perf_counter: per user mlock gift
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 void __weak hw_perf_disable(void) { barrier(); }
64 void __weak hw_perf_enable(void) { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68 struct perf_cpu_context *cpuctx,
69 struct perf_counter_context *ctx, int cpu)
70 {
71 return 0;
72 }
73
74 void __weak perf_counter_print_debug(void) { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80 __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85 return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90 __perf_disable();
91 hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96 if (__perf_enable())
97 hw_perf_enable();
98 }
99
100 static void
101 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
102 {
103 struct perf_counter *group_leader = counter->group_leader;
104
105 /*
106 * Depending on whether it is a standalone or sibling counter,
107 * add it straight to the context's counter list, or to the group
108 * leader's sibling list:
109 */
110 if (group_leader == counter)
111 list_add_tail(&counter->list_entry, &ctx->counter_list);
112 else {
113 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
114 group_leader->nr_siblings++;
115 }
116
117 list_add_rcu(&counter->event_entry, &ctx->event_list);
118 }
119
120 static void
121 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
122 {
123 struct perf_counter *sibling, *tmp;
124
125 list_del_init(&counter->list_entry);
126 list_del_rcu(&counter->event_entry);
127
128 if (counter->group_leader != counter)
129 counter->group_leader->nr_siblings--;
130
131 /*
132 * If this was a group counter with sibling counters then
133 * upgrade the siblings to singleton counters by adding them
134 * to the context list directly:
135 */
136 list_for_each_entry_safe(sibling, tmp,
137 &counter->sibling_list, list_entry) {
138
139 list_move_tail(&sibling->list_entry, &ctx->counter_list);
140 sibling->group_leader = sibling;
141 }
142 }
143
144 static void
145 counter_sched_out(struct perf_counter *counter,
146 struct perf_cpu_context *cpuctx,
147 struct perf_counter_context *ctx)
148 {
149 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
150 return;
151
152 counter->state = PERF_COUNTER_STATE_INACTIVE;
153 counter->tstamp_stopped = ctx->time;
154 counter->pmu->disable(counter);
155 counter->oncpu = -1;
156
157 if (!is_software_counter(counter))
158 cpuctx->active_oncpu--;
159 ctx->nr_active--;
160 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
161 cpuctx->exclusive = 0;
162 }
163
164 static void
165 group_sched_out(struct perf_counter *group_counter,
166 struct perf_cpu_context *cpuctx,
167 struct perf_counter_context *ctx)
168 {
169 struct perf_counter *counter;
170
171 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
172 return;
173
174 counter_sched_out(group_counter, cpuctx, ctx);
175
176 /*
177 * Schedule out siblings (if any):
178 */
179 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
180 counter_sched_out(counter, cpuctx, ctx);
181
182 if (group_counter->hw_event.exclusive)
183 cpuctx->exclusive = 0;
184 }
185
186 /*
187 * Cross CPU call to remove a performance counter
188 *
189 * We disable the counter on the hardware level first. After that we
190 * remove it from the context list.
191 */
192 static void __perf_counter_remove_from_context(void *info)
193 {
194 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
195 struct perf_counter *counter = info;
196 struct perf_counter_context *ctx = counter->ctx;
197 unsigned long flags;
198
199 /*
200 * If this is a task context, we need to check whether it is
201 * the current task context of this cpu. If not it has been
202 * scheduled out before the smp call arrived.
203 */
204 if (ctx->task && cpuctx->task_ctx != ctx)
205 return;
206
207 spin_lock_irqsave(&ctx->lock, flags);
208
209 counter_sched_out(counter, cpuctx, ctx);
210
211 counter->task = NULL;
212 ctx->nr_counters--;
213
214 /*
215 * Protect the list operation against NMI by disabling the
216 * counters on a global level. NOP for non NMI based counters.
217 */
218 perf_disable();
219 list_del_counter(counter, ctx);
220 perf_enable();
221
222 if (!ctx->task) {
223 /*
224 * Allow more per task counters with respect to the
225 * reservation:
226 */
227 cpuctx->max_pertask =
228 min(perf_max_counters - ctx->nr_counters,
229 perf_max_counters - perf_reserved_percpu);
230 }
231
232 spin_unlock_irqrestore(&ctx->lock, flags);
233 }
234
235
236 /*
237 * Remove the counter from a task's (or a CPU's) list of counters.
238 *
239 * Must be called with counter->mutex and ctx->mutex held.
240 *
241 * CPU counters are removed with a smp call. For task counters we only
242 * call when the task is on a CPU.
243 */
244 static void perf_counter_remove_from_context(struct perf_counter *counter)
245 {
246 struct perf_counter_context *ctx = counter->ctx;
247 struct task_struct *task = ctx->task;
248
249 if (!task) {
250 /*
251 * Per cpu counters are removed via an smp call and
252 * the removal is always sucessful.
253 */
254 smp_call_function_single(counter->cpu,
255 __perf_counter_remove_from_context,
256 counter, 1);
257 return;
258 }
259
260 retry:
261 task_oncpu_function_call(task, __perf_counter_remove_from_context,
262 counter);
263
264 spin_lock_irq(&ctx->lock);
265 /*
266 * If the context is active we need to retry the smp call.
267 */
268 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
269 spin_unlock_irq(&ctx->lock);
270 goto retry;
271 }
272
273 /*
274 * The lock prevents that this context is scheduled in so we
275 * can remove the counter safely, if the call above did not
276 * succeed.
277 */
278 if (!list_empty(&counter->list_entry)) {
279 ctx->nr_counters--;
280 list_del_counter(counter, ctx);
281 counter->task = NULL;
282 }
283 spin_unlock_irq(&ctx->lock);
284 }
285
286 static inline u64 perf_clock(void)
287 {
288 return cpu_clock(smp_processor_id());
289 }
290
291 /*
292 * Update the record of the current time in a context.
293 */
294 static void update_context_time(struct perf_counter_context *ctx)
295 {
296 u64 now = perf_clock();
297
298 ctx->time += now - ctx->timestamp;
299 ctx->timestamp = now;
300 }
301
302 /*
303 * Update the total_time_enabled and total_time_running fields for a counter.
304 */
305 static void update_counter_times(struct perf_counter *counter)
306 {
307 struct perf_counter_context *ctx = counter->ctx;
308 u64 run_end;
309
310 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
311 return;
312
313 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
314
315 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
316 run_end = counter->tstamp_stopped;
317 else
318 run_end = ctx->time;
319
320 counter->total_time_running = run_end - counter->tstamp_running;
321 }
322
323 /*
324 * Update total_time_enabled and total_time_running for all counters in a group.
325 */
326 static void update_group_times(struct perf_counter *leader)
327 {
328 struct perf_counter *counter;
329
330 update_counter_times(leader);
331 list_for_each_entry(counter, &leader->sibling_list, list_entry)
332 update_counter_times(counter);
333 }
334
335 /*
336 * Cross CPU call to disable a performance counter
337 */
338 static void __perf_counter_disable(void *info)
339 {
340 struct perf_counter *counter = info;
341 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
342 struct perf_counter_context *ctx = counter->ctx;
343 unsigned long flags;
344
345 /*
346 * If this is a per-task counter, need to check whether this
347 * counter's task is the current task on this cpu.
348 */
349 if (ctx->task && cpuctx->task_ctx != ctx)
350 return;
351
352 spin_lock_irqsave(&ctx->lock, flags);
353
354 /*
355 * If the counter is on, turn it off.
356 * If it is in error state, leave it in error state.
357 */
358 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
359 update_context_time(ctx);
360 update_counter_times(counter);
361 if (counter == counter->group_leader)
362 group_sched_out(counter, cpuctx, ctx);
363 else
364 counter_sched_out(counter, cpuctx, ctx);
365 counter->state = PERF_COUNTER_STATE_OFF;
366 }
367
368 spin_unlock_irqrestore(&ctx->lock, flags);
369 }
370
371 /*
372 * Disable a counter.
373 */
374 static void perf_counter_disable(struct perf_counter *counter)
375 {
376 struct perf_counter_context *ctx = counter->ctx;
377 struct task_struct *task = ctx->task;
378
379 if (!task) {
380 /*
381 * Disable the counter on the cpu that it's on
382 */
383 smp_call_function_single(counter->cpu, __perf_counter_disable,
384 counter, 1);
385 return;
386 }
387
388 retry:
389 task_oncpu_function_call(task, __perf_counter_disable, counter);
390
391 spin_lock_irq(&ctx->lock);
392 /*
393 * If the counter is still active, we need to retry the cross-call.
394 */
395 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
396 spin_unlock_irq(&ctx->lock);
397 goto retry;
398 }
399
400 /*
401 * Since we have the lock this context can't be scheduled
402 * in, so we can change the state safely.
403 */
404 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
405 update_counter_times(counter);
406 counter->state = PERF_COUNTER_STATE_OFF;
407 }
408
409 spin_unlock_irq(&ctx->lock);
410 }
411
412 static int
413 counter_sched_in(struct perf_counter *counter,
414 struct perf_cpu_context *cpuctx,
415 struct perf_counter_context *ctx,
416 int cpu)
417 {
418 if (counter->state <= PERF_COUNTER_STATE_OFF)
419 return 0;
420
421 counter->state = PERF_COUNTER_STATE_ACTIVE;
422 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
423 /*
424 * The new state must be visible before we turn it on in the hardware:
425 */
426 smp_wmb();
427
428 if (counter->pmu->enable(counter)) {
429 counter->state = PERF_COUNTER_STATE_INACTIVE;
430 counter->oncpu = -1;
431 return -EAGAIN;
432 }
433
434 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
435
436 if (!is_software_counter(counter))
437 cpuctx->active_oncpu++;
438 ctx->nr_active++;
439
440 if (counter->hw_event.exclusive)
441 cpuctx->exclusive = 1;
442
443 return 0;
444 }
445
446 static int
447 group_sched_in(struct perf_counter *group_counter,
448 struct perf_cpu_context *cpuctx,
449 struct perf_counter_context *ctx,
450 int cpu)
451 {
452 struct perf_counter *counter, *partial_group;
453 int ret;
454
455 if (group_counter->state == PERF_COUNTER_STATE_OFF)
456 return 0;
457
458 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
459 if (ret)
460 return ret < 0 ? ret : 0;
461
462 group_counter->prev_state = group_counter->state;
463 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
464 return -EAGAIN;
465
466 /*
467 * Schedule in siblings as one group (if any):
468 */
469 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
470 counter->prev_state = counter->state;
471 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
472 partial_group = counter;
473 goto group_error;
474 }
475 }
476
477 return 0;
478
479 group_error:
480 /*
481 * Groups can be scheduled in as one unit only, so undo any
482 * partial group before returning:
483 */
484 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
485 if (counter == partial_group)
486 break;
487 counter_sched_out(counter, cpuctx, ctx);
488 }
489 counter_sched_out(group_counter, cpuctx, ctx);
490
491 return -EAGAIN;
492 }
493
494 /*
495 * Return 1 for a group consisting entirely of software counters,
496 * 0 if the group contains any hardware counters.
497 */
498 static int is_software_only_group(struct perf_counter *leader)
499 {
500 struct perf_counter *counter;
501
502 if (!is_software_counter(leader))
503 return 0;
504
505 list_for_each_entry(counter, &leader->sibling_list, list_entry)
506 if (!is_software_counter(counter))
507 return 0;
508
509 return 1;
510 }
511
512 /*
513 * Work out whether we can put this counter group on the CPU now.
514 */
515 static int group_can_go_on(struct perf_counter *counter,
516 struct perf_cpu_context *cpuctx,
517 int can_add_hw)
518 {
519 /*
520 * Groups consisting entirely of software counters can always go on.
521 */
522 if (is_software_only_group(counter))
523 return 1;
524 /*
525 * If an exclusive group is already on, no other hardware
526 * counters can go on.
527 */
528 if (cpuctx->exclusive)
529 return 0;
530 /*
531 * If this group is exclusive and there are already
532 * counters on the CPU, it can't go on.
533 */
534 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
535 return 0;
536 /*
537 * Otherwise, try to add it if all previous groups were able
538 * to go on.
539 */
540 return can_add_hw;
541 }
542
543 static void add_counter_to_ctx(struct perf_counter *counter,
544 struct perf_counter_context *ctx)
545 {
546 list_add_counter(counter, ctx);
547 ctx->nr_counters++;
548 counter->prev_state = PERF_COUNTER_STATE_OFF;
549 counter->tstamp_enabled = ctx->time;
550 counter->tstamp_running = ctx->time;
551 counter->tstamp_stopped = ctx->time;
552 }
553
554 /*
555 * Cross CPU call to install and enable a performance counter
556 */
557 static void __perf_install_in_context(void *info)
558 {
559 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
560 struct perf_counter *counter = info;
561 struct perf_counter_context *ctx = counter->ctx;
562 struct perf_counter *leader = counter->group_leader;
563 int cpu = smp_processor_id();
564 unsigned long flags;
565 int err;
566
567 /*
568 * If this is a task context, we need to check whether it is
569 * the current task context of this cpu. If not it has been
570 * scheduled out before the smp call arrived.
571 */
572 if (ctx->task && cpuctx->task_ctx != ctx)
573 return;
574
575 spin_lock_irqsave(&ctx->lock, flags);
576 update_context_time(ctx);
577
578 /*
579 * Protect the list operation against NMI by disabling the
580 * counters on a global level. NOP for non NMI based counters.
581 */
582 perf_disable();
583
584 add_counter_to_ctx(counter, ctx);
585
586 /*
587 * Don't put the counter on if it is disabled or if
588 * it is in a group and the group isn't on.
589 */
590 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
591 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
592 goto unlock;
593
594 /*
595 * An exclusive counter can't go on if there are already active
596 * hardware counters, and no hardware counter can go on if there
597 * is already an exclusive counter on.
598 */
599 if (!group_can_go_on(counter, cpuctx, 1))
600 err = -EEXIST;
601 else
602 err = counter_sched_in(counter, cpuctx, ctx, cpu);
603
604 if (err) {
605 /*
606 * This counter couldn't go on. If it is in a group
607 * then we have to pull the whole group off.
608 * If the counter group is pinned then put it in error state.
609 */
610 if (leader != counter)
611 group_sched_out(leader, cpuctx, ctx);
612 if (leader->hw_event.pinned) {
613 update_group_times(leader);
614 leader->state = PERF_COUNTER_STATE_ERROR;
615 }
616 }
617
618 if (!err && !ctx->task && cpuctx->max_pertask)
619 cpuctx->max_pertask--;
620
621 unlock:
622 perf_enable();
623
624 spin_unlock_irqrestore(&ctx->lock, flags);
625 }
626
627 /*
628 * Attach a performance counter to a context
629 *
630 * First we add the counter to the list with the hardware enable bit
631 * in counter->hw_config cleared.
632 *
633 * If the counter is attached to a task which is on a CPU we use a smp
634 * call to enable it in the task context. The task might have been
635 * scheduled away, but we check this in the smp call again.
636 *
637 * Must be called with ctx->mutex held.
638 */
639 static void
640 perf_install_in_context(struct perf_counter_context *ctx,
641 struct perf_counter *counter,
642 int cpu)
643 {
644 struct task_struct *task = ctx->task;
645
646 if (!task) {
647 /*
648 * Per cpu counters are installed via an smp call and
649 * the install is always sucessful.
650 */
651 smp_call_function_single(cpu, __perf_install_in_context,
652 counter, 1);
653 return;
654 }
655
656 counter->task = task;
657 retry:
658 task_oncpu_function_call(task, __perf_install_in_context,
659 counter);
660
661 spin_lock_irq(&ctx->lock);
662 /*
663 * we need to retry the smp call.
664 */
665 if (ctx->is_active && list_empty(&counter->list_entry)) {
666 spin_unlock_irq(&ctx->lock);
667 goto retry;
668 }
669
670 /*
671 * The lock prevents that this context is scheduled in so we
672 * can add the counter safely, if it the call above did not
673 * succeed.
674 */
675 if (list_empty(&counter->list_entry))
676 add_counter_to_ctx(counter, ctx);
677 spin_unlock_irq(&ctx->lock);
678 }
679
680 /*
681 * Cross CPU call to enable a performance counter
682 */
683 static void __perf_counter_enable(void *info)
684 {
685 struct perf_counter *counter = info;
686 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
687 struct perf_counter_context *ctx = counter->ctx;
688 struct perf_counter *leader = counter->group_leader;
689 unsigned long flags;
690 int err;
691
692 /*
693 * If this is a per-task counter, need to check whether this
694 * counter's task is the current task on this cpu.
695 */
696 if (ctx->task && cpuctx->task_ctx != ctx)
697 return;
698
699 spin_lock_irqsave(&ctx->lock, flags);
700 update_context_time(ctx);
701
702 counter->prev_state = counter->state;
703 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
704 goto unlock;
705 counter->state = PERF_COUNTER_STATE_INACTIVE;
706 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
707
708 /*
709 * If the counter is in a group and isn't the group leader,
710 * then don't put it on unless the group is on.
711 */
712 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
713 goto unlock;
714
715 if (!group_can_go_on(counter, cpuctx, 1)) {
716 err = -EEXIST;
717 } else {
718 perf_disable();
719 if (counter == leader)
720 err = group_sched_in(counter, cpuctx, ctx,
721 smp_processor_id());
722 else
723 err = counter_sched_in(counter, cpuctx, ctx,
724 smp_processor_id());
725 perf_enable();
726 }
727
728 if (err) {
729 /*
730 * If this counter can't go on and it's part of a
731 * group, then the whole group has to come off.
732 */
733 if (leader != counter)
734 group_sched_out(leader, cpuctx, ctx);
735 if (leader->hw_event.pinned) {
736 update_group_times(leader);
737 leader->state = PERF_COUNTER_STATE_ERROR;
738 }
739 }
740
741 unlock:
742 spin_unlock_irqrestore(&ctx->lock, flags);
743 }
744
745 /*
746 * Enable a counter.
747 */
748 static void perf_counter_enable(struct perf_counter *counter)
749 {
750 struct perf_counter_context *ctx = counter->ctx;
751 struct task_struct *task = ctx->task;
752
753 if (!task) {
754 /*
755 * Enable the counter on the cpu that it's on
756 */
757 smp_call_function_single(counter->cpu, __perf_counter_enable,
758 counter, 1);
759 return;
760 }
761
762 spin_lock_irq(&ctx->lock);
763 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
764 goto out;
765
766 /*
767 * If the counter is in error state, clear that first.
768 * That way, if we see the counter in error state below, we
769 * know that it has gone back into error state, as distinct
770 * from the task having been scheduled away before the
771 * cross-call arrived.
772 */
773 if (counter->state == PERF_COUNTER_STATE_ERROR)
774 counter->state = PERF_COUNTER_STATE_OFF;
775
776 retry:
777 spin_unlock_irq(&ctx->lock);
778 task_oncpu_function_call(task, __perf_counter_enable, counter);
779
780 spin_lock_irq(&ctx->lock);
781
782 /*
783 * If the context is active and the counter is still off,
784 * we need to retry the cross-call.
785 */
786 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
787 goto retry;
788
789 /*
790 * Since we have the lock this context can't be scheduled
791 * in, so we can change the state safely.
792 */
793 if (counter->state == PERF_COUNTER_STATE_OFF) {
794 counter->state = PERF_COUNTER_STATE_INACTIVE;
795 counter->tstamp_enabled =
796 ctx->time - counter->total_time_enabled;
797 }
798 out:
799 spin_unlock_irq(&ctx->lock);
800 }
801
802 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
803 {
804 /*
805 * not supported on inherited counters
806 */
807 if (counter->hw_event.inherit)
808 return -EINVAL;
809
810 atomic_add(refresh, &counter->event_limit);
811 perf_counter_enable(counter);
812
813 return 0;
814 }
815
816 void __perf_counter_sched_out(struct perf_counter_context *ctx,
817 struct perf_cpu_context *cpuctx)
818 {
819 struct perf_counter *counter;
820
821 spin_lock(&ctx->lock);
822 ctx->is_active = 0;
823 if (likely(!ctx->nr_counters))
824 goto out;
825 update_context_time(ctx);
826
827 perf_disable();
828 if (ctx->nr_active) {
829 list_for_each_entry(counter, &ctx->counter_list, list_entry)
830 group_sched_out(counter, cpuctx, ctx);
831 }
832 perf_enable();
833 out:
834 spin_unlock(&ctx->lock);
835 }
836
837 /*
838 * Called from scheduler to remove the counters of the current task,
839 * with interrupts disabled.
840 *
841 * We stop each counter and update the counter value in counter->count.
842 *
843 * This does not protect us against NMI, but disable()
844 * sets the disabled bit in the control field of counter _before_
845 * accessing the counter control register. If a NMI hits, then it will
846 * not restart the counter.
847 */
848 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
849 {
850 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
851 struct perf_counter_context *ctx = &task->perf_counter_ctx;
852 struct pt_regs *regs;
853
854 if (likely(!cpuctx->task_ctx))
855 return;
856
857 update_context_time(ctx);
858
859 regs = task_pt_regs(task);
860 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
861 __perf_counter_sched_out(ctx, cpuctx);
862
863 cpuctx->task_ctx = NULL;
864 }
865
866 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
867 {
868 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
869
870 __perf_counter_sched_out(ctx, cpuctx);
871 cpuctx->task_ctx = NULL;
872 }
873
874 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
875 {
876 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
877 }
878
879 static void
880 __perf_counter_sched_in(struct perf_counter_context *ctx,
881 struct perf_cpu_context *cpuctx, int cpu)
882 {
883 struct perf_counter *counter;
884 int can_add_hw = 1;
885
886 spin_lock(&ctx->lock);
887 ctx->is_active = 1;
888 if (likely(!ctx->nr_counters))
889 goto out;
890
891 ctx->timestamp = perf_clock();
892
893 perf_disable();
894
895 /*
896 * First go through the list and put on any pinned groups
897 * in order to give them the best chance of going on.
898 */
899 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
900 if (counter->state <= PERF_COUNTER_STATE_OFF ||
901 !counter->hw_event.pinned)
902 continue;
903 if (counter->cpu != -1 && counter->cpu != cpu)
904 continue;
905
906 if (group_can_go_on(counter, cpuctx, 1))
907 group_sched_in(counter, cpuctx, ctx, cpu);
908
909 /*
910 * If this pinned group hasn't been scheduled,
911 * put it in error state.
912 */
913 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
914 update_group_times(counter);
915 counter->state = PERF_COUNTER_STATE_ERROR;
916 }
917 }
918
919 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
920 /*
921 * Ignore counters in OFF or ERROR state, and
922 * ignore pinned counters since we did them already.
923 */
924 if (counter->state <= PERF_COUNTER_STATE_OFF ||
925 counter->hw_event.pinned)
926 continue;
927
928 /*
929 * Listen to the 'cpu' scheduling filter constraint
930 * of counters:
931 */
932 if (counter->cpu != -1 && counter->cpu != cpu)
933 continue;
934
935 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
936 if (group_sched_in(counter, cpuctx, ctx, cpu))
937 can_add_hw = 0;
938 }
939 }
940 perf_enable();
941 out:
942 spin_unlock(&ctx->lock);
943 }
944
945 /*
946 * Called from scheduler to add the counters of the current task
947 * with interrupts disabled.
948 *
949 * We restore the counter value and then enable it.
950 *
951 * This does not protect us against NMI, but enable()
952 * sets the enabled bit in the control field of counter _before_
953 * accessing the counter control register. If a NMI hits, then it will
954 * keep the counter running.
955 */
956 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
957 {
958 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
959 struct perf_counter_context *ctx = &task->perf_counter_ctx;
960
961 __perf_counter_sched_in(ctx, cpuctx, cpu);
962 cpuctx->task_ctx = ctx;
963 }
964
965 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
966 {
967 struct perf_counter_context *ctx = &cpuctx->ctx;
968
969 __perf_counter_sched_in(ctx, cpuctx, cpu);
970 }
971
972 int perf_counter_task_disable(void)
973 {
974 struct task_struct *curr = current;
975 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
976 struct perf_counter *counter;
977 unsigned long flags;
978
979 if (likely(!ctx->nr_counters))
980 return 0;
981
982 local_irq_save(flags);
983
984 __perf_counter_task_sched_out(ctx);
985
986 spin_lock(&ctx->lock);
987
988 /*
989 * Disable all the counters:
990 */
991 perf_disable();
992
993 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994 if (counter->state != PERF_COUNTER_STATE_ERROR) {
995 update_group_times(counter);
996 counter->state = PERF_COUNTER_STATE_OFF;
997 }
998 }
999
1000 perf_enable();
1001
1002 spin_unlock_irqrestore(&ctx->lock, flags);
1003
1004 return 0;
1005 }
1006
1007 int perf_counter_task_enable(void)
1008 {
1009 struct task_struct *curr = current;
1010 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1011 struct perf_counter *counter;
1012 unsigned long flags;
1013 int cpu;
1014
1015 if (likely(!ctx->nr_counters))
1016 return 0;
1017
1018 local_irq_save(flags);
1019 cpu = smp_processor_id();
1020
1021 __perf_counter_task_sched_out(ctx);
1022
1023 spin_lock(&ctx->lock);
1024
1025 /*
1026 * Disable all the counters:
1027 */
1028 perf_disable();
1029
1030 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1031 if (counter->state > PERF_COUNTER_STATE_OFF)
1032 continue;
1033 counter->state = PERF_COUNTER_STATE_INACTIVE;
1034 counter->tstamp_enabled =
1035 ctx->time - counter->total_time_enabled;
1036 counter->hw_event.disabled = 0;
1037 }
1038 perf_enable();
1039
1040 spin_unlock(&ctx->lock);
1041
1042 perf_counter_task_sched_in(curr, cpu);
1043
1044 local_irq_restore(flags);
1045
1046 return 0;
1047 }
1048
1049 /*
1050 * Round-robin a context's counters:
1051 */
1052 static void rotate_ctx(struct perf_counter_context *ctx)
1053 {
1054 struct perf_counter *counter;
1055
1056 if (!ctx->nr_counters)
1057 return;
1058
1059 spin_lock(&ctx->lock);
1060 /*
1061 * Rotate the first entry last (works just fine for group counters too):
1062 */
1063 perf_disable();
1064 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1065 list_move_tail(&counter->list_entry, &ctx->counter_list);
1066 break;
1067 }
1068 perf_enable();
1069
1070 spin_unlock(&ctx->lock);
1071 }
1072
1073 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1074 {
1075 struct perf_cpu_context *cpuctx;
1076 struct perf_counter_context *ctx;
1077
1078 if (!atomic_read(&nr_counters))
1079 return;
1080
1081 cpuctx = &per_cpu(perf_cpu_context, cpu);
1082 ctx = &curr->perf_counter_ctx;
1083
1084 perf_counter_cpu_sched_out(cpuctx);
1085 __perf_counter_task_sched_out(ctx);
1086
1087 rotate_ctx(&cpuctx->ctx);
1088 rotate_ctx(ctx);
1089
1090 perf_counter_cpu_sched_in(cpuctx, cpu);
1091 perf_counter_task_sched_in(curr, cpu);
1092 }
1093
1094 /*
1095 * Cross CPU call to read the hardware counter
1096 */
1097 static void __read(void *info)
1098 {
1099 struct perf_counter *counter = info;
1100 struct perf_counter_context *ctx = counter->ctx;
1101 unsigned long flags;
1102
1103 local_irq_save(flags);
1104 if (ctx->is_active)
1105 update_context_time(ctx);
1106 counter->pmu->read(counter);
1107 update_counter_times(counter);
1108 local_irq_restore(flags);
1109 }
1110
1111 static u64 perf_counter_read(struct perf_counter *counter)
1112 {
1113 /*
1114 * If counter is enabled and currently active on a CPU, update the
1115 * value in the counter structure:
1116 */
1117 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1118 smp_call_function_single(counter->oncpu,
1119 __read, counter, 1);
1120 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1121 update_counter_times(counter);
1122 }
1123
1124 return atomic64_read(&counter->count);
1125 }
1126
1127 static void put_context(struct perf_counter_context *ctx)
1128 {
1129 if (ctx->task)
1130 put_task_struct(ctx->task);
1131 }
1132
1133 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1134 {
1135 struct perf_cpu_context *cpuctx;
1136 struct perf_counter_context *ctx;
1137 struct task_struct *task;
1138
1139 /*
1140 * If cpu is not a wildcard then this is a percpu counter:
1141 */
1142 if (cpu != -1) {
1143 /* Must be root to operate on a CPU counter: */
1144 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1145 return ERR_PTR(-EACCES);
1146
1147 if (cpu < 0 || cpu > num_possible_cpus())
1148 return ERR_PTR(-EINVAL);
1149
1150 /*
1151 * We could be clever and allow to attach a counter to an
1152 * offline CPU and activate it when the CPU comes up, but
1153 * that's for later.
1154 */
1155 if (!cpu_isset(cpu, cpu_online_map))
1156 return ERR_PTR(-ENODEV);
1157
1158 cpuctx = &per_cpu(perf_cpu_context, cpu);
1159 ctx = &cpuctx->ctx;
1160
1161 return ctx;
1162 }
1163
1164 rcu_read_lock();
1165 if (!pid)
1166 task = current;
1167 else
1168 task = find_task_by_vpid(pid);
1169 if (task)
1170 get_task_struct(task);
1171 rcu_read_unlock();
1172
1173 if (!task)
1174 return ERR_PTR(-ESRCH);
1175
1176 ctx = &task->perf_counter_ctx;
1177 ctx->task = task;
1178
1179 /* Reuse ptrace permission checks for now. */
1180 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1181 put_context(ctx);
1182 return ERR_PTR(-EACCES);
1183 }
1184
1185 return ctx;
1186 }
1187
1188 static void free_counter_rcu(struct rcu_head *head)
1189 {
1190 struct perf_counter *counter;
1191
1192 counter = container_of(head, struct perf_counter, rcu_head);
1193 kfree(counter);
1194 }
1195
1196 static void perf_pending_sync(struct perf_counter *counter);
1197
1198 static void free_counter(struct perf_counter *counter)
1199 {
1200 perf_pending_sync(counter);
1201
1202 atomic_dec(&nr_counters);
1203 if (counter->hw_event.mmap)
1204 atomic_dec(&nr_mmap_tracking);
1205 if (counter->hw_event.munmap)
1206 atomic_dec(&nr_munmap_tracking);
1207 if (counter->hw_event.comm)
1208 atomic_dec(&nr_comm_tracking);
1209
1210 if (counter->destroy)
1211 counter->destroy(counter);
1212
1213 call_rcu(&counter->rcu_head, free_counter_rcu);
1214 }
1215
1216 /*
1217 * Called when the last reference to the file is gone.
1218 */
1219 static int perf_release(struct inode *inode, struct file *file)
1220 {
1221 struct perf_counter *counter = file->private_data;
1222 struct perf_counter_context *ctx = counter->ctx;
1223
1224 file->private_data = NULL;
1225
1226 mutex_lock(&ctx->mutex);
1227 mutex_lock(&counter->mutex);
1228
1229 perf_counter_remove_from_context(counter);
1230
1231 mutex_unlock(&counter->mutex);
1232 mutex_unlock(&ctx->mutex);
1233
1234 free_counter(counter);
1235 put_context(ctx);
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Read the performance counter - simple non blocking version for now
1242 */
1243 static ssize_t
1244 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1245 {
1246 u64 values[3];
1247 int n;
1248
1249 /*
1250 * Return end-of-file for a read on a counter that is in
1251 * error state (i.e. because it was pinned but it couldn't be
1252 * scheduled on to the CPU at some point).
1253 */
1254 if (counter->state == PERF_COUNTER_STATE_ERROR)
1255 return 0;
1256
1257 mutex_lock(&counter->mutex);
1258 values[0] = perf_counter_read(counter);
1259 n = 1;
1260 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1261 values[n++] = counter->total_time_enabled +
1262 atomic64_read(&counter->child_total_time_enabled);
1263 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1264 values[n++] = counter->total_time_running +
1265 atomic64_read(&counter->child_total_time_running);
1266 mutex_unlock(&counter->mutex);
1267
1268 if (count < n * sizeof(u64))
1269 return -EINVAL;
1270 count = n * sizeof(u64);
1271
1272 if (copy_to_user(buf, values, count))
1273 return -EFAULT;
1274
1275 return count;
1276 }
1277
1278 static ssize_t
1279 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1280 {
1281 struct perf_counter *counter = file->private_data;
1282
1283 return perf_read_hw(counter, buf, count);
1284 }
1285
1286 static unsigned int perf_poll(struct file *file, poll_table *wait)
1287 {
1288 struct perf_counter *counter = file->private_data;
1289 struct perf_mmap_data *data;
1290 unsigned int events = POLL_HUP;
1291
1292 rcu_read_lock();
1293 data = rcu_dereference(counter->data);
1294 if (data)
1295 events = atomic_xchg(&data->poll, 0);
1296 rcu_read_unlock();
1297
1298 poll_wait(file, &counter->waitq, wait);
1299
1300 return events;
1301 }
1302
1303 static void perf_counter_reset(struct perf_counter *counter)
1304 {
1305 (void)perf_counter_read(counter);
1306 atomic64_set(&counter->count, 0);
1307 perf_counter_update_userpage(counter);
1308 }
1309
1310 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1311 void (*func)(struct perf_counter *))
1312 {
1313 struct perf_counter_context *ctx = counter->ctx;
1314 struct perf_counter *sibling;
1315
1316 spin_lock_irq(&ctx->lock);
1317 counter = counter->group_leader;
1318
1319 func(counter);
1320 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1321 func(sibling);
1322 spin_unlock_irq(&ctx->lock);
1323 }
1324
1325 static void perf_counter_for_each_child(struct perf_counter *counter,
1326 void (*func)(struct perf_counter *))
1327 {
1328 struct perf_counter *child;
1329
1330 mutex_lock(&counter->mutex);
1331 func(counter);
1332 list_for_each_entry(child, &counter->child_list, child_list)
1333 func(child);
1334 mutex_unlock(&counter->mutex);
1335 }
1336
1337 static void perf_counter_for_each(struct perf_counter *counter,
1338 void (*func)(struct perf_counter *))
1339 {
1340 struct perf_counter *child;
1341
1342 mutex_lock(&counter->mutex);
1343 perf_counter_for_each_sibling(counter, func);
1344 list_for_each_entry(child, &counter->child_list, child_list)
1345 perf_counter_for_each_sibling(child, func);
1346 mutex_unlock(&counter->mutex);
1347 }
1348
1349 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1350 {
1351 struct perf_counter *counter = file->private_data;
1352 void (*func)(struct perf_counter *);
1353 u32 flags = arg;
1354
1355 switch (cmd) {
1356 case PERF_COUNTER_IOC_ENABLE:
1357 func = perf_counter_enable;
1358 break;
1359 case PERF_COUNTER_IOC_DISABLE:
1360 func = perf_counter_disable;
1361 break;
1362 case PERF_COUNTER_IOC_RESET:
1363 func = perf_counter_reset;
1364 break;
1365
1366 case PERF_COUNTER_IOC_REFRESH:
1367 return perf_counter_refresh(counter, arg);
1368 default:
1369 return -ENOTTY;
1370 }
1371
1372 if (flags & PERF_IOC_FLAG_GROUP)
1373 perf_counter_for_each(counter, func);
1374 else
1375 perf_counter_for_each_child(counter, func);
1376
1377 return 0;
1378 }
1379
1380 /*
1381 * Callers need to ensure there can be no nesting of this function, otherwise
1382 * the seqlock logic goes bad. We can not serialize this because the arch
1383 * code calls this from NMI context.
1384 */
1385 void perf_counter_update_userpage(struct perf_counter *counter)
1386 {
1387 struct perf_mmap_data *data;
1388 struct perf_counter_mmap_page *userpg;
1389
1390 rcu_read_lock();
1391 data = rcu_dereference(counter->data);
1392 if (!data)
1393 goto unlock;
1394
1395 userpg = data->user_page;
1396
1397 /*
1398 * Disable preemption so as to not let the corresponding user-space
1399 * spin too long if we get preempted.
1400 */
1401 preempt_disable();
1402 ++userpg->lock;
1403 barrier();
1404 userpg->index = counter->hw.idx;
1405 userpg->offset = atomic64_read(&counter->count);
1406 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1407 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1408
1409 barrier();
1410 ++userpg->lock;
1411 preempt_enable();
1412 unlock:
1413 rcu_read_unlock();
1414 }
1415
1416 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1417 {
1418 struct perf_counter *counter = vma->vm_file->private_data;
1419 struct perf_mmap_data *data;
1420 int ret = VM_FAULT_SIGBUS;
1421
1422 rcu_read_lock();
1423 data = rcu_dereference(counter->data);
1424 if (!data)
1425 goto unlock;
1426
1427 if (vmf->pgoff == 0) {
1428 vmf->page = virt_to_page(data->user_page);
1429 } else {
1430 int nr = vmf->pgoff - 1;
1431
1432 if ((unsigned)nr > data->nr_pages)
1433 goto unlock;
1434
1435 vmf->page = virt_to_page(data->data_pages[nr]);
1436 }
1437 get_page(vmf->page);
1438 ret = 0;
1439 unlock:
1440 rcu_read_unlock();
1441
1442 return ret;
1443 }
1444
1445 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1446 {
1447 struct perf_mmap_data *data;
1448 unsigned long size;
1449 int i;
1450
1451 WARN_ON(atomic_read(&counter->mmap_count));
1452
1453 size = sizeof(struct perf_mmap_data);
1454 size += nr_pages * sizeof(void *);
1455
1456 data = kzalloc(size, GFP_KERNEL);
1457 if (!data)
1458 goto fail;
1459
1460 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1461 if (!data->user_page)
1462 goto fail_user_page;
1463
1464 for (i = 0; i < nr_pages; i++) {
1465 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1466 if (!data->data_pages[i])
1467 goto fail_data_pages;
1468 }
1469
1470 data->nr_pages = nr_pages;
1471 atomic_set(&data->lock, -1);
1472
1473 rcu_assign_pointer(counter->data, data);
1474
1475 return 0;
1476
1477 fail_data_pages:
1478 for (i--; i >= 0; i--)
1479 free_page((unsigned long)data->data_pages[i]);
1480
1481 free_page((unsigned long)data->user_page);
1482
1483 fail_user_page:
1484 kfree(data);
1485
1486 fail:
1487 return -ENOMEM;
1488 }
1489
1490 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1491 {
1492 struct perf_mmap_data *data = container_of(rcu_head,
1493 struct perf_mmap_data, rcu_head);
1494 int i;
1495
1496 free_page((unsigned long)data->user_page);
1497 for (i = 0; i < data->nr_pages; i++)
1498 free_page((unsigned long)data->data_pages[i]);
1499 kfree(data);
1500 }
1501
1502 static void perf_mmap_data_free(struct perf_counter *counter)
1503 {
1504 struct perf_mmap_data *data = counter->data;
1505
1506 WARN_ON(atomic_read(&counter->mmap_count));
1507
1508 rcu_assign_pointer(counter->data, NULL);
1509 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1510 }
1511
1512 static void perf_mmap_open(struct vm_area_struct *vma)
1513 {
1514 struct perf_counter *counter = vma->vm_file->private_data;
1515
1516 atomic_inc(&counter->mmap_count);
1517 }
1518
1519 static void perf_mmap_close(struct vm_area_struct *vma)
1520 {
1521 struct perf_counter *counter = vma->vm_file->private_data;
1522
1523 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1524 &counter->mmap_mutex)) {
1525 struct user_struct *user = current_user();
1526
1527 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1528 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1529 perf_mmap_data_free(counter);
1530 mutex_unlock(&counter->mmap_mutex);
1531 }
1532 }
1533
1534 static struct vm_operations_struct perf_mmap_vmops = {
1535 .open = perf_mmap_open,
1536 .close = perf_mmap_close,
1537 .fault = perf_mmap_fault,
1538 };
1539
1540 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1541 {
1542 struct perf_counter *counter = file->private_data;
1543 struct user_struct *user = current_user();
1544 unsigned long vma_size;
1545 unsigned long nr_pages;
1546 unsigned long user_locked, user_lock_limit;
1547 unsigned long locked, lock_limit;
1548 long user_extra, extra;
1549 int ret = 0;
1550
1551 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1552 return -EINVAL;
1553
1554 vma_size = vma->vm_end - vma->vm_start;
1555 nr_pages = (vma_size / PAGE_SIZE) - 1;
1556
1557 /*
1558 * If we have data pages ensure they're a power-of-two number, so we
1559 * can do bitmasks instead of modulo.
1560 */
1561 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1562 return -EINVAL;
1563
1564 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1565 return -EINVAL;
1566
1567 if (vma->vm_pgoff != 0)
1568 return -EINVAL;
1569
1570 mutex_lock(&counter->mmap_mutex);
1571 if (atomic_inc_not_zero(&counter->mmap_count)) {
1572 if (nr_pages != counter->data->nr_pages)
1573 ret = -EINVAL;
1574 goto unlock;
1575 }
1576
1577 user_extra = nr_pages + 1;
1578 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1579 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1580
1581 extra = 0;
1582 if (user_locked > user_lock_limit)
1583 extra = user_locked - user_lock_limit;
1584
1585 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1586 lock_limit >>= PAGE_SHIFT;
1587 locked = vma->vm_mm->locked_vm + extra;
1588
1589 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1590 ret = -EPERM;
1591 goto unlock;
1592 }
1593
1594 WARN_ON(counter->data);
1595 ret = perf_mmap_data_alloc(counter, nr_pages);
1596 if (ret)
1597 goto unlock;
1598
1599 atomic_set(&counter->mmap_count, 1);
1600 atomic_long_add(user_extra, &user->locked_vm);
1601 vma->vm_mm->locked_vm += extra;
1602 counter->data->nr_locked = extra;
1603 unlock:
1604 mutex_unlock(&counter->mmap_mutex);
1605
1606 vma->vm_flags &= ~VM_MAYWRITE;
1607 vma->vm_flags |= VM_RESERVED;
1608 vma->vm_ops = &perf_mmap_vmops;
1609
1610 return ret;
1611 }
1612
1613 static int perf_fasync(int fd, struct file *filp, int on)
1614 {
1615 struct perf_counter *counter = filp->private_data;
1616 struct inode *inode = filp->f_path.dentry->d_inode;
1617 int retval;
1618
1619 mutex_lock(&inode->i_mutex);
1620 retval = fasync_helper(fd, filp, on, &counter->fasync);
1621 mutex_unlock(&inode->i_mutex);
1622
1623 if (retval < 0)
1624 return retval;
1625
1626 return 0;
1627 }
1628
1629 static const struct file_operations perf_fops = {
1630 .release = perf_release,
1631 .read = perf_read,
1632 .poll = perf_poll,
1633 .unlocked_ioctl = perf_ioctl,
1634 .compat_ioctl = perf_ioctl,
1635 .mmap = perf_mmap,
1636 .fasync = perf_fasync,
1637 };
1638
1639 /*
1640 * Perf counter wakeup
1641 *
1642 * If there's data, ensure we set the poll() state and publish everything
1643 * to user-space before waking everybody up.
1644 */
1645
1646 void perf_counter_wakeup(struct perf_counter *counter)
1647 {
1648 wake_up_all(&counter->waitq);
1649
1650 if (counter->pending_kill) {
1651 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1652 counter->pending_kill = 0;
1653 }
1654 }
1655
1656 /*
1657 * Pending wakeups
1658 *
1659 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1660 *
1661 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1662 * single linked list and use cmpxchg() to add entries lockless.
1663 */
1664
1665 static void perf_pending_counter(struct perf_pending_entry *entry)
1666 {
1667 struct perf_counter *counter = container_of(entry,
1668 struct perf_counter, pending);
1669
1670 if (counter->pending_disable) {
1671 counter->pending_disable = 0;
1672 perf_counter_disable(counter);
1673 }
1674
1675 if (counter->pending_wakeup) {
1676 counter->pending_wakeup = 0;
1677 perf_counter_wakeup(counter);
1678 }
1679 }
1680
1681 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1682
1683 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1684 PENDING_TAIL,
1685 };
1686
1687 static void perf_pending_queue(struct perf_pending_entry *entry,
1688 void (*func)(struct perf_pending_entry *))
1689 {
1690 struct perf_pending_entry **head;
1691
1692 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1693 return;
1694
1695 entry->func = func;
1696
1697 head = &get_cpu_var(perf_pending_head);
1698
1699 do {
1700 entry->next = *head;
1701 } while (cmpxchg(head, entry->next, entry) != entry->next);
1702
1703 set_perf_counter_pending();
1704
1705 put_cpu_var(perf_pending_head);
1706 }
1707
1708 static int __perf_pending_run(void)
1709 {
1710 struct perf_pending_entry *list;
1711 int nr = 0;
1712
1713 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1714 while (list != PENDING_TAIL) {
1715 void (*func)(struct perf_pending_entry *);
1716 struct perf_pending_entry *entry = list;
1717
1718 list = list->next;
1719
1720 func = entry->func;
1721 entry->next = NULL;
1722 /*
1723 * Ensure we observe the unqueue before we issue the wakeup,
1724 * so that we won't be waiting forever.
1725 * -- see perf_not_pending().
1726 */
1727 smp_wmb();
1728
1729 func(entry);
1730 nr++;
1731 }
1732
1733 return nr;
1734 }
1735
1736 static inline int perf_not_pending(struct perf_counter *counter)
1737 {
1738 /*
1739 * If we flush on whatever cpu we run, there is a chance we don't
1740 * need to wait.
1741 */
1742 get_cpu();
1743 __perf_pending_run();
1744 put_cpu();
1745
1746 /*
1747 * Ensure we see the proper queue state before going to sleep
1748 * so that we do not miss the wakeup. -- see perf_pending_handle()
1749 */
1750 smp_rmb();
1751 return counter->pending.next == NULL;
1752 }
1753
1754 static void perf_pending_sync(struct perf_counter *counter)
1755 {
1756 wait_event(counter->waitq, perf_not_pending(counter));
1757 }
1758
1759 void perf_counter_do_pending(void)
1760 {
1761 __perf_pending_run();
1762 }
1763
1764 /*
1765 * Callchain support -- arch specific
1766 */
1767
1768 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1769 {
1770 return NULL;
1771 }
1772
1773 /*
1774 * Output
1775 */
1776
1777 struct perf_output_handle {
1778 struct perf_counter *counter;
1779 struct perf_mmap_data *data;
1780 unsigned int offset;
1781 unsigned int head;
1782 int nmi;
1783 int overflow;
1784 int locked;
1785 unsigned long flags;
1786 };
1787
1788 static void perf_output_wakeup(struct perf_output_handle *handle)
1789 {
1790 atomic_set(&handle->data->poll, POLL_IN);
1791
1792 if (handle->nmi) {
1793 handle->counter->pending_wakeup = 1;
1794 perf_pending_queue(&handle->counter->pending,
1795 perf_pending_counter);
1796 } else
1797 perf_counter_wakeup(handle->counter);
1798 }
1799
1800 /*
1801 * Curious locking construct.
1802 *
1803 * We need to ensure a later event doesn't publish a head when a former
1804 * event isn't done writing. However since we need to deal with NMIs we
1805 * cannot fully serialize things.
1806 *
1807 * What we do is serialize between CPUs so we only have to deal with NMI
1808 * nesting on a single CPU.
1809 *
1810 * We only publish the head (and generate a wakeup) when the outer-most
1811 * event completes.
1812 */
1813 static void perf_output_lock(struct perf_output_handle *handle)
1814 {
1815 struct perf_mmap_data *data = handle->data;
1816 int cpu;
1817
1818 handle->locked = 0;
1819
1820 local_irq_save(handle->flags);
1821 cpu = smp_processor_id();
1822
1823 if (in_nmi() && atomic_read(&data->lock) == cpu)
1824 return;
1825
1826 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1827 cpu_relax();
1828
1829 handle->locked = 1;
1830 }
1831
1832 static void perf_output_unlock(struct perf_output_handle *handle)
1833 {
1834 struct perf_mmap_data *data = handle->data;
1835 int head, cpu;
1836
1837 data->done_head = data->head;
1838
1839 if (!handle->locked)
1840 goto out;
1841
1842 again:
1843 /*
1844 * The xchg implies a full barrier that ensures all writes are done
1845 * before we publish the new head, matched by a rmb() in userspace when
1846 * reading this position.
1847 */
1848 while ((head = atomic_xchg(&data->done_head, 0)))
1849 data->user_page->data_head = head;
1850
1851 /*
1852 * NMI can happen here, which means we can miss a done_head update.
1853 */
1854
1855 cpu = atomic_xchg(&data->lock, -1);
1856 WARN_ON_ONCE(cpu != smp_processor_id());
1857
1858 /*
1859 * Therefore we have to validate we did not indeed do so.
1860 */
1861 if (unlikely(atomic_read(&data->done_head))) {
1862 /*
1863 * Since we had it locked, we can lock it again.
1864 */
1865 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1866 cpu_relax();
1867
1868 goto again;
1869 }
1870
1871 if (atomic_xchg(&data->wakeup, 0))
1872 perf_output_wakeup(handle);
1873 out:
1874 local_irq_restore(handle->flags);
1875 }
1876
1877 static int perf_output_begin(struct perf_output_handle *handle,
1878 struct perf_counter *counter, unsigned int size,
1879 int nmi, int overflow)
1880 {
1881 struct perf_mmap_data *data;
1882 unsigned int offset, head;
1883
1884 /*
1885 * For inherited counters we send all the output towards the parent.
1886 */
1887 if (counter->parent)
1888 counter = counter->parent;
1889
1890 rcu_read_lock();
1891 data = rcu_dereference(counter->data);
1892 if (!data)
1893 goto out;
1894
1895 handle->data = data;
1896 handle->counter = counter;
1897 handle->nmi = nmi;
1898 handle->overflow = overflow;
1899
1900 if (!data->nr_pages)
1901 goto fail;
1902
1903 perf_output_lock(handle);
1904
1905 do {
1906 offset = head = atomic_read(&data->head);
1907 head += size;
1908 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1909
1910 handle->offset = offset;
1911 handle->head = head;
1912
1913 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1914 atomic_set(&data->wakeup, 1);
1915
1916 return 0;
1917
1918 fail:
1919 perf_output_wakeup(handle);
1920 out:
1921 rcu_read_unlock();
1922
1923 return -ENOSPC;
1924 }
1925
1926 static void perf_output_copy(struct perf_output_handle *handle,
1927 void *buf, unsigned int len)
1928 {
1929 unsigned int pages_mask;
1930 unsigned int offset;
1931 unsigned int size;
1932 void **pages;
1933
1934 offset = handle->offset;
1935 pages_mask = handle->data->nr_pages - 1;
1936 pages = handle->data->data_pages;
1937
1938 do {
1939 unsigned int page_offset;
1940 int nr;
1941
1942 nr = (offset >> PAGE_SHIFT) & pages_mask;
1943 page_offset = offset & (PAGE_SIZE - 1);
1944 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1945
1946 memcpy(pages[nr] + page_offset, buf, size);
1947
1948 len -= size;
1949 buf += size;
1950 offset += size;
1951 } while (len);
1952
1953 handle->offset = offset;
1954
1955 /*
1956 * Check we didn't copy past our reservation window, taking the
1957 * possible unsigned int wrap into account.
1958 */
1959 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
1960 }
1961
1962 #define perf_output_put(handle, x) \
1963 perf_output_copy((handle), &(x), sizeof(x))
1964
1965 static void perf_output_end(struct perf_output_handle *handle)
1966 {
1967 struct perf_counter *counter = handle->counter;
1968 struct perf_mmap_data *data = handle->data;
1969
1970 int wakeup_events = counter->hw_event.wakeup_events;
1971
1972 if (handle->overflow && wakeup_events) {
1973 int events = atomic_inc_return(&data->events);
1974 if (events >= wakeup_events) {
1975 atomic_sub(wakeup_events, &data->events);
1976 atomic_set(&data->wakeup, 1);
1977 }
1978 }
1979
1980 perf_output_unlock(handle);
1981 rcu_read_unlock();
1982 }
1983
1984 static void perf_counter_output(struct perf_counter *counter,
1985 int nmi, struct pt_regs *regs, u64 addr)
1986 {
1987 int ret;
1988 u64 record_type = counter->hw_event.record_type;
1989 struct perf_output_handle handle;
1990 struct perf_event_header header;
1991 u64 ip;
1992 struct {
1993 u32 pid, tid;
1994 } tid_entry;
1995 struct {
1996 u64 event;
1997 u64 counter;
1998 } group_entry;
1999 struct perf_callchain_entry *callchain = NULL;
2000 int callchain_size = 0;
2001 u64 time;
2002 struct {
2003 u32 cpu, reserved;
2004 } cpu_entry;
2005
2006 header.type = 0;
2007 header.size = sizeof(header);
2008
2009 header.misc = PERF_EVENT_MISC_OVERFLOW;
2010 header.misc |= user_mode(regs) ?
2011 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
2012
2013 if (record_type & PERF_RECORD_IP) {
2014 ip = instruction_pointer(regs);
2015 header.type |= PERF_RECORD_IP;
2016 header.size += sizeof(ip);
2017 }
2018
2019 if (record_type & PERF_RECORD_TID) {
2020 /* namespace issues */
2021 tid_entry.pid = current->group_leader->pid;
2022 tid_entry.tid = current->pid;
2023
2024 header.type |= PERF_RECORD_TID;
2025 header.size += sizeof(tid_entry);
2026 }
2027
2028 if (record_type & PERF_RECORD_TIME) {
2029 /*
2030 * Maybe do better on x86 and provide cpu_clock_nmi()
2031 */
2032 time = sched_clock();
2033
2034 header.type |= PERF_RECORD_TIME;
2035 header.size += sizeof(u64);
2036 }
2037
2038 if (record_type & PERF_RECORD_ADDR) {
2039 header.type |= PERF_RECORD_ADDR;
2040 header.size += sizeof(u64);
2041 }
2042
2043 if (record_type & PERF_RECORD_CONFIG) {
2044 header.type |= PERF_RECORD_CONFIG;
2045 header.size += sizeof(u64);
2046 }
2047
2048 if (record_type & PERF_RECORD_CPU) {
2049 header.type |= PERF_RECORD_CPU;
2050 header.size += sizeof(cpu_entry);
2051
2052 cpu_entry.cpu = raw_smp_processor_id();
2053 }
2054
2055 if (record_type & PERF_RECORD_GROUP) {
2056 header.type |= PERF_RECORD_GROUP;
2057 header.size += sizeof(u64) +
2058 counter->nr_siblings * sizeof(group_entry);
2059 }
2060
2061 if (record_type & PERF_RECORD_CALLCHAIN) {
2062 callchain = perf_callchain(regs);
2063
2064 if (callchain) {
2065 callchain_size = (1 + callchain->nr) * sizeof(u64);
2066
2067 header.type |= PERF_RECORD_CALLCHAIN;
2068 header.size += callchain_size;
2069 }
2070 }
2071
2072 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2073 if (ret)
2074 return;
2075
2076 perf_output_put(&handle, header);
2077
2078 if (record_type & PERF_RECORD_IP)
2079 perf_output_put(&handle, ip);
2080
2081 if (record_type & PERF_RECORD_TID)
2082 perf_output_put(&handle, tid_entry);
2083
2084 if (record_type & PERF_RECORD_TIME)
2085 perf_output_put(&handle, time);
2086
2087 if (record_type & PERF_RECORD_ADDR)
2088 perf_output_put(&handle, addr);
2089
2090 if (record_type & PERF_RECORD_CONFIG)
2091 perf_output_put(&handle, counter->hw_event.config);
2092
2093 if (record_type & PERF_RECORD_CPU)
2094 perf_output_put(&handle, cpu_entry);
2095
2096 /*
2097 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2098 */
2099 if (record_type & PERF_RECORD_GROUP) {
2100 struct perf_counter *leader, *sub;
2101 u64 nr = counter->nr_siblings;
2102
2103 perf_output_put(&handle, nr);
2104
2105 leader = counter->group_leader;
2106 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2107 if (sub != counter)
2108 sub->pmu->read(sub);
2109
2110 group_entry.event = sub->hw_event.config;
2111 group_entry.counter = atomic64_read(&sub->count);
2112
2113 perf_output_put(&handle, group_entry);
2114 }
2115 }
2116
2117 if (callchain)
2118 perf_output_copy(&handle, callchain, callchain_size);
2119
2120 perf_output_end(&handle);
2121 }
2122
2123 /*
2124 * comm tracking
2125 */
2126
2127 struct perf_comm_event {
2128 struct task_struct *task;
2129 char *comm;
2130 int comm_size;
2131
2132 struct {
2133 struct perf_event_header header;
2134
2135 u32 pid;
2136 u32 tid;
2137 } event;
2138 };
2139
2140 static void perf_counter_comm_output(struct perf_counter *counter,
2141 struct perf_comm_event *comm_event)
2142 {
2143 struct perf_output_handle handle;
2144 int size = comm_event->event.header.size;
2145 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2146
2147 if (ret)
2148 return;
2149
2150 perf_output_put(&handle, comm_event->event);
2151 perf_output_copy(&handle, comm_event->comm,
2152 comm_event->comm_size);
2153 perf_output_end(&handle);
2154 }
2155
2156 static int perf_counter_comm_match(struct perf_counter *counter,
2157 struct perf_comm_event *comm_event)
2158 {
2159 if (counter->hw_event.comm &&
2160 comm_event->event.header.type == PERF_EVENT_COMM)
2161 return 1;
2162
2163 return 0;
2164 }
2165
2166 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2167 struct perf_comm_event *comm_event)
2168 {
2169 struct perf_counter *counter;
2170
2171 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2172 return;
2173
2174 rcu_read_lock();
2175 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2176 if (perf_counter_comm_match(counter, comm_event))
2177 perf_counter_comm_output(counter, comm_event);
2178 }
2179 rcu_read_unlock();
2180 }
2181
2182 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2183 {
2184 struct perf_cpu_context *cpuctx;
2185 unsigned int size;
2186 char *comm = comm_event->task->comm;
2187
2188 size = ALIGN(strlen(comm)+1, sizeof(u64));
2189
2190 comm_event->comm = comm;
2191 comm_event->comm_size = size;
2192
2193 comm_event->event.header.size = sizeof(comm_event->event) + size;
2194
2195 cpuctx = &get_cpu_var(perf_cpu_context);
2196 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2197 put_cpu_var(perf_cpu_context);
2198
2199 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2200 }
2201
2202 void perf_counter_comm(struct task_struct *task)
2203 {
2204 struct perf_comm_event comm_event;
2205
2206 if (!atomic_read(&nr_comm_tracking))
2207 return;
2208
2209 comm_event = (struct perf_comm_event){
2210 .task = task,
2211 .event = {
2212 .header = { .type = PERF_EVENT_COMM, },
2213 .pid = task->group_leader->pid,
2214 .tid = task->pid,
2215 },
2216 };
2217
2218 perf_counter_comm_event(&comm_event);
2219 }
2220
2221 /*
2222 * mmap tracking
2223 */
2224
2225 struct perf_mmap_event {
2226 struct file *file;
2227 char *file_name;
2228 int file_size;
2229
2230 struct {
2231 struct perf_event_header header;
2232
2233 u32 pid;
2234 u32 tid;
2235 u64 start;
2236 u64 len;
2237 u64 pgoff;
2238 } event;
2239 };
2240
2241 static void perf_counter_mmap_output(struct perf_counter *counter,
2242 struct perf_mmap_event *mmap_event)
2243 {
2244 struct perf_output_handle handle;
2245 int size = mmap_event->event.header.size;
2246 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2247
2248 if (ret)
2249 return;
2250
2251 perf_output_put(&handle, mmap_event->event);
2252 perf_output_copy(&handle, mmap_event->file_name,
2253 mmap_event->file_size);
2254 perf_output_end(&handle);
2255 }
2256
2257 static int perf_counter_mmap_match(struct perf_counter *counter,
2258 struct perf_mmap_event *mmap_event)
2259 {
2260 if (counter->hw_event.mmap &&
2261 mmap_event->event.header.type == PERF_EVENT_MMAP)
2262 return 1;
2263
2264 if (counter->hw_event.munmap &&
2265 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2266 return 1;
2267
2268 return 0;
2269 }
2270
2271 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2272 struct perf_mmap_event *mmap_event)
2273 {
2274 struct perf_counter *counter;
2275
2276 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2277 return;
2278
2279 rcu_read_lock();
2280 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2281 if (perf_counter_mmap_match(counter, mmap_event))
2282 perf_counter_mmap_output(counter, mmap_event);
2283 }
2284 rcu_read_unlock();
2285 }
2286
2287 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2288 {
2289 struct perf_cpu_context *cpuctx;
2290 struct file *file = mmap_event->file;
2291 unsigned int size;
2292 char tmp[16];
2293 char *buf = NULL;
2294 char *name;
2295
2296 if (file) {
2297 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2298 if (!buf) {
2299 name = strncpy(tmp, "//enomem", sizeof(tmp));
2300 goto got_name;
2301 }
2302 name = d_path(&file->f_path, buf, PATH_MAX);
2303 if (IS_ERR(name)) {
2304 name = strncpy(tmp, "//toolong", sizeof(tmp));
2305 goto got_name;
2306 }
2307 } else {
2308 name = strncpy(tmp, "//anon", sizeof(tmp));
2309 goto got_name;
2310 }
2311
2312 got_name:
2313 size = ALIGN(strlen(name)+1, sizeof(u64));
2314
2315 mmap_event->file_name = name;
2316 mmap_event->file_size = size;
2317
2318 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2319
2320 cpuctx = &get_cpu_var(perf_cpu_context);
2321 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2322 put_cpu_var(perf_cpu_context);
2323
2324 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2325
2326 kfree(buf);
2327 }
2328
2329 void perf_counter_mmap(unsigned long addr, unsigned long len,
2330 unsigned long pgoff, struct file *file)
2331 {
2332 struct perf_mmap_event mmap_event;
2333
2334 if (!atomic_read(&nr_mmap_tracking))
2335 return;
2336
2337 mmap_event = (struct perf_mmap_event){
2338 .file = file,
2339 .event = {
2340 .header = { .type = PERF_EVENT_MMAP, },
2341 .pid = current->group_leader->pid,
2342 .tid = current->pid,
2343 .start = addr,
2344 .len = len,
2345 .pgoff = pgoff,
2346 },
2347 };
2348
2349 perf_counter_mmap_event(&mmap_event);
2350 }
2351
2352 void perf_counter_munmap(unsigned long addr, unsigned long len,
2353 unsigned long pgoff, struct file *file)
2354 {
2355 struct perf_mmap_event mmap_event;
2356
2357 if (!atomic_read(&nr_munmap_tracking))
2358 return;
2359
2360 mmap_event = (struct perf_mmap_event){
2361 .file = file,
2362 .event = {
2363 .header = { .type = PERF_EVENT_MUNMAP, },
2364 .pid = current->group_leader->pid,
2365 .tid = current->pid,
2366 .start = addr,
2367 .len = len,
2368 .pgoff = pgoff,
2369 },
2370 };
2371
2372 perf_counter_mmap_event(&mmap_event);
2373 }
2374
2375 /*
2376 * Generic counter overflow handling.
2377 */
2378
2379 int perf_counter_overflow(struct perf_counter *counter,
2380 int nmi, struct pt_regs *regs, u64 addr)
2381 {
2382 int events = atomic_read(&counter->event_limit);
2383 int ret = 0;
2384
2385 /*
2386 * XXX event_limit might not quite work as expected on inherited
2387 * counters
2388 */
2389
2390 counter->pending_kill = POLL_IN;
2391 if (events && atomic_dec_and_test(&counter->event_limit)) {
2392 ret = 1;
2393 counter->pending_kill = POLL_HUP;
2394 if (nmi) {
2395 counter->pending_disable = 1;
2396 perf_pending_queue(&counter->pending,
2397 perf_pending_counter);
2398 } else
2399 perf_counter_disable(counter);
2400 }
2401
2402 perf_counter_output(counter, nmi, regs, addr);
2403 return ret;
2404 }
2405
2406 /*
2407 * Generic software counter infrastructure
2408 */
2409
2410 static void perf_swcounter_update(struct perf_counter *counter)
2411 {
2412 struct hw_perf_counter *hwc = &counter->hw;
2413 u64 prev, now;
2414 s64 delta;
2415
2416 again:
2417 prev = atomic64_read(&hwc->prev_count);
2418 now = atomic64_read(&hwc->count);
2419 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2420 goto again;
2421
2422 delta = now - prev;
2423
2424 atomic64_add(delta, &counter->count);
2425 atomic64_sub(delta, &hwc->period_left);
2426 }
2427
2428 static void perf_swcounter_set_period(struct perf_counter *counter)
2429 {
2430 struct hw_perf_counter *hwc = &counter->hw;
2431 s64 left = atomic64_read(&hwc->period_left);
2432 s64 period = hwc->irq_period;
2433
2434 if (unlikely(left <= -period)) {
2435 left = period;
2436 atomic64_set(&hwc->period_left, left);
2437 }
2438
2439 if (unlikely(left <= 0)) {
2440 left += period;
2441 atomic64_add(period, &hwc->period_left);
2442 }
2443
2444 atomic64_set(&hwc->prev_count, -left);
2445 atomic64_set(&hwc->count, -left);
2446 }
2447
2448 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2449 {
2450 enum hrtimer_restart ret = HRTIMER_RESTART;
2451 struct perf_counter *counter;
2452 struct pt_regs *regs;
2453
2454 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2455 counter->pmu->read(counter);
2456
2457 regs = get_irq_regs();
2458 /*
2459 * In case we exclude kernel IPs or are somehow not in interrupt
2460 * context, provide the next best thing, the user IP.
2461 */
2462 if ((counter->hw_event.exclude_kernel || !regs) &&
2463 !counter->hw_event.exclude_user)
2464 regs = task_pt_regs(current);
2465
2466 if (regs) {
2467 if (perf_counter_overflow(counter, 0, regs, 0))
2468 ret = HRTIMER_NORESTART;
2469 }
2470
2471 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2472
2473 return ret;
2474 }
2475
2476 static void perf_swcounter_overflow(struct perf_counter *counter,
2477 int nmi, struct pt_regs *regs, u64 addr)
2478 {
2479 perf_swcounter_update(counter);
2480 perf_swcounter_set_period(counter);
2481 if (perf_counter_overflow(counter, nmi, regs, addr))
2482 /* soft-disable the counter */
2483 ;
2484
2485 }
2486
2487 static int perf_swcounter_match(struct perf_counter *counter,
2488 enum perf_event_types type,
2489 u32 event, struct pt_regs *regs)
2490 {
2491 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2492 return 0;
2493
2494 if (perf_event_raw(&counter->hw_event))
2495 return 0;
2496
2497 if (perf_event_type(&counter->hw_event) != type)
2498 return 0;
2499
2500 if (perf_event_id(&counter->hw_event) != event)
2501 return 0;
2502
2503 if (counter->hw_event.exclude_user && user_mode(regs))
2504 return 0;
2505
2506 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2507 return 0;
2508
2509 return 1;
2510 }
2511
2512 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2513 int nmi, struct pt_regs *regs, u64 addr)
2514 {
2515 int neg = atomic64_add_negative(nr, &counter->hw.count);
2516 if (counter->hw.irq_period && !neg)
2517 perf_swcounter_overflow(counter, nmi, regs, addr);
2518 }
2519
2520 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2521 enum perf_event_types type, u32 event,
2522 u64 nr, int nmi, struct pt_regs *regs,
2523 u64 addr)
2524 {
2525 struct perf_counter *counter;
2526
2527 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2528 return;
2529
2530 rcu_read_lock();
2531 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2532 if (perf_swcounter_match(counter, type, event, regs))
2533 perf_swcounter_add(counter, nr, nmi, regs, addr);
2534 }
2535 rcu_read_unlock();
2536 }
2537
2538 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2539 {
2540 if (in_nmi())
2541 return &cpuctx->recursion[3];
2542
2543 if (in_irq())
2544 return &cpuctx->recursion[2];
2545
2546 if (in_softirq())
2547 return &cpuctx->recursion[1];
2548
2549 return &cpuctx->recursion[0];
2550 }
2551
2552 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2553 u64 nr, int nmi, struct pt_regs *regs,
2554 u64 addr)
2555 {
2556 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2557 int *recursion = perf_swcounter_recursion_context(cpuctx);
2558
2559 if (*recursion)
2560 goto out;
2561
2562 (*recursion)++;
2563 barrier();
2564
2565 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2566 nr, nmi, regs, addr);
2567 if (cpuctx->task_ctx) {
2568 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2569 nr, nmi, regs, addr);
2570 }
2571
2572 barrier();
2573 (*recursion)--;
2574
2575 out:
2576 put_cpu_var(perf_cpu_context);
2577 }
2578
2579 void
2580 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2581 {
2582 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2583 }
2584
2585 static void perf_swcounter_read(struct perf_counter *counter)
2586 {
2587 perf_swcounter_update(counter);
2588 }
2589
2590 static int perf_swcounter_enable(struct perf_counter *counter)
2591 {
2592 perf_swcounter_set_period(counter);
2593 return 0;
2594 }
2595
2596 static void perf_swcounter_disable(struct perf_counter *counter)
2597 {
2598 perf_swcounter_update(counter);
2599 }
2600
2601 static const struct pmu perf_ops_generic = {
2602 .enable = perf_swcounter_enable,
2603 .disable = perf_swcounter_disable,
2604 .read = perf_swcounter_read,
2605 };
2606
2607 /*
2608 * Software counter: cpu wall time clock
2609 */
2610
2611 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2612 {
2613 int cpu = raw_smp_processor_id();
2614 s64 prev;
2615 u64 now;
2616
2617 now = cpu_clock(cpu);
2618 prev = atomic64_read(&counter->hw.prev_count);
2619 atomic64_set(&counter->hw.prev_count, now);
2620 atomic64_add(now - prev, &counter->count);
2621 }
2622
2623 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2624 {
2625 struct hw_perf_counter *hwc = &counter->hw;
2626 int cpu = raw_smp_processor_id();
2627
2628 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2629 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2630 hwc->hrtimer.function = perf_swcounter_hrtimer;
2631 if (hwc->irq_period) {
2632 __hrtimer_start_range_ns(&hwc->hrtimer,
2633 ns_to_ktime(hwc->irq_period), 0,
2634 HRTIMER_MODE_REL, 0);
2635 }
2636
2637 return 0;
2638 }
2639
2640 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2641 {
2642 hrtimer_cancel(&counter->hw.hrtimer);
2643 cpu_clock_perf_counter_update(counter);
2644 }
2645
2646 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2647 {
2648 cpu_clock_perf_counter_update(counter);
2649 }
2650
2651 static const struct pmu perf_ops_cpu_clock = {
2652 .enable = cpu_clock_perf_counter_enable,
2653 .disable = cpu_clock_perf_counter_disable,
2654 .read = cpu_clock_perf_counter_read,
2655 };
2656
2657 /*
2658 * Software counter: task time clock
2659 */
2660
2661 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2662 {
2663 u64 prev;
2664 s64 delta;
2665
2666 prev = atomic64_xchg(&counter->hw.prev_count, now);
2667 delta = now - prev;
2668 atomic64_add(delta, &counter->count);
2669 }
2670
2671 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2672 {
2673 struct hw_perf_counter *hwc = &counter->hw;
2674 u64 now;
2675
2676 now = counter->ctx->time;
2677
2678 atomic64_set(&hwc->prev_count, now);
2679 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2680 hwc->hrtimer.function = perf_swcounter_hrtimer;
2681 if (hwc->irq_period) {
2682 __hrtimer_start_range_ns(&hwc->hrtimer,
2683 ns_to_ktime(hwc->irq_period), 0,
2684 HRTIMER_MODE_REL, 0);
2685 }
2686
2687 return 0;
2688 }
2689
2690 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2691 {
2692 hrtimer_cancel(&counter->hw.hrtimer);
2693 task_clock_perf_counter_update(counter, counter->ctx->time);
2694
2695 }
2696
2697 static void task_clock_perf_counter_read(struct perf_counter *counter)
2698 {
2699 u64 time;
2700
2701 if (!in_nmi()) {
2702 update_context_time(counter->ctx);
2703 time = counter->ctx->time;
2704 } else {
2705 u64 now = perf_clock();
2706 u64 delta = now - counter->ctx->timestamp;
2707 time = counter->ctx->time + delta;
2708 }
2709
2710 task_clock_perf_counter_update(counter, time);
2711 }
2712
2713 static const struct pmu perf_ops_task_clock = {
2714 .enable = task_clock_perf_counter_enable,
2715 .disable = task_clock_perf_counter_disable,
2716 .read = task_clock_perf_counter_read,
2717 };
2718
2719 /*
2720 * Software counter: cpu migrations
2721 */
2722
2723 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2724 {
2725 struct task_struct *curr = counter->ctx->task;
2726
2727 if (curr)
2728 return curr->se.nr_migrations;
2729 return cpu_nr_migrations(smp_processor_id());
2730 }
2731
2732 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2733 {
2734 u64 prev, now;
2735 s64 delta;
2736
2737 prev = atomic64_read(&counter->hw.prev_count);
2738 now = get_cpu_migrations(counter);
2739
2740 atomic64_set(&counter->hw.prev_count, now);
2741
2742 delta = now - prev;
2743
2744 atomic64_add(delta, &counter->count);
2745 }
2746
2747 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2748 {
2749 cpu_migrations_perf_counter_update(counter);
2750 }
2751
2752 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2753 {
2754 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2755 atomic64_set(&counter->hw.prev_count,
2756 get_cpu_migrations(counter));
2757 return 0;
2758 }
2759
2760 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2761 {
2762 cpu_migrations_perf_counter_update(counter);
2763 }
2764
2765 static const struct pmu perf_ops_cpu_migrations = {
2766 .enable = cpu_migrations_perf_counter_enable,
2767 .disable = cpu_migrations_perf_counter_disable,
2768 .read = cpu_migrations_perf_counter_read,
2769 };
2770
2771 #ifdef CONFIG_EVENT_PROFILE
2772 void perf_tpcounter_event(int event_id)
2773 {
2774 struct pt_regs *regs = get_irq_regs();
2775
2776 if (!regs)
2777 regs = task_pt_regs(current);
2778
2779 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2780 }
2781 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2782
2783 extern int ftrace_profile_enable(int);
2784 extern void ftrace_profile_disable(int);
2785
2786 static void tp_perf_counter_destroy(struct perf_counter *counter)
2787 {
2788 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2789 }
2790
2791 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2792 {
2793 int event_id = perf_event_id(&counter->hw_event);
2794 int ret;
2795
2796 ret = ftrace_profile_enable(event_id);
2797 if (ret)
2798 return NULL;
2799
2800 counter->destroy = tp_perf_counter_destroy;
2801 counter->hw.irq_period = counter->hw_event.irq_period;
2802
2803 return &perf_ops_generic;
2804 }
2805 #else
2806 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2807 {
2808 return NULL;
2809 }
2810 #endif
2811
2812 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2813 {
2814 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2815 const struct pmu *pmu = NULL;
2816 struct hw_perf_counter *hwc = &counter->hw;
2817
2818 /*
2819 * Software counters (currently) can't in general distinguish
2820 * between user, kernel and hypervisor events.
2821 * However, context switches and cpu migrations are considered
2822 * to be kernel events, and page faults are never hypervisor
2823 * events.
2824 */
2825 switch (perf_event_id(&counter->hw_event)) {
2826 case PERF_COUNT_CPU_CLOCK:
2827 pmu = &perf_ops_cpu_clock;
2828
2829 if (hw_event->irq_period && hw_event->irq_period < 10000)
2830 hw_event->irq_period = 10000;
2831 break;
2832 case PERF_COUNT_TASK_CLOCK:
2833 /*
2834 * If the user instantiates this as a per-cpu counter,
2835 * use the cpu_clock counter instead.
2836 */
2837 if (counter->ctx->task)
2838 pmu = &perf_ops_task_clock;
2839 else
2840 pmu = &perf_ops_cpu_clock;
2841
2842 if (hw_event->irq_period && hw_event->irq_period < 10000)
2843 hw_event->irq_period = 10000;
2844 break;
2845 case PERF_COUNT_PAGE_FAULTS:
2846 case PERF_COUNT_PAGE_FAULTS_MIN:
2847 case PERF_COUNT_PAGE_FAULTS_MAJ:
2848 case PERF_COUNT_CONTEXT_SWITCHES:
2849 pmu = &perf_ops_generic;
2850 break;
2851 case PERF_COUNT_CPU_MIGRATIONS:
2852 if (!counter->hw_event.exclude_kernel)
2853 pmu = &perf_ops_cpu_migrations;
2854 break;
2855 }
2856
2857 if (pmu)
2858 hwc->irq_period = hw_event->irq_period;
2859
2860 return pmu;
2861 }
2862
2863 /*
2864 * Allocate and initialize a counter structure
2865 */
2866 static struct perf_counter *
2867 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2868 int cpu,
2869 struct perf_counter_context *ctx,
2870 struct perf_counter *group_leader,
2871 gfp_t gfpflags)
2872 {
2873 const struct pmu *pmu;
2874 struct perf_counter *counter;
2875 long err;
2876
2877 counter = kzalloc(sizeof(*counter), gfpflags);
2878 if (!counter)
2879 return ERR_PTR(-ENOMEM);
2880
2881 /*
2882 * Single counters are their own group leaders, with an
2883 * empty sibling list:
2884 */
2885 if (!group_leader)
2886 group_leader = counter;
2887
2888 mutex_init(&counter->mutex);
2889 INIT_LIST_HEAD(&counter->list_entry);
2890 INIT_LIST_HEAD(&counter->event_entry);
2891 INIT_LIST_HEAD(&counter->sibling_list);
2892 init_waitqueue_head(&counter->waitq);
2893
2894 mutex_init(&counter->mmap_mutex);
2895
2896 INIT_LIST_HEAD(&counter->child_list);
2897
2898 counter->cpu = cpu;
2899 counter->hw_event = *hw_event;
2900 counter->group_leader = group_leader;
2901 counter->pmu = NULL;
2902 counter->ctx = ctx;
2903
2904 counter->state = PERF_COUNTER_STATE_INACTIVE;
2905 if (hw_event->disabled)
2906 counter->state = PERF_COUNTER_STATE_OFF;
2907
2908 pmu = NULL;
2909
2910 /*
2911 * we currently do not support PERF_RECORD_GROUP on inherited counters
2912 */
2913 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2914 goto done;
2915
2916 if (perf_event_raw(hw_event)) {
2917 pmu = hw_perf_counter_init(counter);
2918 goto done;
2919 }
2920
2921 switch (perf_event_type(hw_event)) {
2922 case PERF_TYPE_HARDWARE:
2923 pmu = hw_perf_counter_init(counter);
2924 break;
2925
2926 case PERF_TYPE_SOFTWARE:
2927 pmu = sw_perf_counter_init(counter);
2928 break;
2929
2930 case PERF_TYPE_TRACEPOINT:
2931 pmu = tp_perf_counter_init(counter);
2932 break;
2933 }
2934 done:
2935 err = 0;
2936 if (!pmu)
2937 err = -EINVAL;
2938 else if (IS_ERR(pmu))
2939 err = PTR_ERR(pmu);
2940
2941 if (err) {
2942 kfree(counter);
2943 return ERR_PTR(err);
2944 }
2945
2946 counter->pmu = pmu;
2947
2948 atomic_inc(&nr_counters);
2949 if (counter->hw_event.mmap)
2950 atomic_inc(&nr_mmap_tracking);
2951 if (counter->hw_event.munmap)
2952 atomic_inc(&nr_munmap_tracking);
2953 if (counter->hw_event.comm)
2954 atomic_inc(&nr_comm_tracking);
2955
2956 return counter;
2957 }
2958
2959 /**
2960 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2961 *
2962 * @hw_event_uptr: event type attributes for monitoring/sampling
2963 * @pid: target pid
2964 * @cpu: target cpu
2965 * @group_fd: group leader counter fd
2966 */
2967 SYSCALL_DEFINE5(perf_counter_open,
2968 const struct perf_counter_hw_event __user *, hw_event_uptr,
2969 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2970 {
2971 struct perf_counter *counter, *group_leader;
2972 struct perf_counter_hw_event hw_event;
2973 struct perf_counter_context *ctx;
2974 struct file *counter_file = NULL;
2975 struct file *group_file = NULL;
2976 int fput_needed = 0;
2977 int fput_needed2 = 0;
2978 int ret;
2979
2980 /* for future expandability... */
2981 if (flags)
2982 return -EINVAL;
2983
2984 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2985 return -EFAULT;
2986
2987 /*
2988 * Get the target context (task or percpu):
2989 */
2990 ctx = find_get_context(pid, cpu);
2991 if (IS_ERR(ctx))
2992 return PTR_ERR(ctx);
2993
2994 /*
2995 * Look up the group leader (we will attach this counter to it):
2996 */
2997 group_leader = NULL;
2998 if (group_fd != -1) {
2999 ret = -EINVAL;
3000 group_file = fget_light(group_fd, &fput_needed);
3001 if (!group_file)
3002 goto err_put_context;
3003 if (group_file->f_op != &perf_fops)
3004 goto err_put_context;
3005
3006 group_leader = group_file->private_data;
3007 /*
3008 * Do not allow a recursive hierarchy (this new sibling
3009 * becoming part of another group-sibling):
3010 */
3011 if (group_leader->group_leader != group_leader)
3012 goto err_put_context;
3013 /*
3014 * Do not allow to attach to a group in a different
3015 * task or CPU context:
3016 */
3017 if (group_leader->ctx != ctx)
3018 goto err_put_context;
3019 /*
3020 * Only a group leader can be exclusive or pinned
3021 */
3022 if (hw_event.exclusive || hw_event.pinned)
3023 goto err_put_context;
3024 }
3025
3026 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3027 GFP_KERNEL);
3028 ret = PTR_ERR(counter);
3029 if (IS_ERR(counter))
3030 goto err_put_context;
3031
3032 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3033 if (ret < 0)
3034 goto err_free_put_context;
3035
3036 counter_file = fget_light(ret, &fput_needed2);
3037 if (!counter_file)
3038 goto err_free_put_context;
3039
3040 counter->filp = counter_file;
3041 mutex_lock(&ctx->mutex);
3042 perf_install_in_context(ctx, counter, cpu);
3043 mutex_unlock(&ctx->mutex);
3044
3045 fput_light(counter_file, fput_needed2);
3046
3047 out_fput:
3048 fput_light(group_file, fput_needed);
3049
3050 return ret;
3051
3052 err_free_put_context:
3053 kfree(counter);
3054
3055 err_put_context:
3056 put_context(ctx);
3057
3058 goto out_fput;
3059 }
3060
3061 /*
3062 * Initialize the perf_counter context in a task_struct:
3063 */
3064 static void
3065 __perf_counter_init_context(struct perf_counter_context *ctx,
3066 struct task_struct *task)
3067 {
3068 memset(ctx, 0, sizeof(*ctx));
3069 spin_lock_init(&ctx->lock);
3070 mutex_init(&ctx->mutex);
3071 INIT_LIST_HEAD(&ctx->counter_list);
3072 INIT_LIST_HEAD(&ctx->event_list);
3073 ctx->task = task;
3074 }
3075
3076 /*
3077 * inherit a counter from parent task to child task:
3078 */
3079 static struct perf_counter *
3080 inherit_counter(struct perf_counter *parent_counter,
3081 struct task_struct *parent,
3082 struct perf_counter_context *parent_ctx,
3083 struct task_struct *child,
3084 struct perf_counter *group_leader,
3085 struct perf_counter_context *child_ctx)
3086 {
3087 struct perf_counter *child_counter;
3088
3089 /*
3090 * Instead of creating recursive hierarchies of counters,
3091 * we link inherited counters back to the original parent,
3092 * which has a filp for sure, which we use as the reference
3093 * count:
3094 */
3095 if (parent_counter->parent)
3096 parent_counter = parent_counter->parent;
3097
3098 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3099 parent_counter->cpu, child_ctx,
3100 group_leader, GFP_KERNEL);
3101 if (IS_ERR(child_counter))
3102 return child_counter;
3103
3104 /*
3105 * Link it up in the child's context:
3106 */
3107 child_counter->task = child;
3108 add_counter_to_ctx(child_counter, child_ctx);
3109
3110 child_counter->parent = parent_counter;
3111 /*
3112 * inherit into child's child as well:
3113 */
3114 child_counter->hw_event.inherit = 1;
3115
3116 /*
3117 * Get a reference to the parent filp - we will fput it
3118 * when the child counter exits. This is safe to do because
3119 * we are in the parent and we know that the filp still
3120 * exists and has a nonzero count:
3121 */
3122 atomic_long_inc(&parent_counter->filp->f_count);
3123
3124 /*
3125 * Link this into the parent counter's child list
3126 */
3127 mutex_lock(&parent_counter->mutex);
3128 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3129
3130 /*
3131 * Make the child state follow the state of the parent counter,
3132 * not its hw_event.disabled bit. We hold the parent's mutex,
3133 * so we won't race with perf_counter_{en,dis}able_family.
3134 */
3135 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3136 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3137 else
3138 child_counter->state = PERF_COUNTER_STATE_OFF;
3139
3140 mutex_unlock(&parent_counter->mutex);
3141
3142 return child_counter;
3143 }
3144
3145 static int inherit_group(struct perf_counter *parent_counter,
3146 struct task_struct *parent,
3147 struct perf_counter_context *parent_ctx,
3148 struct task_struct *child,
3149 struct perf_counter_context *child_ctx)
3150 {
3151 struct perf_counter *leader;
3152 struct perf_counter *sub;
3153 struct perf_counter *child_ctr;
3154
3155 leader = inherit_counter(parent_counter, parent, parent_ctx,
3156 child, NULL, child_ctx);
3157 if (IS_ERR(leader))
3158 return PTR_ERR(leader);
3159 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3160 child_ctr = inherit_counter(sub, parent, parent_ctx,
3161 child, leader, child_ctx);
3162 if (IS_ERR(child_ctr))
3163 return PTR_ERR(child_ctr);
3164 }
3165 return 0;
3166 }
3167
3168 static void sync_child_counter(struct perf_counter *child_counter,
3169 struct perf_counter *parent_counter)
3170 {
3171 u64 parent_val, child_val;
3172
3173 parent_val = atomic64_read(&parent_counter->count);
3174 child_val = atomic64_read(&child_counter->count);
3175
3176 /*
3177 * Add back the child's count to the parent's count:
3178 */
3179 atomic64_add(child_val, &parent_counter->count);
3180 atomic64_add(child_counter->total_time_enabled,
3181 &parent_counter->child_total_time_enabled);
3182 atomic64_add(child_counter->total_time_running,
3183 &parent_counter->child_total_time_running);
3184
3185 /*
3186 * Remove this counter from the parent's list
3187 */
3188 mutex_lock(&parent_counter->mutex);
3189 list_del_init(&child_counter->child_list);
3190 mutex_unlock(&parent_counter->mutex);
3191
3192 /*
3193 * Release the parent counter, if this was the last
3194 * reference to it.
3195 */
3196 fput(parent_counter->filp);
3197 }
3198
3199 static void
3200 __perf_counter_exit_task(struct task_struct *child,
3201 struct perf_counter *child_counter,
3202 struct perf_counter_context *child_ctx)
3203 {
3204 struct perf_counter *parent_counter;
3205 struct perf_counter *sub, *tmp;
3206
3207 /*
3208 * If we do not self-reap then we have to wait for the
3209 * child task to unschedule (it will happen for sure),
3210 * so that its counter is at its final count. (This
3211 * condition triggers rarely - child tasks usually get
3212 * off their CPU before the parent has a chance to
3213 * get this far into the reaping action)
3214 */
3215 if (child != current) {
3216 wait_task_inactive(child, 0);
3217 list_del_init(&child_counter->list_entry);
3218 update_counter_times(child_counter);
3219 } else {
3220 struct perf_cpu_context *cpuctx;
3221 unsigned long flags;
3222
3223 /*
3224 * Disable and unlink this counter.
3225 *
3226 * Be careful about zapping the list - IRQ/NMI context
3227 * could still be processing it:
3228 */
3229 local_irq_save(flags);
3230 perf_disable();
3231
3232 cpuctx = &__get_cpu_var(perf_cpu_context);
3233
3234 group_sched_out(child_counter, cpuctx, child_ctx);
3235 update_counter_times(child_counter);
3236
3237 list_del_init(&child_counter->list_entry);
3238
3239 child_ctx->nr_counters--;
3240
3241 perf_enable();
3242 local_irq_restore(flags);
3243 }
3244
3245 parent_counter = child_counter->parent;
3246 /*
3247 * It can happen that parent exits first, and has counters
3248 * that are still around due to the child reference. These
3249 * counters need to be zapped - but otherwise linger.
3250 */
3251 if (parent_counter) {
3252 sync_child_counter(child_counter, parent_counter);
3253 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3254 list_entry) {
3255 if (sub->parent) {
3256 sync_child_counter(sub, sub->parent);
3257 free_counter(sub);
3258 }
3259 }
3260 free_counter(child_counter);
3261 }
3262 }
3263
3264 /*
3265 * When a child task exits, feed back counter values to parent counters.
3266 *
3267 * Note: we may be running in child context, but the PID is not hashed
3268 * anymore so new counters will not be added.
3269 */
3270 void perf_counter_exit_task(struct task_struct *child)
3271 {
3272 struct perf_counter *child_counter, *tmp;
3273 struct perf_counter_context *child_ctx;
3274
3275 child_ctx = &child->perf_counter_ctx;
3276
3277 if (likely(!child_ctx->nr_counters))
3278 return;
3279
3280 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3281 list_entry)
3282 __perf_counter_exit_task(child, child_counter, child_ctx);
3283 }
3284
3285 /*
3286 * Initialize the perf_counter context in task_struct
3287 */
3288 void perf_counter_init_task(struct task_struct *child)
3289 {
3290 struct perf_counter_context *child_ctx, *parent_ctx;
3291 struct perf_counter *counter;
3292 struct task_struct *parent = current;
3293
3294 child_ctx = &child->perf_counter_ctx;
3295 parent_ctx = &parent->perf_counter_ctx;
3296
3297 __perf_counter_init_context(child_ctx, child);
3298
3299 /*
3300 * This is executed from the parent task context, so inherit
3301 * counters that have been marked for cloning:
3302 */
3303
3304 if (likely(!parent_ctx->nr_counters))
3305 return;
3306
3307 /*
3308 * Lock the parent list. No need to lock the child - not PID
3309 * hashed yet and not running, so nobody can access it.
3310 */
3311 mutex_lock(&parent_ctx->mutex);
3312
3313 /*
3314 * We dont have to disable NMIs - we are only looking at
3315 * the list, not manipulating it:
3316 */
3317 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3318 if (!counter->hw_event.inherit)
3319 continue;
3320
3321 if (inherit_group(counter, parent,
3322 parent_ctx, child, child_ctx))
3323 break;
3324 }
3325
3326 mutex_unlock(&parent_ctx->mutex);
3327 }
3328
3329 static void __cpuinit perf_counter_init_cpu(int cpu)
3330 {
3331 struct perf_cpu_context *cpuctx;
3332
3333 cpuctx = &per_cpu(perf_cpu_context, cpu);
3334 __perf_counter_init_context(&cpuctx->ctx, NULL);
3335
3336 spin_lock(&perf_resource_lock);
3337 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3338 spin_unlock(&perf_resource_lock);
3339
3340 hw_perf_counter_setup(cpu);
3341 }
3342
3343 #ifdef CONFIG_HOTPLUG_CPU
3344 static void __perf_counter_exit_cpu(void *info)
3345 {
3346 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3347 struct perf_counter_context *ctx = &cpuctx->ctx;
3348 struct perf_counter *counter, *tmp;
3349
3350 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3351 __perf_counter_remove_from_context(counter);
3352 }
3353 static void perf_counter_exit_cpu(int cpu)
3354 {
3355 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3356 struct perf_counter_context *ctx = &cpuctx->ctx;
3357
3358 mutex_lock(&ctx->mutex);
3359 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3360 mutex_unlock(&ctx->mutex);
3361 }
3362 #else
3363 static inline void perf_counter_exit_cpu(int cpu) { }
3364 #endif
3365
3366 static int __cpuinit
3367 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3368 {
3369 unsigned int cpu = (long)hcpu;
3370
3371 switch (action) {
3372
3373 case CPU_UP_PREPARE:
3374 case CPU_UP_PREPARE_FROZEN:
3375 perf_counter_init_cpu(cpu);
3376 break;
3377
3378 case CPU_DOWN_PREPARE:
3379 case CPU_DOWN_PREPARE_FROZEN:
3380 perf_counter_exit_cpu(cpu);
3381 break;
3382
3383 default:
3384 break;
3385 }
3386
3387 return NOTIFY_OK;
3388 }
3389
3390 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3391 .notifier_call = perf_cpu_notify,
3392 };
3393
3394 void __init perf_counter_init(void)
3395 {
3396 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3397 (void *)(long)smp_processor_id());
3398 register_cpu_notifier(&perf_cpu_nb);
3399 }
3400
3401 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3402 {
3403 return sprintf(buf, "%d\n", perf_reserved_percpu);
3404 }
3405
3406 static ssize_t
3407 perf_set_reserve_percpu(struct sysdev_class *class,
3408 const char *buf,
3409 size_t count)
3410 {
3411 struct perf_cpu_context *cpuctx;
3412 unsigned long val;
3413 int err, cpu, mpt;
3414
3415 err = strict_strtoul(buf, 10, &val);
3416 if (err)
3417 return err;
3418 if (val > perf_max_counters)
3419 return -EINVAL;
3420
3421 spin_lock(&perf_resource_lock);
3422 perf_reserved_percpu = val;
3423 for_each_online_cpu(cpu) {
3424 cpuctx = &per_cpu(perf_cpu_context, cpu);
3425 spin_lock_irq(&cpuctx->ctx.lock);
3426 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3427 perf_max_counters - perf_reserved_percpu);
3428 cpuctx->max_pertask = mpt;
3429 spin_unlock_irq(&cpuctx->ctx.lock);
3430 }
3431 spin_unlock(&perf_resource_lock);
3432
3433 return count;
3434 }
3435
3436 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3437 {
3438 return sprintf(buf, "%d\n", perf_overcommit);
3439 }
3440
3441 static ssize_t
3442 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3443 {
3444 unsigned long val;
3445 int err;
3446
3447 err = strict_strtoul(buf, 10, &val);
3448 if (err)
3449 return err;
3450 if (val > 1)
3451 return -EINVAL;
3452
3453 spin_lock(&perf_resource_lock);
3454 perf_overcommit = val;
3455 spin_unlock(&perf_resource_lock);
3456
3457 return count;
3458 }
3459
3460 static SYSDEV_CLASS_ATTR(
3461 reserve_percpu,
3462 0644,
3463 perf_show_reserve_percpu,
3464 perf_set_reserve_percpu
3465 );
3466
3467 static SYSDEV_CLASS_ATTR(
3468 overcommit,
3469 0644,
3470 perf_show_overcommit,
3471 perf_set_overcommit
3472 );
3473
3474 static struct attribute *perfclass_attrs[] = {
3475 &attr_reserve_percpu.attr,
3476 &attr_overcommit.attr,
3477 NULL
3478 };
3479
3480 static struct attribute_group perfclass_attr_group = {
3481 .attrs = perfclass_attrs,
3482 .name = "perf_counters",
3483 };
3484
3485 static int __init perf_counter_sysfs_init(void)
3486 {
3487 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3488 &perfclass_attr_group);
3489 }
3490 device_initcall(perf_counter_sysfs_init);