Merge branch 'core/locking' into perfcounters/core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_mmap_tracking __read_mostly;
43 static atomic_t nr_munmap_tracking __read_mostly;
44 static atomic_t nr_comm_tracking __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
48
49 /*
50 * Lock for (sysadmin-configurable) counter reservations:
51 */
52 static DEFINE_SPINLOCK(perf_resource_lock);
53
54 /*
55 * Architecture provided APIs - weak aliases:
56 */
57 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
58 {
59 return NULL;
60 }
61
62 u64 __weak hw_perf_save_disable(void) { return 0; }
63 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
64 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
65 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
66 struct perf_cpu_context *cpuctx,
67 struct perf_counter_context *ctx, int cpu)
68 {
69 return 0;
70 }
71
72 void __weak perf_counter_print_debug(void) { }
73
74 static void
75 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
76 {
77 struct perf_counter *group_leader = counter->group_leader;
78
79 /*
80 * Depending on whether it is a standalone or sibling counter,
81 * add it straight to the context's counter list, or to the group
82 * leader's sibling list:
83 */
84 if (counter->group_leader == counter)
85 list_add_tail(&counter->list_entry, &ctx->counter_list);
86 else {
87 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
88 group_leader->nr_siblings++;
89 }
90
91 list_add_rcu(&counter->event_entry, &ctx->event_list);
92 }
93
94 static void
95 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
96 {
97 struct perf_counter *sibling, *tmp;
98
99 list_del_init(&counter->list_entry);
100 list_del_rcu(&counter->event_entry);
101
102 if (counter->group_leader != counter)
103 counter->group_leader->nr_siblings--;
104
105 /*
106 * If this was a group counter with sibling counters then
107 * upgrade the siblings to singleton counters by adding them
108 * to the context list directly:
109 */
110 list_for_each_entry_safe(sibling, tmp,
111 &counter->sibling_list, list_entry) {
112
113 list_move_tail(&sibling->list_entry, &ctx->counter_list);
114 sibling->group_leader = sibling;
115 }
116 }
117
118 static void
119 counter_sched_out(struct perf_counter *counter,
120 struct perf_cpu_context *cpuctx,
121 struct perf_counter_context *ctx)
122 {
123 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
124 return;
125
126 counter->state = PERF_COUNTER_STATE_INACTIVE;
127 counter->tstamp_stopped = ctx->time;
128 counter->pmu->disable(counter);
129 counter->oncpu = -1;
130
131 if (!is_software_counter(counter))
132 cpuctx->active_oncpu--;
133 ctx->nr_active--;
134 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
135 cpuctx->exclusive = 0;
136 }
137
138 static void
139 group_sched_out(struct perf_counter *group_counter,
140 struct perf_cpu_context *cpuctx,
141 struct perf_counter_context *ctx)
142 {
143 struct perf_counter *counter;
144
145 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
146 return;
147
148 counter_sched_out(group_counter, cpuctx, ctx);
149
150 /*
151 * Schedule out siblings (if any):
152 */
153 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
154 counter_sched_out(counter, cpuctx, ctx);
155
156 if (group_counter->hw_event.exclusive)
157 cpuctx->exclusive = 0;
158 }
159
160 /*
161 * Cross CPU call to remove a performance counter
162 *
163 * We disable the counter on the hardware level first. After that we
164 * remove it from the context list.
165 */
166 static void __perf_counter_remove_from_context(void *info)
167 {
168 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
169 struct perf_counter *counter = info;
170 struct perf_counter_context *ctx = counter->ctx;
171 unsigned long flags;
172 u64 perf_flags;
173
174 /*
175 * If this is a task context, we need to check whether it is
176 * the current task context of this cpu. If not it has been
177 * scheduled out before the smp call arrived.
178 */
179 if (ctx->task && cpuctx->task_ctx != ctx)
180 return;
181
182 spin_lock_irqsave(&ctx->lock, flags);
183
184 counter_sched_out(counter, cpuctx, ctx);
185
186 counter->task = NULL;
187 ctx->nr_counters--;
188
189 /*
190 * Protect the list operation against NMI by disabling the
191 * counters on a global level. NOP for non NMI based counters.
192 */
193 perf_flags = hw_perf_save_disable();
194 list_del_counter(counter, ctx);
195 hw_perf_restore(perf_flags);
196
197 if (!ctx->task) {
198 /*
199 * Allow more per task counters with respect to the
200 * reservation:
201 */
202 cpuctx->max_pertask =
203 min(perf_max_counters - ctx->nr_counters,
204 perf_max_counters - perf_reserved_percpu);
205 }
206
207 spin_unlock_irqrestore(&ctx->lock, flags);
208 }
209
210
211 /*
212 * Remove the counter from a task's (or a CPU's) list of counters.
213 *
214 * Must be called with counter->mutex and ctx->mutex held.
215 *
216 * CPU counters are removed with a smp call. For task counters we only
217 * call when the task is on a CPU.
218 */
219 static void perf_counter_remove_from_context(struct perf_counter *counter)
220 {
221 struct perf_counter_context *ctx = counter->ctx;
222 struct task_struct *task = ctx->task;
223
224 if (!task) {
225 /*
226 * Per cpu counters are removed via an smp call and
227 * the removal is always sucessful.
228 */
229 smp_call_function_single(counter->cpu,
230 __perf_counter_remove_from_context,
231 counter, 1);
232 return;
233 }
234
235 retry:
236 task_oncpu_function_call(task, __perf_counter_remove_from_context,
237 counter);
238
239 spin_lock_irq(&ctx->lock);
240 /*
241 * If the context is active we need to retry the smp call.
242 */
243 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
244 spin_unlock_irq(&ctx->lock);
245 goto retry;
246 }
247
248 /*
249 * The lock prevents that this context is scheduled in so we
250 * can remove the counter safely, if the call above did not
251 * succeed.
252 */
253 if (!list_empty(&counter->list_entry)) {
254 ctx->nr_counters--;
255 list_del_counter(counter, ctx);
256 counter->task = NULL;
257 }
258 spin_unlock_irq(&ctx->lock);
259 }
260
261 static inline u64 perf_clock(void)
262 {
263 return cpu_clock(smp_processor_id());
264 }
265
266 /*
267 * Update the record of the current time in a context.
268 */
269 static void update_context_time(struct perf_counter_context *ctx)
270 {
271 u64 now = perf_clock();
272
273 ctx->time += now - ctx->timestamp;
274 ctx->timestamp = now;
275 }
276
277 /*
278 * Update the total_time_enabled and total_time_running fields for a counter.
279 */
280 static void update_counter_times(struct perf_counter *counter)
281 {
282 struct perf_counter_context *ctx = counter->ctx;
283 u64 run_end;
284
285 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
286 return;
287
288 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
289
290 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
291 run_end = counter->tstamp_stopped;
292 else
293 run_end = ctx->time;
294
295 counter->total_time_running = run_end - counter->tstamp_running;
296 }
297
298 /*
299 * Update total_time_enabled and total_time_running for all counters in a group.
300 */
301 static void update_group_times(struct perf_counter *leader)
302 {
303 struct perf_counter *counter;
304
305 update_counter_times(leader);
306 list_for_each_entry(counter, &leader->sibling_list, list_entry)
307 update_counter_times(counter);
308 }
309
310 /*
311 * Cross CPU call to disable a performance counter
312 */
313 static void __perf_counter_disable(void *info)
314 {
315 struct perf_counter *counter = info;
316 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
317 struct perf_counter_context *ctx = counter->ctx;
318 unsigned long flags;
319
320 /*
321 * If this is a per-task counter, need to check whether this
322 * counter's task is the current task on this cpu.
323 */
324 if (ctx->task && cpuctx->task_ctx != ctx)
325 return;
326
327 spin_lock_irqsave(&ctx->lock, flags);
328
329 /*
330 * If the counter is on, turn it off.
331 * If it is in error state, leave it in error state.
332 */
333 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334 update_context_time(ctx);
335 update_counter_times(counter);
336 if (counter == counter->group_leader)
337 group_sched_out(counter, cpuctx, ctx);
338 else
339 counter_sched_out(counter, cpuctx, ctx);
340 counter->state = PERF_COUNTER_STATE_OFF;
341 }
342
343 spin_unlock_irqrestore(&ctx->lock, flags);
344 }
345
346 /*
347 * Disable a counter.
348 */
349 static void perf_counter_disable(struct perf_counter *counter)
350 {
351 struct perf_counter_context *ctx = counter->ctx;
352 struct task_struct *task = ctx->task;
353
354 if (!task) {
355 /*
356 * Disable the counter on the cpu that it's on
357 */
358 smp_call_function_single(counter->cpu, __perf_counter_disable,
359 counter, 1);
360 return;
361 }
362
363 retry:
364 task_oncpu_function_call(task, __perf_counter_disable, counter);
365
366 spin_lock_irq(&ctx->lock);
367 /*
368 * If the counter is still active, we need to retry the cross-call.
369 */
370 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
371 spin_unlock_irq(&ctx->lock);
372 goto retry;
373 }
374
375 /*
376 * Since we have the lock this context can't be scheduled
377 * in, so we can change the state safely.
378 */
379 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
380 update_counter_times(counter);
381 counter->state = PERF_COUNTER_STATE_OFF;
382 }
383
384 spin_unlock_irq(&ctx->lock);
385 }
386
387 /*
388 * Disable a counter and all its children.
389 */
390 static void perf_counter_disable_family(struct perf_counter *counter)
391 {
392 struct perf_counter *child;
393
394 perf_counter_disable(counter);
395
396 /*
397 * Lock the mutex to protect the list of children
398 */
399 mutex_lock(&counter->mutex);
400 list_for_each_entry(child, &counter->child_list, child_list)
401 perf_counter_disable(child);
402 mutex_unlock(&counter->mutex);
403 }
404
405 static int
406 counter_sched_in(struct perf_counter *counter,
407 struct perf_cpu_context *cpuctx,
408 struct perf_counter_context *ctx,
409 int cpu)
410 {
411 if (counter->state <= PERF_COUNTER_STATE_OFF)
412 return 0;
413
414 counter->state = PERF_COUNTER_STATE_ACTIVE;
415 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
416 /*
417 * The new state must be visible before we turn it on in the hardware:
418 */
419 smp_wmb();
420
421 if (counter->pmu->enable(counter)) {
422 counter->state = PERF_COUNTER_STATE_INACTIVE;
423 counter->oncpu = -1;
424 return -EAGAIN;
425 }
426
427 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
428
429 if (!is_software_counter(counter))
430 cpuctx->active_oncpu++;
431 ctx->nr_active++;
432
433 if (counter->hw_event.exclusive)
434 cpuctx->exclusive = 1;
435
436 return 0;
437 }
438
439 /*
440 * Return 1 for a group consisting entirely of software counters,
441 * 0 if the group contains any hardware counters.
442 */
443 static int is_software_only_group(struct perf_counter *leader)
444 {
445 struct perf_counter *counter;
446
447 if (!is_software_counter(leader))
448 return 0;
449
450 list_for_each_entry(counter, &leader->sibling_list, list_entry)
451 if (!is_software_counter(counter))
452 return 0;
453
454 return 1;
455 }
456
457 /*
458 * Work out whether we can put this counter group on the CPU now.
459 */
460 static int group_can_go_on(struct perf_counter *counter,
461 struct perf_cpu_context *cpuctx,
462 int can_add_hw)
463 {
464 /*
465 * Groups consisting entirely of software counters can always go on.
466 */
467 if (is_software_only_group(counter))
468 return 1;
469 /*
470 * If an exclusive group is already on, no other hardware
471 * counters can go on.
472 */
473 if (cpuctx->exclusive)
474 return 0;
475 /*
476 * If this group is exclusive and there are already
477 * counters on the CPU, it can't go on.
478 */
479 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
480 return 0;
481 /*
482 * Otherwise, try to add it if all previous groups were able
483 * to go on.
484 */
485 return can_add_hw;
486 }
487
488 static void add_counter_to_ctx(struct perf_counter *counter,
489 struct perf_counter_context *ctx)
490 {
491 list_add_counter(counter, ctx);
492 ctx->nr_counters++;
493 counter->prev_state = PERF_COUNTER_STATE_OFF;
494 counter->tstamp_enabled = ctx->time;
495 counter->tstamp_running = ctx->time;
496 counter->tstamp_stopped = ctx->time;
497 }
498
499 /*
500 * Cross CPU call to install and enable a performance counter
501 */
502 static void __perf_install_in_context(void *info)
503 {
504 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
505 struct perf_counter *counter = info;
506 struct perf_counter_context *ctx = counter->ctx;
507 struct perf_counter *leader = counter->group_leader;
508 int cpu = smp_processor_id();
509 unsigned long flags;
510 u64 perf_flags;
511 int err;
512
513 /*
514 * If this is a task context, we need to check whether it is
515 * the current task context of this cpu. If not it has been
516 * scheduled out before the smp call arrived.
517 */
518 if (ctx->task && cpuctx->task_ctx != ctx)
519 return;
520
521 spin_lock_irqsave(&ctx->lock, flags);
522 update_context_time(ctx);
523
524 /*
525 * Protect the list operation against NMI by disabling the
526 * counters on a global level. NOP for non NMI based counters.
527 */
528 perf_flags = hw_perf_save_disable();
529
530 add_counter_to_ctx(counter, ctx);
531
532 /*
533 * Don't put the counter on if it is disabled or if
534 * it is in a group and the group isn't on.
535 */
536 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
537 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
538 goto unlock;
539
540 /*
541 * An exclusive counter can't go on if there are already active
542 * hardware counters, and no hardware counter can go on if there
543 * is already an exclusive counter on.
544 */
545 if (!group_can_go_on(counter, cpuctx, 1))
546 err = -EEXIST;
547 else
548 err = counter_sched_in(counter, cpuctx, ctx, cpu);
549
550 if (err) {
551 /*
552 * This counter couldn't go on. If it is in a group
553 * then we have to pull the whole group off.
554 * If the counter group is pinned then put it in error state.
555 */
556 if (leader != counter)
557 group_sched_out(leader, cpuctx, ctx);
558 if (leader->hw_event.pinned) {
559 update_group_times(leader);
560 leader->state = PERF_COUNTER_STATE_ERROR;
561 }
562 }
563
564 if (!err && !ctx->task && cpuctx->max_pertask)
565 cpuctx->max_pertask--;
566
567 unlock:
568 hw_perf_restore(perf_flags);
569
570 spin_unlock_irqrestore(&ctx->lock, flags);
571 }
572
573 /*
574 * Attach a performance counter to a context
575 *
576 * First we add the counter to the list with the hardware enable bit
577 * in counter->hw_config cleared.
578 *
579 * If the counter is attached to a task which is on a CPU we use a smp
580 * call to enable it in the task context. The task might have been
581 * scheduled away, but we check this in the smp call again.
582 *
583 * Must be called with ctx->mutex held.
584 */
585 static void
586 perf_install_in_context(struct perf_counter_context *ctx,
587 struct perf_counter *counter,
588 int cpu)
589 {
590 struct task_struct *task = ctx->task;
591
592 if (!task) {
593 /*
594 * Per cpu counters are installed via an smp call and
595 * the install is always sucessful.
596 */
597 smp_call_function_single(cpu, __perf_install_in_context,
598 counter, 1);
599 return;
600 }
601
602 counter->task = task;
603 retry:
604 task_oncpu_function_call(task, __perf_install_in_context,
605 counter);
606
607 spin_lock_irq(&ctx->lock);
608 /*
609 * we need to retry the smp call.
610 */
611 if (ctx->is_active && list_empty(&counter->list_entry)) {
612 spin_unlock_irq(&ctx->lock);
613 goto retry;
614 }
615
616 /*
617 * The lock prevents that this context is scheduled in so we
618 * can add the counter safely, if it the call above did not
619 * succeed.
620 */
621 if (list_empty(&counter->list_entry))
622 add_counter_to_ctx(counter, ctx);
623 spin_unlock_irq(&ctx->lock);
624 }
625
626 /*
627 * Cross CPU call to enable a performance counter
628 */
629 static void __perf_counter_enable(void *info)
630 {
631 struct perf_counter *counter = info;
632 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
633 struct perf_counter_context *ctx = counter->ctx;
634 struct perf_counter *leader = counter->group_leader;
635 unsigned long flags;
636 int err;
637
638 /*
639 * If this is a per-task counter, need to check whether this
640 * counter's task is the current task on this cpu.
641 */
642 if (ctx->task && cpuctx->task_ctx != ctx)
643 return;
644
645 spin_lock_irqsave(&ctx->lock, flags);
646 update_context_time(ctx);
647
648 counter->prev_state = counter->state;
649 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
650 goto unlock;
651 counter->state = PERF_COUNTER_STATE_INACTIVE;
652 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
653
654 /*
655 * If the counter is in a group and isn't the group leader,
656 * then don't put it on unless the group is on.
657 */
658 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
659 goto unlock;
660
661 if (!group_can_go_on(counter, cpuctx, 1))
662 err = -EEXIST;
663 else
664 err = counter_sched_in(counter, cpuctx, ctx,
665 smp_processor_id());
666
667 if (err) {
668 /*
669 * If this counter can't go on and it's part of a
670 * group, then the whole group has to come off.
671 */
672 if (leader != counter)
673 group_sched_out(leader, cpuctx, ctx);
674 if (leader->hw_event.pinned) {
675 update_group_times(leader);
676 leader->state = PERF_COUNTER_STATE_ERROR;
677 }
678 }
679
680 unlock:
681 spin_unlock_irqrestore(&ctx->lock, flags);
682 }
683
684 /*
685 * Enable a counter.
686 */
687 static void perf_counter_enable(struct perf_counter *counter)
688 {
689 struct perf_counter_context *ctx = counter->ctx;
690 struct task_struct *task = ctx->task;
691
692 if (!task) {
693 /*
694 * Enable the counter on the cpu that it's on
695 */
696 smp_call_function_single(counter->cpu, __perf_counter_enable,
697 counter, 1);
698 return;
699 }
700
701 spin_lock_irq(&ctx->lock);
702 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
703 goto out;
704
705 /*
706 * If the counter is in error state, clear that first.
707 * That way, if we see the counter in error state below, we
708 * know that it has gone back into error state, as distinct
709 * from the task having been scheduled away before the
710 * cross-call arrived.
711 */
712 if (counter->state == PERF_COUNTER_STATE_ERROR)
713 counter->state = PERF_COUNTER_STATE_OFF;
714
715 retry:
716 spin_unlock_irq(&ctx->lock);
717 task_oncpu_function_call(task, __perf_counter_enable, counter);
718
719 spin_lock_irq(&ctx->lock);
720
721 /*
722 * If the context is active and the counter is still off,
723 * we need to retry the cross-call.
724 */
725 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
726 goto retry;
727
728 /*
729 * Since we have the lock this context can't be scheduled
730 * in, so we can change the state safely.
731 */
732 if (counter->state == PERF_COUNTER_STATE_OFF) {
733 counter->state = PERF_COUNTER_STATE_INACTIVE;
734 counter->tstamp_enabled =
735 ctx->time - counter->total_time_enabled;
736 }
737 out:
738 spin_unlock_irq(&ctx->lock);
739 }
740
741 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
742 {
743 /*
744 * not supported on inherited counters
745 */
746 if (counter->hw_event.inherit)
747 return -EINVAL;
748
749 atomic_add(refresh, &counter->event_limit);
750 perf_counter_enable(counter);
751
752 return 0;
753 }
754
755 /*
756 * Enable a counter and all its children.
757 */
758 static void perf_counter_enable_family(struct perf_counter *counter)
759 {
760 struct perf_counter *child;
761
762 perf_counter_enable(counter);
763
764 /*
765 * Lock the mutex to protect the list of children
766 */
767 mutex_lock(&counter->mutex);
768 list_for_each_entry(child, &counter->child_list, child_list)
769 perf_counter_enable(child);
770 mutex_unlock(&counter->mutex);
771 }
772
773 void __perf_counter_sched_out(struct perf_counter_context *ctx,
774 struct perf_cpu_context *cpuctx)
775 {
776 struct perf_counter *counter;
777 u64 flags;
778
779 spin_lock(&ctx->lock);
780 ctx->is_active = 0;
781 if (likely(!ctx->nr_counters))
782 goto out;
783 update_context_time(ctx);
784
785 flags = hw_perf_save_disable();
786 if (ctx->nr_active) {
787 list_for_each_entry(counter, &ctx->counter_list, list_entry)
788 group_sched_out(counter, cpuctx, ctx);
789 }
790 hw_perf_restore(flags);
791 out:
792 spin_unlock(&ctx->lock);
793 }
794
795 /*
796 * Called from scheduler to remove the counters of the current task,
797 * with interrupts disabled.
798 *
799 * We stop each counter and update the counter value in counter->count.
800 *
801 * This does not protect us against NMI, but disable()
802 * sets the disabled bit in the control field of counter _before_
803 * accessing the counter control register. If a NMI hits, then it will
804 * not restart the counter.
805 */
806 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
807 {
808 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
809 struct perf_counter_context *ctx = &task->perf_counter_ctx;
810 struct pt_regs *regs;
811
812 if (likely(!cpuctx->task_ctx))
813 return;
814
815 update_context_time(ctx);
816
817 regs = task_pt_regs(task);
818 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
819 __perf_counter_sched_out(ctx, cpuctx);
820
821 cpuctx->task_ctx = NULL;
822 }
823
824 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
825 {
826 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
827 }
828
829 static int
830 group_sched_in(struct perf_counter *group_counter,
831 struct perf_cpu_context *cpuctx,
832 struct perf_counter_context *ctx,
833 int cpu)
834 {
835 struct perf_counter *counter, *partial_group;
836 int ret;
837
838 if (group_counter->state == PERF_COUNTER_STATE_OFF)
839 return 0;
840
841 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
842 if (ret)
843 return ret < 0 ? ret : 0;
844
845 group_counter->prev_state = group_counter->state;
846 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
847 return -EAGAIN;
848
849 /*
850 * Schedule in siblings as one group (if any):
851 */
852 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
853 counter->prev_state = counter->state;
854 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
855 partial_group = counter;
856 goto group_error;
857 }
858 }
859
860 return 0;
861
862 group_error:
863 /*
864 * Groups can be scheduled in as one unit only, so undo any
865 * partial group before returning:
866 */
867 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
868 if (counter == partial_group)
869 break;
870 counter_sched_out(counter, cpuctx, ctx);
871 }
872 counter_sched_out(group_counter, cpuctx, ctx);
873
874 return -EAGAIN;
875 }
876
877 static void
878 __perf_counter_sched_in(struct perf_counter_context *ctx,
879 struct perf_cpu_context *cpuctx, int cpu)
880 {
881 struct perf_counter *counter;
882 u64 flags;
883 int can_add_hw = 1;
884
885 spin_lock(&ctx->lock);
886 ctx->is_active = 1;
887 if (likely(!ctx->nr_counters))
888 goto out;
889
890 ctx->timestamp = perf_clock();
891
892 flags = hw_perf_save_disable();
893
894 /*
895 * First go through the list and put on any pinned groups
896 * in order to give them the best chance of going on.
897 */
898 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
899 if (counter->state <= PERF_COUNTER_STATE_OFF ||
900 !counter->hw_event.pinned)
901 continue;
902 if (counter->cpu != -1 && counter->cpu != cpu)
903 continue;
904
905 if (group_can_go_on(counter, cpuctx, 1))
906 group_sched_in(counter, cpuctx, ctx, cpu);
907
908 /*
909 * If this pinned group hasn't been scheduled,
910 * put it in error state.
911 */
912 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
913 update_group_times(counter);
914 counter->state = PERF_COUNTER_STATE_ERROR;
915 }
916 }
917
918 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
919 /*
920 * Ignore counters in OFF or ERROR state, and
921 * ignore pinned counters since we did them already.
922 */
923 if (counter->state <= PERF_COUNTER_STATE_OFF ||
924 counter->hw_event.pinned)
925 continue;
926
927 /*
928 * Listen to the 'cpu' scheduling filter constraint
929 * of counters:
930 */
931 if (counter->cpu != -1 && counter->cpu != cpu)
932 continue;
933
934 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
935 if (group_sched_in(counter, cpuctx, ctx, cpu))
936 can_add_hw = 0;
937 }
938 }
939 hw_perf_restore(flags);
940 out:
941 spin_unlock(&ctx->lock);
942 }
943
944 /*
945 * Called from scheduler to add the counters of the current task
946 * with interrupts disabled.
947 *
948 * We restore the counter value and then enable it.
949 *
950 * This does not protect us against NMI, but enable()
951 * sets the enabled bit in the control field of counter _before_
952 * accessing the counter control register. If a NMI hits, then it will
953 * keep the counter running.
954 */
955 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
956 {
957 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
958 struct perf_counter_context *ctx = &task->perf_counter_ctx;
959
960 __perf_counter_sched_in(ctx, cpuctx, cpu);
961 cpuctx->task_ctx = ctx;
962 }
963
964 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
965 {
966 struct perf_counter_context *ctx = &cpuctx->ctx;
967
968 __perf_counter_sched_in(ctx, cpuctx, cpu);
969 }
970
971 int perf_counter_task_disable(void)
972 {
973 struct task_struct *curr = current;
974 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
975 struct perf_counter *counter;
976 unsigned long flags;
977 u64 perf_flags;
978 int cpu;
979
980 if (likely(!ctx->nr_counters))
981 return 0;
982
983 local_irq_save(flags);
984 cpu = smp_processor_id();
985
986 perf_counter_task_sched_out(curr, cpu);
987
988 spin_lock(&ctx->lock);
989
990 /*
991 * Disable all the counters:
992 */
993 perf_flags = hw_perf_save_disable();
994
995 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
996 if (counter->state != PERF_COUNTER_STATE_ERROR) {
997 update_group_times(counter);
998 counter->state = PERF_COUNTER_STATE_OFF;
999 }
1000 }
1001
1002 hw_perf_restore(perf_flags);
1003
1004 spin_unlock_irqrestore(&ctx->lock, flags);
1005
1006 return 0;
1007 }
1008
1009 int perf_counter_task_enable(void)
1010 {
1011 struct task_struct *curr = current;
1012 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1013 struct perf_counter *counter;
1014 unsigned long flags;
1015 u64 perf_flags;
1016 int cpu;
1017
1018 if (likely(!ctx->nr_counters))
1019 return 0;
1020
1021 local_irq_save(flags);
1022 cpu = smp_processor_id();
1023
1024 perf_counter_task_sched_out(curr, cpu);
1025
1026 spin_lock(&ctx->lock);
1027
1028 /*
1029 * Disable all the counters:
1030 */
1031 perf_flags = hw_perf_save_disable();
1032
1033 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1034 if (counter->state > PERF_COUNTER_STATE_OFF)
1035 continue;
1036 counter->state = PERF_COUNTER_STATE_INACTIVE;
1037 counter->tstamp_enabled =
1038 ctx->time - counter->total_time_enabled;
1039 counter->hw_event.disabled = 0;
1040 }
1041 hw_perf_restore(perf_flags);
1042
1043 spin_unlock(&ctx->lock);
1044
1045 perf_counter_task_sched_in(curr, cpu);
1046
1047 local_irq_restore(flags);
1048
1049 return 0;
1050 }
1051
1052 /*
1053 * Round-robin a context's counters:
1054 */
1055 static void rotate_ctx(struct perf_counter_context *ctx)
1056 {
1057 struct perf_counter *counter;
1058 u64 perf_flags;
1059
1060 if (!ctx->nr_counters)
1061 return;
1062
1063 spin_lock(&ctx->lock);
1064 /*
1065 * Rotate the first entry last (works just fine for group counters too):
1066 */
1067 perf_flags = hw_perf_save_disable();
1068 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1069 list_move_tail(&counter->list_entry, &ctx->counter_list);
1070 break;
1071 }
1072 hw_perf_restore(perf_flags);
1073
1074 spin_unlock(&ctx->lock);
1075 }
1076
1077 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1078 {
1079 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1080 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1081
1082 perf_counter_cpu_sched_out(cpuctx);
1083 perf_counter_task_sched_out(curr, cpu);
1084
1085 rotate_ctx(&cpuctx->ctx);
1086 rotate_ctx(ctx);
1087
1088 perf_counter_cpu_sched_in(cpuctx, cpu);
1089 perf_counter_task_sched_in(curr, cpu);
1090 }
1091
1092 /*
1093 * Cross CPU call to read the hardware counter
1094 */
1095 static void __read(void *info)
1096 {
1097 struct perf_counter *counter = info;
1098 struct perf_counter_context *ctx = counter->ctx;
1099 unsigned long flags;
1100
1101 local_irq_save(flags);
1102 if (ctx->is_active)
1103 update_context_time(ctx);
1104 counter->pmu->read(counter);
1105 update_counter_times(counter);
1106 local_irq_restore(flags);
1107 }
1108
1109 static u64 perf_counter_read(struct perf_counter *counter)
1110 {
1111 /*
1112 * If counter is enabled and currently active on a CPU, update the
1113 * value in the counter structure:
1114 */
1115 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1116 smp_call_function_single(counter->oncpu,
1117 __read, counter, 1);
1118 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1119 update_counter_times(counter);
1120 }
1121
1122 return atomic64_read(&counter->count);
1123 }
1124
1125 static void put_context(struct perf_counter_context *ctx)
1126 {
1127 if (ctx->task)
1128 put_task_struct(ctx->task);
1129 }
1130
1131 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1132 {
1133 struct perf_cpu_context *cpuctx;
1134 struct perf_counter_context *ctx;
1135 struct task_struct *task;
1136
1137 /*
1138 * If cpu is not a wildcard then this is a percpu counter:
1139 */
1140 if (cpu != -1) {
1141 /* Must be root to operate on a CPU counter: */
1142 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1143 return ERR_PTR(-EACCES);
1144
1145 if (cpu < 0 || cpu > num_possible_cpus())
1146 return ERR_PTR(-EINVAL);
1147
1148 /*
1149 * We could be clever and allow to attach a counter to an
1150 * offline CPU and activate it when the CPU comes up, but
1151 * that's for later.
1152 */
1153 if (!cpu_isset(cpu, cpu_online_map))
1154 return ERR_PTR(-ENODEV);
1155
1156 cpuctx = &per_cpu(perf_cpu_context, cpu);
1157 ctx = &cpuctx->ctx;
1158
1159 return ctx;
1160 }
1161
1162 rcu_read_lock();
1163 if (!pid)
1164 task = current;
1165 else
1166 task = find_task_by_vpid(pid);
1167 if (task)
1168 get_task_struct(task);
1169 rcu_read_unlock();
1170
1171 if (!task)
1172 return ERR_PTR(-ESRCH);
1173
1174 ctx = &task->perf_counter_ctx;
1175 ctx->task = task;
1176
1177 /* Reuse ptrace permission checks for now. */
1178 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1179 put_context(ctx);
1180 return ERR_PTR(-EACCES);
1181 }
1182
1183 return ctx;
1184 }
1185
1186 static void free_counter_rcu(struct rcu_head *head)
1187 {
1188 struct perf_counter *counter;
1189
1190 counter = container_of(head, struct perf_counter, rcu_head);
1191 kfree(counter);
1192 }
1193
1194 static void perf_pending_sync(struct perf_counter *counter);
1195
1196 static void free_counter(struct perf_counter *counter)
1197 {
1198 perf_pending_sync(counter);
1199
1200 if (counter->hw_event.mmap)
1201 atomic_dec(&nr_mmap_tracking);
1202 if (counter->hw_event.munmap)
1203 atomic_dec(&nr_munmap_tracking);
1204 if (counter->hw_event.comm)
1205 atomic_dec(&nr_comm_tracking);
1206
1207 if (counter->destroy)
1208 counter->destroy(counter);
1209
1210 call_rcu(&counter->rcu_head, free_counter_rcu);
1211 }
1212
1213 /*
1214 * Called when the last reference to the file is gone.
1215 */
1216 static int perf_release(struct inode *inode, struct file *file)
1217 {
1218 struct perf_counter *counter = file->private_data;
1219 struct perf_counter_context *ctx = counter->ctx;
1220
1221 file->private_data = NULL;
1222
1223 mutex_lock(&ctx->mutex);
1224 mutex_lock(&counter->mutex);
1225
1226 perf_counter_remove_from_context(counter);
1227
1228 mutex_unlock(&counter->mutex);
1229 mutex_unlock(&ctx->mutex);
1230
1231 free_counter(counter);
1232 put_context(ctx);
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * Read the performance counter - simple non blocking version for now
1239 */
1240 static ssize_t
1241 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1242 {
1243 u64 values[3];
1244 int n;
1245
1246 /*
1247 * Return end-of-file for a read on a counter that is in
1248 * error state (i.e. because it was pinned but it couldn't be
1249 * scheduled on to the CPU at some point).
1250 */
1251 if (counter->state == PERF_COUNTER_STATE_ERROR)
1252 return 0;
1253
1254 mutex_lock(&counter->mutex);
1255 values[0] = perf_counter_read(counter);
1256 n = 1;
1257 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1258 values[n++] = counter->total_time_enabled +
1259 atomic64_read(&counter->child_total_time_enabled);
1260 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1261 values[n++] = counter->total_time_running +
1262 atomic64_read(&counter->child_total_time_running);
1263 mutex_unlock(&counter->mutex);
1264
1265 if (count < n * sizeof(u64))
1266 return -EINVAL;
1267 count = n * sizeof(u64);
1268
1269 if (copy_to_user(buf, values, count))
1270 return -EFAULT;
1271
1272 return count;
1273 }
1274
1275 static ssize_t
1276 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1277 {
1278 struct perf_counter *counter = file->private_data;
1279
1280 return perf_read_hw(counter, buf, count);
1281 }
1282
1283 static unsigned int perf_poll(struct file *file, poll_table *wait)
1284 {
1285 struct perf_counter *counter = file->private_data;
1286 struct perf_mmap_data *data;
1287 unsigned int events = POLL_HUP;
1288
1289 rcu_read_lock();
1290 data = rcu_dereference(counter->data);
1291 if (data)
1292 events = atomic_xchg(&data->poll, 0);
1293 rcu_read_unlock();
1294
1295 poll_wait(file, &counter->waitq, wait);
1296
1297 return events;
1298 }
1299
1300 static void perf_counter_reset(struct perf_counter *counter)
1301 {
1302 atomic_set(&counter->count, 0);
1303 }
1304
1305 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1306 {
1307 struct perf_counter *counter = file->private_data;
1308 int err = 0;
1309
1310 switch (cmd) {
1311 case PERF_COUNTER_IOC_ENABLE:
1312 perf_counter_enable_family(counter);
1313 break;
1314 case PERF_COUNTER_IOC_DISABLE:
1315 perf_counter_disable_family(counter);
1316 break;
1317 case PERF_COUNTER_IOC_REFRESH:
1318 err = perf_counter_refresh(counter, arg);
1319 break;
1320 case PERF_COUNTER_IOC_RESET:
1321 perf_counter_reset(counter);
1322 break;
1323 default:
1324 err = -ENOTTY;
1325 }
1326 return err;
1327 }
1328
1329 /*
1330 * Callers need to ensure there can be no nesting of this function, otherwise
1331 * the seqlock logic goes bad. We can not serialize this because the arch
1332 * code calls this from NMI context.
1333 */
1334 void perf_counter_update_userpage(struct perf_counter *counter)
1335 {
1336 struct perf_mmap_data *data;
1337 struct perf_counter_mmap_page *userpg;
1338
1339 rcu_read_lock();
1340 data = rcu_dereference(counter->data);
1341 if (!data)
1342 goto unlock;
1343
1344 userpg = data->user_page;
1345
1346 /*
1347 * Disable preemption so as to not let the corresponding user-space
1348 * spin too long if we get preempted.
1349 */
1350 preempt_disable();
1351 ++userpg->lock;
1352 barrier();
1353 userpg->index = counter->hw.idx;
1354 userpg->offset = atomic64_read(&counter->count);
1355 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1356 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1357
1358 barrier();
1359 ++userpg->lock;
1360 preempt_enable();
1361 unlock:
1362 rcu_read_unlock();
1363 }
1364
1365 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1366 {
1367 struct perf_counter *counter = vma->vm_file->private_data;
1368 struct perf_mmap_data *data;
1369 int ret = VM_FAULT_SIGBUS;
1370
1371 rcu_read_lock();
1372 data = rcu_dereference(counter->data);
1373 if (!data)
1374 goto unlock;
1375
1376 if (vmf->pgoff == 0) {
1377 vmf->page = virt_to_page(data->user_page);
1378 } else {
1379 int nr = vmf->pgoff - 1;
1380
1381 if ((unsigned)nr > data->nr_pages)
1382 goto unlock;
1383
1384 vmf->page = virt_to_page(data->data_pages[nr]);
1385 }
1386 get_page(vmf->page);
1387 ret = 0;
1388 unlock:
1389 rcu_read_unlock();
1390
1391 return ret;
1392 }
1393
1394 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1395 {
1396 struct perf_mmap_data *data;
1397 unsigned long size;
1398 int i;
1399
1400 WARN_ON(atomic_read(&counter->mmap_count));
1401
1402 size = sizeof(struct perf_mmap_data);
1403 size += nr_pages * sizeof(void *);
1404
1405 data = kzalloc(size, GFP_KERNEL);
1406 if (!data)
1407 goto fail;
1408
1409 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1410 if (!data->user_page)
1411 goto fail_user_page;
1412
1413 for (i = 0; i < nr_pages; i++) {
1414 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1415 if (!data->data_pages[i])
1416 goto fail_data_pages;
1417 }
1418
1419 data->nr_pages = nr_pages;
1420 atomic_set(&data->lock, -1);
1421
1422 rcu_assign_pointer(counter->data, data);
1423
1424 return 0;
1425
1426 fail_data_pages:
1427 for (i--; i >= 0; i--)
1428 free_page((unsigned long)data->data_pages[i]);
1429
1430 free_page((unsigned long)data->user_page);
1431
1432 fail_user_page:
1433 kfree(data);
1434
1435 fail:
1436 return -ENOMEM;
1437 }
1438
1439 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1440 {
1441 struct perf_mmap_data *data = container_of(rcu_head,
1442 struct perf_mmap_data, rcu_head);
1443 int i;
1444
1445 free_page((unsigned long)data->user_page);
1446 for (i = 0; i < data->nr_pages; i++)
1447 free_page((unsigned long)data->data_pages[i]);
1448 kfree(data);
1449 }
1450
1451 static void perf_mmap_data_free(struct perf_counter *counter)
1452 {
1453 struct perf_mmap_data *data = counter->data;
1454
1455 WARN_ON(atomic_read(&counter->mmap_count));
1456
1457 rcu_assign_pointer(counter->data, NULL);
1458 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1459 }
1460
1461 static void perf_mmap_open(struct vm_area_struct *vma)
1462 {
1463 struct perf_counter *counter = vma->vm_file->private_data;
1464
1465 atomic_inc(&counter->mmap_count);
1466 }
1467
1468 static void perf_mmap_close(struct vm_area_struct *vma)
1469 {
1470 struct perf_counter *counter = vma->vm_file->private_data;
1471
1472 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1473 &counter->mmap_mutex)) {
1474 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1475 perf_mmap_data_free(counter);
1476 mutex_unlock(&counter->mmap_mutex);
1477 }
1478 }
1479
1480 static struct vm_operations_struct perf_mmap_vmops = {
1481 .open = perf_mmap_open,
1482 .close = perf_mmap_close,
1483 .fault = perf_mmap_fault,
1484 };
1485
1486 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1487 {
1488 struct perf_counter *counter = file->private_data;
1489 unsigned long vma_size;
1490 unsigned long nr_pages;
1491 unsigned long locked, lock_limit;
1492 int ret = 0;
1493 long extra;
1494
1495 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1496 return -EINVAL;
1497
1498 vma_size = vma->vm_end - vma->vm_start;
1499 nr_pages = (vma_size / PAGE_SIZE) - 1;
1500
1501 /*
1502 * If we have data pages ensure they're a power-of-two number, so we
1503 * can do bitmasks instead of modulo.
1504 */
1505 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1506 return -EINVAL;
1507
1508 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1509 return -EINVAL;
1510
1511 if (vma->vm_pgoff != 0)
1512 return -EINVAL;
1513
1514 mutex_lock(&counter->mmap_mutex);
1515 if (atomic_inc_not_zero(&counter->mmap_count)) {
1516 if (nr_pages != counter->data->nr_pages)
1517 ret = -EINVAL;
1518 goto unlock;
1519 }
1520
1521 extra = nr_pages /* + 1 only account the data pages */;
1522 extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1523 if (extra < 0)
1524 extra = 0;
1525
1526 locked = vma->vm_mm->locked_vm + extra;
1527
1528 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1529 lock_limit >>= PAGE_SHIFT;
1530
1531 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1532 ret = -EPERM;
1533 goto unlock;
1534 }
1535
1536 WARN_ON(counter->data);
1537 ret = perf_mmap_data_alloc(counter, nr_pages);
1538 if (ret)
1539 goto unlock;
1540
1541 atomic_set(&counter->mmap_count, 1);
1542 vma->vm_mm->locked_vm += extra;
1543 counter->data->nr_locked = extra;
1544 unlock:
1545 mutex_unlock(&counter->mmap_mutex);
1546
1547 vma->vm_flags &= ~VM_MAYWRITE;
1548 vma->vm_flags |= VM_RESERVED;
1549 vma->vm_ops = &perf_mmap_vmops;
1550
1551 return ret;
1552 }
1553
1554 static int perf_fasync(int fd, struct file *filp, int on)
1555 {
1556 struct perf_counter *counter = filp->private_data;
1557 struct inode *inode = filp->f_path.dentry->d_inode;
1558 int retval;
1559
1560 mutex_lock(&inode->i_mutex);
1561 retval = fasync_helper(fd, filp, on, &counter->fasync);
1562 mutex_unlock(&inode->i_mutex);
1563
1564 if (retval < 0)
1565 return retval;
1566
1567 return 0;
1568 }
1569
1570 static const struct file_operations perf_fops = {
1571 .release = perf_release,
1572 .read = perf_read,
1573 .poll = perf_poll,
1574 .unlocked_ioctl = perf_ioctl,
1575 .compat_ioctl = perf_ioctl,
1576 .mmap = perf_mmap,
1577 .fasync = perf_fasync,
1578 };
1579
1580 /*
1581 * Perf counter wakeup
1582 *
1583 * If there's data, ensure we set the poll() state and publish everything
1584 * to user-space before waking everybody up.
1585 */
1586
1587 void perf_counter_wakeup(struct perf_counter *counter)
1588 {
1589 wake_up_all(&counter->waitq);
1590
1591 if (counter->pending_kill) {
1592 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1593 counter->pending_kill = 0;
1594 }
1595 }
1596
1597 /*
1598 * Pending wakeups
1599 *
1600 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1601 *
1602 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1603 * single linked list and use cmpxchg() to add entries lockless.
1604 */
1605
1606 static void perf_pending_counter(struct perf_pending_entry *entry)
1607 {
1608 struct perf_counter *counter = container_of(entry,
1609 struct perf_counter, pending);
1610
1611 if (counter->pending_disable) {
1612 counter->pending_disable = 0;
1613 perf_counter_disable(counter);
1614 }
1615
1616 if (counter->pending_wakeup) {
1617 counter->pending_wakeup = 0;
1618 perf_counter_wakeup(counter);
1619 }
1620 }
1621
1622 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1623
1624 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1625 PENDING_TAIL,
1626 };
1627
1628 static void perf_pending_queue(struct perf_pending_entry *entry,
1629 void (*func)(struct perf_pending_entry *))
1630 {
1631 struct perf_pending_entry **head;
1632
1633 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1634 return;
1635
1636 entry->func = func;
1637
1638 head = &get_cpu_var(perf_pending_head);
1639
1640 do {
1641 entry->next = *head;
1642 } while (cmpxchg(head, entry->next, entry) != entry->next);
1643
1644 set_perf_counter_pending();
1645
1646 put_cpu_var(perf_pending_head);
1647 }
1648
1649 static int __perf_pending_run(void)
1650 {
1651 struct perf_pending_entry *list;
1652 int nr = 0;
1653
1654 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1655 while (list != PENDING_TAIL) {
1656 void (*func)(struct perf_pending_entry *);
1657 struct perf_pending_entry *entry = list;
1658
1659 list = list->next;
1660
1661 func = entry->func;
1662 entry->next = NULL;
1663 /*
1664 * Ensure we observe the unqueue before we issue the wakeup,
1665 * so that we won't be waiting forever.
1666 * -- see perf_not_pending().
1667 */
1668 smp_wmb();
1669
1670 func(entry);
1671 nr++;
1672 }
1673
1674 return nr;
1675 }
1676
1677 static inline int perf_not_pending(struct perf_counter *counter)
1678 {
1679 /*
1680 * If we flush on whatever cpu we run, there is a chance we don't
1681 * need to wait.
1682 */
1683 get_cpu();
1684 __perf_pending_run();
1685 put_cpu();
1686
1687 /*
1688 * Ensure we see the proper queue state before going to sleep
1689 * so that we do not miss the wakeup. -- see perf_pending_handle()
1690 */
1691 smp_rmb();
1692 return counter->pending.next == NULL;
1693 }
1694
1695 static void perf_pending_sync(struct perf_counter *counter)
1696 {
1697 wait_event(counter->waitq, perf_not_pending(counter));
1698 }
1699
1700 void perf_counter_do_pending(void)
1701 {
1702 __perf_pending_run();
1703 }
1704
1705 /*
1706 * Callchain support -- arch specific
1707 */
1708
1709 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1710 {
1711 return NULL;
1712 }
1713
1714 /*
1715 * Output
1716 */
1717
1718 struct perf_output_handle {
1719 struct perf_counter *counter;
1720 struct perf_mmap_data *data;
1721 unsigned int offset;
1722 unsigned int head;
1723 int nmi;
1724 int overflow;
1725 int locked;
1726 unsigned long flags;
1727 };
1728
1729 static void perf_output_wakeup(struct perf_output_handle *handle)
1730 {
1731 atomic_set(&handle->data->poll, POLL_IN);
1732
1733 if (handle->nmi) {
1734 handle->counter->pending_wakeup = 1;
1735 perf_pending_queue(&handle->counter->pending,
1736 perf_pending_counter);
1737 } else
1738 perf_counter_wakeup(handle->counter);
1739 }
1740
1741 /*
1742 * Curious locking construct.
1743 *
1744 * We need to ensure a later event doesn't publish a head when a former
1745 * event isn't done writing. However since we need to deal with NMIs we
1746 * cannot fully serialize things.
1747 *
1748 * What we do is serialize between CPUs so we only have to deal with NMI
1749 * nesting on a single CPU.
1750 *
1751 * We only publish the head (and generate a wakeup) when the outer-most
1752 * event completes.
1753 */
1754 static void perf_output_lock(struct perf_output_handle *handle)
1755 {
1756 struct perf_mmap_data *data = handle->data;
1757 int cpu;
1758
1759 handle->locked = 0;
1760
1761 local_irq_save(handle->flags);
1762 cpu = smp_processor_id();
1763
1764 if (in_nmi() && atomic_read(&data->lock) == cpu)
1765 return;
1766
1767 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1768 cpu_relax();
1769
1770 handle->locked = 1;
1771 }
1772
1773 static void perf_output_unlock(struct perf_output_handle *handle)
1774 {
1775 struct perf_mmap_data *data = handle->data;
1776 int head, cpu;
1777
1778 data->done_head = data->head;
1779
1780 if (!handle->locked)
1781 goto out;
1782
1783 again:
1784 /*
1785 * The xchg implies a full barrier that ensures all writes are done
1786 * before we publish the new head, matched by a rmb() in userspace when
1787 * reading this position.
1788 */
1789 while ((head = atomic_xchg(&data->done_head, 0)))
1790 data->user_page->data_head = head;
1791
1792 /*
1793 * NMI can happen here, which means we can miss a done_head update.
1794 */
1795
1796 cpu = atomic_xchg(&data->lock, -1);
1797 WARN_ON_ONCE(cpu != smp_processor_id());
1798
1799 /*
1800 * Therefore we have to validate we did not indeed do so.
1801 */
1802 if (unlikely(atomic_read(&data->done_head))) {
1803 /*
1804 * Since we had it locked, we can lock it again.
1805 */
1806 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1807 cpu_relax();
1808
1809 goto again;
1810 }
1811
1812 if (atomic_xchg(&data->wakeup, 0))
1813 perf_output_wakeup(handle);
1814 out:
1815 local_irq_restore(handle->flags);
1816 }
1817
1818 static int perf_output_begin(struct perf_output_handle *handle,
1819 struct perf_counter *counter, unsigned int size,
1820 int nmi, int overflow)
1821 {
1822 struct perf_mmap_data *data;
1823 unsigned int offset, head;
1824
1825 /*
1826 * For inherited counters we send all the output towards the parent.
1827 */
1828 if (counter->parent)
1829 counter = counter->parent;
1830
1831 rcu_read_lock();
1832 data = rcu_dereference(counter->data);
1833 if (!data)
1834 goto out;
1835
1836 handle->data = data;
1837 handle->counter = counter;
1838 handle->nmi = nmi;
1839 handle->overflow = overflow;
1840
1841 if (!data->nr_pages)
1842 goto fail;
1843
1844 perf_output_lock(handle);
1845
1846 do {
1847 offset = head = atomic_read(&data->head);
1848 head += size;
1849 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1850
1851 handle->offset = offset;
1852 handle->head = head;
1853
1854 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1855 atomic_set(&data->wakeup, 1);
1856
1857 return 0;
1858
1859 fail:
1860 perf_output_wakeup(handle);
1861 out:
1862 rcu_read_unlock();
1863
1864 return -ENOSPC;
1865 }
1866
1867 static void perf_output_copy(struct perf_output_handle *handle,
1868 void *buf, unsigned int len)
1869 {
1870 unsigned int pages_mask;
1871 unsigned int offset;
1872 unsigned int size;
1873 void **pages;
1874
1875 offset = handle->offset;
1876 pages_mask = handle->data->nr_pages - 1;
1877 pages = handle->data->data_pages;
1878
1879 do {
1880 unsigned int page_offset;
1881 int nr;
1882
1883 nr = (offset >> PAGE_SHIFT) & pages_mask;
1884 page_offset = offset & (PAGE_SIZE - 1);
1885 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1886
1887 memcpy(pages[nr] + page_offset, buf, size);
1888
1889 len -= size;
1890 buf += size;
1891 offset += size;
1892 } while (len);
1893
1894 handle->offset = offset;
1895
1896 WARN_ON_ONCE(handle->offset > handle->head);
1897 }
1898
1899 #define perf_output_put(handle, x) \
1900 perf_output_copy((handle), &(x), sizeof(x))
1901
1902 static void perf_output_end(struct perf_output_handle *handle)
1903 {
1904 struct perf_counter *counter = handle->counter;
1905 struct perf_mmap_data *data = handle->data;
1906
1907 int wakeup_events = counter->hw_event.wakeup_events;
1908
1909 if (handle->overflow && wakeup_events) {
1910 int events = atomic_inc_return(&data->events);
1911 if (events >= wakeup_events) {
1912 atomic_sub(wakeup_events, &data->events);
1913 atomic_set(&data->wakeup, 1);
1914 }
1915 }
1916
1917 perf_output_unlock(handle);
1918 rcu_read_unlock();
1919 }
1920
1921 static void perf_counter_output(struct perf_counter *counter,
1922 int nmi, struct pt_regs *regs, u64 addr)
1923 {
1924 int ret;
1925 u64 record_type = counter->hw_event.record_type;
1926 struct perf_output_handle handle;
1927 struct perf_event_header header;
1928 u64 ip;
1929 struct {
1930 u32 pid, tid;
1931 } tid_entry;
1932 struct {
1933 u64 event;
1934 u64 counter;
1935 } group_entry;
1936 struct perf_callchain_entry *callchain = NULL;
1937 int callchain_size = 0;
1938 u64 time;
1939
1940 header.type = 0;
1941 header.size = sizeof(header);
1942
1943 header.misc = PERF_EVENT_MISC_OVERFLOW;
1944 header.misc |= user_mode(regs) ?
1945 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1946
1947 if (record_type & PERF_RECORD_IP) {
1948 ip = instruction_pointer(regs);
1949 header.type |= PERF_RECORD_IP;
1950 header.size += sizeof(ip);
1951 }
1952
1953 if (record_type & PERF_RECORD_TID) {
1954 /* namespace issues */
1955 tid_entry.pid = current->group_leader->pid;
1956 tid_entry.tid = current->pid;
1957
1958 header.type |= PERF_RECORD_TID;
1959 header.size += sizeof(tid_entry);
1960 }
1961
1962 if (record_type & PERF_RECORD_TIME) {
1963 /*
1964 * Maybe do better on x86 and provide cpu_clock_nmi()
1965 */
1966 time = sched_clock();
1967
1968 header.type |= PERF_RECORD_TIME;
1969 header.size += sizeof(u64);
1970 }
1971
1972 if (record_type & PERF_RECORD_ADDR) {
1973 header.type |= PERF_RECORD_ADDR;
1974 header.size += sizeof(u64);
1975 }
1976
1977 if (record_type & PERF_RECORD_GROUP) {
1978 header.type |= PERF_RECORD_GROUP;
1979 header.size += sizeof(u64) +
1980 counter->nr_siblings * sizeof(group_entry);
1981 }
1982
1983 if (record_type & PERF_RECORD_CALLCHAIN) {
1984 callchain = perf_callchain(regs);
1985
1986 if (callchain) {
1987 callchain_size = (1 + callchain->nr) * sizeof(u64);
1988
1989 header.type |= PERF_RECORD_CALLCHAIN;
1990 header.size += callchain_size;
1991 }
1992 }
1993
1994 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1995 if (ret)
1996 return;
1997
1998 perf_output_put(&handle, header);
1999
2000 if (record_type & PERF_RECORD_IP)
2001 perf_output_put(&handle, ip);
2002
2003 if (record_type & PERF_RECORD_TID)
2004 perf_output_put(&handle, tid_entry);
2005
2006 if (record_type & PERF_RECORD_TIME)
2007 perf_output_put(&handle, time);
2008
2009 if (record_type & PERF_RECORD_ADDR)
2010 perf_output_put(&handle, addr);
2011
2012 /*
2013 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2014 */
2015 if (record_type & PERF_RECORD_GROUP) {
2016 struct perf_counter *leader, *sub;
2017 u64 nr = counter->nr_siblings;
2018
2019 perf_output_put(&handle, nr);
2020
2021 leader = counter->group_leader;
2022 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2023 if (sub != counter)
2024 sub->pmu->read(sub);
2025
2026 group_entry.event = sub->hw_event.config;
2027 group_entry.counter = atomic64_read(&sub->count);
2028
2029 perf_output_put(&handle, group_entry);
2030 }
2031 }
2032
2033 if (callchain)
2034 perf_output_copy(&handle, callchain, callchain_size);
2035
2036 perf_output_end(&handle);
2037 }
2038
2039 /*
2040 * comm tracking
2041 */
2042
2043 struct perf_comm_event {
2044 struct task_struct *task;
2045 char *comm;
2046 int comm_size;
2047
2048 struct {
2049 struct perf_event_header header;
2050
2051 u32 pid;
2052 u32 tid;
2053 } event;
2054 };
2055
2056 static void perf_counter_comm_output(struct perf_counter *counter,
2057 struct perf_comm_event *comm_event)
2058 {
2059 struct perf_output_handle handle;
2060 int size = comm_event->event.header.size;
2061 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2062
2063 if (ret)
2064 return;
2065
2066 perf_output_put(&handle, comm_event->event);
2067 perf_output_copy(&handle, comm_event->comm,
2068 comm_event->comm_size);
2069 perf_output_end(&handle);
2070 }
2071
2072 static int perf_counter_comm_match(struct perf_counter *counter,
2073 struct perf_comm_event *comm_event)
2074 {
2075 if (counter->hw_event.comm &&
2076 comm_event->event.header.type == PERF_EVENT_COMM)
2077 return 1;
2078
2079 return 0;
2080 }
2081
2082 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2083 struct perf_comm_event *comm_event)
2084 {
2085 struct perf_counter *counter;
2086
2087 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2088 return;
2089
2090 rcu_read_lock();
2091 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2092 if (perf_counter_comm_match(counter, comm_event))
2093 perf_counter_comm_output(counter, comm_event);
2094 }
2095 rcu_read_unlock();
2096 }
2097
2098 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2099 {
2100 struct perf_cpu_context *cpuctx;
2101 unsigned int size;
2102 char *comm = comm_event->task->comm;
2103
2104 size = ALIGN(strlen(comm)+1, sizeof(u64));
2105
2106 comm_event->comm = comm;
2107 comm_event->comm_size = size;
2108
2109 comm_event->event.header.size = sizeof(comm_event->event) + size;
2110
2111 cpuctx = &get_cpu_var(perf_cpu_context);
2112 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2113 put_cpu_var(perf_cpu_context);
2114
2115 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2116 }
2117
2118 void perf_counter_comm(struct task_struct *task)
2119 {
2120 struct perf_comm_event comm_event;
2121
2122 if (!atomic_read(&nr_comm_tracking))
2123 return;
2124
2125 comm_event = (struct perf_comm_event){
2126 .task = task,
2127 .event = {
2128 .header = { .type = PERF_EVENT_COMM, },
2129 .pid = task->group_leader->pid,
2130 .tid = task->pid,
2131 },
2132 };
2133
2134 perf_counter_comm_event(&comm_event);
2135 }
2136
2137 /*
2138 * mmap tracking
2139 */
2140
2141 struct perf_mmap_event {
2142 struct file *file;
2143 char *file_name;
2144 int file_size;
2145
2146 struct {
2147 struct perf_event_header header;
2148
2149 u32 pid;
2150 u32 tid;
2151 u64 start;
2152 u64 len;
2153 u64 pgoff;
2154 } event;
2155 };
2156
2157 static void perf_counter_mmap_output(struct perf_counter *counter,
2158 struct perf_mmap_event *mmap_event)
2159 {
2160 struct perf_output_handle handle;
2161 int size = mmap_event->event.header.size;
2162 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2163
2164 if (ret)
2165 return;
2166
2167 perf_output_put(&handle, mmap_event->event);
2168 perf_output_copy(&handle, mmap_event->file_name,
2169 mmap_event->file_size);
2170 perf_output_end(&handle);
2171 }
2172
2173 static int perf_counter_mmap_match(struct perf_counter *counter,
2174 struct perf_mmap_event *mmap_event)
2175 {
2176 if (counter->hw_event.mmap &&
2177 mmap_event->event.header.type == PERF_EVENT_MMAP)
2178 return 1;
2179
2180 if (counter->hw_event.munmap &&
2181 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2182 return 1;
2183
2184 return 0;
2185 }
2186
2187 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2188 struct perf_mmap_event *mmap_event)
2189 {
2190 struct perf_counter *counter;
2191
2192 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2193 return;
2194
2195 rcu_read_lock();
2196 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2197 if (perf_counter_mmap_match(counter, mmap_event))
2198 perf_counter_mmap_output(counter, mmap_event);
2199 }
2200 rcu_read_unlock();
2201 }
2202
2203 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2204 {
2205 struct perf_cpu_context *cpuctx;
2206 struct file *file = mmap_event->file;
2207 unsigned int size;
2208 char tmp[16];
2209 char *buf = NULL;
2210 char *name;
2211
2212 if (file) {
2213 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2214 if (!buf) {
2215 name = strncpy(tmp, "//enomem", sizeof(tmp));
2216 goto got_name;
2217 }
2218 name = d_path(&file->f_path, buf, PATH_MAX);
2219 if (IS_ERR(name)) {
2220 name = strncpy(tmp, "//toolong", sizeof(tmp));
2221 goto got_name;
2222 }
2223 } else {
2224 name = strncpy(tmp, "//anon", sizeof(tmp));
2225 goto got_name;
2226 }
2227
2228 got_name:
2229 size = ALIGN(strlen(name)+1, sizeof(u64));
2230
2231 mmap_event->file_name = name;
2232 mmap_event->file_size = size;
2233
2234 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2235
2236 cpuctx = &get_cpu_var(perf_cpu_context);
2237 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2238 put_cpu_var(perf_cpu_context);
2239
2240 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2241
2242 kfree(buf);
2243 }
2244
2245 void perf_counter_mmap(unsigned long addr, unsigned long len,
2246 unsigned long pgoff, struct file *file)
2247 {
2248 struct perf_mmap_event mmap_event;
2249
2250 if (!atomic_read(&nr_mmap_tracking))
2251 return;
2252
2253 mmap_event = (struct perf_mmap_event){
2254 .file = file,
2255 .event = {
2256 .header = { .type = PERF_EVENT_MMAP, },
2257 .pid = current->group_leader->pid,
2258 .tid = current->pid,
2259 .start = addr,
2260 .len = len,
2261 .pgoff = pgoff,
2262 },
2263 };
2264
2265 perf_counter_mmap_event(&mmap_event);
2266 }
2267
2268 void perf_counter_munmap(unsigned long addr, unsigned long len,
2269 unsigned long pgoff, struct file *file)
2270 {
2271 struct perf_mmap_event mmap_event;
2272
2273 if (!atomic_read(&nr_munmap_tracking))
2274 return;
2275
2276 mmap_event = (struct perf_mmap_event){
2277 .file = file,
2278 .event = {
2279 .header = { .type = PERF_EVENT_MUNMAP, },
2280 .pid = current->group_leader->pid,
2281 .tid = current->pid,
2282 .start = addr,
2283 .len = len,
2284 .pgoff = pgoff,
2285 },
2286 };
2287
2288 perf_counter_mmap_event(&mmap_event);
2289 }
2290
2291 /*
2292 * Generic counter overflow handling.
2293 */
2294
2295 int perf_counter_overflow(struct perf_counter *counter,
2296 int nmi, struct pt_regs *regs, u64 addr)
2297 {
2298 int events = atomic_read(&counter->event_limit);
2299 int ret = 0;
2300
2301 /*
2302 * XXX event_limit might not quite work as expected on inherited
2303 * counters
2304 */
2305
2306 counter->pending_kill = POLL_IN;
2307 if (events && atomic_dec_and_test(&counter->event_limit)) {
2308 ret = 1;
2309 counter->pending_kill = POLL_HUP;
2310 if (nmi) {
2311 counter->pending_disable = 1;
2312 perf_pending_queue(&counter->pending,
2313 perf_pending_counter);
2314 } else
2315 perf_counter_disable(counter);
2316 }
2317
2318 perf_counter_output(counter, nmi, regs, addr);
2319 return ret;
2320 }
2321
2322 /*
2323 * Generic software counter infrastructure
2324 */
2325
2326 static void perf_swcounter_update(struct perf_counter *counter)
2327 {
2328 struct hw_perf_counter *hwc = &counter->hw;
2329 u64 prev, now;
2330 s64 delta;
2331
2332 again:
2333 prev = atomic64_read(&hwc->prev_count);
2334 now = atomic64_read(&hwc->count);
2335 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2336 goto again;
2337
2338 delta = now - prev;
2339
2340 atomic64_add(delta, &counter->count);
2341 atomic64_sub(delta, &hwc->period_left);
2342 }
2343
2344 static void perf_swcounter_set_period(struct perf_counter *counter)
2345 {
2346 struct hw_perf_counter *hwc = &counter->hw;
2347 s64 left = atomic64_read(&hwc->period_left);
2348 s64 period = hwc->irq_period;
2349
2350 if (unlikely(left <= -period)) {
2351 left = period;
2352 atomic64_set(&hwc->period_left, left);
2353 }
2354
2355 if (unlikely(left <= 0)) {
2356 left += period;
2357 atomic64_add(period, &hwc->period_left);
2358 }
2359
2360 atomic64_set(&hwc->prev_count, -left);
2361 atomic64_set(&hwc->count, -left);
2362 }
2363
2364 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2365 {
2366 enum hrtimer_restart ret = HRTIMER_RESTART;
2367 struct perf_counter *counter;
2368 struct pt_regs *regs;
2369
2370 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2371 counter->pmu->read(counter);
2372
2373 regs = get_irq_regs();
2374 /*
2375 * In case we exclude kernel IPs or are somehow not in interrupt
2376 * context, provide the next best thing, the user IP.
2377 */
2378 if ((counter->hw_event.exclude_kernel || !regs) &&
2379 !counter->hw_event.exclude_user)
2380 regs = task_pt_regs(current);
2381
2382 if (regs) {
2383 if (perf_counter_overflow(counter, 0, regs, 0))
2384 ret = HRTIMER_NORESTART;
2385 }
2386
2387 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2388
2389 return ret;
2390 }
2391
2392 static void perf_swcounter_overflow(struct perf_counter *counter,
2393 int nmi, struct pt_regs *regs, u64 addr)
2394 {
2395 perf_swcounter_update(counter);
2396 perf_swcounter_set_period(counter);
2397 if (perf_counter_overflow(counter, nmi, regs, addr))
2398 /* soft-disable the counter */
2399 ;
2400
2401 }
2402
2403 static int perf_swcounter_match(struct perf_counter *counter,
2404 enum perf_event_types type,
2405 u32 event, struct pt_regs *regs)
2406 {
2407 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2408 return 0;
2409
2410 if (perf_event_raw(&counter->hw_event))
2411 return 0;
2412
2413 if (perf_event_type(&counter->hw_event) != type)
2414 return 0;
2415
2416 if (perf_event_id(&counter->hw_event) != event)
2417 return 0;
2418
2419 if (counter->hw_event.exclude_user && user_mode(regs))
2420 return 0;
2421
2422 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2423 return 0;
2424
2425 return 1;
2426 }
2427
2428 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2429 int nmi, struct pt_regs *regs, u64 addr)
2430 {
2431 int neg = atomic64_add_negative(nr, &counter->hw.count);
2432 if (counter->hw.irq_period && !neg)
2433 perf_swcounter_overflow(counter, nmi, regs, addr);
2434 }
2435
2436 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2437 enum perf_event_types type, u32 event,
2438 u64 nr, int nmi, struct pt_regs *regs,
2439 u64 addr)
2440 {
2441 struct perf_counter *counter;
2442
2443 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2444 return;
2445
2446 rcu_read_lock();
2447 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2448 if (perf_swcounter_match(counter, type, event, regs))
2449 perf_swcounter_add(counter, nr, nmi, regs, addr);
2450 }
2451 rcu_read_unlock();
2452 }
2453
2454 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2455 {
2456 if (in_nmi())
2457 return &cpuctx->recursion[3];
2458
2459 if (in_irq())
2460 return &cpuctx->recursion[2];
2461
2462 if (in_softirq())
2463 return &cpuctx->recursion[1];
2464
2465 return &cpuctx->recursion[0];
2466 }
2467
2468 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2469 u64 nr, int nmi, struct pt_regs *regs,
2470 u64 addr)
2471 {
2472 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2473 int *recursion = perf_swcounter_recursion_context(cpuctx);
2474
2475 if (*recursion)
2476 goto out;
2477
2478 (*recursion)++;
2479 barrier();
2480
2481 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2482 nr, nmi, regs, addr);
2483 if (cpuctx->task_ctx) {
2484 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2485 nr, nmi, regs, addr);
2486 }
2487
2488 barrier();
2489 (*recursion)--;
2490
2491 out:
2492 put_cpu_var(perf_cpu_context);
2493 }
2494
2495 void
2496 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2497 {
2498 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2499 }
2500
2501 static void perf_swcounter_read(struct perf_counter *counter)
2502 {
2503 perf_swcounter_update(counter);
2504 }
2505
2506 static int perf_swcounter_enable(struct perf_counter *counter)
2507 {
2508 perf_swcounter_set_period(counter);
2509 return 0;
2510 }
2511
2512 static void perf_swcounter_disable(struct perf_counter *counter)
2513 {
2514 perf_swcounter_update(counter);
2515 }
2516
2517 static const struct pmu perf_ops_generic = {
2518 .enable = perf_swcounter_enable,
2519 .disable = perf_swcounter_disable,
2520 .read = perf_swcounter_read,
2521 };
2522
2523 /*
2524 * Software counter: cpu wall time clock
2525 */
2526
2527 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2528 {
2529 int cpu = raw_smp_processor_id();
2530 s64 prev;
2531 u64 now;
2532
2533 now = cpu_clock(cpu);
2534 prev = atomic64_read(&counter->hw.prev_count);
2535 atomic64_set(&counter->hw.prev_count, now);
2536 atomic64_add(now - prev, &counter->count);
2537 }
2538
2539 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2540 {
2541 struct hw_perf_counter *hwc = &counter->hw;
2542 int cpu = raw_smp_processor_id();
2543
2544 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2545 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2546 hwc->hrtimer.function = perf_swcounter_hrtimer;
2547 if (hwc->irq_period) {
2548 __hrtimer_start_range_ns(&hwc->hrtimer,
2549 ns_to_ktime(hwc->irq_period), 0,
2550 HRTIMER_MODE_REL, 0);
2551 }
2552
2553 return 0;
2554 }
2555
2556 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2557 {
2558 hrtimer_cancel(&counter->hw.hrtimer);
2559 cpu_clock_perf_counter_update(counter);
2560 }
2561
2562 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2563 {
2564 cpu_clock_perf_counter_update(counter);
2565 }
2566
2567 static const struct pmu perf_ops_cpu_clock = {
2568 .enable = cpu_clock_perf_counter_enable,
2569 .disable = cpu_clock_perf_counter_disable,
2570 .read = cpu_clock_perf_counter_read,
2571 };
2572
2573 /*
2574 * Software counter: task time clock
2575 */
2576
2577 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2578 {
2579 u64 prev;
2580 s64 delta;
2581
2582 prev = atomic64_xchg(&counter->hw.prev_count, now);
2583 delta = now - prev;
2584 atomic64_add(delta, &counter->count);
2585 }
2586
2587 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2588 {
2589 struct hw_perf_counter *hwc = &counter->hw;
2590 u64 now;
2591
2592 now = counter->ctx->time;
2593
2594 atomic64_set(&hwc->prev_count, now);
2595 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2596 hwc->hrtimer.function = perf_swcounter_hrtimer;
2597 if (hwc->irq_period) {
2598 __hrtimer_start_range_ns(&hwc->hrtimer,
2599 ns_to_ktime(hwc->irq_period), 0,
2600 HRTIMER_MODE_REL, 0);
2601 }
2602
2603 return 0;
2604 }
2605
2606 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2607 {
2608 hrtimer_cancel(&counter->hw.hrtimer);
2609 task_clock_perf_counter_update(counter, counter->ctx->time);
2610
2611 }
2612
2613 static void task_clock_perf_counter_read(struct perf_counter *counter)
2614 {
2615 u64 time;
2616
2617 if (!in_nmi()) {
2618 update_context_time(counter->ctx);
2619 time = counter->ctx->time;
2620 } else {
2621 u64 now = perf_clock();
2622 u64 delta = now - counter->ctx->timestamp;
2623 time = counter->ctx->time + delta;
2624 }
2625
2626 task_clock_perf_counter_update(counter, time);
2627 }
2628
2629 static const struct pmu perf_ops_task_clock = {
2630 .enable = task_clock_perf_counter_enable,
2631 .disable = task_clock_perf_counter_disable,
2632 .read = task_clock_perf_counter_read,
2633 };
2634
2635 /*
2636 * Software counter: cpu migrations
2637 */
2638
2639 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2640 {
2641 struct task_struct *curr = counter->ctx->task;
2642
2643 if (curr)
2644 return curr->se.nr_migrations;
2645 return cpu_nr_migrations(smp_processor_id());
2646 }
2647
2648 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2649 {
2650 u64 prev, now;
2651 s64 delta;
2652
2653 prev = atomic64_read(&counter->hw.prev_count);
2654 now = get_cpu_migrations(counter);
2655
2656 atomic64_set(&counter->hw.prev_count, now);
2657
2658 delta = now - prev;
2659
2660 atomic64_add(delta, &counter->count);
2661 }
2662
2663 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2664 {
2665 cpu_migrations_perf_counter_update(counter);
2666 }
2667
2668 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2669 {
2670 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2671 atomic64_set(&counter->hw.prev_count,
2672 get_cpu_migrations(counter));
2673 return 0;
2674 }
2675
2676 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2677 {
2678 cpu_migrations_perf_counter_update(counter);
2679 }
2680
2681 static const struct pmu perf_ops_cpu_migrations = {
2682 .enable = cpu_migrations_perf_counter_enable,
2683 .disable = cpu_migrations_perf_counter_disable,
2684 .read = cpu_migrations_perf_counter_read,
2685 };
2686
2687 #ifdef CONFIG_EVENT_PROFILE
2688 void perf_tpcounter_event(int event_id)
2689 {
2690 struct pt_regs *regs = get_irq_regs();
2691
2692 if (!regs)
2693 regs = task_pt_regs(current);
2694
2695 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2696 }
2697 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2698
2699 extern int ftrace_profile_enable(int);
2700 extern void ftrace_profile_disable(int);
2701
2702 static void tp_perf_counter_destroy(struct perf_counter *counter)
2703 {
2704 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2705 }
2706
2707 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2708 {
2709 int event_id = perf_event_id(&counter->hw_event);
2710 int ret;
2711
2712 ret = ftrace_profile_enable(event_id);
2713 if (ret)
2714 return NULL;
2715
2716 counter->destroy = tp_perf_counter_destroy;
2717 counter->hw.irq_period = counter->hw_event.irq_period;
2718
2719 return &perf_ops_generic;
2720 }
2721 #else
2722 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2723 {
2724 return NULL;
2725 }
2726 #endif
2727
2728 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2729 {
2730 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2731 const struct pmu *pmu = NULL;
2732 struct hw_perf_counter *hwc = &counter->hw;
2733
2734 /*
2735 * Software counters (currently) can't in general distinguish
2736 * between user, kernel and hypervisor events.
2737 * However, context switches and cpu migrations are considered
2738 * to be kernel events, and page faults are never hypervisor
2739 * events.
2740 */
2741 switch (perf_event_id(&counter->hw_event)) {
2742 case PERF_COUNT_CPU_CLOCK:
2743 pmu = &perf_ops_cpu_clock;
2744
2745 if (hw_event->irq_period && hw_event->irq_period < 10000)
2746 hw_event->irq_period = 10000;
2747 break;
2748 case PERF_COUNT_TASK_CLOCK:
2749 /*
2750 * If the user instantiates this as a per-cpu counter,
2751 * use the cpu_clock counter instead.
2752 */
2753 if (counter->ctx->task)
2754 pmu = &perf_ops_task_clock;
2755 else
2756 pmu = &perf_ops_cpu_clock;
2757
2758 if (hw_event->irq_period && hw_event->irq_period < 10000)
2759 hw_event->irq_period = 10000;
2760 break;
2761 case PERF_COUNT_PAGE_FAULTS:
2762 case PERF_COUNT_PAGE_FAULTS_MIN:
2763 case PERF_COUNT_PAGE_FAULTS_MAJ:
2764 case PERF_COUNT_CONTEXT_SWITCHES:
2765 pmu = &perf_ops_generic;
2766 break;
2767 case PERF_COUNT_CPU_MIGRATIONS:
2768 if (!counter->hw_event.exclude_kernel)
2769 pmu = &perf_ops_cpu_migrations;
2770 break;
2771 }
2772
2773 if (pmu)
2774 hwc->irq_period = hw_event->irq_period;
2775
2776 return pmu;
2777 }
2778
2779 /*
2780 * Allocate and initialize a counter structure
2781 */
2782 static struct perf_counter *
2783 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2784 int cpu,
2785 struct perf_counter_context *ctx,
2786 struct perf_counter *group_leader,
2787 gfp_t gfpflags)
2788 {
2789 const struct pmu *pmu;
2790 struct perf_counter *counter;
2791 long err;
2792
2793 counter = kzalloc(sizeof(*counter), gfpflags);
2794 if (!counter)
2795 return ERR_PTR(-ENOMEM);
2796
2797 /*
2798 * Single counters are their own group leaders, with an
2799 * empty sibling list:
2800 */
2801 if (!group_leader)
2802 group_leader = counter;
2803
2804 mutex_init(&counter->mutex);
2805 INIT_LIST_HEAD(&counter->list_entry);
2806 INIT_LIST_HEAD(&counter->event_entry);
2807 INIT_LIST_HEAD(&counter->sibling_list);
2808 init_waitqueue_head(&counter->waitq);
2809
2810 mutex_init(&counter->mmap_mutex);
2811
2812 INIT_LIST_HEAD(&counter->child_list);
2813
2814 counter->cpu = cpu;
2815 counter->hw_event = *hw_event;
2816 counter->group_leader = group_leader;
2817 counter->pmu = NULL;
2818 counter->ctx = ctx;
2819
2820 counter->state = PERF_COUNTER_STATE_INACTIVE;
2821 if (hw_event->disabled)
2822 counter->state = PERF_COUNTER_STATE_OFF;
2823
2824 pmu = NULL;
2825
2826 /*
2827 * we currently do not support PERF_RECORD_GROUP on inherited counters
2828 */
2829 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2830 goto done;
2831
2832 if (perf_event_raw(hw_event)) {
2833 pmu = hw_perf_counter_init(counter);
2834 goto done;
2835 }
2836
2837 switch (perf_event_type(hw_event)) {
2838 case PERF_TYPE_HARDWARE:
2839 pmu = hw_perf_counter_init(counter);
2840 break;
2841
2842 case PERF_TYPE_SOFTWARE:
2843 pmu = sw_perf_counter_init(counter);
2844 break;
2845
2846 case PERF_TYPE_TRACEPOINT:
2847 pmu = tp_perf_counter_init(counter);
2848 break;
2849 }
2850 done:
2851 err = 0;
2852 if (!pmu)
2853 err = -EINVAL;
2854 else if (IS_ERR(pmu))
2855 err = PTR_ERR(pmu);
2856
2857 if (err) {
2858 kfree(counter);
2859 return ERR_PTR(err);
2860 }
2861
2862 counter->pmu = pmu;
2863
2864 if (counter->hw_event.mmap)
2865 atomic_inc(&nr_mmap_tracking);
2866 if (counter->hw_event.munmap)
2867 atomic_inc(&nr_munmap_tracking);
2868 if (counter->hw_event.comm)
2869 atomic_inc(&nr_comm_tracking);
2870
2871 return counter;
2872 }
2873
2874 /**
2875 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2876 *
2877 * @hw_event_uptr: event type attributes for monitoring/sampling
2878 * @pid: target pid
2879 * @cpu: target cpu
2880 * @group_fd: group leader counter fd
2881 */
2882 SYSCALL_DEFINE5(perf_counter_open,
2883 const struct perf_counter_hw_event __user *, hw_event_uptr,
2884 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2885 {
2886 struct perf_counter *counter, *group_leader;
2887 struct perf_counter_hw_event hw_event;
2888 struct perf_counter_context *ctx;
2889 struct file *counter_file = NULL;
2890 struct file *group_file = NULL;
2891 int fput_needed = 0;
2892 int fput_needed2 = 0;
2893 int ret;
2894
2895 /* for future expandability... */
2896 if (flags)
2897 return -EINVAL;
2898
2899 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2900 return -EFAULT;
2901
2902 /*
2903 * Get the target context (task or percpu):
2904 */
2905 ctx = find_get_context(pid, cpu);
2906 if (IS_ERR(ctx))
2907 return PTR_ERR(ctx);
2908
2909 /*
2910 * Look up the group leader (we will attach this counter to it):
2911 */
2912 group_leader = NULL;
2913 if (group_fd != -1) {
2914 ret = -EINVAL;
2915 group_file = fget_light(group_fd, &fput_needed);
2916 if (!group_file)
2917 goto err_put_context;
2918 if (group_file->f_op != &perf_fops)
2919 goto err_put_context;
2920
2921 group_leader = group_file->private_data;
2922 /*
2923 * Do not allow a recursive hierarchy (this new sibling
2924 * becoming part of another group-sibling):
2925 */
2926 if (group_leader->group_leader != group_leader)
2927 goto err_put_context;
2928 /*
2929 * Do not allow to attach to a group in a different
2930 * task or CPU context:
2931 */
2932 if (group_leader->ctx != ctx)
2933 goto err_put_context;
2934 /*
2935 * Only a group leader can be exclusive or pinned
2936 */
2937 if (hw_event.exclusive || hw_event.pinned)
2938 goto err_put_context;
2939 }
2940
2941 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2942 GFP_KERNEL);
2943 ret = PTR_ERR(counter);
2944 if (IS_ERR(counter))
2945 goto err_put_context;
2946
2947 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2948 if (ret < 0)
2949 goto err_free_put_context;
2950
2951 counter_file = fget_light(ret, &fput_needed2);
2952 if (!counter_file)
2953 goto err_free_put_context;
2954
2955 counter->filp = counter_file;
2956 mutex_lock(&ctx->mutex);
2957 perf_install_in_context(ctx, counter, cpu);
2958 mutex_unlock(&ctx->mutex);
2959
2960 fput_light(counter_file, fput_needed2);
2961
2962 out_fput:
2963 fput_light(group_file, fput_needed);
2964
2965 return ret;
2966
2967 err_free_put_context:
2968 kfree(counter);
2969
2970 err_put_context:
2971 put_context(ctx);
2972
2973 goto out_fput;
2974 }
2975
2976 /*
2977 * Initialize the perf_counter context in a task_struct:
2978 */
2979 static void
2980 __perf_counter_init_context(struct perf_counter_context *ctx,
2981 struct task_struct *task)
2982 {
2983 memset(ctx, 0, sizeof(*ctx));
2984 spin_lock_init(&ctx->lock);
2985 mutex_init(&ctx->mutex);
2986 INIT_LIST_HEAD(&ctx->counter_list);
2987 INIT_LIST_HEAD(&ctx->event_list);
2988 ctx->task = task;
2989 }
2990
2991 /*
2992 * inherit a counter from parent task to child task:
2993 */
2994 static struct perf_counter *
2995 inherit_counter(struct perf_counter *parent_counter,
2996 struct task_struct *parent,
2997 struct perf_counter_context *parent_ctx,
2998 struct task_struct *child,
2999 struct perf_counter *group_leader,
3000 struct perf_counter_context *child_ctx)
3001 {
3002 struct perf_counter *child_counter;
3003
3004 /*
3005 * Instead of creating recursive hierarchies of counters,
3006 * we link inherited counters back to the original parent,
3007 * which has a filp for sure, which we use as the reference
3008 * count:
3009 */
3010 if (parent_counter->parent)
3011 parent_counter = parent_counter->parent;
3012
3013 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3014 parent_counter->cpu, child_ctx,
3015 group_leader, GFP_KERNEL);
3016 if (IS_ERR(child_counter))
3017 return child_counter;
3018
3019 /*
3020 * Link it up in the child's context:
3021 */
3022 child_counter->task = child;
3023 add_counter_to_ctx(child_counter, child_ctx);
3024
3025 child_counter->parent = parent_counter;
3026 /*
3027 * inherit into child's child as well:
3028 */
3029 child_counter->hw_event.inherit = 1;
3030
3031 /*
3032 * Get a reference to the parent filp - we will fput it
3033 * when the child counter exits. This is safe to do because
3034 * we are in the parent and we know that the filp still
3035 * exists and has a nonzero count:
3036 */
3037 atomic_long_inc(&parent_counter->filp->f_count);
3038
3039 /*
3040 * Link this into the parent counter's child list
3041 */
3042 mutex_lock(&parent_counter->mutex);
3043 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3044
3045 /*
3046 * Make the child state follow the state of the parent counter,
3047 * not its hw_event.disabled bit. We hold the parent's mutex,
3048 * so we won't race with perf_counter_{en,dis}able_family.
3049 */
3050 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3051 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3052 else
3053 child_counter->state = PERF_COUNTER_STATE_OFF;
3054
3055 mutex_unlock(&parent_counter->mutex);
3056
3057 return child_counter;
3058 }
3059
3060 static int inherit_group(struct perf_counter *parent_counter,
3061 struct task_struct *parent,
3062 struct perf_counter_context *parent_ctx,
3063 struct task_struct *child,
3064 struct perf_counter_context *child_ctx)
3065 {
3066 struct perf_counter *leader;
3067 struct perf_counter *sub;
3068 struct perf_counter *child_ctr;
3069
3070 leader = inherit_counter(parent_counter, parent, parent_ctx,
3071 child, NULL, child_ctx);
3072 if (IS_ERR(leader))
3073 return PTR_ERR(leader);
3074 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3075 child_ctr = inherit_counter(sub, parent, parent_ctx,
3076 child, leader, child_ctx);
3077 if (IS_ERR(child_ctr))
3078 return PTR_ERR(child_ctr);
3079 }
3080 return 0;
3081 }
3082
3083 static void sync_child_counter(struct perf_counter *child_counter,
3084 struct perf_counter *parent_counter)
3085 {
3086 u64 parent_val, child_val;
3087
3088 parent_val = atomic64_read(&parent_counter->count);
3089 child_val = atomic64_read(&child_counter->count);
3090
3091 /*
3092 * Add back the child's count to the parent's count:
3093 */
3094 atomic64_add(child_val, &parent_counter->count);
3095 atomic64_add(child_counter->total_time_enabled,
3096 &parent_counter->child_total_time_enabled);
3097 atomic64_add(child_counter->total_time_running,
3098 &parent_counter->child_total_time_running);
3099
3100 /*
3101 * Remove this counter from the parent's list
3102 */
3103 mutex_lock(&parent_counter->mutex);
3104 list_del_init(&child_counter->child_list);
3105 mutex_unlock(&parent_counter->mutex);
3106
3107 /*
3108 * Release the parent counter, if this was the last
3109 * reference to it.
3110 */
3111 fput(parent_counter->filp);
3112 }
3113
3114 static void
3115 __perf_counter_exit_task(struct task_struct *child,
3116 struct perf_counter *child_counter,
3117 struct perf_counter_context *child_ctx)
3118 {
3119 struct perf_counter *parent_counter;
3120 struct perf_counter *sub, *tmp;
3121
3122 /*
3123 * If we do not self-reap then we have to wait for the
3124 * child task to unschedule (it will happen for sure),
3125 * so that its counter is at its final count. (This
3126 * condition triggers rarely - child tasks usually get
3127 * off their CPU before the parent has a chance to
3128 * get this far into the reaping action)
3129 */
3130 if (child != current) {
3131 wait_task_inactive(child, 0);
3132 list_del_init(&child_counter->list_entry);
3133 update_counter_times(child_counter);
3134 } else {
3135 struct perf_cpu_context *cpuctx;
3136 unsigned long flags;
3137 u64 perf_flags;
3138
3139 /*
3140 * Disable and unlink this counter.
3141 *
3142 * Be careful about zapping the list - IRQ/NMI context
3143 * could still be processing it:
3144 */
3145 local_irq_save(flags);
3146 perf_flags = hw_perf_save_disable();
3147
3148 cpuctx = &__get_cpu_var(perf_cpu_context);
3149
3150 group_sched_out(child_counter, cpuctx, child_ctx);
3151 update_counter_times(child_counter);
3152
3153 list_del_init(&child_counter->list_entry);
3154
3155 child_ctx->nr_counters--;
3156
3157 hw_perf_restore(perf_flags);
3158 local_irq_restore(flags);
3159 }
3160
3161 parent_counter = child_counter->parent;
3162 /*
3163 * It can happen that parent exits first, and has counters
3164 * that are still around due to the child reference. These
3165 * counters need to be zapped - but otherwise linger.
3166 */
3167 if (parent_counter) {
3168 sync_child_counter(child_counter, parent_counter);
3169 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3170 list_entry) {
3171 if (sub->parent) {
3172 sync_child_counter(sub, sub->parent);
3173 free_counter(sub);
3174 }
3175 }
3176 free_counter(child_counter);
3177 }
3178 }
3179
3180 /*
3181 * When a child task exits, feed back counter values to parent counters.
3182 *
3183 * Note: we may be running in child context, but the PID is not hashed
3184 * anymore so new counters will not be added.
3185 */
3186 void perf_counter_exit_task(struct task_struct *child)
3187 {
3188 struct perf_counter *child_counter, *tmp;
3189 struct perf_counter_context *child_ctx;
3190
3191 child_ctx = &child->perf_counter_ctx;
3192
3193 if (likely(!child_ctx->nr_counters))
3194 return;
3195
3196 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3197 list_entry)
3198 __perf_counter_exit_task(child, child_counter, child_ctx);
3199 }
3200
3201 /*
3202 * Initialize the perf_counter context in task_struct
3203 */
3204 void perf_counter_init_task(struct task_struct *child)
3205 {
3206 struct perf_counter_context *child_ctx, *parent_ctx;
3207 struct perf_counter *counter;
3208 struct task_struct *parent = current;
3209
3210 child_ctx = &child->perf_counter_ctx;
3211 parent_ctx = &parent->perf_counter_ctx;
3212
3213 __perf_counter_init_context(child_ctx, child);
3214
3215 /*
3216 * This is executed from the parent task context, so inherit
3217 * counters that have been marked for cloning:
3218 */
3219
3220 if (likely(!parent_ctx->nr_counters))
3221 return;
3222
3223 /*
3224 * Lock the parent list. No need to lock the child - not PID
3225 * hashed yet and not running, so nobody can access it.
3226 */
3227 mutex_lock(&parent_ctx->mutex);
3228
3229 /*
3230 * We dont have to disable NMIs - we are only looking at
3231 * the list, not manipulating it:
3232 */
3233 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3234 if (!counter->hw_event.inherit)
3235 continue;
3236
3237 if (inherit_group(counter, parent,
3238 parent_ctx, child, child_ctx))
3239 break;
3240 }
3241
3242 mutex_unlock(&parent_ctx->mutex);
3243 }
3244
3245 static void __cpuinit perf_counter_init_cpu(int cpu)
3246 {
3247 struct perf_cpu_context *cpuctx;
3248
3249 cpuctx = &per_cpu(perf_cpu_context, cpu);
3250 __perf_counter_init_context(&cpuctx->ctx, NULL);
3251
3252 spin_lock(&perf_resource_lock);
3253 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3254 spin_unlock(&perf_resource_lock);
3255
3256 hw_perf_counter_setup(cpu);
3257 }
3258
3259 #ifdef CONFIG_HOTPLUG_CPU
3260 static void __perf_counter_exit_cpu(void *info)
3261 {
3262 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3263 struct perf_counter_context *ctx = &cpuctx->ctx;
3264 struct perf_counter *counter, *tmp;
3265
3266 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3267 __perf_counter_remove_from_context(counter);
3268 }
3269 static void perf_counter_exit_cpu(int cpu)
3270 {
3271 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3272 struct perf_counter_context *ctx = &cpuctx->ctx;
3273
3274 mutex_lock(&ctx->mutex);
3275 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3276 mutex_unlock(&ctx->mutex);
3277 }
3278 #else
3279 static inline void perf_counter_exit_cpu(int cpu) { }
3280 #endif
3281
3282 static int __cpuinit
3283 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3284 {
3285 unsigned int cpu = (long)hcpu;
3286
3287 switch (action) {
3288
3289 case CPU_UP_PREPARE:
3290 case CPU_UP_PREPARE_FROZEN:
3291 perf_counter_init_cpu(cpu);
3292 break;
3293
3294 case CPU_DOWN_PREPARE:
3295 case CPU_DOWN_PREPARE_FROZEN:
3296 perf_counter_exit_cpu(cpu);
3297 break;
3298
3299 default:
3300 break;
3301 }
3302
3303 return NOTIFY_OK;
3304 }
3305
3306 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3307 .notifier_call = perf_cpu_notify,
3308 };
3309
3310 void __init perf_counter_init(void)
3311 {
3312 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3313 (void *)(long)smp_processor_id());
3314 register_cpu_notifier(&perf_cpu_nb);
3315 }
3316
3317 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3318 {
3319 return sprintf(buf, "%d\n", perf_reserved_percpu);
3320 }
3321
3322 static ssize_t
3323 perf_set_reserve_percpu(struct sysdev_class *class,
3324 const char *buf,
3325 size_t count)
3326 {
3327 struct perf_cpu_context *cpuctx;
3328 unsigned long val;
3329 int err, cpu, mpt;
3330
3331 err = strict_strtoul(buf, 10, &val);
3332 if (err)
3333 return err;
3334 if (val > perf_max_counters)
3335 return -EINVAL;
3336
3337 spin_lock(&perf_resource_lock);
3338 perf_reserved_percpu = val;
3339 for_each_online_cpu(cpu) {
3340 cpuctx = &per_cpu(perf_cpu_context, cpu);
3341 spin_lock_irq(&cpuctx->ctx.lock);
3342 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3343 perf_max_counters - perf_reserved_percpu);
3344 cpuctx->max_pertask = mpt;
3345 spin_unlock_irq(&cpuctx->ctx.lock);
3346 }
3347 spin_unlock(&perf_resource_lock);
3348
3349 return count;
3350 }
3351
3352 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3353 {
3354 return sprintf(buf, "%d\n", perf_overcommit);
3355 }
3356
3357 static ssize_t
3358 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3359 {
3360 unsigned long val;
3361 int err;
3362
3363 err = strict_strtoul(buf, 10, &val);
3364 if (err)
3365 return err;
3366 if (val > 1)
3367 return -EINVAL;
3368
3369 spin_lock(&perf_resource_lock);
3370 perf_overcommit = val;
3371 spin_unlock(&perf_resource_lock);
3372
3373 return count;
3374 }
3375
3376 static SYSDEV_CLASS_ATTR(
3377 reserve_percpu,
3378 0644,
3379 perf_show_reserve_percpu,
3380 perf_set_reserve_percpu
3381 );
3382
3383 static SYSDEV_CLASS_ATTR(
3384 overcommit,
3385 0644,
3386 perf_show_overcommit,
3387 perf_set_overcommit
3388 );
3389
3390 static struct attribute *perfclass_attrs[] = {
3391 &attr_reserve_percpu.attr,
3392 &attr_overcommit.attr,
3393 NULL
3394 };
3395
3396 static struct attribute_group perfclass_attr_group = {
3397 .attrs = perfclass_attrs,
3398 .name = "perf_counters",
3399 };
3400
3401 static int __init perf_counter_sysfs_init(void)
3402 {
3403 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3404 &perfclass_attr_group);
3405 }
3406 device_initcall(perf_counter_sysfs_init);