700 * That way, if we see the counter in error state below, we
701 * know that it has gone back into error state, as distinct
702 * from the task having been scheduled away before the
703 * cross-call arrived.
704 */
705 if (counter->state == PERF_COUNTER_STATE_ERROR)
706 counter->state = PERF_COUNTER_STATE_OFF;
707
708 retry:
709 spin_unlock_irq(&ctx->lock);
710 task_oncpu_function_call(task, __perf_counter_enable, counter);
711
712 spin_lock_irq(&ctx->lock);
713
714 /*
715 * If the context is active and the counter is still off,
716 * we need to retry the cross-call.
717 */
718 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
719 goto retry;
720
721 /*
722 * Since we have the lock this context can't be scheduled
723 * in, so we can change the state safely.
724 */
725 if (counter->state == PERF_COUNTER_STATE_OFF) {
726 counter->state = PERF_COUNTER_STATE_INACTIVE;
727 counter->tstamp_enabled =
728 ctx->time - counter->total_time_enabled;
729 }
730 out:
731 spin_unlock_irq(&ctx->lock);
732 }
733
734 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
735 {
736 atomic_add(refresh, &counter->event_limit);
737 perf_counter_enable(counter);
738 }
739
740 /*
741 * Enable a counter and all its children.
742 */
743 static void perf_counter_enable_family(struct perf_counter *counter)
744 {
745 struct perf_counter *child;
746
747 perf_counter_enable(counter);
748
749 /*
750 * Lock the mutex to protect the list of children
751 */
752 mutex_lock(&counter->mutex);
753 list_for_each_entry(child, &counter->child_list, child_list)
754 perf_counter_enable(child);
755 mutex_unlock(&counter->mutex);
756 }
757
758 void __perf_counter_sched_out(struct perf_counter_context *ctx,
759 struct perf_cpu_context *cpuctx)
760 {
761 struct perf_counter *counter;
762 u64 flags;
763
764 spin_lock(&ctx->lock);
765 ctx->is_active = 0;
766 if (likely(!ctx->nr_counters))
767 goto out;
768 update_context_time(ctx);
769
770 flags = hw_perf_save_disable();
771 if (ctx->nr_active) {
772 list_for_each_entry(counter, &ctx->counter_list, list_entry)
773 group_sched_out(counter, cpuctx, ctx);
774 }
775 hw_perf_restore(flags);
776 out:
777 spin_unlock(&ctx->lock);
778 }
779
780 /*
781 * Called from scheduler to remove the counters of the current task,
782 * with interrupts disabled.
783 *
784 * We stop each counter and update the counter value in counter->count.
785 *
786 * This does not protect us against NMI, but disable()
787 * sets the disabled bit in the control field of counter _before_
788 * accessing the counter control register. If a NMI hits, then it will
789 * not restart the counter.
790 */
791 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
792 {
793 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
794 struct perf_counter_context *ctx = &task->perf_counter_ctx;
795 struct pt_regs *regs;
796
797 if (likely(!cpuctx->task_ctx))
798 return;
799
800 update_context_time(ctx);
801
802 regs = task_pt_regs(task);
803 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
804 __perf_counter_sched_out(ctx, cpuctx);
805
806 cpuctx->task_ctx = NULL;
807 }
808
809 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
810 {
811 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
812 }
813
814 static int
815 group_sched_in(struct perf_counter *group_counter,
816 struct perf_cpu_context *cpuctx,
817 struct perf_counter_context *ctx,
818 int cpu)
819 {
820 struct perf_counter *counter, *partial_group;
821 int ret;
822
823 if (group_counter->state == PERF_COUNTER_STATE_OFF)
824 return 0;
825
826 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
827 if (ret)
828 return ret < 0 ? ret : 0;
829
830 group_counter->prev_state = group_counter->state;
831 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
832 return -EAGAIN;
833
834 /*
835 * Schedule in siblings as one group (if any):
836 */
837 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
838 counter->prev_state = counter->state;
839 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
840 partial_group = counter;
841 goto group_error;
842 }
843 }
844
845 return 0;
846
847 group_error:
848 /*
849 * Groups can be scheduled in as one unit only, so undo any
850 * partial group before returning:
851 */
852 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
853 if (counter == partial_group)
854 break;
855 counter_sched_out(counter, cpuctx, ctx);
856 }
857 counter_sched_out(group_counter, cpuctx, ctx);
858
859 return -EAGAIN;
860 }
861
862 static void
863 __perf_counter_sched_in(struct perf_counter_context *ctx,
864 struct perf_cpu_context *cpuctx, int cpu)
865 {
866 struct perf_counter *counter;
867 u64 flags;
868 int can_add_hw = 1;
869
870 spin_lock(&ctx->lock);
871 ctx->is_active = 1;
872 if (likely(!ctx->nr_counters))
873 goto out;
874
875 ctx->timestamp = perf_clock();
876
877 flags = hw_perf_save_disable();
878
879 /*
880 * First go through the list and put on any pinned groups
881 * in order to give them the best chance of going on.
882 */
883 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
884 if (counter->state <= PERF_COUNTER_STATE_OFF ||
885 !counter->hw_event.pinned)
886 continue;
887 if (counter->cpu != -1 && counter->cpu != cpu)
888 continue;
889
890 if (group_can_go_on(counter, cpuctx, 1))
891 group_sched_in(counter, cpuctx, ctx, cpu);
892
893 /*
894 * If this pinned group hasn't been scheduled,
895 * put it in error state.
896 */
897 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
898 update_group_times(counter);
899 counter->state = PERF_COUNTER_STATE_ERROR;
900 }
901 }
902
903 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
904 /*
905 * Ignore counters in OFF or ERROR state, and
906 * ignore pinned counters since we did them already.
907 */
908 if (counter->state <= PERF_COUNTER_STATE_OFF ||
909 counter->hw_event.pinned)
910 continue;
911
912 /*
913 * Listen to the 'cpu' scheduling filter constraint
914 * of counters:
915 */
916 if (counter->cpu != -1 && counter->cpu != cpu)
917 continue;
918
919 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
920 if (group_sched_in(counter, cpuctx, ctx, cpu))
921 can_add_hw = 0;
922 }
923 }
924 hw_perf_restore(flags);
925 out:
926 spin_unlock(&ctx->lock);
927 }
928
929 /*
930 * Called from scheduler to add the counters of the current task
931 * with interrupts disabled.
932 *
933 * We restore the counter value and then enable it.
934 *
935 * This does not protect us against NMI, but enable()
936 * sets the enabled bit in the control field of counter _before_
937 * accessing the counter control register. If a NMI hits, then it will
938 * keep the counter running.
939 */
940 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
941 {
942 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
943 struct perf_counter_context *ctx = &task->perf_counter_ctx;
944
945 __perf_counter_sched_in(ctx, cpuctx, cpu);
946 cpuctx->task_ctx = ctx;
947 }
948
949 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
950 {
951 struct perf_counter_context *ctx = &cpuctx->ctx;
952
953 __perf_counter_sched_in(ctx, cpuctx, cpu);
954 }
955
956 int perf_counter_task_disable(void)
957 {
958 struct task_struct *curr = current;
959 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
960 struct perf_counter *counter;
961 unsigned long flags;
962 u64 perf_flags;
963 int cpu;
964
965 if (likely(!ctx->nr_counters))
966 return 0;
967
968 local_irq_save(flags);
969 cpu = smp_processor_id();
970
971 perf_counter_task_sched_out(curr, cpu);
972
973 spin_lock(&ctx->lock);
974
975 /*
976 * Disable all the counters:
977 */
978 perf_flags = hw_perf_save_disable();
979
980 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
981 if (counter->state != PERF_COUNTER_STATE_ERROR) {
982 update_group_times(counter);
983 counter->state = PERF_COUNTER_STATE_OFF;
984 }
985 }
986
987 hw_perf_restore(perf_flags);
988
989 spin_unlock_irqrestore(&ctx->lock, flags);
990
991 return 0;
992 }
993
994 int perf_counter_task_enable(void)
995 {
996 struct task_struct *curr = current;
997 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
998 struct perf_counter *counter;
999 unsigned long flags;
1000 u64 perf_flags;
1001 int cpu;
1002
1003 if (likely(!ctx->nr_counters))
1004 return 0;
1005
1006 local_irq_save(flags);
1007 cpu = smp_processor_id();
1008
1009 perf_counter_task_sched_out(curr, cpu);
1010
1011 spin_lock(&ctx->lock);
1012
1013 /*
1014 * Disable all the counters:
1015 */
1016 perf_flags = hw_perf_save_disable();
1017
1018 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1019 if (counter->state > PERF_COUNTER_STATE_OFF)
1020 continue;
1021 counter->state = PERF_COUNTER_STATE_INACTIVE;
1022 counter->tstamp_enabled =
1023 ctx->time - counter->total_time_enabled;
1024 counter->hw_event.disabled = 0;
1025 }
1026 hw_perf_restore(perf_flags);
1027
1028 spin_unlock(&ctx->lock);
1029
1030 perf_counter_task_sched_in(curr, cpu);
1031
1032 local_irq_restore(flags);
1033
1034 return 0;
1035 }
1036
1037 /*
1038 * Round-robin a context's counters:
1039 */
1040 static void rotate_ctx(struct perf_counter_context *ctx)
1041 {
1042 struct perf_counter *counter;
1043 u64 perf_flags;
1044
1045 if (!ctx->nr_counters)
1046 return;
1047
1048 spin_lock(&ctx->lock);
1049 /*
1050 * Rotate the first entry last (works just fine for group counters too):
1051 */
1052 perf_flags = hw_perf_save_disable();
1053 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1054 list_move_tail(&counter->list_entry, &ctx->counter_list);
1055 break;
1056 }
1057 hw_perf_restore(perf_flags);
1058
1059 spin_unlock(&ctx->lock);
1060 }
1061
1062 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1063 {
1064 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1065 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1066 const int rotate_percpu = 0;
1067
1068 if (rotate_percpu)
1069 perf_counter_cpu_sched_out(cpuctx);
1070 perf_counter_task_sched_out(curr, cpu);
1071
1072 if (rotate_percpu)
1073 rotate_ctx(&cpuctx->ctx);
1074 rotate_ctx(ctx);
1075
1076 if (rotate_percpu)
1077 perf_counter_cpu_sched_in(cpuctx, cpu);
1078 perf_counter_task_sched_in(curr, cpu);
1079 }
1080
1081 /*
1082 * Cross CPU call to read the hardware counter
1083 */
1084 static void __read(void *info)
1085 {
1086 struct perf_counter *counter = info;
1087 struct perf_counter_context *ctx = counter->ctx;
1088 unsigned long flags;
1089
1090 local_irq_save(flags);
1091 if (ctx->is_active)
1092 update_context_time(ctx);
1093 counter->hw_ops->read(counter);
1094 update_counter_times(counter);
1095 local_irq_restore(flags);
1096 }
1097
1098 static u64 perf_counter_read(struct perf_counter *counter)
1099 {
1100 /*
1101 * If counter is enabled and currently active on a CPU, update the
1102 * value in the counter structure:
1103 */
1104 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1105 smp_call_function_single(counter->oncpu,
1106 __read, counter, 1);
1107 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1108 update_counter_times(counter);
1109 }
1110
1111 return atomic64_read(&counter->count);
1112 }
1113
1114 static void put_context(struct perf_counter_context *ctx)
1115 {
1116 if (ctx->task)
1117 put_task_struct(ctx->task);
1118 }
1119
1120 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1121 {
1122 struct perf_cpu_context *cpuctx;
1123 struct perf_counter_context *ctx;
1124 struct task_struct *task;
1125
1126 /*
1127 * If cpu is not a wildcard then this is a percpu counter:
1128 */
1129 if (cpu != -1) {
1130 /* Must be root to operate on a CPU counter: */
1131 if (!capable(CAP_SYS_ADMIN))
1132 return ERR_PTR(-EACCES);
1133
1134 if (cpu < 0 || cpu > num_possible_cpus())
1135 return ERR_PTR(-EINVAL);
1136
1137 /*
1138 * We could be clever and allow to attach a counter to an
1139 * offline CPU and activate it when the CPU comes up, but
1140 * that's for later.
1141 */
1142 if (!cpu_isset(cpu, cpu_online_map))
1143 return ERR_PTR(-ENODEV);
1144
1145 cpuctx = &per_cpu(perf_cpu_context, cpu);
1146 ctx = &cpuctx->ctx;
1147
1148 return ctx;
1149 }
1150
1151 rcu_read_lock();
1152 if (!pid)
1153 task = current;
1154 else
1155 task = find_task_by_vpid(pid);
1156 if (task)
1157 get_task_struct(task);
1158 rcu_read_unlock();
1159
1160 if (!task)
1161 return ERR_PTR(-ESRCH);
1162
1163 ctx = &task->perf_counter_ctx;
1164 ctx->task = task;
1165
1166 /* Reuse ptrace permission checks for now. */
1167 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1168 put_context(ctx);
1169 return ERR_PTR(-EACCES);
1170 }
1171
1172 return ctx;
1173 }
1174
1175 static void free_counter_rcu(struct rcu_head *head)
1176 {
1177 struct perf_counter *counter;
1178
1179 counter = container_of(head, struct perf_counter, rcu_head);
1180 kfree(counter);
1181 }
1182
1183 static void perf_pending_sync(struct perf_counter *counter);
1184
1185 static void free_counter(struct perf_counter *counter)
1186 {
1187 perf_pending_sync(counter);
1188
1189 if (counter->destroy)
1190 counter->destroy(counter);
1191
1192 call_rcu(&counter->rcu_head, free_counter_rcu);
1193 }
1194
1195 /*
1196 * Called when the last reference to the file is gone.
1197 */
1198 static int perf_release(struct inode *inode, struct file *file)
1199 {
1200 struct perf_counter *counter = file->private_data;
1201 struct perf_counter_context *ctx = counter->ctx;
1202
1203 file->private_data = NULL;
1204
1205 mutex_lock(&ctx->mutex);
1206 mutex_lock(&counter->mutex);
1207
1208 perf_counter_remove_from_context(counter);
1209
1210 mutex_unlock(&counter->mutex);
1211 mutex_unlock(&ctx->mutex);
1212
1213 free_counter(counter);
1214 put_context(ctx);
1215
1216 return 0;
1217 }
1218
1219 /*
1220 * Read the performance counter - simple non blocking version for now
1221 */
1222 static ssize_t
1223 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1224 {
1225 u64 values[3];
1226 int n;
1227
1228 /*
1229 * Return end-of-file for a read on a counter that is in
1230 * error state (i.e. because it was pinned but it couldn't be
1231 * scheduled on to the CPU at some point).
1232 */
1233 if (counter->state == PERF_COUNTER_STATE_ERROR)
1234 return 0;
1235
1236 mutex_lock(&counter->mutex);
1237 values[0] = perf_counter_read(counter);
1238 n = 1;
1239 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1240 values[n++] = counter->total_time_enabled +
1241 atomic64_read(&counter->child_total_time_enabled);
1242 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1243 values[n++] = counter->total_time_running +
1244 atomic64_read(&counter->child_total_time_running);
1245 mutex_unlock(&counter->mutex);
1246
1247 if (count < n * sizeof(u64))
1248 return -EINVAL;
1249 count = n * sizeof(u64);
1250
1251 if (copy_to_user(buf, values, count))
1252 return -EFAULT;
1253
1254 return count;
1255 }
1256
1257 static ssize_t
1258 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1259 {
1260 struct perf_counter *counter = file->private_data;
1261
1262 return perf_read_hw(counter, buf, count);
1263 }
1264
1265 static unsigned int perf_poll(struct file *file, poll_table *wait)
1266 {
1267 struct perf_counter *counter = file->private_data;
1268 struct perf_mmap_data *data;
1269 unsigned int events;
1270
1271 rcu_read_lock();
1272 data = rcu_dereference(counter->data);
1273 if (data)
1274 events = atomic_xchg(&data->wakeup, 0);
1275 else
1276 events = POLL_HUP;
1277 rcu_read_unlock();
1278
1279 poll_wait(file, &counter->waitq, wait);
1280
1281 return events;
1282 }
1283
1284 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1285 {
1286 struct perf_counter *counter = file->private_data;
1287 int err = 0;
1288
1289 switch (cmd) {
1290 case PERF_COUNTER_IOC_ENABLE:
1291 perf_counter_enable_family(counter);
1292 break;
1293 case PERF_COUNTER_IOC_DISABLE:
1294 perf_counter_disable_family(counter);
1295 break;
1296 case PERF_COUNTER_IOC_REFRESH:
1297 perf_counter_refresh(counter, arg);
1298 break;
1299 default:
1300 err = -ENOTTY;
1301 }
1302 return err;
1303 }
1304
1305 /*
1306 * Callers need to ensure there can be no nesting of this function, otherwise
1307 * the seqlock logic goes bad. We can not serialize this because the arch
1308 * code calls this from NMI context.
1309 */
1310 void perf_counter_update_userpage(struct perf_counter *counter)
1311 {
1312 struct perf_mmap_data *data;
1313 struct perf_counter_mmap_page *userpg;
1314
1315 rcu_read_lock();
1316 data = rcu_dereference(counter->data);
1317 if (!data)
1318 goto unlock;
1319
1320 userpg = data->user_page;
1321
1322 /*
1323 * Disable preemption so as to not let the corresponding user-space
1324 * spin too long if we get preempted.
1325 */
1326 preempt_disable();
1327 ++userpg->lock;
1328 barrier();
1329 userpg->index = counter->hw.idx;
1330 userpg->offset = atomic64_read(&counter->count);
1331 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1332 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1333
1334 barrier();
1335 ++userpg->lock;
1336 preempt_enable();
1337 unlock:
1338 rcu_read_unlock();
1339 }
1340
1341 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1342 {
1343 struct perf_counter *counter = vma->vm_file->private_data;
1344 struct perf_mmap_data *data;
1345 int ret = VM_FAULT_SIGBUS;
1346
1347 rcu_read_lock();
1348 data = rcu_dereference(counter->data);
1349 if (!data)
1350 goto unlock;
1351
1352 if (vmf->pgoff == 0) {
1353 vmf->page = virt_to_page(data->user_page);
1354 } else {
1355 int nr = vmf->pgoff - 1;
1356
1357 if ((unsigned)nr > data->nr_pages)
1358 goto unlock;
1359
1360 vmf->page = virt_to_page(data->data_pages[nr]);
1361 }
1362 get_page(vmf->page);
1363 ret = 0;
1364 unlock:
1365 rcu_read_unlock();
1366
1367 return ret;
1368 }
1369
1370 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1371 {
1372 struct perf_mmap_data *data;
1373 unsigned long size;
1374 int i;
1375
1376 WARN_ON(atomic_read(&counter->mmap_count));
1377
1378 size = sizeof(struct perf_mmap_data);
1379 size += nr_pages * sizeof(void *);
1380
1381 data = kzalloc(size, GFP_KERNEL);
1382 if (!data)
1383 goto fail;
1384
1385 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1386 if (!data->user_page)
1387 goto fail_user_page;
1388
1389 for (i = 0; i < nr_pages; i++) {
1390 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1391 if (!data->data_pages[i])
1392 goto fail_data_pages;
1393 }
1394
1395 data->nr_pages = nr_pages;
1396
1397 rcu_assign_pointer(counter->data, data);
1398
1399 return 0;
1400
1401 fail_data_pages:
1402 for (i--; i >= 0; i--)
1403 free_page((unsigned long)data->data_pages[i]);
1404
1405 free_page((unsigned long)data->user_page);
1406
1407 fail_user_page:
1408 kfree(data);
1409
1410 fail:
1411 return -ENOMEM;
1412 }
1413
1414 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1415 {
1416 struct perf_mmap_data *data = container_of(rcu_head,
1417 struct perf_mmap_data, rcu_head);
1418 int i;
1419
1420 free_page((unsigned long)data->user_page);
1421 for (i = 0; i < data->nr_pages; i++)
1422 free_page((unsigned long)data->data_pages[i]);
1423 kfree(data);
1424 }
1425
1426 static void perf_mmap_data_free(struct perf_counter *counter)
1427 {
1428 struct perf_mmap_data *data = counter->data;
1429
1430 WARN_ON(atomic_read(&counter->mmap_count));
1431
1432 rcu_assign_pointer(counter->data, NULL);
1433 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1434 }
1435
1436 static void perf_mmap_open(struct vm_area_struct *vma)
1437 {
1438 struct perf_counter *counter = vma->vm_file->private_data;
1439
1440 atomic_inc(&counter->mmap_count);
1441 }
1442
1443 static void perf_mmap_close(struct vm_area_struct *vma)
1444 {
1445 struct perf_counter *counter = vma->vm_file->private_data;
1446
1447 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1448 &counter->mmap_mutex)) {
1449 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1450 perf_mmap_data_free(counter);
1451 mutex_unlock(&counter->mmap_mutex);
1452 }
1453 }
1454
1455 static struct vm_operations_struct perf_mmap_vmops = {
1456 .open = perf_mmap_open,
1457 .close = perf_mmap_close,
1458 .fault = perf_mmap_fault,
1459 };
1460
1461 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1462 {
1463 struct perf_counter *counter = file->private_data;
1464 unsigned long vma_size;
1465 unsigned long nr_pages;
1466 unsigned long locked, lock_limit;
1467 int ret = 0;
1468
1469 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1470 return -EINVAL;
1471
1472 vma_size = vma->vm_end - vma->vm_start;
1473 nr_pages = (vma_size / PAGE_SIZE) - 1;
1474
1475 /*
1476 * If we have data pages ensure they're a power-of-two number, so we
1477 * can do bitmasks instead of modulo.
1478 */
1479 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1480 return -EINVAL;
1481
1482 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1483 return -EINVAL;
1484
1485 if (vma->vm_pgoff != 0)
1486 return -EINVAL;
1487
1488 mutex_lock(&counter->mmap_mutex);
1489 if (atomic_inc_not_zero(&counter->mmap_count)) {
1490 if (nr_pages != counter->data->nr_pages)
1491 ret = -EINVAL;
1492 goto unlock;
1493 }
1494
1495 locked = vma->vm_mm->locked_vm;
1496 locked += nr_pages + 1;
1497
1498 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1499 lock_limit >>= PAGE_SHIFT;
1500
1501 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1502 ret = -EPERM;
1503 goto unlock;
1504 }
1505
1506 WARN_ON(counter->data);
1507 ret = perf_mmap_data_alloc(counter, nr_pages);
1508 if (ret)
1509 goto unlock;
1510
1511 atomic_set(&counter->mmap_count, 1);
1512 vma->vm_mm->locked_vm += nr_pages + 1;
1513 unlock:
1514 mutex_unlock(&counter->mmap_mutex);
1515
1516 vma->vm_flags &= ~VM_MAYWRITE;
1517 vma->vm_flags |= VM_RESERVED;
1518 vma->vm_ops = &perf_mmap_vmops;
1519
1520 return ret;
1521 }
1522
1523 static int perf_fasync(int fd, struct file *filp, int on)
1524 {
1525 struct perf_counter *counter = filp->private_data;
1526 struct inode *inode = filp->f_path.dentry->d_inode;
1527 int retval;
1528
1529 mutex_lock(&inode->i_mutex);
1530 retval = fasync_helper(fd, filp, on, &counter->fasync);
1531 mutex_unlock(&inode->i_mutex);
1532
1533 if (retval < 0)
1534 return retval;
1535
1536 return 0;
1537 }
1538
1539 static const struct file_operations perf_fops = {
1540 .release = perf_release,
1541 .read = perf_read,
1542 .poll = perf_poll,
1543 .unlocked_ioctl = perf_ioctl,
1544 .compat_ioctl = perf_ioctl,
1545 .mmap = perf_mmap,
1546 .fasync = perf_fasync,
1547 };
1548
1549 /*
1550 * Perf counter wakeup
1551 *
1552 * If there's data, ensure we set the poll() state and publish everything
1553 * to user-space before waking everybody up.
1554 */
1555
1556 void perf_counter_wakeup(struct perf_counter *counter)
1557 {
1558 struct perf_mmap_data *data;
1559
1560 rcu_read_lock();
1561 data = rcu_dereference(counter->data);
1562 if (data) {
1563 atomic_set(&data->wakeup, POLL_IN);
1564 /*
1565 * Ensure all data writes are issued before updating the
1566 * user-space data head information. The matching rmb()
1567 * will be in userspace after reading this value.
1568 */
1569 smp_wmb();
1570 data->user_page->data_head = atomic_read(&data->head);
1571 }
1572 rcu_read_unlock();
1573
1574 wake_up_all(&counter->waitq);
1575
1576 if (counter->pending_kill) {
1577 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1578 counter->pending_kill = 0;
1579 }
1580 }
1581
1582 /*
1583 * Pending wakeups
1584 *
1585 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1586 *
1587 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1588 * single linked list and use cmpxchg() to add entries lockless.
1589 */
1590
1591 static void perf_pending_counter(struct perf_pending_entry *entry)
1592 {
1593 struct perf_counter *counter = container_of(entry,
1594 struct perf_counter, pending);
1595
1596 if (counter->pending_disable) {
1597 counter->pending_disable = 0;
1598 perf_counter_disable(counter);
1599 }
1600
1601 if (counter->pending_wakeup) {
1602 counter->pending_wakeup = 0;
1603 perf_counter_wakeup(counter);
1604 }
1605 }
1606
1607 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1608
1609 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1610 PENDING_TAIL,
1611 };
1612
1613 static void perf_pending_queue(struct perf_pending_entry *entry,
1614 void (*func)(struct perf_pending_entry *))
1615 {
1616 struct perf_pending_entry **head;
1617
1618 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1619 return;
1620
1621 entry->func = func;
1622
1623 head = &get_cpu_var(perf_pending_head);
1624
1625 do {
1626 entry->next = *head;
1627 } while (cmpxchg(head, entry->next, entry) != entry->next);
1628
1629 set_perf_counter_pending();
1630
1631 put_cpu_var(perf_pending_head);
1632 }
1633
1634 static int __perf_pending_run(void)
1635 {
1636 struct perf_pending_entry *list;
1637 int nr = 0;
1638
1639 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1640 while (list != PENDING_TAIL) {
1641 void (*func)(struct perf_pending_entry *);
1642 struct perf_pending_entry *entry = list;
1643
1644 list = list->next;
1645
1646 func = entry->func;
1647 entry->next = NULL;
1648 /*
1649 * Ensure we observe the unqueue before we issue the wakeup,
1650 * so that we won't be waiting forever.
1651 * -- see perf_not_pending().
1652 */
1653 smp_wmb();
1654
1655 func(entry);
1656 nr++;
1657 }
1658
1659 return nr;
1660 }
1661
1662 static inline int perf_not_pending(struct perf_counter *counter)
1663 {
1664 /*
1665 * If we flush on whatever cpu we run, there is a chance we don't
1666 * need to wait.
1667 */
1668 get_cpu();
1669 __perf_pending_run();
1670 put_cpu();
1671
1672 /*
1673 * Ensure we see the proper queue state before going to sleep
1674 * so that we do not miss the wakeup. -- see perf_pending_handle()
1675 */
1676 smp_rmb();
1677 return counter->pending.next == NULL;
1678 }
1679
1680 static void perf_pending_sync(struct perf_counter *counter)
1681 {
1682 wait_event(counter->waitq, perf_not_pending(counter));
1683 }
1684
1685 void perf_counter_do_pending(void)
1686 {
1687 __perf_pending_run();
1688 }
1689
1690 /*
1691 * Callchain support -- arch specific
1692 */
1693
1694 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1695 {
1696 return NULL;
1697 }
1698
1699 /*
1700 * Output
1701 */
1702
1703 struct perf_output_handle {
1704 struct perf_counter *counter;
1705 struct perf_mmap_data *data;
1706 unsigned int offset;
1707 unsigned int head;
1708 int wakeup;
1709 int nmi;
1710 int overflow;
1711 };
1712
1713 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1714 {
1715 if (handle->nmi) {
1716 handle->counter->pending_wakeup = 1;
1717 perf_pending_queue(&handle->counter->pending,
1718 perf_pending_counter);
1719 } else
1720 perf_counter_wakeup(handle->counter);
1721 }
1722
1723 static int perf_output_begin(struct perf_output_handle *handle,
1724 struct perf_counter *counter, unsigned int size,
1725 int nmi, int overflow)
1726 {
1727 struct perf_mmap_data *data;
1728 unsigned int offset, head;
1729
1730 rcu_read_lock();
1731 data = rcu_dereference(counter->data);
1732 if (!data)
1733 goto out;
1734
1735 handle->counter = counter;
1736 handle->nmi = nmi;
1737 handle->overflow = overflow;
1738
1739 if (!data->nr_pages)
1740 goto fail;
1741
1742 do {
1743 offset = head = atomic_read(&data->head);
1744 head += size;
1745 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1746
1747 handle->data = data;
1748 handle->offset = offset;
1749 handle->head = head;
1750 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1751
1752 return 0;
1753
1754 fail:
1755 __perf_output_wakeup(handle);
1756 out:
1757 rcu_read_unlock();
1758
1759 return -ENOSPC;
1760 }
1761
1762 static void perf_output_copy(struct perf_output_handle *handle,
1763 void *buf, unsigned int len)
1764 {
1765 unsigned int pages_mask;
1766 unsigned int offset;
1767 unsigned int size;
1768 void **pages;
1769
1770 offset = handle->offset;
1771 pages_mask = handle->data->nr_pages - 1;
1772 pages = handle->data->data_pages;
1773
1774 do {
1775 unsigned int page_offset;
1776 int nr;
1777
1778 nr = (offset >> PAGE_SHIFT) & pages_mask;
1779 page_offset = offset & (PAGE_SIZE - 1);
1780 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1781
1782 memcpy(pages[nr] + page_offset, buf, size);
1783
1784 len -= size;
1785 buf += size;
1786 offset += size;
1787 } while (len);
1788
1789 handle->offset = offset;
1790
1791 WARN_ON_ONCE(handle->offset > handle->head);
1792 }
1793
1794 #define perf_output_put(handle, x) \
1795 perf_output_copy((handle), &(x), sizeof(x))
1796
1797 static void perf_output_end(struct perf_output_handle *handle)
1798 {
1799 int wakeup_events = handle->counter->hw_event.wakeup_events;
1800
1801 if (handle->overflow && wakeup_events) {
1802 int events = atomic_inc_return(&handle->data->events);
1803 if (events >= wakeup_events) {
1804 atomic_sub(wakeup_events, &handle->data->events);
1805 __perf_output_wakeup(handle);
1806 }
1807 } else if (handle->wakeup)
1808 __perf_output_wakeup(handle);
1809 rcu_read_unlock();
1810 }
1811
1812 static void perf_counter_output(struct perf_counter *counter,
1813 int nmi, struct pt_regs *regs, u64 addr)
1814 {
1815 int ret;
1816 u64 record_type = counter->hw_event.record_type;
1817 struct perf_output_handle handle;
1818 struct perf_event_header header;
1819 u64 ip;
1820 struct {
1821 u32 pid, tid;
1822 } tid_entry;
1823 struct {
1824 u64 event;
1825 u64 counter;
1826 } group_entry;
1827 struct perf_callchain_entry *callchain = NULL;
1828 int callchain_size = 0;
1829 u64 time;
1830
1831 header.type = 0;
1832 header.size = sizeof(header);
1833
1834 header.misc = PERF_EVENT_MISC_OVERFLOW;
1835 header.misc |= user_mode(regs) ?
1836 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1837
1838 if (record_type & PERF_RECORD_IP) {
1839 ip = instruction_pointer(regs);
1840 header.type |= PERF_RECORD_IP;
1841 header.size += sizeof(ip);
1842 }
1843
1844 if (record_type & PERF_RECORD_TID) {
1845 /* namespace issues */
1846 tid_entry.pid = current->group_leader->pid;
1847 tid_entry.tid = current->pid;
1848
1849 header.type |= PERF_RECORD_TID;
1850 header.size += sizeof(tid_entry);
1851 }
1852
1853 if (record_type & PERF_RECORD_TIME) {
1854 /*
1855 * Maybe do better on x86 and provide cpu_clock_nmi()
1856 */
1857 time = sched_clock();
1858
1859 header.type |= PERF_RECORD_TIME;
1860 header.size += sizeof(u64);
1861 }
1862
1863 if (record_type & PERF_RECORD_ADDR) {
1864 header.type |= PERF_RECORD_ADDR;
1865 header.size += sizeof(u64);
1866 }
1867
1868 if (record_type & PERF_RECORD_GROUP) {
1869 header.type |= PERF_RECORD_GROUP;
1870 header.size += sizeof(u64) +
1871 counter->nr_siblings * sizeof(group_entry);
1872 }
1873
1874 if (record_type & PERF_RECORD_CALLCHAIN) {
1875 callchain = perf_callchain(regs);
1876
1877 if (callchain) {
1878 callchain_size = (1 + callchain->nr) * sizeof(u64);
1879
1880 header.type |= PERF_RECORD_CALLCHAIN;
1881 header.size += callchain_size;
1882 }
1883 }
1884
1885 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1886 if (ret)
1887 return;
1888
1889 perf_output_put(&handle, header);
1890
1891 if (record_type & PERF_RECORD_IP)
1892 perf_output_put(&handle, ip);
1893
1894 if (record_type & PERF_RECORD_TID)
1895 perf_output_put(&handle, tid_entry);
1896
1897 if (record_type & PERF_RECORD_TIME)
1898 perf_output_put(&handle, time);
1899
1900 if (record_type & PERF_RECORD_ADDR)
1901 perf_output_put(&handle, addr);
1902
1903 if (record_type & PERF_RECORD_GROUP) {
1904 struct perf_counter *leader, *sub;
1905 u64 nr = counter->nr_siblings;
1906
1907 perf_output_put(&handle, nr);
1908
1909 leader = counter->group_leader;
1910 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1911 if (sub != counter)
1912 sub->hw_ops->read(sub);
1913
1914 group_entry.event = sub->hw_event.config;
1915 group_entry.counter = atomic64_read(&sub->count);
1916
1917 perf_output_put(&handle, group_entry);
1918 }
1919 }
1920
1921 if (callchain)
1922 perf_output_copy(&handle, callchain, callchain_size);
1923
1924 perf_output_end(&handle);
1925 }
1926
1927 /*
1928 * comm tracking
1929 */
1930
1931 struct perf_comm_event {
1932 struct task_struct *task;
1933 char *comm;
1934 int comm_size;
1935
1936 struct {
1937 struct perf_event_header header;
1938
1939 u32 pid;
1940 u32 tid;
1941 } event;
1942 };
1943
1944 static void perf_counter_comm_output(struct perf_counter *counter,
1945 struct perf_comm_event *comm_event)
1946 {
1947 struct perf_output_handle handle;
1948 int size = comm_event->event.header.size;
1949 int ret = perf_output_begin(&handle, counter, size, 0, 0);
1950
1951 if (ret)
1952 return;
1953
1954 perf_output_put(&handle, comm_event->event);
1955 perf_output_copy(&handle, comm_event->comm,
1956 comm_event->comm_size);
1957 perf_output_end(&handle);
1958 }
1959
1960 static int perf_counter_comm_match(struct perf_counter *counter,
1961 struct perf_comm_event *comm_event)
1962 {
1963 if (counter->hw_event.comm &&
1964 comm_event->event.header.type == PERF_EVENT_COMM)
1965 return 1;
1966
1967 return 0;
1968 }
1969
1970 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
1971 struct perf_comm_event *comm_event)
1972 {
1973 struct perf_counter *counter;
1974
1975 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1976 return;
1977
1978 rcu_read_lock();
1979 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1980 if (perf_counter_comm_match(counter, comm_event))
1981 perf_counter_comm_output(counter, comm_event);
1982 }
1983 rcu_read_unlock();
1984 }
1985
1986 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
1987 {
1988 struct perf_cpu_context *cpuctx;
1989 unsigned int size;
1990 char *comm = comm_event->task->comm;
1991
1992 size = ALIGN(strlen(comm), sizeof(u64));
1993
1994 comm_event->comm = comm;
1995 comm_event->comm_size = size;
1996
1997 comm_event->event.header.size = sizeof(comm_event->event) + size;
1998
1999 cpuctx = &get_cpu_var(perf_cpu_context);
2000 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2001 put_cpu_var(perf_cpu_context);
2002
2003 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2004 }
2005
2006 void perf_counter_comm(struct task_struct *task)
2007 {
2008 struct perf_comm_event comm_event = {
2009 .task = task,
2010 .event = {
2011 .header = { .type = PERF_EVENT_COMM, },
2012 .pid = task->group_leader->pid,
2013 .tid = task->pid,
2014 },
2015 };
2016
2017 perf_counter_comm_event(&comm_event);
2018 }
2019
2020 /*
2021 * mmap tracking
2022 */
2023
2024 struct perf_mmap_event {
2025 struct file *file;
2026 char *file_name;
2027 int file_size;
2028
2029 struct {
2030 struct perf_event_header header;
2031
2032 u32 pid;
2033 u32 tid;
2034 u64 start;
2035 u64 len;
2036 u64 pgoff;
2037 } event;
2038 };
2039
2040 static void perf_counter_mmap_output(struct perf_counter *counter,
2041 struct perf_mmap_event *mmap_event)
2042 {
2043 struct perf_output_handle handle;
2044 int size = mmap_event->event.header.size;
2045 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2046
2047 if (ret)
2048 return;
2049
2050 perf_output_put(&handle, mmap_event->event);
2051 perf_output_copy(&handle, mmap_event->file_name,
2052 mmap_event->file_size);
2053 perf_output_end(&handle);
2054 }
2055
2056 static int perf_counter_mmap_match(struct perf_counter *counter,
2057 struct perf_mmap_event *mmap_event)
2058 {
2059 if (counter->hw_event.mmap &&
2060 mmap_event->event.header.type == PERF_EVENT_MMAP)
2061 return 1;
2062
2063 if (counter->hw_event.munmap &&
2064 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2065 return 1;
2066
2067 return 0;
2068 }
2069
2070 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2071 struct perf_mmap_event *mmap_event)
2072 {
2073 struct perf_counter *counter;
2074
2075 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2076 return;
2077
2078 rcu_read_lock();
2079 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2080 if (perf_counter_mmap_match(counter, mmap_event))
2081 perf_counter_mmap_output(counter, mmap_event);
2082 }
2083 rcu_read_unlock();
2084 }
2085
2086 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2087 {
2088 struct perf_cpu_context *cpuctx;
2089 struct file *file = mmap_event->file;
2090 unsigned int size;
2091 char tmp[16];
2092 char *buf = NULL;
2093 char *name;
2094
2095 if (file) {
2096 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2097 if (!buf) {
2098 name = strncpy(tmp, "//enomem", sizeof(tmp));
2099 goto got_name;
2100 }
2101 name = dentry_path(file->f_dentry, buf, PATH_MAX);
2102 if (IS_ERR(name)) {
2103 name = strncpy(tmp, "//toolong", sizeof(tmp));
2104 goto got_name;
2105 }
2106 } else {
2107 name = strncpy(tmp, "//anon", sizeof(tmp));
2108 goto got_name;
2109 }
2110
2111 got_name:
2112 size = ALIGN(strlen(name), sizeof(u64));
2113
2114 mmap_event->file_name = name;
2115 mmap_event->file_size = size;
2116
2117 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2118
2119 cpuctx = &get_cpu_var(perf_cpu_context);
2120 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2121 put_cpu_var(perf_cpu_context);
2122
2123 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2124
2125 kfree(buf);
2126 }
2127
2128 void perf_counter_mmap(unsigned long addr, unsigned long len,
2129 unsigned long pgoff, struct file *file)
2130 {
2131 struct perf_mmap_event mmap_event = {
2132 .file = file,
2133 .event = {
2134 .header = { .type = PERF_EVENT_MMAP, },
2135 .pid = current->group_leader->pid,
2136 .tid = current->pid,
2137 .start = addr,
2138 .len = len,
2139 .pgoff = pgoff,
2140 },
2141 };
2142
2143 perf_counter_mmap_event(&mmap_event);
2144 }
2145
2146 void perf_counter_munmap(unsigned long addr, unsigned long len,
2147 unsigned long pgoff, struct file *file)
2148 {
2149 struct perf_mmap_event mmap_event = {
2150 .file = file,
2151 .event = {
2152 .header = { .type = PERF_EVENT_MUNMAP, },
2153 .pid = current->group_leader->pid,
2154 .tid = current->pid,
2155 .start = addr,
2156 .len = len,
2157 .pgoff = pgoff,
2158 },
2159 };
2160
2161 perf_counter_mmap_event(&mmap_event);
2162 }
2163
2164 /*
2165 * Generic counter overflow handling.
2166 */
2167
2168 int perf_counter_overflow(struct perf_counter *counter,
2169 int nmi, struct pt_regs *regs, u64 addr)
2170 {
2171 int events = atomic_read(&counter->event_limit);
2172 int ret = 0;
2173
2174 counter->pending_kill = POLL_IN;
2175 if (events && atomic_dec_and_test(&counter->event_limit)) {
2176 ret = 1;
2177 counter->pending_kill = POLL_HUP;
2178 if (nmi) {
2179 counter->pending_disable = 1;
2180 perf_pending_queue(&counter->pending,
2181 perf_pending_counter);
2182 } else
2183 perf_counter_disable(counter);
2184 }
2185
2186 perf_counter_output(counter, nmi, regs, addr);
2187 return ret;
2188 }
2189
2190 /*
2191 * Generic software counter infrastructure
2192 */
2193
2194 static void perf_swcounter_update(struct perf_counter *counter)
2195 {
2196 struct hw_perf_counter *hwc = &counter->hw;
2197 u64 prev, now;
2198 s64 delta;
2199
2200 again:
2201 prev = atomic64_read(&hwc->prev_count);
2202 now = atomic64_read(&hwc->count);
2203 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2204 goto again;
2205
2206 delta = now - prev;
2207
2208 atomic64_add(delta, &counter->count);
2209 atomic64_sub(delta, &hwc->period_left);
2210 }
2211
2212 static void perf_swcounter_set_period(struct perf_counter *counter)
2213 {
2214 struct hw_perf_counter *hwc = &counter->hw;
2215 s64 left = atomic64_read(&hwc->period_left);
2216 s64 period = hwc->irq_period;
2217
2218 if (unlikely(left <= -period)) {
2219 left = period;
2220 atomic64_set(&hwc->period_left, left);
2221 }
2222
2223 if (unlikely(left <= 0)) {
2224 left += period;
2225 atomic64_add(period, &hwc->period_left);
2226 }
2227
2228 atomic64_set(&hwc->prev_count, -left);
2229 atomic64_set(&hwc->count, -left);
2230 }
2231
2232 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2233 {
2234 enum hrtimer_restart ret = HRTIMER_RESTART;
2235 struct perf_counter *counter;
2236 struct pt_regs *regs;
2237
2238 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2239 counter->hw_ops->read(counter);
2240
2241 regs = get_irq_regs();
2242 /*
2243 * In case we exclude kernel IPs or are somehow not in interrupt
2244 * context, provide the next best thing, the user IP.
2245 */
2246 if ((counter->hw_event.exclude_kernel || !regs) &&
2247 !counter->hw_event.exclude_user)
2248 regs = task_pt_regs(current);
2249
2250 if (regs) {
2251 if (perf_counter_overflow(counter, 0, regs, 0))
2252 ret = HRTIMER_NORESTART;
2253 }
2254
2255 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2256
2257 return ret;
2258 }
2259
2260 static void perf_swcounter_overflow(struct perf_counter *counter,
2261 int nmi, struct pt_regs *regs, u64 addr)
2262 {
2263 perf_swcounter_update(counter);
2264 perf_swcounter_set_period(counter);
2265 if (perf_counter_overflow(counter, nmi, regs, addr))
2266 /* soft-disable the counter */
2267 ;
2268
2269 }
2270
2271 static int perf_swcounter_match(struct perf_counter *counter,
2272 enum perf_event_types type,
2273 u32 event, struct pt_regs *regs)
2274 {
2275 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2276 return 0;
2277
2278 if (perf_event_raw(&counter->hw_event))
2279 return 0;
2280
2281 if (perf_event_type(&counter->hw_event) != type)
2282 return 0;
2283
2284 if (perf_event_id(&counter->hw_event) != event)
2285 return 0;
2286
2287 if (counter->hw_event.exclude_user && user_mode(regs))
2288 return 0;
2289
2290 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2291 return 0;
2292
2293 return 1;
2294 }
2295
2296 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2297 int nmi, struct pt_regs *regs, u64 addr)
2298 {
2299 int neg = atomic64_add_negative(nr, &counter->hw.count);
2300 if (counter->hw.irq_period && !neg)
2301 perf_swcounter_overflow(counter, nmi, regs, addr);
2302 }
2303
2304 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2305 enum perf_event_types type, u32 event,
2306 u64 nr, int nmi, struct pt_regs *regs,
2307 u64 addr)
2308 {
2309 struct perf_counter *counter;
2310
2311 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2312 return;
2313
2314 rcu_read_lock();
2315 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2316 if (perf_swcounter_match(counter, type, event, regs))
2317 perf_swcounter_add(counter, nr, nmi, regs, addr);
2318 }
2319 rcu_read_unlock();
2320 }
2321
2322 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2323 {
2324 if (in_nmi())
2325 return &cpuctx->recursion[3];
2326
2327 if (in_irq())
2328 return &cpuctx->recursion[2];
2329
2330 if (in_softirq())
2331 return &cpuctx->recursion[1];
2332
2333 return &cpuctx->recursion[0];
2334 }
2335
2336 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2337 u64 nr, int nmi, struct pt_regs *regs,
2338 u64 addr)
2339 {
2340 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2341 int *recursion = perf_swcounter_recursion_context(cpuctx);
2342
2343 if (*recursion)
2344 goto out;
2345
2346 (*recursion)++;
2347 barrier();
2348
2349 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2350 nr, nmi, regs, addr);
2351 if (cpuctx->task_ctx) {
2352 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2353 nr, nmi, regs, addr);
2354 }
2355
2356 barrier();
2357 (*recursion)--;
2358
2359 out:
2360 put_cpu_var(perf_cpu_context);
2361 }
2362
2363 void
2364 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2365 {
2366 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2367 }
2368
2369 static void perf_swcounter_read(struct perf_counter *counter)
2370 {
2371 perf_swcounter_update(counter);
2372 }
2373
2374 static int perf_swcounter_enable(struct perf_counter *counter)
2375 {
2376 perf_swcounter_set_period(counter);
2377 return 0;
2378 }
2379
2380 static void perf_swcounter_disable(struct perf_counter *counter)
2381 {
2382 perf_swcounter_update(counter);
2383 }
2384
2385 static const struct hw_perf_counter_ops perf_ops_generic = {
2386 .enable = perf_swcounter_enable,
2387 .disable = perf_swcounter_disable,
2388 .read = perf_swcounter_read,
2389 };
2390
2391 /*
2392 * Software counter: cpu wall time clock
2393 */
2394
2395 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2396 {
2397 int cpu = raw_smp_processor_id();
2398 s64 prev;
2399 u64 now;
2400
2401 now = cpu_clock(cpu);
2402 prev = atomic64_read(&counter->hw.prev_count);
2403 atomic64_set(&counter->hw.prev_count, now);
2404 atomic64_add(now - prev, &counter->count);
2405 }
2406
2407 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2408 {
2409 struct hw_perf_counter *hwc = &counter->hw;
2410 int cpu = raw_smp_processor_id();
2411
2412 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2413 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2414 hwc->hrtimer.function = perf_swcounter_hrtimer;
2415 if (hwc->irq_period) {
2416 __hrtimer_start_range_ns(&hwc->hrtimer,
2417 ns_to_ktime(hwc->irq_period), 0,
2418 HRTIMER_MODE_REL, 0);
2419 }
2420
2421 return 0;
2422 }
2423
2424 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2425 {
2426 hrtimer_cancel(&counter->hw.hrtimer);
2427 cpu_clock_perf_counter_update(counter);
2428 }
2429
2430 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2431 {
2432 cpu_clock_perf_counter_update(counter);
2433 }
2434
2435 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2436 .enable = cpu_clock_perf_counter_enable,
2437 .disable = cpu_clock_perf_counter_disable,
2438 .read = cpu_clock_perf_counter_read,
2439 };
2440
2441 /*
2442 * Software counter: task time clock
2443 */
2444
2445 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2446 {
2447 u64 prev;
2448 s64 delta;
2449
2450 prev = atomic64_xchg(&counter->hw.prev_count, now);
2451 delta = now - prev;
2452 atomic64_add(delta, &counter->count);
2453 }
2454
2455 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2456 {
2457 struct hw_perf_counter *hwc = &counter->hw;
2458 u64 now;
2459
2460 now = counter->ctx->time;
2461
2462 atomic64_set(&hwc->prev_count, now);
2463 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2464 hwc->hrtimer.function = perf_swcounter_hrtimer;
2465 if (hwc->irq_period) {
2466 __hrtimer_start_range_ns(&hwc->hrtimer,
2467 ns_to_ktime(hwc->irq_period), 0,
2468 HRTIMER_MODE_REL, 0);
2469 }
2470
2471 return 0;
2472 }
2473
2474 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2475 {
2476 hrtimer_cancel(&counter->hw.hrtimer);
2477 task_clock_perf_counter_update(counter, counter->ctx->time);
2478
2479 }
2480
2481 static void task_clock_perf_counter_read(struct perf_counter *counter)
2482 {
2483 u64 time;
2484
2485 if (!in_nmi()) {
2486 update_context_time(counter->ctx);
2487 time = counter->ctx->time;
2488 } else {
2489 u64 now = perf_clock();
2490 u64 delta = now - counter->ctx->timestamp;
2491 time = counter->ctx->time + delta;
2492 }
2493
2494 task_clock_perf_counter_update(counter, time);
2495 }
2496
2497 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2498 .enable = task_clock_perf_counter_enable,
2499 .disable = task_clock_perf_counter_disable,
2500 .read = task_clock_perf_counter_read,
2501 };
2502
2503 /*
2504 * Software counter: cpu migrations
2505 */
2506
2507 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2508 {
2509 struct task_struct *curr = counter->ctx->task;
2510
2511 if (curr)
2512 return curr->se.nr_migrations;
2513 return cpu_nr_migrations(smp_processor_id());
2514 }
2515
2516 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2517 {
2518 u64 prev, now;
2519 s64 delta;
2520
2521 prev = atomic64_read(&counter->hw.prev_count);
2522 now = get_cpu_migrations(counter);
2523
2524 atomic64_set(&counter->hw.prev_count, now);
2525
2526 delta = now - prev;
2527
2528 atomic64_add(delta, &counter->count);
2529 }
2530
2531 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2532 {
2533 cpu_migrations_perf_counter_update(counter);
2534 }
2535
2536 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2537 {
2538 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2539 atomic64_set(&counter->hw.prev_count,
2540 get_cpu_migrations(counter));
2541 return 0;
2542 }
2543
2544 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2545 {
2546 cpu_migrations_perf_counter_update(counter);
2547 }
2548
2549 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2550 .enable = cpu_migrations_perf_counter_enable,
2551 .disable = cpu_migrations_perf_counter_disable,
2552 .read = cpu_migrations_perf_counter_read,
2553 };
2554
2555 #ifdef CONFIG_EVENT_PROFILE
2556 void perf_tpcounter_event(int event_id)
2557 {
2558 struct pt_regs *regs = get_irq_regs();
2559
2560 if (!regs)
2561 regs = task_pt_regs(current);
2562
2563 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2564 }
2565
2566 extern int ftrace_profile_enable(int);
2567 extern void ftrace_profile_disable(int);
2568
2569 static void tp_perf_counter_destroy(struct perf_counter *counter)
2570 {
2571 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2572 }
2573
2574 static const struct hw_perf_counter_ops *
2575 tp_perf_counter_init(struct perf_counter *counter)
2576 {
2577 int event_id = perf_event_id(&counter->hw_event);
2578 int ret;
2579
2580 ret = ftrace_profile_enable(event_id);
2581 if (ret)
2582 return NULL;
2583
2584 counter->destroy = tp_perf_counter_destroy;
2585 counter->hw.irq_period = counter->hw_event.irq_period;
2586
2587 return &perf_ops_generic;
2588 }
2589 #else
2590 static const struct hw_perf_counter_ops *
2591 tp_perf_counter_init(struct perf_counter *counter)
2592 {
2593 return NULL;
2594 }
2595 #endif
2596
2597 static const struct hw_perf_counter_ops *
2598 sw_perf_counter_init(struct perf_counter *counter)
2599 {
2600 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2601 const struct hw_perf_counter_ops *hw_ops = NULL;
2602 struct hw_perf_counter *hwc = &counter->hw;
2603
2604 /*
2605 * Software counters (currently) can't in general distinguish
2606 * between user, kernel and hypervisor events.
2607 * However, context switches and cpu migrations are considered
2608 * to be kernel events, and page faults are never hypervisor
2609 * events.
2610 */
2611 switch (perf_event_id(&counter->hw_event)) {
2612 case PERF_COUNT_CPU_CLOCK:
2613 hw_ops = &perf_ops_cpu_clock;
2614
2615 if (hw_event->irq_period && hw_event->irq_period < 10000)
2616 hw_event->irq_period = 10000;
2617 break;
2618 case PERF_COUNT_TASK_CLOCK:
2619 /*
2620 * If the user instantiates this as a per-cpu counter,
2621 * use the cpu_clock counter instead.
2622 */
2623 if (counter->ctx->task)
2624 hw_ops = &perf_ops_task_clock;
2625 else
2626 hw_ops = &perf_ops_cpu_clock;
2627
2628 if (hw_event->irq_period && hw_event->irq_period < 10000)
2629 hw_event->irq_period = 10000;
2630 break;
2631 case PERF_COUNT_PAGE_FAULTS:
2632 case PERF_COUNT_PAGE_FAULTS_MIN:
2633 case PERF_COUNT_PAGE_FAULTS_MAJ:
2634 case PERF_COUNT_CONTEXT_SWITCHES:
2635 hw_ops = &perf_ops_generic;
2636 break;
2637 case PERF_COUNT_CPU_MIGRATIONS:
2638 if (!counter->hw_event.exclude_kernel)
2639 hw_ops = &perf_ops_cpu_migrations;
2640 break;
2641 }
2642
2643 if (hw_ops)
2644 hwc->irq_period = hw_event->irq_period;
2645
2646 return hw_ops;
2647 }
2648
2649 /*
2650 * Allocate and initialize a counter structure
2651 */
2652 static struct perf_counter *
2653 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2654 int cpu,
2655 struct perf_counter_context *ctx,
2656 struct perf_counter *group_leader,
2657 gfp_t gfpflags)
2658 {
2659 const struct hw_perf_counter_ops *hw_ops;
2660 struct perf_counter *counter;
2661 long err;
2662
2663 counter = kzalloc(sizeof(*counter), gfpflags);
2664 if (!counter)
2665 return ERR_PTR(-ENOMEM);
2666
2667 /*
2668 * Single counters are their own group leaders, with an
2669 * empty sibling list:
2670 */
2671 if (!group_leader)
2672 group_leader = counter;
2673
2674 mutex_init(&counter->mutex);
2675 INIT_LIST_HEAD(&counter->list_entry);
2676 INIT_LIST_HEAD(&counter->event_entry);
2677 INIT_LIST_HEAD(&counter->sibling_list);
2678 init_waitqueue_head(&counter->waitq);
2679
2680 mutex_init(&counter->mmap_mutex);
2681
2682 INIT_LIST_HEAD(&counter->child_list);
2683
2684 counter->cpu = cpu;
2685 counter->hw_event = *hw_event;
2686 counter->group_leader = group_leader;
2687 counter->hw_ops = NULL;
2688 counter->ctx = ctx;
2689
2690 counter->state = PERF_COUNTER_STATE_INACTIVE;
2691 if (hw_event->disabled)
2692 counter->state = PERF_COUNTER_STATE_OFF;
2693
2694 hw_ops = NULL;
2695
2696 if (perf_event_raw(hw_event)) {
2697 hw_ops = hw_perf_counter_init(counter);
2698 goto done;
2699 }
2700
2701 switch (perf_event_type(hw_event)) {
2702 case PERF_TYPE_HARDWARE:
2703 hw_ops = hw_perf_counter_init(counter);
2704 break;
2705
2706 case PERF_TYPE_SOFTWARE:
2707 hw_ops = sw_perf_counter_init(counter);
2708 break;
2709
2710 case PERF_TYPE_TRACEPOINT:
2711 hw_ops = tp_perf_counter_init(counter);
2712 break;
2713 }
2714 done:
2715 err = 0;
2716 if (!hw_ops)
2717 err = -EINVAL;
2718 else if (IS_ERR(hw_ops))
2719 err = PTR_ERR(hw_ops);
2720
2721 if (err) {
2722 kfree(counter);
2723 return ERR_PTR(err);
2724 }
2725
2726 counter->hw_ops = hw_ops;
2727
2728 return counter;
2729 }
2730
2731 /**
2732 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2733 *
2734 * @hw_event_uptr: event type attributes for monitoring/sampling
2735 * @pid: target pid
2736 * @cpu: target cpu
2737 * @group_fd: group leader counter fd
2738 */
2739 SYSCALL_DEFINE5(perf_counter_open,
2740 const struct perf_counter_hw_event __user *, hw_event_uptr,
2741 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2742 {
2743 struct perf_counter *counter, *group_leader;
2744 struct perf_counter_hw_event hw_event;
2745 struct perf_counter_context *ctx;
2746 struct file *counter_file = NULL;
2747 struct file *group_file = NULL;
2748 int fput_needed = 0;
2749 int fput_needed2 = 0;
2750 int ret;
2751
2752 /* for future expandability... */
2753 if (flags)
2754 return -EINVAL;
2755
2756 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2757 return -EFAULT;
2758
2759 /*
2760 * Get the target context (task or percpu):
2761 */
2762 ctx = find_get_context(pid, cpu);
2763 if (IS_ERR(ctx))
2764 return PTR_ERR(ctx);
2765
2766 /*
2767 * Look up the group leader (we will attach this counter to it):
2768 */
2769 group_leader = NULL;
2770 if (group_fd != -1) {
2771 ret = -EINVAL;
2772 group_file = fget_light(group_fd, &fput_needed);
2773 if (!group_file)
2774 goto err_put_context;
2775 if (group_file->f_op != &perf_fops)
2776 goto err_put_context;
2777
2778 group_leader = group_file->private_data;
2779 /*
2780 * Do not allow a recursive hierarchy (this new sibling
2781 * becoming part of another group-sibling):
2782 */
2783 if (group_leader->group_leader != group_leader)
2784 goto err_put_context;
2785 /*
2786 * Do not allow to attach to a group in a different
2787 * task or CPU context:
2788 */
2789 if (group_leader->ctx != ctx)
2790 goto err_put_context;
2791 /*
2792 * Only a group leader can be exclusive or pinned
2793 */
2794 if (hw_event.exclusive || hw_event.pinned)
2795 goto err_put_context;
2796 }
2797
2798 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2799 GFP_KERNEL);
2800 ret = PTR_ERR(counter);
2801 if (IS_ERR(counter))
2802 goto err_put_context;
2803
2804 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2805 if (ret < 0)
2806 goto err_free_put_context;
2807
2808 counter_file = fget_light(ret, &fput_needed2);
2809 if (!counter_file)
2810 goto err_free_put_context;
2811
2812 counter->filp = counter_file;
2813 mutex_lock(&ctx->mutex);
2814 perf_install_in_context(ctx, counter, cpu);
2815 mutex_unlock(&ctx->mutex);
2816
2817 fput_light(counter_file, fput_needed2);
2818
2819 out_fput:
2820 fput_light(group_file, fput_needed);
2821
2822 return ret;
2823
2824 err_free_put_context:
2825 kfree(counter);
2826
2827 err_put_context:
2828 put_context(ctx);
2829
2830 goto out_fput;
2831 }
2832
2833 /*
2834 * Initialize the perf_counter context in a task_struct:
2835 */
2836 static void
2837 __perf_counter_init_context(struct perf_counter_context *ctx,
2838 struct task_struct *task)
2839 {
2840 memset(ctx, 0, sizeof(*ctx));
2841 spin_lock_init(&ctx->lock);
2842 mutex_init(&ctx->mutex);
2843 INIT_LIST_HEAD(&ctx->counter_list);
2844 INIT_LIST_HEAD(&ctx->event_list);
2845 ctx->task = task;
2846 }
2847
2848 /*
2849 * inherit a counter from parent task to child task:
2850 */
2851 static struct perf_counter *
2852 inherit_counter(struct perf_counter *parent_counter,
2853 struct task_struct *parent,
2854 struct perf_counter_context *parent_ctx,
2855 struct task_struct *child,
2856 struct perf_counter *group_leader,
2857 struct perf_counter_context *child_ctx)
2858 {
2859 struct perf_counter *child_counter;
2860
2861 /*
2862 * Instead of creating recursive hierarchies of counters,
2863 * we link inherited counters back to the original parent,
2864 * which has a filp for sure, which we use as the reference
2865 * count:
2866 */
2867 if (parent_counter->parent)
2868 parent_counter = parent_counter->parent;
2869
2870 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2871 parent_counter->cpu, child_ctx,
2872 group_leader, GFP_KERNEL);
2873 if (IS_ERR(child_counter))
2874 return child_counter;
2875
2876 /*
2877 * Link it up in the child's context:
2878 */
2879 child_counter->task = child;
2880 add_counter_to_ctx(child_counter, child_ctx);
2881
2882 child_counter->parent = parent_counter;
2883 /*
2884 * inherit into child's child as well:
2885 */
2886 child_counter->hw_event.inherit = 1;
2887
2888 /*
2889 * Get a reference to the parent filp - we will fput it
2890 * when the child counter exits. This is safe to do because
2891 * we are in the parent and we know that the filp still
2892 * exists and has a nonzero count:
2893 */
2894 atomic_long_inc(&parent_counter->filp->f_count);
2895
2896 /*
2897 * Link this into the parent counter's child list
2898 */
2899 mutex_lock(&parent_counter->mutex);
2900 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2901
2902 /*
2903 * Make the child state follow the state of the parent counter,
2904 * not its hw_event.disabled bit. We hold the parent's mutex,
2905 * so we won't race with perf_counter_{en,dis}able_family.
2906 */
2907 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2908 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2909 else
2910 child_counter->state = PERF_COUNTER_STATE_OFF;
2911
2912 mutex_unlock(&parent_counter->mutex);
2913
2914 return child_counter;
2915 }
2916
2917 static int inherit_group(struct perf_counter *parent_counter,
2918 struct task_struct *parent,
2919 struct perf_counter_context *parent_ctx,
2920 struct task_struct *child,
2921 struct perf_counter_context *child_ctx)
2922 {
2923 struct perf_counter *leader;
2924 struct perf_counter *sub;
2925 struct perf_counter *child_ctr;
2926
2927 leader = inherit_counter(parent_counter, parent, parent_ctx,
2928 child, NULL, child_ctx);
2929 if (IS_ERR(leader))
2930 return PTR_ERR(leader);
2931 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2932 child_ctr = inherit_counter(sub, parent, parent_ctx,
2933 child, leader, child_ctx);
2934 if (IS_ERR(child_ctr))
2935 return PTR_ERR(child_ctr);
2936 }
2937 return 0;
2938 }
2939
2940 static void sync_child_counter(struct perf_counter *child_counter,
2941 struct perf_counter *parent_counter)
2942 {
2943 u64 parent_val, child_val;
2944
2945 parent_val = atomic64_read(&parent_counter->count);
2946 child_val = atomic64_read(&child_counter->count);
2947
2948 /*
2949 * Add back the child's count to the parent's count:
2950 */
2951 atomic64_add(child_val, &parent_counter->count);
2952 atomic64_add(child_counter->total_time_enabled,
2953 &parent_counter->child_total_time_enabled);
2954 atomic64_add(child_counter->total_time_running,
2955 &parent_counter->child_total_time_running);
2956
2957 /*
2958 * Remove this counter from the parent's list
2959 */
2960 mutex_lock(&parent_counter->mutex);
2961 list_del_init(&child_counter->child_list);
2962 mutex_unlock(&parent_counter->mutex);
2963
2964 /*
2965 * Release the parent counter, if this was the last
2966 * reference to it.
2967 */
2968 fput(parent_counter->filp);
2969 }
2970
2971 static void
2972 __perf_counter_exit_task(struct task_struct *child,
2973 struct perf_counter *child_counter,
2974 struct perf_counter_context *child_ctx)
2975 {
2976 struct perf_counter *parent_counter;
2977 struct perf_counter *sub, *tmp;
2978
2979 /*
2980 * If we do not self-reap then we have to wait for the
2981 * child task to unschedule (it will happen for sure),
2982 * so that its counter is at its final count. (This
2983 * condition triggers rarely - child tasks usually get
2984 * off their CPU before the parent has a chance to
2985 * get this far into the reaping action)
2986 */
2987 if (child != current) {
2988 wait_task_inactive(child, 0);
2989 list_del_init(&child_counter->list_entry);
2990 update_counter_times(child_counter);
2991 } else {
2992 struct perf_cpu_context *cpuctx;
2993 unsigned long flags;
2994 u64 perf_flags;
2995
2996 /*
2997 * Disable and unlink this counter.
2998 *
2999 * Be careful about zapping the list - IRQ/NMI context
3000 * could still be processing it:
3001 */
3002 local_irq_save(flags);
3003 perf_flags = hw_perf_save_disable();
3004
3005 cpuctx = &__get_cpu_var(perf_cpu_context);
3006
3007 group_sched_out(child_counter, cpuctx, child_ctx);
3008 update_counter_times(child_counter);
3009
3010 list_del_init(&child_counter->list_entry);
3011
3012 child_ctx->nr_counters--;
3013
3014 hw_perf_restore(perf_flags);
3015 local_irq_restore(flags);
3016 }
3017
3018 parent_counter = child_counter->parent;
3019 /*
3020 * It can happen that parent exits first, and has counters
3021 * that are still around due to the child reference. These
3022 * counters need to be zapped - but otherwise linger.
3023 */
3024 if (parent_counter) {
3025 sync_child_counter(child_counter, parent_counter);
3026 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3027 list_entry) {
3028 if (sub->parent) {
3029 sync_child_counter(sub, sub->parent);
3030 free_counter(sub);
3031 }
3032 }
3033 free_counter(child_counter);
3034 }
3035 }
3036
3037 /*
3038 * When a child task exits, feed back counter values to parent counters.
3039 *
3040 * Note: we may be running in child context, but the PID is not hashed
3041 * anymore so new counters will not be added.
3042 */
3043 void perf_counter_exit_task(struct task_struct *child)
3044 {
3045 struct perf_counter *child_counter, *tmp;
3046 struct perf_counter_context *child_ctx;
3047
3048 child_ctx = &child->perf_counter_ctx;
3049
3050 if (likely(!child_ctx->nr_counters))
3051 return;
3052
3053 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3054 list_entry)
3055 __perf_counter_exit_task(child, child_counter, child_ctx);
3056 }
3057
3058 /*
3059 * Initialize the perf_counter context in task_struct
3060 */
3061 void perf_counter_init_task(struct task_struct *child)
3062 {
3063 struct perf_counter_context *child_ctx, *parent_ctx;
3064 struct perf_counter *counter;
3065 struct task_struct *parent = current;
3066
3067 child_ctx = &child->perf_counter_ctx;
3068 parent_ctx = &parent->perf_counter_ctx;
3069
3070 __perf_counter_init_context(child_ctx, child);
3071
3072 /*
3073 * This is executed from the parent task context, so inherit
3074 * counters that have been marked for cloning:
3075 */
3076
3077 if (likely(!parent_ctx->nr_counters))
3078 return;
3079
3080 /*
3081 * Lock the parent list. No need to lock the child - not PID
3082 * hashed yet and not running, so nobody can access it.
3083 */
3084 mutex_lock(&parent_ctx->mutex);
3085
3086 /*
3087 * We dont have to disable NMIs - we are only looking at
3088 * the list, not manipulating it:
3089 */
3090 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3091 if (!counter->hw_event.inherit)
3092 continue;
3093
3094 if (inherit_group(counter, parent,
3095 parent_ctx, child, child_ctx))
3096 break;
3097 }
3098
3099 mutex_unlock(&parent_ctx->mutex);
3100 }
3101
3102 static void __cpuinit perf_counter_init_cpu(int cpu)
3103 {
3104 struct perf_cpu_context *cpuctx;
3105
3106 cpuctx = &per_cpu(perf_cpu_context, cpu);
3107 __perf_counter_init_context(&cpuctx->ctx, NULL);
3108
3109 mutex_lock(&perf_resource_mutex);
3110 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3111 mutex_unlock(&perf_resource_mutex);
3112
3113 hw_perf_counter_setup(cpu);
3114 }
3115
3116 #ifdef CONFIG_HOTPLUG_CPU
3117 static void __perf_counter_exit_cpu(void *info)
3118 {
3119 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3120 struct perf_counter_context *ctx = &cpuctx->ctx;
3121 struct perf_counter *counter, *tmp;
3122
3123 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3124 __perf_counter_remove_from_context(counter);
3125 }
3126 static void perf_counter_exit_cpu(int cpu)
3127 {
3128 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3129 struct perf_counter_context *ctx = &cpuctx->ctx;
3130
3131 mutex_lock(&ctx->mutex);
3132 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3133 mutex_unlock(&ctx->mutex);
3134 }
3135 #else
3136 static inline void perf_counter_exit_cpu(int cpu) { }
3137 #endif
3138
3139 static int __cpuinit
3140 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3141 {
3142 unsigned int cpu = (long)hcpu;
3143
3144 switch (action) {
3145
3146 case CPU_UP_PREPARE:
3147 case CPU_UP_PREPARE_FROZEN:
3148 perf_counter_init_cpu(cpu);
3149 break;
3150
3151 case CPU_DOWN_PREPARE:
3152 case CPU_DOWN_PREPARE_FROZEN:
3153 perf_counter_exit_cpu(cpu);
3154 break;
3155
3156 default:
3157 break;
3158 }
3159
3160 return NOTIFY_OK;
3161 }
3162
3163 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3164 .notifier_call = perf_cpu_notify,
3165 };
3166
3167 static int __init perf_counter_init(void)
3168 {
3169 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3170 (void *)(long)smp_processor_id());
3171 register_cpu_notifier(&perf_cpu_nb);
3172
3173 return 0;
3174 }
3175 early_initcall(perf_counter_init);
3176
3177 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3178 {
3179 return sprintf(buf, "%d\n", perf_reserved_percpu);
3180 }
3181
3182 static ssize_t
3183 perf_set_reserve_percpu(struct sysdev_class *class,
3184 const char *buf,
3185 size_t count)
3186 {
3187 struct perf_cpu_context *cpuctx;
3188 unsigned long val;
3189 int err, cpu, mpt;
3190
3191 err = strict_strtoul(buf, 10, &val);
3192 if (err)
3193 return err;
3194 if (val > perf_max_counters)
3195 return -EINVAL;
3196
3197 mutex_lock(&perf_resource_mutex);
3198 perf_reserved_percpu = val;
3199 for_each_online_cpu(cpu) {
3200 cpuctx = &per_cpu(perf_cpu_context, cpu);
3201 spin_lock_irq(&cpuctx->ctx.lock);
3202 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3203 perf_max_counters - perf_reserved_percpu);
3204 cpuctx->max_pertask = mpt;
3205 spin_unlock_irq(&cpuctx->ctx.lock);
3206 }
3207 mutex_unlock(&perf_resource_mutex);
3208
3209 return count;
3210 }
3211
3212 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3213 {
3214 return sprintf(buf, "%d\n", perf_overcommit);
3215 }
3216
3217 static ssize_t
3218 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3219 {
3220 unsigned long val;
3221 int err;
3222
3223 err = strict_strtoul(buf, 10, &val);
3224 if (err)
3225 return err;
3226 if (val > 1)
3227 return -EINVAL;
3228
3229 mutex_lock(&perf_resource_mutex);
3230 perf_overcommit = val;
3231 mutex_unlock(&perf_resource_mutex);
3232
3233 return count;
3234 }
3235
3236 static SYSDEV_CLASS_ATTR(
3237 reserve_percpu,
3238 0644,
3239 perf_show_reserve_percpu,
3240 perf_set_reserve_percpu
3241 );
3242
3243 static SYSDEV_CLASS_ATTR(
3244 overcommit,
3245 0644,
3246 perf_show_overcommit,
3247 perf_set_overcommit
3248 );
3249
3250 static struct attribute *perfclass_attrs[] = {
3251 &attr_reserve_percpu.attr,
3252 &attr_overcommit.attr,
3253 NULL
3254 };
3255
3256 static struct attribute_group perfclass_attr_group = {
3257 .attrs = perfclass_attrs,
3258 .name = "perf_counters",
3259 };
3260
3261 static int __init perf_counter_sysfs_init(void)
3262 {
3263 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3264 &perfclass_attr_group);
3265 }
3266 device_initcall(perf_counter_sysfs_init);