perf_counter: rework context time
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 *
8 * For licensing details see kernel-base/COPYING
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33 * Each CPU has a list of per CPU counters:
34 */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42 * Mutex for (sysadmin-configurable) counter reservations:
43 */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47 * Architecture provided APIs - weak aliases:
48 */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52 return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void) { return 0; }
56 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59 struct perf_cpu_context *cpuctx,
60 struct perf_counter_context *ctx, int cpu)
61 {
62 return 0;
63 }
64
65 void __weak perf_counter_print_debug(void) { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70 struct perf_counter *group_leader = counter->group_leader;
71
72 /*
73 * Depending on whether it is a standalone or sibling counter,
74 * add it straight to the context's counter list, or to the group
75 * leader's sibling list:
76 */
77 if (counter->group_leader == counter)
78 list_add_tail(&counter->list_entry, &ctx->counter_list);
79 else {
80 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81 group_leader->nr_siblings++;
82 }
83
84 list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90 struct perf_counter *sibling, *tmp;
91
92 list_del_init(&counter->list_entry);
93 list_del_rcu(&counter->event_entry);
94
95 if (counter->group_leader != counter)
96 counter->group_leader->nr_siblings--;
97
98 /*
99 * If this was a group counter with sibling counters then
100 * upgrade the siblings to singleton counters by adding them
101 * to the context list directly:
102 */
103 list_for_each_entry_safe(sibling, tmp,
104 &counter->sibling_list, list_entry) {
105
106 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 sibling->group_leader = sibling;
108 }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113 struct perf_cpu_context *cpuctx,
114 struct perf_counter_context *ctx)
115 {
116 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117 return;
118
119 counter->state = PERF_COUNTER_STATE_INACTIVE;
120 counter->tstamp_stopped = ctx->time;
121 counter->hw_ops->disable(counter);
122 counter->oncpu = -1;
123
124 if (!is_software_counter(counter))
125 cpuctx->active_oncpu--;
126 ctx->nr_active--;
127 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133 struct perf_cpu_context *cpuctx,
134 struct perf_counter_context *ctx)
135 {
136 struct perf_counter *counter;
137
138 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139 return;
140
141 counter_sched_out(group_counter, cpuctx, ctx);
142
143 /*
144 * Schedule out siblings (if any):
145 */
146 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147 counter_sched_out(counter, cpuctx, ctx);
148
149 if (group_counter->hw_event.exclusive)
150 cpuctx->exclusive = 0;
151 }
152
153 /*
154 * Cross CPU call to remove a performance counter
155 *
156 * We disable the counter on the hardware level first. After that we
157 * remove it from the context list.
158 */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162 struct perf_counter *counter = info;
163 struct perf_counter_context *ctx = counter->ctx;
164 unsigned long flags;
165 u64 perf_flags;
166
167 /*
168 * If this is a task context, we need to check whether it is
169 * the current task context of this cpu. If not it has been
170 * scheduled out before the smp call arrived.
171 */
172 if (ctx->task && cpuctx->task_ctx != ctx)
173 return;
174
175 curr_rq_lock_irq_save(&flags);
176 spin_lock(&ctx->lock);
177
178 counter_sched_out(counter, cpuctx, ctx);
179
180 counter->task = NULL;
181 ctx->nr_counters--;
182
183 /*
184 * Protect the list operation against NMI by disabling the
185 * counters on a global level. NOP for non NMI based counters.
186 */
187 perf_flags = hw_perf_save_disable();
188 list_del_counter(counter, ctx);
189 hw_perf_restore(perf_flags);
190
191 if (!ctx->task) {
192 /*
193 * Allow more per task counters with respect to the
194 * reservation:
195 */
196 cpuctx->max_pertask =
197 min(perf_max_counters - ctx->nr_counters,
198 perf_max_counters - perf_reserved_percpu);
199 }
200
201 spin_unlock(&ctx->lock);
202 curr_rq_unlock_irq_restore(&flags);
203 }
204
205
206 /*
207 * Remove the counter from a task's (or a CPU's) list of counters.
208 *
209 * Must be called with counter->mutex and ctx->mutex held.
210 *
211 * CPU counters are removed with a smp call. For task counters we only
212 * call when the task is on a CPU.
213 */
214 static void perf_counter_remove_from_context(struct perf_counter *counter)
215 {
216 struct perf_counter_context *ctx = counter->ctx;
217 struct task_struct *task = ctx->task;
218
219 if (!task) {
220 /*
221 * Per cpu counters are removed via an smp call and
222 * the removal is always sucessful.
223 */
224 smp_call_function_single(counter->cpu,
225 __perf_counter_remove_from_context,
226 counter, 1);
227 return;
228 }
229
230 retry:
231 task_oncpu_function_call(task, __perf_counter_remove_from_context,
232 counter);
233
234 spin_lock_irq(&ctx->lock);
235 /*
236 * If the context is active we need to retry the smp call.
237 */
238 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
239 spin_unlock_irq(&ctx->lock);
240 goto retry;
241 }
242
243 /*
244 * The lock prevents that this context is scheduled in so we
245 * can remove the counter safely, if the call above did not
246 * succeed.
247 */
248 if (!list_empty(&counter->list_entry)) {
249 ctx->nr_counters--;
250 list_del_counter(counter, ctx);
251 counter->task = NULL;
252 }
253 spin_unlock_irq(&ctx->lock);
254 }
255
256 static inline u64 perf_clock(void)
257 {
258 return cpu_clock(smp_processor_id());
259 }
260
261 /*
262 * Update the record of the current time in a context.
263 */
264 static void update_context_time(struct perf_counter_context *ctx)
265 {
266 u64 now = perf_clock();
267
268 ctx->time += now - ctx->timestamp;
269 ctx->timestamp = now;
270 }
271
272 /*
273 * Update the total_time_enabled and total_time_running fields for a counter.
274 */
275 static void update_counter_times(struct perf_counter *counter)
276 {
277 struct perf_counter_context *ctx = counter->ctx;
278 u64 run_end;
279
280 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
281 return;
282
283 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
284
285 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
286 run_end = counter->tstamp_stopped;
287 else
288 run_end = ctx->time;
289
290 counter->total_time_running = run_end - counter->tstamp_running;
291 }
292
293 /*
294 * Update total_time_enabled and total_time_running for all counters in a group.
295 */
296 static void update_group_times(struct perf_counter *leader)
297 {
298 struct perf_counter *counter;
299
300 update_counter_times(leader);
301 list_for_each_entry(counter, &leader->sibling_list, list_entry)
302 update_counter_times(counter);
303 }
304
305 /*
306 * Cross CPU call to disable a performance counter
307 */
308 static void __perf_counter_disable(void *info)
309 {
310 struct perf_counter *counter = info;
311 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
312 struct perf_counter_context *ctx = counter->ctx;
313 unsigned long flags;
314
315 /*
316 * If this is a per-task counter, need to check whether this
317 * counter's task is the current task on this cpu.
318 */
319 if (ctx->task && cpuctx->task_ctx != ctx)
320 return;
321
322 curr_rq_lock_irq_save(&flags);
323 spin_lock(&ctx->lock);
324
325 /*
326 * If the counter is on, turn it off.
327 * If it is in error state, leave it in error state.
328 */
329 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
330 update_context_time(ctx);
331 update_counter_times(counter);
332 if (counter == counter->group_leader)
333 group_sched_out(counter, cpuctx, ctx);
334 else
335 counter_sched_out(counter, cpuctx, ctx);
336 counter->state = PERF_COUNTER_STATE_OFF;
337 }
338
339 spin_unlock(&ctx->lock);
340 curr_rq_unlock_irq_restore(&flags);
341 }
342
343 /*
344 * Disable a counter.
345 */
346 static void perf_counter_disable(struct perf_counter *counter)
347 {
348 struct perf_counter_context *ctx = counter->ctx;
349 struct task_struct *task = ctx->task;
350
351 if (!task) {
352 /*
353 * Disable the counter on the cpu that it's on
354 */
355 smp_call_function_single(counter->cpu, __perf_counter_disable,
356 counter, 1);
357 return;
358 }
359
360 retry:
361 task_oncpu_function_call(task, __perf_counter_disable, counter);
362
363 spin_lock_irq(&ctx->lock);
364 /*
365 * If the counter is still active, we need to retry the cross-call.
366 */
367 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
368 spin_unlock_irq(&ctx->lock);
369 goto retry;
370 }
371
372 /*
373 * Since we have the lock this context can't be scheduled
374 * in, so we can change the state safely.
375 */
376 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
377 update_counter_times(counter);
378 counter->state = PERF_COUNTER_STATE_OFF;
379 }
380
381 spin_unlock_irq(&ctx->lock);
382 }
383
384 /*
385 * Disable a counter and all its children.
386 */
387 static void perf_counter_disable_family(struct perf_counter *counter)
388 {
389 struct perf_counter *child;
390
391 perf_counter_disable(counter);
392
393 /*
394 * Lock the mutex to protect the list of children
395 */
396 mutex_lock(&counter->mutex);
397 list_for_each_entry(child, &counter->child_list, child_list)
398 perf_counter_disable(child);
399 mutex_unlock(&counter->mutex);
400 }
401
402 static int
403 counter_sched_in(struct perf_counter *counter,
404 struct perf_cpu_context *cpuctx,
405 struct perf_counter_context *ctx,
406 int cpu)
407 {
408 if (counter->state <= PERF_COUNTER_STATE_OFF)
409 return 0;
410
411 counter->state = PERF_COUNTER_STATE_ACTIVE;
412 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
413 /*
414 * The new state must be visible before we turn it on in the hardware:
415 */
416 smp_wmb();
417
418 if (counter->hw_ops->enable(counter)) {
419 counter->state = PERF_COUNTER_STATE_INACTIVE;
420 counter->oncpu = -1;
421 return -EAGAIN;
422 }
423
424 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
425
426 if (!is_software_counter(counter))
427 cpuctx->active_oncpu++;
428 ctx->nr_active++;
429
430 if (counter->hw_event.exclusive)
431 cpuctx->exclusive = 1;
432
433 return 0;
434 }
435
436 /*
437 * Return 1 for a group consisting entirely of software counters,
438 * 0 if the group contains any hardware counters.
439 */
440 static int is_software_only_group(struct perf_counter *leader)
441 {
442 struct perf_counter *counter;
443
444 if (!is_software_counter(leader))
445 return 0;
446
447 list_for_each_entry(counter, &leader->sibling_list, list_entry)
448 if (!is_software_counter(counter))
449 return 0;
450
451 return 1;
452 }
453
454 /*
455 * Work out whether we can put this counter group on the CPU now.
456 */
457 static int group_can_go_on(struct perf_counter *counter,
458 struct perf_cpu_context *cpuctx,
459 int can_add_hw)
460 {
461 /*
462 * Groups consisting entirely of software counters can always go on.
463 */
464 if (is_software_only_group(counter))
465 return 1;
466 /*
467 * If an exclusive group is already on, no other hardware
468 * counters can go on.
469 */
470 if (cpuctx->exclusive)
471 return 0;
472 /*
473 * If this group is exclusive and there are already
474 * counters on the CPU, it can't go on.
475 */
476 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
477 return 0;
478 /*
479 * Otherwise, try to add it if all previous groups were able
480 * to go on.
481 */
482 return can_add_hw;
483 }
484
485 static void add_counter_to_ctx(struct perf_counter *counter,
486 struct perf_counter_context *ctx)
487 {
488 list_add_counter(counter, ctx);
489 ctx->nr_counters++;
490 counter->prev_state = PERF_COUNTER_STATE_OFF;
491 counter->tstamp_enabled = ctx->time;
492 counter->tstamp_running = ctx->time;
493 counter->tstamp_stopped = ctx->time;
494 }
495
496 /*
497 * Cross CPU call to install and enable a performance counter
498 */
499 static void __perf_install_in_context(void *info)
500 {
501 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
502 struct perf_counter *counter = info;
503 struct perf_counter_context *ctx = counter->ctx;
504 struct perf_counter *leader = counter->group_leader;
505 int cpu = smp_processor_id();
506 unsigned long flags;
507 u64 perf_flags;
508 int err;
509
510 /*
511 * If this is a task context, we need to check whether it is
512 * the current task context of this cpu. If not it has been
513 * scheduled out before the smp call arrived.
514 */
515 if (ctx->task && cpuctx->task_ctx != ctx)
516 return;
517
518 curr_rq_lock_irq_save(&flags);
519 spin_lock(&ctx->lock);
520 update_context_time(ctx);
521
522 /*
523 * Protect the list operation against NMI by disabling the
524 * counters on a global level. NOP for non NMI based counters.
525 */
526 perf_flags = hw_perf_save_disable();
527
528 add_counter_to_ctx(counter, ctx);
529
530 /*
531 * Don't put the counter on if it is disabled or if
532 * it is in a group and the group isn't on.
533 */
534 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
535 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
536 goto unlock;
537
538 /*
539 * An exclusive counter can't go on if there are already active
540 * hardware counters, and no hardware counter can go on if there
541 * is already an exclusive counter on.
542 */
543 if (!group_can_go_on(counter, cpuctx, 1))
544 err = -EEXIST;
545 else
546 err = counter_sched_in(counter, cpuctx, ctx, cpu);
547
548 if (err) {
549 /*
550 * This counter couldn't go on. If it is in a group
551 * then we have to pull the whole group off.
552 * If the counter group is pinned then put it in error state.
553 */
554 if (leader != counter)
555 group_sched_out(leader, cpuctx, ctx);
556 if (leader->hw_event.pinned) {
557 update_group_times(leader);
558 leader->state = PERF_COUNTER_STATE_ERROR;
559 }
560 }
561
562 if (!err && !ctx->task && cpuctx->max_pertask)
563 cpuctx->max_pertask--;
564
565 unlock:
566 hw_perf_restore(perf_flags);
567
568 spin_unlock(&ctx->lock);
569 curr_rq_unlock_irq_restore(&flags);
570 }
571
572 /*
573 * Attach a performance counter to a context
574 *
575 * First we add the counter to the list with the hardware enable bit
576 * in counter->hw_config cleared.
577 *
578 * If the counter is attached to a task which is on a CPU we use a smp
579 * call to enable it in the task context. The task might have been
580 * scheduled away, but we check this in the smp call again.
581 *
582 * Must be called with ctx->mutex held.
583 */
584 static void
585 perf_install_in_context(struct perf_counter_context *ctx,
586 struct perf_counter *counter,
587 int cpu)
588 {
589 struct task_struct *task = ctx->task;
590
591 if (!task) {
592 /*
593 * Per cpu counters are installed via an smp call and
594 * the install is always sucessful.
595 */
596 smp_call_function_single(cpu, __perf_install_in_context,
597 counter, 1);
598 return;
599 }
600
601 counter->task = task;
602 retry:
603 task_oncpu_function_call(task, __perf_install_in_context,
604 counter);
605
606 spin_lock_irq(&ctx->lock);
607 /*
608 * we need to retry the smp call.
609 */
610 if (ctx->is_active && list_empty(&counter->list_entry)) {
611 spin_unlock_irq(&ctx->lock);
612 goto retry;
613 }
614
615 /*
616 * The lock prevents that this context is scheduled in so we
617 * can add the counter safely, if it the call above did not
618 * succeed.
619 */
620 if (list_empty(&counter->list_entry))
621 add_counter_to_ctx(counter, ctx);
622 spin_unlock_irq(&ctx->lock);
623 }
624
625 /*
626 * Cross CPU call to enable a performance counter
627 */
628 static void __perf_counter_enable(void *info)
629 {
630 struct perf_counter *counter = info;
631 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
632 struct perf_counter_context *ctx = counter->ctx;
633 struct perf_counter *leader = counter->group_leader;
634 unsigned long flags;
635 int err;
636
637 /*
638 * If this is a per-task counter, need to check whether this
639 * counter's task is the current task on this cpu.
640 */
641 if (ctx->task && cpuctx->task_ctx != ctx)
642 return;
643
644 curr_rq_lock_irq_save(&flags);
645 spin_lock(&ctx->lock);
646 update_context_time(ctx);
647
648 counter->prev_state = counter->state;
649 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
650 goto unlock;
651 counter->state = PERF_COUNTER_STATE_INACTIVE;
652 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
653
654 /*
655 * If the counter is in a group and isn't the group leader,
656 * then don't put it on unless the group is on.
657 */
658 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
659 goto unlock;
660
661 if (!group_can_go_on(counter, cpuctx, 1))
662 err = -EEXIST;
663 else
664 err = counter_sched_in(counter, cpuctx, ctx,
665 smp_processor_id());
666
667 if (err) {
668 /*
669 * If this counter can't go on and it's part of a
670 * group, then the whole group has to come off.
671 */
672 if (leader != counter)
673 group_sched_out(leader, cpuctx, ctx);
674 if (leader->hw_event.pinned) {
675 update_group_times(leader);
676 leader->state = PERF_COUNTER_STATE_ERROR;
677 }
678 }
679
680 unlock:
681 spin_unlock(&ctx->lock);
682 curr_rq_unlock_irq_restore(&flags);
683 }
684
685 /*
686 * Enable a counter.
687 */
688 static void perf_counter_enable(struct perf_counter *counter)
689 {
690 struct perf_counter_context *ctx = counter->ctx;
691 struct task_struct *task = ctx->task;
692
693 if (!task) {
694 /*
695 * Enable the counter on the cpu that it's on
696 */
697 smp_call_function_single(counter->cpu, __perf_counter_enable,
698 counter, 1);
699 return;
700 }
701
702 spin_lock_irq(&ctx->lock);
703 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
704 goto out;
705
706 /*
707 * If the counter is in error state, clear that first.
708 * That way, if we see the counter in error state below, we
709 * know that it has gone back into error state, as distinct
710 * from the task having been scheduled away before the
711 * cross-call arrived.
712 */
713 if (counter->state == PERF_COUNTER_STATE_ERROR)
714 counter->state = PERF_COUNTER_STATE_OFF;
715
716 retry:
717 spin_unlock_irq(&ctx->lock);
718 task_oncpu_function_call(task, __perf_counter_enable, counter);
719
720 spin_lock_irq(&ctx->lock);
721
722 /*
723 * If the context is active and the counter is still off,
724 * we need to retry the cross-call.
725 */
726 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
727 goto retry;
728
729 /*
730 * Since we have the lock this context can't be scheduled
731 * in, so we can change the state safely.
732 */
733 if (counter->state == PERF_COUNTER_STATE_OFF) {
734 counter->state = PERF_COUNTER_STATE_INACTIVE;
735 counter->tstamp_enabled =
736 ctx->time - counter->total_time_enabled;
737 }
738 out:
739 spin_unlock_irq(&ctx->lock);
740 }
741
742 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
743 {
744 atomic_add(refresh, &counter->event_limit);
745 perf_counter_enable(counter);
746 }
747
748 /*
749 * Enable a counter and all its children.
750 */
751 static void perf_counter_enable_family(struct perf_counter *counter)
752 {
753 struct perf_counter *child;
754
755 perf_counter_enable(counter);
756
757 /*
758 * Lock the mutex to protect the list of children
759 */
760 mutex_lock(&counter->mutex);
761 list_for_each_entry(child, &counter->child_list, child_list)
762 perf_counter_enable(child);
763 mutex_unlock(&counter->mutex);
764 }
765
766 void __perf_counter_sched_out(struct perf_counter_context *ctx,
767 struct perf_cpu_context *cpuctx)
768 {
769 struct perf_counter *counter;
770 u64 flags;
771
772 spin_lock(&ctx->lock);
773 ctx->is_active = 0;
774 if (likely(!ctx->nr_counters))
775 goto out;
776 update_context_time(ctx);
777
778 flags = hw_perf_save_disable();
779 if (ctx->nr_active) {
780 list_for_each_entry(counter, &ctx->counter_list, list_entry)
781 group_sched_out(counter, cpuctx, ctx);
782 }
783 hw_perf_restore(flags);
784 out:
785 spin_unlock(&ctx->lock);
786 }
787
788 /*
789 * Called from scheduler to remove the counters of the current task,
790 * with interrupts disabled.
791 *
792 * We stop each counter and update the counter value in counter->count.
793 *
794 * This does not protect us against NMI, but disable()
795 * sets the disabled bit in the control field of counter _before_
796 * accessing the counter control register. If a NMI hits, then it will
797 * not restart the counter.
798 */
799 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
800 {
801 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
802 struct perf_counter_context *ctx = &task->perf_counter_ctx;
803 struct pt_regs *regs;
804
805 if (likely(!cpuctx->task_ctx))
806 return;
807
808 regs = task_pt_regs(task);
809 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
810 __perf_counter_sched_out(ctx, cpuctx);
811
812 cpuctx->task_ctx = NULL;
813 }
814
815 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816 {
817 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 }
819
820 static int
821 group_sched_in(struct perf_counter *group_counter,
822 struct perf_cpu_context *cpuctx,
823 struct perf_counter_context *ctx,
824 int cpu)
825 {
826 struct perf_counter *counter, *partial_group;
827 int ret;
828
829 if (group_counter->state == PERF_COUNTER_STATE_OFF)
830 return 0;
831
832 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
833 if (ret)
834 return ret < 0 ? ret : 0;
835
836 group_counter->prev_state = group_counter->state;
837 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
838 return -EAGAIN;
839
840 /*
841 * Schedule in siblings as one group (if any):
842 */
843 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844 counter->prev_state = counter->state;
845 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
846 partial_group = counter;
847 goto group_error;
848 }
849 }
850
851 return 0;
852
853 group_error:
854 /*
855 * Groups can be scheduled in as one unit only, so undo any
856 * partial group before returning:
857 */
858 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
859 if (counter == partial_group)
860 break;
861 counter_sched_out(counter, cpuctx, ctx);
862 }
863 counter_sched_out(group_counter, cpuctx, ctx);
864
865 return -EAGAIN;
866 }
867
868 static void
869 __perf_counter_sched_in(struct perf_counter_context *ctx,
870 struct perf_cpu_context *cpuctx, int cpu)
871 {
872 struct perf_counter *counter;
873 u64 flags;
874 int can_add_hw = 1;
875
876 spin_lock(&ctx->lock);
877 ctx->is_active = 1;
878 if (likely(!ctx->nr_counters))
879 goto out;
880
881 ctx->timestamp = perf_clock();
882
883 flags = hw_perf_save_disable();
884
885 /*
886 * First go through the list and put on any pinned groups
887 * in order to give them the best chance of going on.
888 */
889 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
890 if (counter->state <= PERF_COUNTER_STATE_OFF ||
891 !counter->hw_event.pinned)
892 continue;
893 if (counter->cpu != -1 && counter->cpu != cpu)
894 continue;
895
896 if (group_can_go_on(counter, cpuctx, 1))
897 group_sched_in(counter, cpuctx, ctx, cpu);
898
899 /*
900 * If this pinned group hasn't been scheduled,
901 * put it in error state.
902 */
903 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
904 update_group_times(counter);
905 counter->state = PERF_COUNTER_STATE_ERROR;
906 }
907 }
908
909 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910 /*
911 * Ignore counters in OFF or ERROR state, and
912 * ignore pinned counters since we did them already.
913 */
914 if (counter->state <= PERF_COUNTER_STATE_OFF ||
915 counter->hw_event.pinned)
916 continue;
917
918 /*
919 * Listen to the 'cpu' scheduling filter constraint
920 * of counters:
921 */
922 if (counter->cpu != -1 && counter->cpu != cpu)
923 continue;
924
925 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926 if (group_sched_in(counter, cpuctx, ctx, cpu))
927 can_add_hw = 0;
928 }
929 }
930 hw_perf_restore(flags);
931 out:
932 spin_unlock(&ctx->lock);
933 }
934
935 /*
936 * Called from scheduler to add the counters of the current task
937 * with interrupts disabled.
938 *
939 * We restore the counter value and then enable it.
940 *
941 * This does not protect us against NMI, but enable()
942 * sets the enabled bit in the control field of counter _before_
943 * accessing the counter control register. If a NMI hits, then it will
944 * keep the counter running.
945 */
946 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
947 {
948 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
949 struct perf_counter_context *ctx = &task->perf_counter_ctx;
950
951 __perf_counter_sched_in(ctx, cpuctx, cpu);
952 cpuctx->task_ctx = ctx;
953 }
954
955 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
956 {
957 struct perf_counter_context *ctx = &cpuctx->ctx;
958
959 __perf_counter_sched_in(ctx, cpuctx, cpu);
960 }
961
962 int perf_counter_task_disable(void)
963 {
964 struct task_struct *curr = current;
965 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
966 struct perf_counter *counter;
967 unsigned long flags;
968 u64 perf_flags;
969 int cpu;
970
971 if (likely(!ctx->nr_counters))
972 return 0;
973
974 curr_rq_lock_irq_save(&flags);
975 cpu = smp_processor_id();
976
977 /* force the update of the task clock: */
978 __task_delta_exec(curr, 1);
979
980 perf_counter_task_sched_out(curr, cpu);
981
982 spin_lock(&ctx->lock);
983
984 /*
985 * Disable all the counters:
986 */
987 perf_flags = hw_perf_save_disable();
988
989 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
990 if (counter->state != PERF_COUNTER_STATE_ERROR) {
991 update_group_times(counter);
992 counter->state = PERF_COUNTER_STATE_OFF;
993 }
994 }
995
996 hw_perf_restore(perf_flags);
997
998 spin_unlock(&ctx->lock);
999
1000 curr_rq_unlock_irq_restore(&flags);
1001
1002 return 0;
1003 }
1004
1005 int perf_counter_task_enable(void)
1006 {
1007 struct task_struct *curr = current;
1008 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1009 struct perf_counter *counter;
1010 unsigned long flags;
1011 u64 perf_flags;
1012 int cpu;
1013
1014 if (likely(!ctx->nr_counters))
1015 return 0;
1016
1017 curr_rq_lock_irq_save(&flags);
1018 cpu = smp_processor_id();
1019
1020 /* force the update of the task clock: */
1021 __task_delta_exec(curr, 1);
1022
1023 perf_counter_task_sched_out(curr, cpu);
1024
1025 spin_lock(&ctx->lock);
1026
1027 /*
1028 * Disable all the counters:
1029 */
1030 perf_flags = hw_perf_save_disable();
1031
1032 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1033 if (counter->state > PERF_COUNTER_STATE_OFF)
1034 continue;
1035 counter->state = PERF_COUNTER_STATE_INACTIVE;
1036 counter->tstamp_enabled =
1037 ctx->time - counter->total_time_enabled;
1038 counter->hw_event.disabled = 0;
1039 }
1040 hw_perf_restore(perf_flags);
1041
1042 spin_unlock(&ctx->lock);
1043
1044 perf_counter_task_sched_in(curr, cpu);
1045
1046 curr_rq_unlock_irq_restore(&flags);
1047
1048 return 0;
1049 }
1050
1051 /*
1052 * Round-robin a context's counters:
1053 */
1054 static void rotate_ctx(struct perf_counter_context *ctx)
1055 {
1056 struct perf_counter *counter;
1057 u64 perf_flags;
1058
1059 if (!ctx->nr_counters)
1060 return;
1061
1062 spin_lock(&ctx->lock);
1063 /*
1064 * Rotate the first entry last (works just fine for group counters too):
1065 */
1066 perf_flags = hw_perf_save_disable();
1067 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1068 list_move_tail(&counter->list_entry, &ctx->counter_list);
1069 break;
1070 }
1071 hw_perf_restore(perf_flags);
1072
1073 spin_unlock(&ctx->lock);
1074 }
1075
1076 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1077 {
1078 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1079 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1080 const int rotate_percpu = 0;
1081
1082 if (rotate_percpu)
1083 perf_counter_cpu_sched_out(cpuctx);
1084 perf_counter_task_sched_out(curr, cpu);
1085
1086 if (rotate_percpu)
1087 rotate_ctx(&cpuctx->ctx);
1088 rotate_ctx(ctx);
1089
1090 if (rotate_percpu)
1091 perf_counter_cpu_sched_in(cpuctx, cpu);
1092 perf_counter_task_sched_in(curr, cpu);
1093 }
1094
1095 /*
1096 * Cross CPU call to read the hardware counter
1097 */
1098 static void __read(void *info)
1099 {
1100 struct perf_counter *counter = info;
1101 struct perf_counter_context *ctx = counter->ctx;
1102 unsigned long flags;
1103
1104 curr_rq_lock_irq_save(&flags);
1105 if (ctx->is_active)
1106 update_context_time(ctx);
1107 counter->hw_ops->read(counter);
1108 update_counter_times(counter);
1109 curr_rq_unlock_irq_restore(&flags);
1110 }
1111
1112 static u64 perf_counter_read(struct perf_counter *counter)
1113 {
1114 /*
1115 * If counter is enabled and currently active on a CPU, update the
1116 * value in the counter structure:
1117 */
1118 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1119 smp_call_function_single(counter->oncpu,
1120 __read, counter, 1);
1121 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1122 update_counter_times(counter);
1123 }
1124
1125 return atomic64_read(&counter->count);
1126 }
1127
1128 static void put_context(struct perf_counter_context *ctx)
1129 {
1130 if (ctx->task)
1131 put_task_struct(ctx->task);
1132 }
1133
1134 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1135 {
1136 struct perf_cpu_context *cpuctx;
1137 struct perf_counter_context *ctx;
1138 struct task_struct *task;
1139
1140 /*
1141 * If cpu is not a wildcard then this is a percpu counter:
1142 */
1143 if (cpu != -1) {
1144 /* Must be root to operate on a CPU counter: */
1145 if (!capable(CAP_SYS_ADMIN))
1146 return ERR_PTR(-EACCES);
1147
1148 if (cpu < 0 || cpu > num_possible_cpus())
1149 return ERR_PTR(-EINVAL);
1150
1151 /*
1152 * We could be clever and allow to attach a counter to an
1153 * offline CPU and activate it when the CPU comes up, but
1154 * that's for later.
1155 */
1156 if (!cpu_isset(cpu, cpu_online_map))
1157 return ERR_PTR(-ENODEV);
1158
1159 cpuctx = &per_cpu(perf_cpu_context, cpu);
1160 ctx = &cpuctx->ctx;
1161
1162 return ctx;
1163 }
1164
1165 rcu_read_lock();
1166 if (!pid)
1167 task = current;
1168 else
1169 task = find_task_by_vpid(pid);
1170 if (task)
1171 get_task_struct(task);
1172 rcu_read_unlock();
1173
1174 if (!task)
1175 return ERR_PTR(-ESRCH);
1176
1177 ctx = &task->perf_counter_ctx;
1178 ctx->task = task;
1179
1180 /* Reuse ptrace permission checks for now. */
1181 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1182 put_context(ctx);
1183 return ERR_PTR(-EACCES);
1184 }
1185
1186 return ctx;
1187 }
1188
1189 static void free_counter_rcu(struct rcu_head *head)
1190 {
1191 struct perf_counter *counter;
1192
1193 counter = container_of(head, struct perf_counter, rcu_head);
1194 kfree(counter);
1195 }
1196
1197 static void perf_pending_sync(struct perf_counter *counter);
1198
1199 static void free_counter(struct perf_counter *counter)
1200 {
1201 perf_pending_sync(counter);
1202
1203 if (counter->destroy)
1204 counter->destroy(counter);
1205
1206 call_rcu(&counter->rcu_head, free_counter_rcu);
1207 }
1208
1209 /*
1210 * Called when the last reference to the file is gone.
1211 */
1212 static int perf_release(struct inode *inode, struct file *file)
1213 {
1214 struct perf_counter *counter = file->private_data;
1215 struct perf_counter_context *ctx = counter->ctx;
1216
1217 file->private_data = NULL;
1218
1219 mutex_lock(&ctx->mutex);
1220 mutex_lock(&counter->mutex);
1221
1222 perf_counter_remove_from_context(counter);
1223
1224 mutex_unlock(&counter->mutex);
1225 mutex_unlock(&ctx->mutex);
1226
1227 free_counter(counter);
1228 put_context(ctx);
1229
1230 return 0;
1231 }
1232
1233 /*
1234 * Read the performance counter - simple non blocking version for now
1235 */
1236 static ssize_t
1237 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1238 {
1239 u64 values[3];
1240 int n;
1241
1242 /*
1243 * Return end-of-file for a read on a counter that is in
1244 * error state (i.e. because it was pinned but it couldn't be
1245 * scheduled on to the CPU at some point).
1246 */
1247 if (counter->state == PERF_COUNTER_STATE_ERROR)
1248 return 0;
1249
1250 mutex_lock(&counter->mutex);
1251 values[0] = perf_counter_read(counter);
1252 n = 1;
1253 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1254 values[n++] = counter->total_time_enabled +
1255 atomic64_read(&counter->child_total_time_enabled);
1256 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1257 values[n++] = counter->total_time_running +
1258 atomic64_read(&counter->child_total_time_running);
1259 mutex_unlock(&counter->mutex);
1260
1261 if (count < n * sizeof(u64))
1262 return -EINVAL;
1263 count = n * sizeof(u64);
1264
1265 if (copy_to_user(buf, values, count))
1266 return -EFAULT;
1267
1268 return count;
1269 }
1270
1271 static ssize_t
1272 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1273 {
1274 struct perf_counter *counter = file->private_data;
1275
1276 return perf_read_hw(counter, buf, count);
1277 }
1278
1279 static unsigned int perf_poll(struct file *file, poll_table *wait)
1280 {
1281 struct perf_counter *counter = file->private_data;
1282 struct perf_mmap_data *data;
1283 unsigned int events;
1284
1285 rcu_read_lock();
1286 data = rcu_dereference(counter->data);
1287 if (data)
1288 events = atomic_xchg(&data->wakeup, 0);
1289 else
1290 events = POLL_HUP;
1291 rcu_read_unlock();
1292
1293 poll_wait(file, &counter->waitq, wait);
1294
1295 return events;
1296 }
1297
1298 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1299 {
1300 struct perf_counter *counter = file->private_data;
1301 int err = 0;
1302
1303 switch (cmd) {
1304 case PERF_COUNTER_IOC_ENABLE:
1305 perf_counter_enable_family(counter);
1306 break;
1307 case PERF_COUNTER_IOC_DISABLE:
1308 perf_counter_disable_family(counter);
1309 break;
1310 case PERF_COUNTER_IOC_REFRESH:
1311 perf_counter_refresh(counter, arg);
1312 break;
1313 default:
1314 err = -ENOTTY;
1315 }
1316 return err;
1317 }
1318
1319 /*
1320 * Callers need to ensure there can be no nesting of this function, otherwise
1321 * the seqlock logic goes bad. We can not serialize this because the arch
1322 * code calls this from NMI context.
1323 */
1324 void perf_counter_update_userpage(struct perf_counter *counter)
1325 {
1326 struct perf_mmap_data *data;
1327 struct perf_counter_mmap_page *userpg;
1328
1329 rcu_read_lock();
1330 data = rcu_dereference(counter->data);
1331 if (!data)
1332 goto unlock;
1333
1334 userpg = data->user_page;
1335
1336 /*
1337 * Disable preemption so as to not let the corresponding user-space
1338 * spin too long if we get preempted.
1339 */
1340 preempt_disable();
1341 ++userpg->lock;
1342 barrier();
1343 userpg->index = counter->hw.idx;
1344 userpg->offset = atomic64_read(&counter->count);
1345 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1346 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1347
1348 barrier();
1349 ++userpg->lock;
1350 preempt_enable();
1351 unlock:
1352 rcu_read_unlock();
1353 }
1354
1355 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1356 {
1357 struct perf_counter *counter = vma->vm_file->private_data;
1358 struct perf_mmap_data *data;
1359 int ret = VM_FAULT_SIGBUS;
1360
1361 rcu_read_lock();
1362 data = rcu_dereference(counter->data);
1363 if (!data)
1364 goto unlock;
1365
1366 if (vmf->pgoff == 0) {
1367 vmf->page = virt_to_page(data->user_page);
1368 } else {
1369 int nr = vmf->pgoff - 1;
1370
1371 if ((unsigned)nr > data->nr_pages)
1372 goto unlock;
1373
1374 vmf->page = virt_to_page(data->data_pages[nr]);
1375 }
1376 get_page(vmf->page);
1377 ret = 0;
1378 unlock:
1379 rcu_read_unlock();
1380
1381 return ret;
1382 }
1383
1384 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1385 {
1386 struct perf_mmap_data *data;
1387 unsigned long size;
1388 int i;
1389
1390 WARN_ON(atomic_read(&counter->mmap_count));
1391
1392 size = sizeof(struct perf_mmap_data);
1393 size += nr_pages * sizeof(void *);
1394
1395 data = kzalloc(size, GFP_KERNEL);
1396 if (!data)
1397 goto fail;
1398
1399 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1400 if (!data->user_page)
1401 goto fail_user_page;
1402
1403 for (i = 0; i < nr_pages; i++) {
1404 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1405 if (!data->data_pages[i])
1406 goto fail_data_pages;
1407 }
1408
1409 data->nr_pages = nr_pages;
1410
1411 rcu_assign_pointer(counter->data, data);
1412
1413 return 0;
1414
1415 fail_data_pages:
1416 for (i--; i >= 0; i--)
1417 free_page((unsigned long)data->data_pages[i]);
1418
1419 free_page((unsigned long)data->user_page);
1420
1421 fail_user_page:
1422 kfree(data);
1423
1424 fail:
1425 return -ENOMEM;
1426 }
1427
1428 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1429 {
1430 struct perf_mmap_data *data = container_of(rcu_head,
1431 struct perf_mmap_data, rcu_head);
1432 int i;
1433
1434 free_page((unsigned long)data->user_page);
1435 for (i = 0; i < data->nr_pages; i++)
1436 free_page((unsigned long)data->data_pages[i]);
1437 kfree(data);
1438 }
1439
1440 static void perf_mmap_data_free(struct perf_counter *counter)
1441 {
1442 struct perf_mmap_data *data = counter->data;
1443
1444 WARN_ON(atomic_read(&counter->mmap_count));
1445
1446 rcu_assign_pointer(counter->data, NULL);
1447 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1448 }
1449
1450 static void perf_mmap_open(struct vm_area_struct *vma)
1451 {
1452 struct perf_counter *counter = vma->vm_file->private_data;
1453
1454 atomic_inc(&counter->mmap_count);
1455 }
1456
1457 static void perf_mmap_close(struct vm_area_struct *vma)
1458 {
1459 struct perf_counter *counter = vma->vm_file->private_data;
1460
1461 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1462 &counter->mmap_mutex)) {
1463 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1464 perf_mmap_data_free(counter);
1465 mutex_unlock(&counter->mmap_mutex);
1466 }
1467 }
1468
1469 static struct vm_operations_struct perf_mmap_vmops = {
1470 .open = perf_mmap_open,
1471 .close = perf_mmap_close,
1472 .fault = perf_mmap_fault,
1473 };
1474
1475 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1476 {
1477 struct perf_counter *counter = file->private_data;
1478 unsigned long vma_size;
1479 unsigned long nr_pages;
1480 unsigned long locked, lock_limit;
1481 int ret = 0;
1482
1483 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1484 return -EINVAL;
1485
1486 vma_size = vma->vm_end - vma->vm_start;
1487 nr_pages = (vma_size / PAGE_SIZE) - 1;
1488
1489 /*
1490 * If we have data pages ensure they're a power-of-two number, so we
1491 * can do bitmasks instead of modulo.
1492 */
1493 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1494 return -EINVAL;
1495
1496 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1497 return -EINVAL;
1498
1499 if (vma->vm_pgoff != 0)
1500 return -EINVAL;
1501
1502 mutex_lock(&counter->mmap_mutex);
1503 if (atomic_inc_not_zero(&counter->mmap_count)) {
1504 if (nr_pages != counter->data->nr_pages)
1505 ret = -EINVAL;
1506 goto unlock;
1507 }
1508
1509 locked = vma->vm_mm->locked_vm;
1510 locked += nr_pages + 1;
1511
1512 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1513 lock_limit >>= PAGE_SHIFT;
1514
1515 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1516 ret = -EPERM;
1517 goto unlock;
1518 }
1519
1520 WARN_ON(counter->data);
1521 ret = perf_mmap_data_alloc(counter, nr_pages);
1522 if (ret)
1523 goto unlock;
1524
1525 atomic_set(&counter->mmap_count, 1);
1526 vma->vm_mm->locked_vm += nr_pages + 1;
1527 unlock:
1528 mutex_unlock(&counter->mmap_mutex);
1529
1530 vma->vm_flags &= ~VM_MAYWRITE;
1531 vma->vm_flags |= VM_RESERVED;
1532 vma->vm_ops = &perf_mmap_vmops;
1533
1534 return ret;
1535 }
1536
1537 static int perf_fasync(int fd, struct file *filp, int on)
1538 {
1539 struct perf_counter *counter = filp->private_data;
1540 struct inode *inode = filp->f_path.dentry->d_inode;
1541 int retval;
1542
1543 mutex_lock(&inode->i_mutex);
1544 retval = fasync_helper(fd, filp, on, &counter->fasync);
1545 mutex_unlock(&inode->i_mutex);
1546
1547 if (retval < 0)
1548 return retval;
1549
1550 return 0;
1551 }
1552
1553 static const struct file_operations perf_fops = {
1554 .release = perf_release,
1555 .read = perf_read,
1556 .poll = perf_poll,
1557 .unlocked_ioctl = perf_ioctl,
1558 .compat_ioctl = perf_ioctl,
1559 .mmap = perf_mmap,
1560 .fasync = perf_fasync,
1561 };
1562
1563 /*
1564 * Perf counter wakeup
1565 *
1566 * If there's data, ensure we set the poll() state and publish everything
1567 * to user-space before waking everybody up.
1568 */
1569
1570 void perf_counter_wakeup(struct perf_counter *counter)
1571 {
1572 struct perf_mmap_data *data;
1573
1574 rcu_read_lock();
1575 data = rcu_dereference(counter->data);
1576 if (data) {
1577 atomic_set(&data->wakeup, POLL_IN);
1578 /*
1579 * Ensure all data writes are issued before updating the
1580 * user-space data head information. The matching rmb()
1581 * will be in userspace after reading this value.
1582 */
1583 smp_wmb();
1584 data->user_page->data_head = atomic_read(&data->head);
1585 }
1586 rcu_read_unlock();
1587
1588 wake_up_all(&counter->waitq);
1589
1590 if (counter->pending_kill) {
1591 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1592 counter->pending_kill = 0;
1593 }
1594 }
1595
1596 /*
1597 * Pending wakeups
1598 *
1599 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1600 *
1601 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1602 * single linked list and use cmpxchg() to add entries lockless.
1603 */
1604
1605 static void perf_pending_counter(struct perf_pending_entry *entry)
1606 {
1607 struct perf_counter *counter = container_of(entry,
1608 struct perf_counter, pending);
1609
1610 if (counter->pending_disable) {
1611 counter->pending_disable = 0;
1612 perf_counter_disable(counter);
1613 }
1614
1615 if (counter->pending_wakeup) {
1616 counter->pending_wakeup = 0;
1617 perf_counter_wakeup(counter);
1618 }
1619 }
1620
1621 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1622
1623 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1624 PENDING_TAIL,
1625 };
1626
1627 static void perf_pending_queue(struct perf_pending_entry *entry,
1628 void (*func)(struct perf_pending_entry *))
1629 {
1630 struct perf_pending_entry **head;
1631
1632 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1633 return;
1634
1635 entry->func = func;
1636
1637 head = &get_cpu_var(perf_pending_head);
1638
1639 do {
1640 entry->next = *head;
1641 } while (cmpxchg(head, entry->next, entry) != entry->next);
1642
1643 set_perf_counter_pending();
1644
1645 put_cpu_var(perf_pending_head);
1646 }
1647
1648 static int __perf_pending_run(void)
1649 {
1650 struct perf_pending_entry *list;
1651 int nr = 0;
1652
1653 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1654 while (list != PENDING_TAIL) {
1655 void (*func)(struct perf_pending_entry *);
1656 struct perf_pending_entry *entry = list;
1657
1658 list = list->next;
1659
1660 func = entry->func;
1661 entry->next = NULL;
1662 /*
1663 * Ensure we observe the unqueue before we issue the wakeup,
1664 * so that we won't be waiting forever.
1665 * -- see perf_not_pending().
1666 */
1667 smp_wmb();
1668
1669 func(entry);
1670 nr++;
1671 }
1672
1673 return nr;
1674 }
1675
1676 static inline int perf_not_pending(struct perf_counter *counter)
1677 {
1678 /*
1679 * If we flush on whatever cpu we run, there is a chance we don't
1680 * need to wait.
1681 */
1682 get_cpu();
1683 __perf_pending_run();
1684 put_cpu();
1685
1686 /*
1687 * Ensure we see the proper queue state before going to sleep
1688 * so that we do not miss the wakeup. -- see perf_pending_handle()
1689 */
1690 smp_rmb();
1691 return counter->pending.next == NULL;
1692 }
1693
1694 static void perf_pending_sync(struct perf_counter *counter)
1695 {
1696 wait_event(counter->waitq, perf_not_pending(counter));
1697 }
1698
1699 void perf_counter_do_pending(void)
1700 {
1701 __perf_pending_run();
1702 }
1703
1704 /*
1705 * Callchain support -- arch specific
1706 */
1707
1708 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1709 {
1710 return NULL;
1711 }
1712
1713 /*
1714 * Output
1715 */
1716
1717 struct perf_output_handle {
1718 struct perf_counter *counter;
1719 struct perf_mmap_data *data;
1720 unsigned int offset;
1721 unsigned int head;
1722 int wakeup;
1723 int nmi;
1724 int overflow;
1725 };
1726
1727 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1728 {
1729 if (handle->nmi) {
1730 handle->counter->pending_wakeup = 1;
1731 perf_pending_queue(&handle->counter->pending,
1732 perf_pending_counter);
1733 } else
1734 perf_counter_wakeup(handle->counter);
1735 }
1736
1737 static int perf_output_begin(struct perf_output_handle *handle,
1738 struct perf_counter *counter, unsigned int size,
1739 int nmi, int overflow)
1740 {
1741 struct perf_mmap_data *data;
1742 unsigned int offset, head;
1743
1744 rcu_read_lock();
1745 data = rcu_dereference(counter->data);
1746 if (!data)
1747 goto out;
1748
1749 handle->counter = counter;
1750 handle->nmi = nmi;
1751 handle->overflow = overflow;
1752
1753 if (!data->nr_pages)
1754 goto fail;
1755
1756 do {
1757 offset = head = atomic_read(&data->head);
1758 head += size;
1759 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1760
1761 handle->data = data;
1762 handle->offset = offset;
1763 handle->head = head;
1764 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1765
1766 return 0;
1767
1768 fail:
1769 __perf_output_wakeup(handle);
1770 out:
1771 rcu_read_unlock();
1772
1773 return -ENOSPC;
1774 }
1775
1776 static void perf_output_copy(struct perf_output_handle *handle,
1777 void *buf, unsigned int len)
1778 {
1779 unsigned int pages_mask;
1780 unsigned int offset;
1781 unsigned int size;
1782 void **pages;
1783
1784 offset = handle->offset;
1785 pages_mask = handle->data->nr_pages - 1;
1786 pages = handle->data->data_pages;
1787
1788 do {
1789 unsigned int page_offset;
1790 int nr;
1791
1792 nr = (offset >> PAGE_SHIFT) & pages_mask;
1793 page_offset = offset & (PAGE_SIZE - 1);
1794 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1795
1796 memcpy(pages[nr] + page_offset, buf, size);
1797
1798 len -= size;
1799 buf += size;
1800 offset += size;
1801 } while (len);
1802
1803 handle->offset = offset;
1804
1805 WARN_ON_ONCE(handle->offset > handle->head);
1806 }
1807
1808 #define perf_output_put(handle, x) \
1809 perf_output_copy((handle), &(x), sizeof(x))
1810
1811 static void perf_output_end(struct perf_output_handle *handle)
1812 {
1813 int wakeup_events = handle->counter->hw_event.wakeup_events;
1814
1815 if (handle->overflow && wakeup_events) {
1816 int events = atomic_inc_return(&handle->data->events);
1817 if (events >= wakeup_events) {
1818 atomic_sub(wakeup_events, &handle->data->events);
1819 __perf_output_wakeup(handle);
1820 }
1821 } else if (handle->wakeup)
1822 __perf_output_wakeup(handle);
1823 rcu_read_unlock();
1824 }
1825
1826 static void perf_counter_output(struct perf_counter *counter,
1827 int nmi, struct pt_regs *regs)
1828 {
1829 int ret;
1830 u64 record_type = counter->hw_event.record_type;
1831 struct perf_output_handle handle;
1832 struct perf_event_header header;
1833 u64 ip;
1834 struct {
1835 u32 pid, tid;
1836 } tid_entry;
1837 struct {
1838 u64 event;
1839 u64 counter;
1840 } group_entry;
1841 struct perf_callchain_entry *callchain = NULL;
1842 int callchain_size = 0;
1843 u64 time;
1844
1845 header.type = PERF_EVENT_COUNTER_OVERFLOW;
1846 header.size = sizeof(header);
1847
1848 if (record_type & PERF_RECORD_IP) {
1849 ip = instruction_pointer(regs);
1850 header.type |= __PERF_EVENT_IP;
1851 header.size += sizeof(ip);
1852 }
1853
1854 if (record_type & PERF_RECORD_TID) {
1855 /* namespace issues */
1856 tid_entry.pid = current->group_leader->pid;
1857 tid_entry.tid = current->pid;
1858
1859 header.type |= __PERF_EVENT_TID;
1860 header.size += sizeof(tid_entry);
1861 }
1862
1863 if (record_type & PERF_RECORD_GROUP) {
1864 header.type |= __PERF_EVENT_GROUP;
1865 header.size += sizeof(u64) +
1866 counter->nr_siblings * sizeof(group_entry);
1867 }
1868
1869 if (record_type & PERF_RECORD_CALLCHAIN) {
1870 callchain = perf_callchain(regs);
1871
1872 if (callchain) {
1873 callchain_size = (1 + callchain->nr) * sizeof(u64);
1874
1875 header.type |= __PERF_EVENT_CALLCHAIN;
1876 header.size += callchain_size;
1877 }
1878 }
1879
1880 if (record_type & PERF_RECORD_TIME) {
1881 /*
1882 * Maybe do better on x86 and provide cpu_clock_nmi()
1883 */
1884 time = sched_clock();
1885
1886 header.type |= __PERF_EVENT_TIME;
1887 header.size += sizeof(u64);
1888 }
1889
1890 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1891 if (ret)
1892 return;
1893
1894 perf_output_put(&handle, header);
1895
1896 if (record_type & PERF_RECORD_IP)
1897 perf_output_put(&handle, ip);
1898
1899 if (record_type & PERF_RECORD_TID)
1900 perf_output_put(&handle, tid_entry);
1901
1902 if (record_type & PERF_RECORD_GROUP) {
1903 struct perf_counter *leader, *sub;
1904 u64 nr = counter->nr_siblings;
1905
1906 perf_output_put(&handle, nr);
1907
1908 leader = counter->group_leader;
1909 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1910 if (sub != counter)
1911 sub->hw_ops->read(sub);
1912
1913 group_entry.event = sub->hw_event.config;
1914 group_entry.counter = atomic64_read(&sub->count);
1915
1916 perf_output_put(&handle, group_entry);
1917 }
1918 }
1919
1920 if (callchain)
1921 perf_output_copy(&handle, callchain, callchain_size);
1922
1923 if (record_type & PERF_RECORD_TIME)
1924 perf_output_put(&handle, time);
1925
1926 perf_output_end(&handle);
1927 }
1928
1929 /*
1930 * mmap tracking
1931 */
1932
1933 struct perf_mmap_event {
1934 struct file *file;
1935 char *file_name;
1936 int file_size;
1937
1938 struct {
1939 struct perf_event_header header;
1940
1941 u32 pid;
1942 u32 tid;
1943 u64 start;
1944 u64 len;
1945 u64 pgoff;
1946 } event;
1947 };
1948
1949 static void perf_counter_mmap_output(struct perf_counter *counter,
1950 struct perf_mmap_event *mmap_event)
1951 {
1952 struct perf_output_handle handle;
1953 int size = mmap_event->event.header.size;
1954 int ret = perf_output_begin(&handle, counter, size, 0, 0);
1955
1956 if (ret)
1957 return;
1958
1959 perf_output_put(&handle, mmap_event->event);
1960 perf_output_copy(&handle, mmap_event->file_name,
1961 mmap_event->file_size);
1962 perf_output_end(&handle);
1963 }
1964
1965 static int perf_counter_mmap_match(struct perf_counter *counter,
1966 struct perf_mmap_event *mmap_event)
1967 {
1968 if (counter->hw_event.mmap &&
1969 mmap_event->event.header.type == PERF_EVENT_MMAP)
1970 return 1;
1971
1972 if (counter->hw_event.munmap &&
1973 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
1974 return 1;
1975
1976 return 0;
1977 }
1978
1979 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
1980 struct perf_mmap_event *mmap_event)
1981 {
1982 struct perf_counter *counter;
1983
1984 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1985 return;
1986
1987 rcu_read_lock();
1988 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1989 if (perf_counter_mmap_match(counter, mmap_event))
1990 perf_counter_mmap_output(counter, mmap_event);
1991 }
1992 rcu_read_unlock();
1993 }
1994
1995 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
1996 {
1997 struct perf_cpu_context *cpuctx;
1998 struct file *file = mmap_event->file;
1999 unsigned int size;
2000 char tmp[16];
2001 char *buf = NULL;
2002 char *name;
2003
2004 if (file) {
2005 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2006 if (!buf) {
2007 name = strncpy(tmp, "//enomem", sizeof(tmp));
2008 goto got_name;
2009 }
2010 name = dentry_path(file->f_dentry, buf, PATH_MAX);
2011 if (IS_ERR(name)) {
2012 name = strncpy(tmp, "//toolong", sizeof(tmp));
2013 goto got_name;
2014 }
2015 } else {
2016 name = strncpy(tmp, "//anon", sizeof(tmp));
2017 goto got_name;
2018 }
2019
2020 got_name:
2021 size = ALIGN(strlen(name), sizeof(u64));
2022
2023 mmap_event->file_name = name;
2024 mmap_event->file_size = size;
2025
2026 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2027
2028 cpuctx = &get_cpu_var(perf_cpu_context);
2029 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2030 put_cpu_var(perf_cpu_context);
2031
2032 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2033
2034 kfree(buf);
2035 }
2036
2037 void perf_counter_mmap(unsigned long addr, unsigned long len,
2038 unsigned long pgoff, struct file *file)
2039 {
2040 struct perf_mmap_event mmap_event = {
2041 .file = file,
2042 .event = {
2043 .header = { .type = PERF_EVENT_MMAP, },
2044 .pid = current->group_leader->pid,
2045 .tid = current->pid,
2046 .start = addr,
2047 .len = len,
2048 .pgoff = pgoff,
2049 },
2050 };
2051
2052 perf_counter_mmap_event(&mmap_event);
2053 }
2054
2055 void perf_counter_munmap(unsigned long addr, unsigned long len,
2056 unsigned long pgoff, struct file *file)
2057 {
2058 struct perf_mmap_event mmap_event = {
2059 .file = file,
2060 .event = {
2061 .header = { .type = PERF_EVENT_MUNMAP, },
2062 .pid = current->group_leader->pid,
2063 .tid = current->pid,
2064 .start = addr,
2065 .len = len,
2066 .pgoff = pgoff,
2067 },
2068 };
2069
2070 perf_counter_mmap_event(&mmap_event);
2071 }
2072
2073 /*
2074 * Generic counter overflow handling.
2075 */
2076
2077 int perf_counter_overflow(struct perf_counter *counter,
2078 int nmi, struct pt_regs *regs)
2079 {
2080 int events = atomic_read(&counter->event_limit);
2081 int ret = 0;
2082
2083 counter->pending_kill = POLL_IN;
2084 if (events && atomic_dec_and_test(&counter->event_limit)) {
2085 ret = 1;
2086 counter->pending_kill = POLL_HUP;
2087 if (nmi) {
2088 counter->pending_disable = 1;
2089 perf_pending_queue(&counter->pending,
2090 perf_pending_counter);
2091 } else
2092 perf_counter_disable(counter);
2093 }
2094
2095 perf_counter_output(counter, nmi, regs);
2096 return ret;
2097 }
2098
2099 /*
2100 * Generic software counter infrastructure
2101 */
2102
2103 static void perf_swcounter_update(struct perf_counter *counter)
2104 {
2105 struct hw_perf_counter *hwc = &counter->hw;
2106 u64 prev, now;
2107 s64 delta;
2108
2109 again:
2110 prev = atomic64_read(&hwc->prev_count);
2111 now = atomic64_read(&hwc->count);
2112 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2113 goto again;
2114
2115 delta = now - prev;
2116
2117 atomic64_add(delta, &counter->count);
2118 atomic64_sub(delta, &hwc->period_left);
2119 }
2120
2121 static void perf_swcounter_set_period(struct perf_counter *counter)
2122 {
2123 struct hw_perf_counter *hwc = &counter->hw;
2124 s64 left = atomic64_read(&hwc->period_left);
2125 s64 period = hwc->irq_period;
2126
2127 if (unlikely(left <= -period)) {
2128 left = period;
2129 atomic64_set(&hwc->period_left, left);
2130 }
2131
2132 if (unlikely(left <= 0)) {
2133 left += period;
2134 atomic64_add(period, &hwc->period_left);
2135 }
2136
2137 atomic64_set(&hwc->prev_count, -left);
2138 atomic64_set(&hwc->count, -left);
2139 }
2140
2141 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2142 {
2143 enum hrtimer_restart ret = HRTIMER_RESTART;
2144 struct perf_counter *counter;
2145 struct pt_regs *regs;
2146
2147 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2148 counter->hw_ops->read(counter);
2149
2150 regs = get_irq_regs();
2151 /*
2152 * In case we exclude kernel IPs or are somehow not in interrupt
2153 * context, provide the next best thing, the user IP.
2154 */
2155 if ((counter->hw_event.exclude_kernel || !regs) &&
2156 !counter->hw_event.exclude_user)
2157 regs = task_pt_regs(current);
2158
2159 if (regs) {
2160 if (perf_counter_overflow(counter, 0, regs))
2161 ret = HRTIMER_NORESTART;
2162 }
2163
2164 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2165
2166 return ret;
2167 }
2168
2169 static void perf_swcounter_overflow(struct perf_counter *counter,
2170 int nmi, struct pt_regs *regs)
2171 {
2172 perf_swcounter_update(counter);
2173 perf_swcounter_set_period(counter);
2174 if (perf_counter_overflow(counter, nmi, regs))
2175 /* soft-disable the counter */
2176 ;
2177
2178 }
2179
2180 static int perf_swcounter_match(struct perf_counter *counter,
2181 enum perf_event_types type,
2182 u32 event, struct pt_regs *regs)
2183 {
2184 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2185 return 0;
2186
2187 if (perf_event_raw(&counter->hw_event))
2188 return 0;
2189
2190 if (perf_event_type(&counter->hw_event) != type)
2191 return 0;
2192
2193 if (perf_event_id(&counter->hw_event) != event)
2194 return 0;
2195
2196 if (counter->hw_event.exclude_user && user_mode(regs))
2197 return 0;
2198
2199 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2200 return 0;
2201
2202 return 1;
2203 }
2204
2205 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2206 int nmi, struct pt_regs *regs)
2207 {
2208 int neg = atomic64_add_negative(nr, &counter->hw.count);
2209 if (counter->hw.irq_period && !neg)
2210 perf_swcounter_overflow(counter, nmi, regs);
2211 }
2212
2213 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2214 enum perf_event_types type, u32 event,
2215 u64 nr, int nmi, struct pt_regs *regs)
2216 {
2217 struct perf_counter *counter;
2218
2219 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2220 return;
2221
2222 rcu_read_lock();
2223 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2224 if (perf_swcounter_match(counter, type, event, regs))
2225 perf_swcounter_add(counter, nr, nmi, regs);
2226 }
2227 rcu_read_unlock();
2228 }
2229
2230 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2231 {
2232 if (in_nmi())
2233 return &cpuctx->recursion[3];
2234
2235 if (in_irq())
2236 return &cpuctx->recursion[2];
2237
2238 if (in_softirq())
2239 return &cpuctx->recursion[1];
2240
2241 return &cpuctx->recursion[0];
2242 }
2243
2244 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2245 u64 nr, int nmi, struct pt_regs *regs)
2246 {
2247 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2248 int *recursion = perf_swcounter_recursion_context(cpuctx);
2249
2250 if (*recursion)
2251 goto out;
2252
2253 (*recursion)++;
2254 barrier();
2255
2256 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
2257 if (cpuctx->task_ctx) {
2258 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2259 nr, nmi, regs);
2260 }
2261
2262 barrier();
2263 (*recursion)--;
2264
2265 out:
2266 put_cpu_var(perf_cpu_context);
2267 }
2268
2269 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2270 {
2271 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2272 }
2273
2274 static void perf_swcounter_read(struct perf_counter *counter)
2275 {
2276 perf_swcounter_update(counter);
2277 }
2278
2279 static int perf_swcounter_enable(struct perf_counter *counter)
2280 {
2281 perf_swcounter_set_period(counter);
2282 return 0;
2283 }
2284
2285 static void perf_swcounter_disable(struct perf_counter *counter)
2286 {
2287 perf_swcounter_update(counter);
2288 }
2289
2290 static const struct hw_perf_counter_ops perf_ops_generic = {
2291 .enable = perf_swcounter_enable,
2292 .disable = perf_swcounter_disable,
2293 .read = perf_swcounter_read,
2294 };
2295
2296 /*
2297 * Software counter: cpu wall time clock
2298 */
2299
2300 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2301 {
2302 int cpu = raw_smp_processor_id();
2303 s64 prev;
2304 u64 now;
2305
2306 now = cpu_clock(cpu);
2307 prev = atomic64_read(&counter->hw.prev_count);
2308 atomic64_set(&counter->hw.prev_count, now);
2309 atomic64_add(now - prev, &counter->count);
2310 }
2311
2312 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2313 {
2314 struct hw_perf_counter *hwc = &counter->hw;
2315 int cpu = raw_smp_processor_id();
2316
2317 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2318 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2319 hwc->hrtimer.function = perf_swcounter_hrtimer;
2320 if (hwc->irq_period) {
2321 __hrtimer_start_range_ns(&hwc->hrtimer,
2322 ns_to_ktime(hwc->irq_period), 0,
2323 HRTIMER_MODE_REL, 0);
2324 }
2325
2326 return 0;
2327 }
2328
2329 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2330 {
2331 hrtimer_cancel(&counter->hw.hrtimer);
2332 cpu_clock_perf_counter_update(counter);
2333 }
2334
2335 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2336 {
2337 cpu_clock_perf_counter_update(counter);
2338 }
2339
2340 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2341 .enable = cpu_clock_perf_counter_enable,
2342 .disable = cpu_clock_perf_counter_disable,
2343 .read = cpu_clock_perf_counter_read,
2344 };
2345
2346 /*
2347 * Software counter: task time clock
2348 */
2349
2350 /*
2351 * Called from within the scheduler:
2352 */
2353 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2354 {
2355 struct task_struct *curr = counter->task;
2356 u64 delta;
2357
2358 delta = __task_delta_exec(curr, update);
2359
2360 return curr->se.sum_exec_runtime + delta;
2361 }
2362
2363 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2364 {
2365 u64 prev;
2366 s64 delta;
2367
2368 prev = atomic64_read(&counter->hw.prev_count);
2369
2370 atomic64_set(&counter->hw.prev_count, now);
2371
2372 delta = now - prev;
2373
2374 atomic64_add(delta, &counter->count);
2375 }
2376
2377 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2378 {
2379 struct hw_perf_counter *hwc = &counter->hw;
2380
2381 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2382 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2383 hwc->hrtimer.function = perf_swcounter_hrtimer;
2384 if (hwc->irq_period) {
2385 __hrtimer_start_range_ns(&hwc->hrtimer,
2386 ns_to_ktime(hwc->irq_period), 0,
2387 HRTIMER_MODE_REL, 0);
2388 }
2389
2390 return 0;
2391 }
2392
2393 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2394 {
2395 hrtimer_cancel(&counter->hw.hrtimer);
2396 task_clock_perf_counter_update(counter,
2397 task_clock_perf_counter_val(counter, 0));
2398 }
2399
2400 static void task_clock_perf_counter_read(struct perf_counter *counter)
2401 {
2402 task_clock_perf_counter_update(counter,
2403 task_clock_perf_counter_val(counter, 1));
2404 }
2405
2406 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2407 .enable = task_clock_perf_counter_enable,
2408 .disable = task_clock_perf_counter_disable,
2409 .read = task_clock_perf_counter_read,
2410 };
2411
2412 /*
2413 * Software counter: cpu migrations
2414 */
2415
2416 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2417 {
2418 struct task_struct *curr = counter->ctx->task;
2419
2420 if (curr)
2421 return curr->se.nr_migrations;
2422 return cpu_nr_migrations(smp_processor_id());
2423 }
2424
2425 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2426 {
2427 u64 prev, now;
2428 s64 delta;
2429
2430 prev = atomic64_read(&counter->hw.prev_count);
2431 now = get_cpu_migrations(counter);
2432
2433 atomic64_set(&counter->hw.prev_count, now);
2434
2435 delta = now - prev;
2436
2437 atomic64_add(delta, &counter->count);
2438 }
2439
2440 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2441 {
2442 cpu_migrations_perf_counter_update(counter);
2443 }
2444
2445 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2446 {
2447 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2448 atomic64_set(&counter->hw.prev_count,
2449 get_cpu_migrations(counter));
2450 return 0;
2451 }
2452
2453 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2454 {
2455 cpu_migrations_perf_counter_update(counter);
2456 }
2457
2458 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2459 .enable = cpu_migrations_perf_counter_enable,
2460 .disable = cpu_migrations_perf_counter_disable,
2461 .read = cpu_migrations_perf_counter_read,
2462 };
2463
2464 #ifdef CONFIG_EVENT_PROFILE
2465 void perf_tpcounter_event(int event_id)
2466 {
2467 struct pt_regs *regs = get_irq_regs();
2468
2469 if (!regs)
2470 regs = task_pt_regs(current);
2471
2472 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2473 }
2474
2475 extern int ftrace_profile_enable(int);
2476 extern void ftrace_profile_disable(int);
2477
2478 static void tp_perf_counter_destroy(struct perf_counter *counter)
2479 {
2480 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2481 }
2482
2483 static const struct hw_perf_counter_ops *
2484 tp_perf_counter_init(struct perf_counter *counter)
2485 {
2486 int event_id = perf_event_id(&counter->hw_event);
2487 int ret;
2488
2489 ret = ftrace_profile_enable(event_id);
2490 if (ret)
2491 return NULL;
2492
2493 counter->destroy = tp_perf_counter_destroy;
2494 counter->hw.irq_period = counter->hw_event.irq_period;
2495
2496 return &perf_ops_generic;
2497 }
2498 #else
2499 static const struct hw_perf_counter_ops *
2500 tp_perf_counter_init(struct perf_counter *counter)
2501 {
2502 return NULL;
2503 }
2504 #endif
2505
2506 static const struct hw_perf_counter_ops *
2507 sw_perf_counter_init(struct perf_counter *counter)
2508 {
2509 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2510 const struct hw_perf_counter_ops *hw_ops = NULL;
2511 struct hw_perf_counter *hwc = &counter->hw;
2512
2513 /*
2514 * Software counters (currently) can't in general distinguish
2515 * between user, kernel and hypervisor events.
2516 * However, context switches and cpu migrations are considered
2517 * to be kernel events, and page faults are never hypervisor
2518 * events.
2519 */
2520 switch (perf_event_id(&counter->hw_event)) {
2521 case PERF_COUNT_CPU_CLOCK:
2522 hw_ops = &perf_ops_cpu_clock;
2523
2524 if (hw_event->irq_period && hw_event->irq_period < 10000)
2525 hw_event->irq_period = 10000;
2526 break;
2527 case PERF_COUNT_TASK_CLOCK:
2528 /*
2529 * If the user instantiates this as a per-cpu counter,
2530 * use the cpu_clock counter instead.
2531 */
2532 if (counter->ctx->task)
2533 hw_ops = &perf_ops_task_clock;
2534 else
2535 hw_ops = &perf_ops_cpu_clock;
2536
2537 if (hw_event->irq_period && hw_event->irq_period < 10000)
2538 hw_event->irq_period = 10000;
2539 break;
2540 case PERF_COUNT_PAGE_FAULTS:
2541 case PERF_COUNT_PAGE_FAULTS_MIN:
2542 case PERF_COUNT_PAGE_FAULTS_MAJ:
2543 case PERF_COUNT_CONTEXT_SWITCHES:
2544 hw_ops = &perf_ops_generic;
2545 break;
2546 case PERF_COUNT_CPU_MIGRATIONS:
2547 if (!counter->hw_event.exclude_kernel)
2548 hw_ops = &perf_ops_cpu_migrations;
2549 break;
2550 }
2551
2552 if (hw_ops)
2553 hwc->irq_period = hw_event->irq_period;
2554
2555 return hw_ops;
2556 }
2557
2558 /*
2559 * Allocate and initialize a counter structure
2560 */
2561 static struct perf_counter *
2562 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2563 int cpu,
2564 struct perf_counter_context *ctx,
2565 struct perf_counter *group_leader,
2566 gfp_t gfpflags)
2567 {
2568 const struct hw_perf_counter_ops *hw_ops;
2569 struct perf_counter *counter;
2570 long err;
2571
2572 counter = kzalloc(sizeof(*counter), gfpflags);
2573 if (!counter)
2574 return ERR_PTR(-ENOMEM);
2575
2576 /*
2577 * Single counters are their own group leaders, with an
2578 * empty sibling list:
2579 */
2580 if (!group_leader)
2581 group_leader = counter;
2582
2583 mutex_init(&counter->mutex);
2584 INIT_LIST_HEAD(&counter->list_entry);
2585 INIT_LIST_HEAD(&counter->event_entry);
2586 INIT_LIST_HEAD(&counter->sibling_list);
2587 init_waitqueue_head(&counter->waitq);
2588
2589 mutex_init(&counter->mmap_mutex);
2590
2591 INIT_LIST_HEAD(&counter->child_list);
2592
2593 counter->cpu = cpu;
2594 counter->hw_event = *hw_event;
2595 counter->group_leader = group_leader;
2596 counter->hw_ops = NULL;
2597 counter->ctx = ctx;
2598
2599 counter->state = PERF_COUNTER_STATE_INACTIVE;
2600 if (hw_event->disabled)
2601 counter->state = PERF_COUNTER_STATE_OFF;
2602
2603 hw_ops = NULL;
2604
2605 if (perf_event_raw(hw_event)) {
2606 hw_ops = hw_perf_counter_init(counter);
2607 goto done;
2608 }
2609
2610 switch (perf_event_type(hw_event)) {
2611 case PERF_TYPE_HARDWARE:
2612 hw_ops = hw_perf_counter_init(counter);
2613 break;
2614
2615 case PERF_TYPE_SOFTWARE:
2616 hw_ops = sw_perf_counter_init(counter);
2617 break;
2618
2619 case PERF_TYPE_TRACEPOINT:
2620 hw_ops = tp_perf_counter_init(counter);
2621 break;
2622 }
2623 done:
2624 err = 0;
2625 if (!hw_ops)
2626 err = -EINVAL;
2627 else if (IS_ERR(hw_ops))
2628 err = PTR_ERR(hw_ops);
2629
2630 if (err) {
2631 kfree(counter);
2632 return ERR_PTR(err);
2633 }
2634
2635 counter->hw_ops = hw_ops;
2636
2637 return counter;
2638 }
2639
2640 /**
2641 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2642 *
2643 * @hw_event_uptr: event type attributes for monitoring/sampling
2644 * @pid: target pid
2645 * @cpu: target cpu
2646 * @group_fd: group leader counter fd
2647 */
2648 SYSCALL_DEFINE5(perf_counter_open,
2649 const struct perf_counter_hw_event __user *, hw_event_uptr,
2650 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2651 {
2652 struct perf_counter *counter, *group_leader;
2653 struct perf_counter_hw_event hw_event;
2654 struct perf_counter_context *ctx;
2655 struct file *counter_file = NULL;
2656 struct file *group_file = NULL;
2657 int fput_needed = 0;
2658 int fput_needed2 = 0;
2659 int ret;
2660
2661 /* for future expandability... */
2662 if (flags)
2663 return -EINVAL;
2664
2665 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2666 return -EFAULT;
2667
2668 /*
2669 * Get the target context (task or percpu):
2670 */
2671 ctx = find_get_context(pid, cpu);
2672 if (IS_ERR(ctx))
2673 return PTR_ERR(ctx);
2674
2675 /*
2676 * Look up the group leader (we will attach this counter to it):
2677 */
2678 group_leader = NULL;
2679 if (group_fd != -1) {
2680 ret = -EINVAL;
2681 group_file = fget_light(group_fd, &fput_needed);
2682 if (!group_file)
2683 goto err_put_context;
2684 if (group_file->f_op != &perf_fops)
2685 goto err_put_context;
2686
2687 group_leader = group_file->private_data;
2688 /*
2689 * Do not allow a recursive hierarchy (this new sibling
2690 * becoming part of another group-sibling):
2691 */
2692 if (group_leader->group_leader != group_leader)
2693 goto err_put_context;
2694 /*
2695 * Do not allow to attach to a group in a different
2696 * task or CPU context:
2697 */
2698 if (group_leader->ctx != ctx)
2699 goto err_put_context;
2700 /*
2701 * Only a group leader can be exclusive or pinned
2702 */
2703 if (hw_event.exclusive || hw_event.pinned)
2704 goto err_put_context;
2705 }
2706
2707 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2708 GFP_KERNEL);
2709 ret = PTR_ERR(counter);
2710 if (IS_ERR(counter))
2711 goto err_put_context;
2712
2713 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2714 if (ret < 0)
2715 goto err_free_put_context;
2716
2717 counter_file = fget_light(ret, &fput_needed2);
2718 if (!counter_file)
2719 goto err_free_put_context;
2720
2721 counter->filp = counter_file;
2722 mutex_lock(&ctx->mutex);
2723 perf_install_in_context(ctx, counter, cpu);
2724 mutex_unlock(&ctx->mutex);
2725
2726 fput_light(counter_file, fput_needed2);
2727
2728 out_fput:
2729 fput_light(group_file, fput_needed);
2730
2731 return ret;
2732
2733 err_free_put_context:
2734 kfree(counter);
2735
2736 err_put_context:
2737 put_context(ctx);
2738
2739 goto out_fput;
2740 }
2741
2742 /*
2743 * Initialize the perf_counter context in a task_struct:
2744 */
2745 static void
2746 __perf_counter_init_context(struct perf_counter_context *ctx,
2747 struct task_struct *task)
2748 {
2749 memset(ctx, 0, sizeof(*ctx));
2750 spin_lock_init(&ctx->lock);
2751 mutex_init(&ctx->mutex);
2752 INIT_LIST_HEAD(&ctx->counter_list);
2753 INIT_LIST_HEAD(&ctx->event_list);
2754 ctx->task = task;
2755 }
2756
2757 /*
2758 * inherit a counter from parent task to child task:
2759 */
2760 static struct perf_counter *
2761 inherit_counter(struct perf_counter *parent_counter,
2762 struct task_struct *parent,
2763 struct perf_counter_context *parent_ctx,
2764 struct task_struct *child,
2765 struct perf_counter *group_leader,
2766 struct perf_counter_context *child_ctx)
2767 {
2768 struct perf_counter *child_counter;
2769
2770 /*
2771 * Instead of creating recursive hierarchies of counters,
2772 * we link inherited counters back to the original parent,
2773 * which has a filp for sure, which we use as the reference
2774 * count:
2775 */
2776 if (parent_counter->parent)
2777 parent_counter = parent_counter->parent;
2778
2779 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2780 parent_counter->cpu, child_ctx,
2781 group_leader, GFP_KERNEL);
2782 if (IS_ERR(child_counter))
2783 return child_counter;
2784
2785 /*
2786 * Link it up in the child's context:
2787 */
2788 child_counter->task = child;
2789 add_counter_to_ctx(child_counter, child_ctx);
2790
2791 child_counter->parent = parent_counter;
2792 /*
2793 * inherit into child's child as well:
2794 */
2795 child_counter->hw_event.inherit = 1;
2796
2797 /*
2798 * Get a reference to the parent filp - we will fput it
2799 * when the child counter exits. This is safe to do because
2800 * we are in the parent and we know that the filp still
2801 * exists and has a nonzero count:
2802 */
2803 atomic_long_inc(&parent_counter->filp->f_count);
2804
2805 /*
2806 * Link this into the parent counter's child list
2807 */
2808 mutex_lock(&parent_counter->mutex);
2809 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2810
2811 /*
2812 * Make the child state follow the state of the parent counter,
2813 * not its hw_event.disabled bit. We hold the parent's mutex,
2814 * so we won't race with perf_counter_{en,dis}able_family.
2815 */
2816 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2817 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2818 else
2819 child_counter->state = PERF_COUNTER_STATE_OFF;
2820
2821 mutex_unlock(&parent_counter->mutex);
2822
2823 return child_counter;
2824 }
2825
2826 static int inherit_group(struct perf_counter *parent_counter,
2827 struct task_struct *parent,
2828 struct perf_counter_context *parent_ctx,
2829 struct task_struct *child,
2830 struct perf_counter_context *child_ctx)
2831 {
2832 struct perf_counter *leader;
2833 struct perf_counter *sub;
2834 struct perf_counter *child_ctr;
2835
2836 leader = inherit_counter(parent_counter, parent, parent_ctx,
2837 child, NULL, child_ctx);
2838 if (IS_ERR(leader))
2839 return PTR_ERR(leader);
2840 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2841 child_ctr = inherit_counter(sub, parent, parent_ctx,
2842 child, leader, child_ctx);
2843 if (IS_ERR(child_ctr))
2844 return PTR_ERR(child_ctr);
2845 }
2846 return 0;
2847 }
2848
2849 static void sync_child_counter(struct perf_counter *child_counter,
2850 struct perf_counter *parent_counter)
2851 {
2852 u64 parent_val, child_val;
2853
2854 parent_val = atomic64_read(&parent_counter->count);
2855 child_val = atomic64_read(&child_counter->count);
2856
2857 /*
2858 * Add back the child's count to the parent's count:
2859 */
2860 atomic64_add(child_val, &parent_counter->count);
2861 atomic64_add(child_counter->total_time_enabled,
2862 &parent_counter->child_total_time_enabled);
2863 atomic64_add(child_counter->total_time_running,
2864 &parent_counter->child_total_time_running);
2865
2866 /*
2867 * Remove this counter from the parent's list
2868 */
2869 mutex_lock(&parent_counter->mutex);
2870 list_del_init(&child_counter->child_list);
2871 mutex_unlock(&parent_counter->mutex);
2872
2873 /*
2874 * Release the parent counter, if this was the last
2875 * reference to it.
2876 */
2877 fput(parent_counter->filp);
2878 }
2879
2880 static void
2881 __perf_counter_exit_task(struct task_struct *child,
2882 struct perf_counter *child_counter,
2883 struct perf_counter_context *child_ctx)
2884 {
2885 struct perf_counter *parent_counter;
2886 struct perf_counter *sub, *tmp;
2887
2888 /*
2889 * If we do not self-reap then we have to wait for the
2890 * child task to unschedule (it will happen for sure),
2891 * so that its counter is at its final count. (This
2892 * condition triggers rarely - child tasks usually get
2893 * off their CPU before the parent has a chance to
2894 * get this far into the reaping action)
2895 */
2896 if (child != current) {
2897 wait_task_inactive(child, 0);
2898 list_del_init(&child_counter->list_entry);
2899 update_counter_times(child_counter);
2900 } else {
2901 struct perf_cpu_context *cpuctx;
2902 unsigned long flags;
2903 u64 perf_flags;
2904
2905 /*
2906 * Disable and unlink this counter.
2907 *
2908 * Be careful about zapping the list - IRQ/NMI context
2909 * could still be processing it:
2910 */
2911 curr_rq_lock_irq_save(&flags);
2912 perf_flags = hw_perf_save_disable();
2913
2914 cpuctx = &__get_cpu_var(perf_cpu_context);
2915
2916 group_sched_out(child_counter, cpuctx, child_ctx);
2917 update_counter_times(child_counter);
2918
2919 list_del_init(&child_counter->list_entry);
2920
2921 child_ctx->nr_counters--;
2922
2923 hw_perf_restore(perf_flags);
2924 curr_rq_unlock_irq_restore(&flags);
2925 }
2926
2927 parent_counter = child_counter->parent;
2928 /*
2929 * It can happen that parent exits first, and has counters
2930 * that are still around due to the child reference. These
2931 * counters need to be zapped - but otherwise linger.
2932 */
2933 if (parent_counter) {
2934 sync_child_counter(child_counter, parent_counter);
2935 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2936 list_entry) {
2937 if (sub->parent) {
2938 sync_child_counter(sub, sub->parent);
2939 free_counter(sub);
2940 }
2941 }
2942 free_counter(child_counter);
2943 }
2944 }
2945
2946 /*
2947 * When a child task exits, feed back counter values to parent counters.
2948 *
2949 * Note: we may be running in child context, but the PID is not hashed
2950 * anymore so new counters will not be added.
2951 */
2952 void perf_counter_exit_task(struct task_struct *child)
2953 {
2954 struct perf_counter *child_counter, *tmp;
2955 struct perf_counter_context *child_ctx;
2956
2957 child_ctx = &child->perf_counter_ctx;
2958
2959 if (likely(!child_ctx->nr_counters))
2960 return;
2961
2962 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2963 list_entry)
2964 __perf_counter_exit_task(child, child_counter, child_ctx);
2965 }
2966
2967 /*
2968 * Initialize the perf_counter context in task_struct
2969 */
2970 void perf_counter_init_task(struct task_struct *child)
2971 {
2972 struct perf_counter_context *child_ctx, *parent_ctx;
2973 struct perf_counter *counter;
2974 struct task_struct *parent = current;
2975
2976 child_ctx = &child->perf_counter_ctx;
2977 parent_ctx = &parent->perf_counter_ctx;
2978
2979 __perf_counter_init_context(child_ctx, child);
2980
2981 /*
2982 * This is executed from the parent task context, so inherit
2983 * counters that have been marked for cloning:
2984 */
2985
2986 if (likely(!parent_ctx->nr_counters))
2987 return;
2988
2989 /*
2990 * Lock the parent list. No need to lock the child - not PID
2991 * hashed yet and not running, so nobody can access it.
2992 */
2993 mutex_lock(&parent_ctx->mutex);
2994
2995 /*
2996 * We dont have to disable NMIs - we are only looking at
2997 * the list, not manipulating it:
2998 */
2999 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3000 if (!counter->hw_event.inherit)
3001 continue;
3002
3003 if (inherit_group(counter, parent,
3004 parent_ctx, child, child_ctx))
3005 break;
3006 }
3007
3008 mutex_unlock(&parent_ctx->mutex);
3009 }
3010
3011 static void __cpuinit perf_counter_init_cpu(int cpu)
3012 {
3013 struct perf_cpu_context *cpuctx;
3014
3015 cpuctx = &per_cpu(perf_cpu_context, cpu);
3016 __perf_counter_init_context(&cpuctx->ctx, NULL);
3017
3018 mutex_lock(&perf_resource_mutex);
3019 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3020 mutex_unlock(&perf_resource_mutex);
3021
3022 hw_perf_counter_setup(cpu);
3023 }
3024
3025 #ifdef CONFIG_HOTPLUG_CPU
3026 static void __perf_counter_exit_cpu(void *info)
3027 {
3028 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3029 struct perf_counter_context *ctx = &cpuctx->ctx;
3030 struct perf_counter *counter, *tmp;
3031
3032 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3033 __perf_counter_remove_from_context(counter);
3034 }
3035 static void perf_counter_exit_cpu(int cpu)
3036 {
3037 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3038 struct perf_counter_context *ctx = &cpuctx->ctx;
3039
3040 mutex_lock(&ctx->mutex);
3041 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3042 mutex_unlock(&ctx->mutex);
3043 }
3044 #else
3045 static inline void perf_counter_exit_cpu(int cpu) { }
3046 #endif
3047
3048 static int __cpuinit
3049 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3050 {
3051 unsigned int cpu = (long)hcpu;
3052
3053 switch (action) {
3054
3055 case CPU_UP_PREPARE:
3056 case CPU_UP_PREPARE_FROZEN:
3057 perf_counter_init_cpu(cpu);
3058 break;
3059
3060 case CPU_DOWN_PREPARE:
3061 case CPU_DOWN_PREPARE_FROZEN:
3062 perf_counter_exit_cpu(cpu);
3063 break;
3064
3065 default:
3066 break;
3067 }
3068
3069 return NOTIFY_OK;
3070 }
3071
3072 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3073 .notifier_call = perf_cpu_notify,
3074 };
3075
3076 static int __init perf_counter_init(void)
3077 {
3078 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3079 (void *)(long)smp_processor_id());
3080 register_cpu_notifier(&perf_cpu_nb);
3081
3082 return 0;
3083 }
3084 early_initcall(perf_counter_init);
3085
3086 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3087 {
3088 return sprintf(buf, "%d\n", perf_reserved_percpu);
3089 }
3090
3091 static ssize_t
3092 perf_set_reserve_percpu(struct sysdev_class *class,
3093 const char *buf,
3094 size_t count)
3095 {
3096 struct perf_cpu_context *cpuctx;
3097 unsigned long val;
3098 int err, cpu, mpt;
3099
3100 err = strict_strtoul(buf, 10, &val);
3101 if (err)
3102 return err;
3103 if (val > perf_max_counters)
3104 return -EINVAL;
3105
3106 mutex_lock(&perf_resource_mutex);
3107 perf_reserved_percpu = val;
3108 for_each_online_cpu(cpu) {
3109 cpuctx = &per_cpu(perf_cpu_context, cpu);
3110 spin_lock_irq(&cpuctx->ctx.lock);
3111 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3112 perf_max_counters - perf_reserved_percpu);
3113 cpuctx->max_pertask = mpt;
3114 spin_unlock_irq(&cpuctx->ctx.lock);
3115 }
3116 mutex_unlock(&perf_resource_mutex);
3117
3118 return count;
3119 }
3120
3121 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3122 {
3123 return sprintf(buf, "%d\n", perf_overcommit);
3124 }
3125
3126 static ssize_t
3127 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3128 {
3129 unsigned long val;
3130 int err;
3131
3132 err = strict_strtoul(buf, 10, &val);
3133 if (err)
3134 return err;
3135 if (val > 1)
3136 return -EINVAL;
3137
3138 mutex_lock(&perf_resource_mutex);
3139 perf_overcommit = val;
3140 mutex_unlock(&perf_resource_mutex);
3141
3142 return count;
3143 }
3144
3145 static SYSDEV_CLASS_ATTR(
3146 reserve_percpu,
3147 0644,
3148 perf_show_reserve_percpu,
3149 perf_set_reserve_percpu
3150 );
3151
3152 static SYSDEV_CLASS_ATTR(
3153 overcommit,
3154 0644,
3155 perf_show_overcommit,
3156 perf_set_overcommit
3157 );
3158
3159 static struct attribute *perfclass_attrs[] = {
3160 &attr_reserve_percpu.attr,
3161 &attr_overcommit.attr,
3162 NULL
3163 };
3164
3165 static struct attribute_group perfclass_attr_group = {
3166 .attrs = perfclass_attrs,
3167 .name = "perf_counters",
3168 };
3169
3170 static int __init perf_counter_sysfs_init(void)
3171 {
3172 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3173 &perfclass_attr_group);
3174 }
3175 device_initcall(perf_counter_sysfs_init);