perf_counter: fix the output lock
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_mmap_tracking __read_mostly;
43 static atomic_t nr_munmap_tracking __read_mostly;
44 static atomic_t nr_comm_tracking __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
48
49 /*
50 * Lock for (sysadmin-configurable) counter reservations:
51 */
52 static DEFINE_SPINLOCK(perf_resource_lock);
53
54 /*
55 * Architecture provided APIs - weak aliases:
56 */
57 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
58 {
59 return NULL;
60 }
61
62 u64 __weak hw_perf_save_disable(void) { return 0; }
63 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
64 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
65 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
66 struct perf_cpu_context *cpuctx,
67 struct perf_counter_context *ctx, int cpu)
68 {
69 return 0;
70 }
71
72 void __weak perf_counter_print_debug(void) { }
73
74 static void
75 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
76 {
77 struct perf_counter *group_leader = counter->group_leader;
78
79 /*
80 * Depending on whether it is a standalone or sibling counter,
81 * add it straight to the context's counter list, or to the group
82 * leader's sibling list:
83 */
84 if (counter->group_leader == counter)
85 list_add_tail(&counter->list_entry, &ctx->counter_list);
86 else {
87 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
88 group_leader->nr_siblings++;
89 }
90
91 list_add_rcu(&counter->event_entry, &ctx->event_list);
92 }
93
94 static void
95 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
96 {
97 struct perf_counter *sibling, *tmp;
98
99 list_del_init(&counter->list_entry);
100 list_del_rcu(&counter->event_entry);
101
102 if (counter->group_leader != counter)
103 counter->group_leader->nr_siblings--;
104
105 /*
106 * If this was a group counter with sibling counters then
107 * upgrade the siblings to singleton counters by adding them
108 * to the context list directly:
109 */
110 list_for_each_entry_safe(sibling, tmp,
111 &counter->sibling_list, list_entry) {
112
113 list_move_tail(&sibling->list_entry, &ctx->counter_list);
114 sibling->group_leader = sibling;
115 }
116 }
117
118 static void
119 counter_sched_out(struct perf_counter *counter,
120 struct perf_cpu_context *cpuctx,
121 struct perf_counter_context *ctx)
122 {
123 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
124 return;
125
126 counter->state = PERF_COUNTER_STATE_INACTIVE;
127 counter->tstamp_stopped = ctx->time;
128 counter->pmu->disable(counter);
129 counter->oncpu = -1;
130
131 if (!is_software_counter(counter))
132 cpuctx->active_oncpu--;
133 ctx->nr_active--;
134 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
135 cpuctx->exclusive = 0;
136 }
137
138 static void
139 group_sched_out(struct perf_counter *group_counter,
140 struct perf_cpu_context *cpuctx,
141 struct perf_counter_context *ctx)
142 {
143 struct perf_counter *counter;
144
145 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
146 return;
147
148 counter_sched_out(group_counter, cpuctx, ctx);
149
150 /*
151 * Schedule out siblings (if any):
152 */
153 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
154 counter_sched_out(counter, cpuctx, ctx);
155
156 if (group_counter->hw_event.exclusive)
157 cpuctx->exclusive = 0;
158 }
159
160 /*
161 * Cross CPU call to remove a performance counter
162 *
163 * We disable the counter on the hardware level first. After that we
164 * remove it from the context list.
165 */
166 static void __perf_counter_remove_from_context(void *info)
167 {
168 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
169 struct perf_counter *counter = info;
170 struct perf_counter_context *ctx = counter->ctx;
171 unsigned long flags;
172 u64 perf_flags;
173
174 /*
175 * If this is a task context, we need to check whether it is
176 * the current task context of this cpu. If not it has been
177 * scheduled out before the smp call arrived.
178 */
179 if (ctx->task && cpuctx->task_ctx != ctx)
180 return;
181
182 spin_lock_irqsave(&ctx->lock, flags);
183
184 counter_sched_out(counter, cpuctx, ctx);
185
186 counter->task = NULL;
187 ctx->nr_counters--;
188
189 /*
190 * Protect the list operation against NMI by disabling the
191 * counters on a global level. NOP for non NMI based counters.
192 */
193 perf_flags = hw_perf_save_disable();
194 list_del_counter(counter, ctx);
195 hw_perf_restore(perf_flags);
196
197 if (!ctx->task) {
198 /*
199 * Allow more per task counters with respect to the
200 * reservation:
201 */
202 cpuctx->max_pertask =
203 min(perf_max_counters - ctx->nr_counters,
204 perf_max_counters - perf_reserved_percpu);
205 }
206
207 spin_unlock_irqrestore(&ctx->lock, flags);
208 }
209
210
211 /*
212 * Remove the counter from a task's (or a CPU's) list of counters.
213 *
214 * Must be called with counter->mutex and ctx->mutex held.
215 *
216 * CPU counters are removed with a smp call. For task counters we only
217 * call when the task is on a CPU.
218 */
219 static void perf_counter_remove_from_context(struct perf_counter *counter)
220 {
221 struct perf_counter_context *ctx = counter->ctx;
222 struct task_struct *task = ctx->task;
223
224 if (!task) {
225 /*
226 * Per cpu counters are removed via an smp call and
227 * the removal is always sucessful.
228 */
229 smp_call_function_single(counter->cpu,
230 __perf_counter_remove_from_context,
231 counter, 1);
232 return;
233 }
234
235 retry:
236 task_oncpu_function_call(task, __perf_counter_remove_from_context,
237 counter);
238
239 spin_lock_irq(&ctx->lock);
240 /*
241 * If the context is active we need to retry the smp call.
242 */
243 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
244 spin_unlock_irq(&ctx->lock);
245 goto retry;
246 }
247
248 /*
249 * The lock prevents that this context is scheduled in so we
250 * can remove the counter safely, if the call above did not
251 * succeed.
252 */
253 if (!list_empty(&counter->list_entry)) {
254 ctx->nr_counters--;
255 list_del_counter(counter, ctx);
256 counter->task = NULL;
257 }
258 spin_unlock_irq(&ctx->lock);
259 }
260
261 static inline u64 perf_clock(void)
262 {
263 return cpu_clock(smp_processor_id());
264 }
265
266 /*
267 * Update the record of the current time in a context.
268 */
269 static void update_context_time(struct perf_counter_context *ctx)
270 {
271 u64 now = perf_clock();
272
273 ctx->time += now - ctx->timestamp;
274 ctx->timestamp = now;
275 }
276
277 /*
278 * Update the total_time_enabled and total_time_running fields for a counter.
279 */
280 static void update_counter_times(struct perf_counter *counter)
281 {
282 struct perf_counter_context *ctx = counter->ctx;
283 u64 run_end;
284
285 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
286 return;
287
288 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
289
290 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
291 run_end = counter->tstamp_stopped;
292 else
293 run_end = ctx->time;
294
295 counter->total_time_running = run_end - counter->tstamp_running;
296 }
297
298 /*
299 * Update total_time_enabled and total_time_running for all counters in a group.
300 */
301 static void update_group_times(struct perf_counter *leader)
302 {
303 struct perf_counter *counter;
304
305 update_counter_times(leader);
306 list_for_each_entry(counter, &leader->sibling_list, list_entry)
307 update_counter_times(counter);
308 }
309
310 /*
311 * Cross CPU call to disable a performance counter
312 */
313 static void __perf_counter_disable(void *info)
314 {
315 struct perf_counter *counter = info;
316 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
317 struct perf_counter_context *ctx = counter->ctx;
318 unsigned long flags;
319
320 /*
321 * If this is a per-task counter, need to check whether this
322 * counter's task is the current task on this cpu.
323 */
324 if (ctx->task && cpuctx->task_ctx != ctx)
325 return;
326
327 spin_lock_irqsave(&ctx->lock, flags);
328
329 /*
330 * If the counter is on, turn it off.
331 * If it is in error state, leave it in error state.
332 */
333 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334 update_context_time(ctx);
335 update_counter_times(counter);
336 if (counter == counter->group_leader)
337 group_sched_out(counter, cpuctx, ctx);
338 else
339 counter_sched_out(counter, cpuctx, ctx);
340 counter->state = PERF_COUNTER_STATE_OFF;
341 }
342
343 spin_unlock_irqrestore(&ctx->lock, flags);
344 }
345
346 /*
347 * Disable a counter.
348 */
349 static void perf_counter_disable(struct perf_counter *counter)
350 {
351 struct perf_counter_context *ctx = counter->ctx;
352 struct task_struct *task = ctx->task;
353
354 if (!task) {
355 /*
356 * Disable the counter on the cpu that it's on
357 */
358 smp_call_function_single(counter->cpu, __perf_counter_disable,
359 counter, 1);
360 return;
361 }
362
363 retry:
364 task_oncpu_function_call(task, __perf_counter_disable, counter);
365
366 spin_lock_irq(&ctx->lock);
367 /*
368 * If the counter is still active, we need to retry the cross-call.
369 */
370 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
371 spin_unlock_irq(&ctx->lock);
372 goto retry;
373 }
374
375 /*
376 * Since we have the lock this context can't be scheduled
377 * in, so we can change the state safely.
378 */
379 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
380 update_counter_times(counter);
381 counter->state = PERF_COUNTER_STATE_OFF;
382 }
383
384 spin_unlock_irq(&ctx->lock);
385 }
386
387 /*
388 * Disable a counter and all its children.
389 */
390 static void perf_counter_disable_family(struct perf_counter *counter)
391 {
392 struct perf_counter *child;
393
394 perf_counter_disable(counter);
395
396 /*
397 * Lock the mutex to protect the list of children
398 */
399 mutex_lock(&counter->mutex);
400 list_for_each_entry(child, &counter->child_list, child_list)
401 perf_counter_disable(child);
402 mutex_unlock(&counter->mutex);
403 }
404
405 static int
406 counter_sched_in(struct perf_counter *counter,
407 struct perf_cpu_context *cpuctx,
408 struct perf_counter_context *ctx,
409 int cpu)
410 {
411 if (counter->state <= PERF_COUNTER_STATE_OFF)
412 return 0;
413
414 counter->state = PERF_COUNTER_STATE_ACTIVE;
415 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
416 /*
417 * The new state must be visible before we turn it on in the hardware:
418 */
419 smp_wmb();
420
421 if (counter->pmu->enable(counter)) {
422 counter->state = PERF_COUNTER_STATE_INACTIVE;
423 counter->oncpu = -1;
424 return -EAGAIN;
425 }
426
427 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
428
429 if (!is_software_counter(counter))
430 cpuctx->active_oncpu++;
431 ctx->nr_active++;
432
433 if (counter->hw_event.exclusive)
434 cpuctx->exclusive = 1;
435
436 return 0;
437 }
438
439 /*
440 * Return 1 for a group consisting entirely of software counters,
441 * 0 if the group contains any hardware counters.
442 */
443 static int is_software_only_group(struct perf_counter *leader)
444 {
445 struct perf_counter *counter;
446
447 if (!is_software_counter(leader))
448 return 0;
449
450 list_for_each_entry(counter, &leader->sibling_list, list_entry)
451 if (!is_software_counter(counter))
452 return 0;
453
454 return 1;
455 }
456
457 /*
458 * Work out whether we can put this counter group on the CPU now.
459 */
460 static int group_can_go_on(struct perf_counter *counter,
461 struct perf_cpu_context *cpuctx,
462 int can_add_hw)
463 {
464 /*
465 * Groups consisting entirely of software counters can always go on.
466 */
467 if (is_software_only_group(counter))
468 return 1;
469 /*
470 * If an exclusive group is already on, no other hardware
471 * counters can go on.
472 */
473 if (cpuctx->exclusive)
474 return 0;
475 /*
476 * If this group is exclusive and there are already
477 * counters on the CPU, it can't go on.
478 */
479 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
480 return 0;
481 /*
482 * Otherwise, try to add it if all previous groups were able
483 * to go on.
484 */
485 return can_add_hw;
486 }
487
488 static void add_counter_to_ctx(struct perf_counter *counter,
489 struct perf_counter_context *ctx)
490 {
491 list_add_counter(counter, ctx);
492 ctx->nr_counters++;
493 counter->prev_state = PERF_COUNTER_STATE_OFF;
494 counter->tstamp_enabled = ctx->time;
495 counter->tstamp_running = ctx->time;
496 counter->tstamp_stopped = ctx->time;
497 }
498
499 /*
500 * Cross CPU call to install and enable a performance counter
501 */
502 static void __perf_install_in_context(void *info)
503 {
504 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
505 struct perf_counter *counter = info;
506 struct perf_counter_context *ctx = counter->ctx;
507 struct perf_counter *leader = counter->group_leader;
508 int cpu = smp_processor_id();
509 unsigned long flags;
510 u64 perf_flags;
511 int err;
512
513 /*
514 * If this is a task context, we need to check whether it is
515 * the current task context of this cpu. If not it has been
516 * scheduled out before the smp call arrived.
517 */
518 if (ctx->task && cpuctx->task_ctx != ctx)
519 return;
520
521 spin_lock_irqsave(&ctx->lock, flags);
522 update_context_time(ctx);
523
524 /*
525 * Protect the list operation against NMI by disabling the
526 * counters on a global level. NOP for non NMI based counters.
527 */
528 perf_flags = hw_perf_save_disable();
529
530 add_counter_to_ctx(counter, ctx);
531
532 /*
533 * Don't put the counter on if it is disabled or if
534 * it is in a group and the group isn't on.
535 */
536 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
537 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
538 goto unlock;
539
540 /*
541 * An exclusive counter can't go on if there are already active
542 * hardware counters, and no hardware counter can go on if there
543 * is already an exclusive counter on.
544 */
545 if (!group_can_go_on(counter, cpuctx, 1))
546 err = -EEXIST;
547 else
548 err = counter_sched_in(counter, cpuctx, ctx, cpu);
549
550 if (err) {
551 /*
552 * This counter couldn't go on. If it is in a group
553 * then we have to pull the whole group off.
554 * If the counter group is pinned then put it in error state.
555 */
556 if (leader != counter)
557 group_sched_out(leader, cpuctx, ctx);
558 if (leader->hw_event.pinned) {
559 update_group_times(leader);
560 leader->state = PERF_COUNTER_STATE_ERROR;
561 }
562 }
563
564 if (!err && !ctx->task && cpuctx->max_pertask)
565 cpuctx->max_pertask--;
566
567 unlock:
568 hw_perf_restore(perf_flags);
569
570 spin_unlock_irqrestore(&ctx->lock, flags);
571 }
572
573 /*
574 * Attach a performance counter to a context
575 *
576 * First we add the counter to the list with the hardware enable bit
577 * in counter->hw_config cleared.
578 *
579 * If the counter is attached to a task which is on a CPU we use a smp
580 * call to enable it in the task context. The task might have been
581 * scheduled away, but we check this in the smp call again.
582 *
583 * Must be called with ctx->mutex held.
584 */
585 static void
586 perf_install_in_context(struct perf_counter_context *ctx,
587 struct perf_counter *counter,
588 int cpu)
589 {
590 struct task_struct *task = ctx->task;
591
592 if (!task) {
593 /*
594 * Per cpu counters are installed via an smp call and
595 * the install is always sucessful.
596 */
597 smp_call_function_single(cpu, __perf_install_in_context,
598 counter, 1);
599 return;
600 }
601
602 counter->task = task;
603 retry:
604 task_oncpu_function_call(task, __perf_install_in_context,
605 counter);
606
607 spin_lock_irq(&ctx->lock);
608 /*
609 * we need to retry the smp call.
610 */
611 if (ctx->is_active && list_empty(&counter->list_entry)) {
612 spin_unlock_irq(&ctx->lock);
613 goto retry;
614 }
615
616 /*
617 * The lock prevents that this context is scheduled in so we
618 * can add the counter safely, if it the call above did not
619 * succeed.
620 */
621 if (list_empty(&counter->list_entry))
622 add_counter_to_ctx(counter, ctx);
623 spin_unlock_irq(&ctx->lock);
624 }
625
626 /*
627 * Cross CPU call to enable a performance counter
628 */
629 static void __perf_counter_enable(void *info)
630 {
631 struct perf_counter *counter = info;
632 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
633 struct perf_counter_context *ctx = counter->ctx;
634 struct perf_counter *leader = counter->group_leader;
635 unsigned long flags;
636 int err;
637
638 /*
639 * If this is a per-task counter, need to check whether this
640 * counter's task is the current task on this cpu.
641 */
642 if (ctx->task && cpuctx->task_ctx != ctx)
643 return;
644
645 spin_lock_irqsave(&ctx->lock, flags);
646 update_context_time(ctx);
647
648 counter->prev_state = counter->state;
649 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
650 goto unlock;
651 counter->state = PERF_COUNTER_STATE_INACTIVE;
652 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
653
654 /*
655 * If the counter is in a group and isn't the group leader,
656 * then don't put it on unless the group is on.
657 */
658 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
659 goto unlock;
660
661 if (!group_can_go_on(counter, cpuctx, 1))
662 err = -EEXIST;
663 else
664 err = counter_sched_in(counter, cpuctx, ctx,
665 smp_processor_id());
666
667 if (err) {
668 /*
669 * If this counter can't go on and it's part of a
670 * group, then the whole group has to come off.
671 */
672 if (leader != counter)
673 group_sched_out(leader, cpuctx, ctx);
674 if (leader->hw_event.pinned) {
675 update_group_times(leader);
676 leader->state = PERF_COUNTER_STATE_ERROR;
677 }
678 }
679
680 unlock:
681 spin_unlock_irqrestore(&ctx->lock, flags);
682 }
683
684 /*
685 * Enable a counter.
686 */
687 static void perf_counter_enable(struct perf_counter *counter)
688 {
689 struct perf_counter_context *ctx = counter->ctx;
690 struct task_struct *task = ctx->task;
691
692 if (!task) {
693 /*
694 * Enable the counter on the cpu that it's on
695 */
696 smp_call_function_single(counter->cpu, __perf_counter_enable,
697 counter, 1);
698 return;
699 }
700
701 spin_lock_irq(&ctx->lock);
702 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
703 goto out;
704
705 /*
706 * If the counter is in error state, clear that first.
707 * That way, if we see the counter in error state below, we
708 * know that it has gone back into error state, as distinct
709 * from the task having been scheduled away before the
710 * cross-call arrived.
711 */
712 if (counter->state == PERF_COUNTER_STATE_ERROR)
713 counter->state = PERF_COUNTER_STATE_OFF;
714
715 retry:
716 spin_unlock_irq(&ctx->lock);
717 task_oncpu_function_call(task, __perf_counter_enable, counter);
718
719 spin_lock_irq(&ctx->lock);
720
721 /*
722 * If the context is active and the counter is still off,
723 * we need to retry the cross-call.
724 */
725 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
726 goto retry;
727
728 /*
729 * Since we have the lock this context can't be scheduled
730 * in, so we can change the state safely.
731 */
732 if (counter->state == PERF_COUNTER_STATE_OFF) {
733 counter->state = PERF_COUNTER_STATE_INACTIVE;
734 counter->tstamp_enabled =
735 ctx->time - counter->total_time_enabled;
736 }
737 out:
738 spin_unlock_irq(&ctx->lock);
739 }
740
741 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
742 {
743 atomic_add(refresh, &counter->event_limit);
744 perf_counter_enable(counter);
745 }
746
747 /*
748 * Enable a counter and all its children.
749 */
750 static void perf_counter_enable_family(struct perf_counter *counter)
751 {
752 struct perf_counter *child;
753
754 perf_counter_enable(counter);
755
756 /*
757 * Lock the mutex to protect the list of children
758 */
759 mutex_lock(&counter->mutex);
760 list_for_each_entry(child, &counter->child_list, child_list)
761 perf_counter_enable(child);
762 mutex_unlock(&counter->mutex);
763 }
764
765 void __perf_counter_sched_out(struct perf_counter_context *ctx,
766 struct perf_cpu_context *cpuctx)
767 {
768 struct perf_counter *counter;
769 u64 flags;
770
771 spin_lock(&ctx->lock);
772 ctx->is_active = 0;
773 if (likely(!ctx->nr_counters))
774 goto out;
775 update_context_time(ctx);
776
777 flags = hw_perf_save_disable();
778 if (ctx->nr_active) {
779 list_for_each_entry(counter, &ctx->counter_list, list_entry)
780 group_sched_out(counter, cpuctx, ctx);
781 }
782 hw_perf_restore(flags);
783 out:
784 spin_unlock(&ctx->lock);
785 }
786
787 /*
788 * Called from scheduler to remove the counters of the current task,
789 * with interrupts disabled.
790 *
791 * We stop each counter and update the counter value in counter->count.
792 *
793 * This does not protect us against NMI, but disable()
794 * sets the disabled bit in the control field of counter _before_
795 * accessing the counter control register. If a NMI hits, then it will
796 * not restart the counter.
797 */
798 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
799 {
800 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
801 struct perf_counter_context *ctx = &task->perf_counter_ctx;
802 struct pt_regs *regs;
803
804 if (likely(!cpuctx->task_ctx))
805 return;
806
807 update_context_time(ctx);
808
809 regs = task_pt_regs(task);
810 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
811 __perf_counter_sched_out(ctx, cpuctx);
812
813 cpuctx->task_ctx = NULL;
814 }
815
816 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
817 {
818 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
819 }
820
821 static int
822 group_sched_in(struct perf_counter *group_counter,
823 struct perf_cpu_context *cpuctx,
824 struct perf_counter_context *ctx,
825 int cpu)
826 {
827 struct perf_counter *counter, *partial_group;
828 int ret;
829
830 if (group_counter->state == PERF_COUNTER_STATE_OFF)
831 return 0;
832
833 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
834 if (ret)
835 return ret < 0 ? ret : 0;
836
837 group_counter->prev_state = group_counter->state;
838 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
839 return -EAGAIN;
840
841 /*
842 * Schedule in siblings as one group (if any):
843 */
844 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
845 counter->prev_state = counter->state;
846 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
847 partial_group = counter;
848 goto group_error;
849 }
850 }
851
852 return 0;
853
854 group_error:
855 /*
856 * Groups can be scheduled in as one unit only, so undo any
857 * partial group before returning:
858 */
859 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
860 if (counter == partial_group)
861 break;
862 counter_sched_out(counter, cpuctx, ctx);
863 }
864 counter_sched_out(group_counter, cpuctx, ctx);
865
866 return -EAGAIN;
867 }
868
869 static void
870 __perf_counter_sched_in(struct perf_counter_context *ctx,
871 struct perf_cpu_context *cpuctx, int cpu)
872 {
873 struct perf_counter *counter;
874 u64 flags;
875 int can_add_hw = 1;
876
877 spin_lock(&ctx->lock);
878 ctx->is_active = 1;
879 if (likely(!ctx->nr_counters))
880 goto out;
881
882 ctx->timestamp = perf_clock();
883
884 flags = hw_perf_save_disable();
885
886 /*
887 * First go through the list and put on any pinned groups
888 * in order to give them the best chance of going on.
889 */
890 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
891 if (counter->state <= PERF_COUNTER_STATE_OFF ||
892 !counter->hw_event.pinned)
893 continue;
894 if (counter->cpu != -1 && counter->cpu != cpu)
895 continue;
896
897 if (group_can_go_on(counter, cpuctx, 1))
898 group_sched_in(counter, cpuctx, ctx, cpu);
899
900 /*
901 * If this pinned group hasn't been scheduled,
902 * put it in error state.
903 */
904 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
905 update_group_times(counter);
906 counter->state = PERF_COUNTER_STATE_ERROR;
907 }
908 }
909
910 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
911 /*
912 * Ignore counters in OFF or ERROR state, and
913 * ignore pinned counters since we did them already.
914 */
915 if (counter->state <= PERF_COUNTER_STATE_OFF ||
916 counter->hw_event.pinned)
917 continue;
918
919 /*
920 * Listen to the 'cpu' scheduling filter constraint
921 * of counters:
922 */
923 if (counter->cpu != -1 && counter->cpu != cpu)
924 continue;
925
926 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
927 if (group_sched_in(counter, cpuctx, ctx, cpu))
928 can_add_hw = 0;
929 }
930 }
931 hw_perf_restore(flags);
932 out:
933 spin_unlock(&ctx->lock);
934 }
935
936 /*
937 * Called from scheduler to add the counters of the current task
938 * with interrupts disabled.
939 *
940 * We restore the counter value and then enable it.
941 *
942 * This does not protect us against NMI, but enable()
943 * sets the enabled bit in the control field of counter _before_
944 * accessing the counter control register. If a NMI hits, then it will
945 * keep the counter running.
946 */
947 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
948 {
949 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
950 struct perf_counter_context *ctx = &task->perf_counter_ctx;
951
952 __perf_counter_sched_in(ctx, cpuctx, cpu);
953 cpuctx->task_ctx = ctx;
954 }
955
956 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
957 {
958 struct perf_counter_context *ctx = &cpuctx->ctx;
959
960 __perf_counter_sched_in(ctx, cpuctx, cpu);
961 }
962
963 int perf_counter_task_disable(void)
964 {
965 struct task_struct *curr = current;
966 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
967 struct perf_counter *counter;
968 unsigned long flags;
969 u64 perf_flags;
970 int cpu;
971
972 if (likely(!ctx->nr_counters))
973 return 0;
974
975 local_irq_save(flags);
976 cpu = smp_processor_id();
977
978 perf_counter_task_sched_out(curr, cpu);
979
980 spin_lock(&ctx->lock);
981
982 /*
983 * Disable all the counters:
984 */
985 perf_flags = hw_perf_save_disable();
986
987 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
988 if (counter->state != PERF_COUNTER_STATE_ERROR) {
989 update_group_times(counter);
990 counter->state = PERF_COUNTER_STATE_OFF;
991 }
992 }
993
994 hw_perf_restore(perf_flags);
995
996 spin_unlock_irqrestore(&ctx->lock, flags);
997
998 return 0;
999 }
1000
1001 int perf_counter_task_enable(void)
1002 {
1003 struct task_struct *curr = current;
1004 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1005 struct perf_counter *counter;
1006 unsigned long flags;
1007 u64 perf_flags;
1008 int cpu;
1009
1010 if (likely(!ctx->nr_counters))
1011 return 0;
1012
1013 local_irq_save(flags);
1014 cpu = smp_processor_id();
1015
1016 perf_counter_task_sched_out(curr, cpu);
1017
1018 spin_lock(&ctx->lock);
1019
1020 /*
1021 * Disable all the counters:
1022 */
1023 perf_flags = hw_perf_save_disable();
1024
1025 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1026 if (counter->state > PERF_COUNTER_STATE_OFF)
1027 continue;
1028 counter->state = PERF_COUNTER_STATE_INACTIVE;
1029 counter->tstamp_enabled =
1030 ctx->time - counter->total_time_enabled;
1031 counter->hw_event.disabled = 0;
1032 }
1033 hw_perf_restore(perf_flags);
1034
1035 spin_unlock(&ctx->lock);
1036
1037 perf_counter_task_sched_in(curr, cpu);
1038
1039 local_irq_restore(flags);
1040
1041 return 0;
1042 }
1043
1044 /*
1045 * Round-robin a context's counters:
1046 */
1047 static void rotate_ctx(struct perf_counter_context *ctx)
1048 {
1049 struct perf_counter *counter;
1050 u64 perf_flags;
1051
1052 if (!ctx->nr_counters)
1053 return;
1054
1055 spin_lock(&ctx->lock);
1056 /*
1057 * Rotate the first entry last (works just fine for group counters too):
1058 */
1059 perf_flags = hw_perf_save_disable();
1060 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1061 list_move_tail(&counter->list_entry, &ctx->counter_list);
1062 break;
1063 }
1064 hw_perf_restore(perf_flags);
1065
1066 spin_unlock(&ctx->lock);
1067 }
1068
1069 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1070 {
1071 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1072 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1073
1074 perf_counter_cpu_sched_out(cpuctx);
1075 perf_counter_task_sched_out(curr, cpu);
1076
1077 rotate_ctx(&cpuctx->ctx);
1078 rotate_ctx(ctx);
1079
1080 perf_counter_cpu_sched_in(cpuctx, cpu);
1081 perf_counter_task_sched_in(curr, cpu);
1082 }
1083
1084 /*
1085 * Cross CPU call to read the hardware counter
1086 */
1087 static void __read(void *info)
1088 {
1089 struct perf_counter *counter = info;
1090 struct perf_counter_context *ctx = counter->ctx;
1091 unsigned long flags;
1092
1093 local_irq_save(flags);
1094 if (ctx->is_active)
1095 update_context_time(ctx);
1096 counter->pmu->read(counter);
1097 update_counter_times(counter);
1098 local_irq_restore(flags);
1099 }
1100
1101 static u64 perf_counter_read(struct perf_counter *counter)
1102 {
1103 /*
1104 * If counter is enabled and currently active on a CPU, update the
1105 * value in the counter structure:
1106 */
1107 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1108 smp_call_function_single(counter->oncpu,
1109 __read, counter, 1);
1110 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1111 update_counter_times(counter);
1112 }
1113
1114 return atomic64_read(&counter->count);
1115 }
1116
1117 static void put_context(struct perf_counter_context *ctx)
1118 {
1119 if (ctx->task)
1120 put_task_struct(ctx->task);
1121 }
1122
1123 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1124 {
1125 struct perf_cpu_context *cpuctx;
1126 struct perf_counter_context *ctx;
1127 struct task_struct *task;
1128
1129 /*
1130 * If cpu is not a wildcard then this is a percpu counter:
1131 */
1132 if (cpu != -1) {
1133 /* Must be root to operate on a CPU counter: */
1134 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1135 return ERR_PTR(-EACCES);
1136
1137 if (cpu < 0 || cpu > num_possible_cpus())
1138 return ERR_PTR(-EINVAL);
1139
1140 /*
1141 * We could be clever and allow to attach a counter to an
1142 * offline CPU and activate it when the CPU comes up, but
1143 * that's for later.
1144 */
1145 if (!cpu_isset(cpu, cpu_online_map))
1146 return ERR_PTR(-ENODEV);
1147
1148 cpuctx = &per_cpu(perf_cpu_context, cpu);
1149 ctx = &cpuctx->ctx;
1150
1151 return ctx;
1152 }
1153
1154 rcu_read_lock();
1155 if (!pid)
1156 task = current;
1157 else
1158 task = find_task_by_vpid(pid);
1159 if (task)
1160 get_task_struct(task);
1161 rcu_read_unlock();
1162
1163 if (!task)
1164 return ERR_PTR(-ESRCH);
1165
1166 ctx = &task->perf_counter_ctx;
1167 ctx->task = task;
1168
1169 /* Reuse ptrace permission checks for now. */
1170 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1171 put_context(ctx);
1172 return ERR_PTR(-EACCES);
1173 }
1174
1175 return ctx;
1176 }
1177
1178 static void free_counter_rcu(struct rcu_head *head)
1179 {
1180 struct perf_counter *counter;
1181
1182 counter = container_of(head, struct perf_counter, rcu_head);
1183 kfree(counter);
1184 }
1185
1186 static void perf_pending_sync(struct perf_counter *counter);
1187
1188 static void free_counter(struct perf_counter *counter)
1189 {
1190 perf_pending_sync(counter);
1191
1192 if (counter->hw_event.mmap)
1193 atomic_dec(&nr_mmap_tracking);
1194 if (counter->hw_event.munmap)
1195 atomic_dec(&nr_munmap_tracking);
1196 if (counter->hw_event.comm)
1197 atomic_dec(&nr_comm_tracking);
1198
1199 if (counter->destroy)
1200 counter->destroy(counter);
1201
1202 call_rcu(&counter->rcu_head, free_counter_rcu);
1203 }
1204
1205 /*
1206 * Called when the last reference to the file is gone.
1207 */
1208 static int perf_release(struct inode *inode, struct file *file)
1209 {
1210 struct perf_counter *counter = file->private_data;
1211 struct perf_counter_context *ctx = counter->ctx;
1212
1213 file->private_data = NULL;
1214
1215 mutex_lock(&ctx->mutex);
1216 mutex_lock(&counter->mutex);
1217
1218 perf_counter_remove_from_context(counter);
1219
1220 mutex_unlock(&counter->mutex);
1221 mutex_unlock(&ctx->mutex);
1222
1223 free_counter(counter);
1224 put_context(ctx);
1225
1226 return 0;
1227 }
1228
1229 /*
1230 * Read the performance counter - simple non blocking version for now
1231 */
1232 static ssize_t
1233 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1234 {
1235 u64 values[3];
1236 int n;
1237
1238 /*
1239 * Return end-of-file for a read on a counter that is in
1240 * error state (i.e. because it was pinned but it couldn't be
1241 * scheduled on to the CPU at some point).
1242 */
1243 if (counter->state == PERF_COUNTER_STATE_ERROR)
1244 return 0;
1245
1246 mutex_lock(&counter->mutex);
1247 values[0] = perf_counter_read(counter);
1248 n = 1;
1249 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1250 values[n++] = counter->total_time_enabled +
1251 atomic64_read(&counter->child_total_time_enabled);
1252 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1253 values[n++] = counter->total_time_running +
1254 atomic64_read(&counter->child_total_time_running);
1255 mutex_unlock(&counter->mutex);
1256
1257 if (count < n * sizeof(u64))
1258 return -EINVAL;
1259 count = n * sizeof(u64);
1260
1261 if (copy_to_user(buf, values, count))
1262 return -EFAULT;
1263
1264 return count;
1265 }
1266
1267 static ssize_t
1268 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1269 {
1270 struct perf_counter *counter = file->private_data;
1271
1272 return perf_read_hw(counter, buf, count);
1273 }
1274
1275 static unsigned int perf_poll(struct file *file, poll_table *wait)
1276 {
1277 struct perf_counter *counter = file->private_data;
1278 struct perf_mmap_data *data;
1279 unsigned int events = POLL_HUP;
1280
1281 rcu_read_lock();
1282 data = rcu_dereference(counter->data);
1283 if (data)
1284 events = atomic_xchg(&data->poll, 0);
1285 rcu_read_unlock();
1286
1287 poll_wait(file, &counter->waitq, wait);
1288
1289 return events;
1290 }
1291
1292 static void perf_counter_reset(struct perf_counter *counter)
1293 {
1294 atomic_set(&counter->count, 0);
1295 }
1296
1297 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1298 {
1299 struct perf_counter *counter = file->private_data;
1300 int err = 0;
1301
1302 switch (cmd) {
1303 case PERF_COUNTER_IOC_ENABLE:
1304 perf_counter_enable_family(counter);
1305 break;
1306 case PERF_COUNTER_IOC_DISABLE:
1307 perf_counter_disable_family(counter);
1308 break;
1309 case PERF_COUNTER_IOC_REFRESH:
1310 perf_counter_refresh(counter, arg);
1311 break;
1312 case PERF_COUNTER_IOC_RESET:
1313 perf_counter_reset(counter);
1314 break;
1315 default:
1316 err = -ENOTTY;
1317 }
1318 return err;
1319 }
1320
1321 /*
1322 * Callers need to ensure there can be no nesting of this function, otherwise
1323 * the seqlock logic goes bad. We can not serialize this because the arch
1324 * code calls this from NMI context.
1325 */
1326 void perf_counter_update_userpage(struct perf_counter *counter)
1327 {
1328 struct perf_mmap_data *data;
1329 struct perf_counter_mmap_page *userpg;
1330
1331 rcu_read_lock();
1332 data = rcu_dereference(counter->data);
1333 if (!data)
1334 goto unlock;
1335
1336 userpg = data->user_page;
1337
1338 /*
1339 * Disable preemption so as to not let the corresponding user-space
1340 * spin too long if we get preempted.
1341 */
1342 preempt_disable();
1343 ++userpg->lock;
1344 barrier();
1345 userpg->index = counter->hw.idx;
1346 userpg->offset = atomic64_read(&counter->count);
1347 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1348 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1349
1350 barrier();
1351 ++userpg->lock;
1352 preempt_enable();
1353 unlock:
1354 rcu_read_unlock();
1355 }
1356
1357 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1358 {
1359 struct perf_counter *counter = vma->vm_file->private_data;
1360 struct perf_mmap_data *data;
1361 int ret = VM_FAULT_SIGBUS;
1362
1363 rcu_read_lock();
1364 data = rcu_dereference(counter->data);
1365 if (!data)
1366 goto unlock;
1367
1368 if (vmf->pgoff == 0) {
1369 vmf->page = virt_to_page(data->user_page);
1370 } else {
1371 int nr = vmf->pgoff - 1;
1372
1373 if ((unsigned)nr > data->nr_pages)
1374 goto unlock;
1375
1376 vmf->page = virt_to_page(data->data_pages[nr]);
1377 }
1378 get_page(vmf->page);
1379 ret = 0;
1380 unlock:
1381 rcu_read_unlock();
1382
1383 return ret;
1384 }
1385
1386 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1387 {
1388 struct perf_mmap_data *data;
1389 unsigned long size;
1390 int i;
1391
1392 WARN_ON(atomic_read(&counter->mmap_count));
1393
1394 size = sizeof(struct perf_mmap_data);
1395 size += nr_pages * sizeof(void *);
1396
1397 data = kzalloc(size, GFP_KERNEL);
1398 if (!data)
1399 goto fail;
1400
1401 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1402 if (!data->user_page)
1403 goto fail_user_page;
1404
1405 for (i = 0; i < nr_pages; i++) {
1406 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1407 if (!data->data_pages[i])
1408 goto fail_data_pages;
1409 }
1410
1411 data->nr_pages = nr_pages;
1412 atomic_set(&data->lock, -1);
1413
1414 rcu_assign_pointer(counter->data, data);
1415
1416 return 0;
1417
1418 fail_data_pages:
1419 for (i--; i >= 0; i--)
1420 free_page((unsigned long)data->data_pages[i]);
1421
1422 free_page((unsigned long)data->user_page);
1423
1424 fail_user_page:
1425 kfree(data);
1426
1427 fail:
1428 return -ENOMEM;
1429 }
1430
1431 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1432 {
1433 struct perf_mmap_data *data = container_of(rcu_head,
1434 struct perf_mmap_data, rcu_head);
1435 int i;
1436
1437 free_page((unsigned long)data->user_page);
1438 for (i = 0; i < data->nr_pages; i++)
1439 free_page((unsigned long)data->data_pages[i]);
1440 kfree(data);
1441 }
1442
1443 static void perf_mmap_data_free(struct perf_counter *counter)
1444 {
1445 struct perf_mmap_data *data = counter->data;
1446
1447 WARN_ON(atomic_read(&counter->mmap_count));
1448
1449 rcu_assign_pointer(counter->data, NULL);
1450 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1451 }
1452
1453 static void perf_mmap_open(struct vm_area_struct *vma)
1454 {
1455 struct perf_counter *counter = vma->vm_file->private_data;
1456
1457 atomic_inc(&counter->mmap_count);
1458 }
1459
1460 static void perf_mmap_close(struct vm_area_struct *vma)
1461 {
1462 struct perf_counter *counter = vma->vm_file->private_data;
1463
1464 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1465 &counter->mmap_mutex)) {
1466 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1467 perf_mmap_data_free(counter);
1468 mutex_unlock(&counter->mmap_mutex);
1469 }
1470 }
1471
1472 static struct vm_operations_struct perf_mmap_vmops = {
1473 .open = perf_mmap_open,
1474 .close = perf_mmap_close,
1475 .fault = perf_mmap_fault,
1476 };
1477
1478 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1479 {
1480 struct perf_counter *counter = file->private_data;
1481 unsigned long vma_size;
1482 unsigned long nr_pages;
1483 unsigned long locked, lock_limit;
1484 int ret = 0;
1485 long extra;
1486
1487 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1488 return -EINVAL;
1489
1490 vma_size = vma->vm_end - vma->vm_start;
1491 nr_pages = (vma_size / PAGE_SIZE) - 1;
1492
1493 /*
1494 * If we have data pages ensure they're a power-of-two number, so we
1495 * can do bitmasks instead of modulo.
1496 */
1497 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1498 return -EINVAL;
1499
1500 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1501 return -EINVAL;
1502
1503 if (vma->vm_pgoff != 0)
1504 return -EINVAL;
1505
1506 mutex_lock(&counter->mmap_mutex);
1507 if (atomic_inc_not_zero(&counter->mmap_count)) {
1508 if (nr_pages != counter->data->nr_pages)
1509 ret = -EINVAL;
1510 goto unlock;
1511 }
1512
1513 extra = nr_pages /* + 1 only account the data pages */;
1514 extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1515 if (extra < 0)
1516 extra = 0;
1517
1518 locked = vma->vm_mm->locked_vm + extra;
1519
1520 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1521 lock_limit >>= PAGE_SHIFT;
1522
1523 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1524 ret = -EPERM;
1525 goto unlock;
1526 }
1527
1528 WARN_ON(counter->data);
1529 ret = perf_mmap_data_alloc(counter, nr_pages);
1530 if (ret)
1531 goto unlock;
1532
1533 atomic_set(&counter->mmap_count, 1);
1534 vma->vm_mm->locked_vm += extra;
1535 counter->data->nr_locked = extra;
1536 unlock:
1537 mutex_unlock(&counter->mmap_mutex);
1538
1539 vma->vm_flags &= ~VM_MAYWRITE;
1540 vma->vm_flags |= VM_RESERVED;
1541 vma->vm_ops = &perf_mmap_vmops;
1542
1543 return ret;
1544 }
1545
1546 static int perf_fasync(int fd, struct file *filp, int on)
1547 {
1548 struct perf_counter *counter = filp->private_data;
1549 struct inode *inode = filp->f_path.dentry->d_inode;
1550 int retval;
1551
1552 mutex_lock(&inode->i_mutex);
1553 retval = fasync_helper(fd, filp, on, &counter->fasync);
1554 mutex_unlock(&inode->i_mutex);
1555
1556 if (retval < 0)
1557 return retval;
1558
1559 return 0;
1560 }
1561
1562 static const struct file_operations perf_fops = {
1563 .release = perf_release,
1564 .read = perf_read,
1565 .poll = perf_poll,
1566 .unlocked_ioctl = perf_ioctl,
1567 .compat_ioctl = perf_ioctl,
1568 .mmap = perf_mmap,
1569 .fasync = perf_fasync,
1570 };
1571
1572 /*
1573 * Perf counter wakeup
1574 *
1575 * If there's data, ensure we set the poll() state and publish everything
1576 * to user-space before waking everybody up.
1577 */
1578
1579 void perf_counter_wakeup(struct perf_counter *counter)
1580 {
1581 wake_up_all(&counter->waitq);
1582
1583 if (counter->pending_kill) {
1584 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1585 counter->pending_kill = 0;
1586 }
1587 }
1588
1589 /*
1590 * Pending wakeups
1591 *
1592 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1593 *
1594 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1595 * single linked list and use cmpxchg() to add entries lockless.
1596 */
1597
1598 static void perf_pending_counter(struct perf_pending_entry *entry)
1599 {
1600 struct perf_counter *counter = container_of(entry,
1601 struct perf_counter, pending);
1602
1603 if (counter->pending_disable) {
1604 counter->pending_disable = 0;
1605 perf_counter_disable(counter);
1606 }
1607
1608 if (counter->pending_wakeup) {
1609 counter->pending_wakeup = 0;
1610 perf_counter_wakeup(counter);
1611 }
1612 }
1613
1614 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1615
1616 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1617 PENDING_TAIL,
1618 };
1619
1620 static void perf_pending_queue(struct perf_pending_entry *entry,
1621 void (*func)(struct perf_pending_entry *))
1622 {
1623 struct perf_pending_entry **head;
1624
1625 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1626 return;
1627
1628 entry->func = func;
1629
1630 head = &get_cpu_var(perf_pending_head);
1631
1632 do {
1633 entry->next = *head;
1634 } while (cmpxchg(head, entry->next, entry) != entry->next);
1635
1636 set_perf_counter_pending();
1637
1638 put_cpu_var(perf_pending_head);
1639 }
1640
1641 static int __perf_pending_run(void)
1642 {
1643 struct perf_pending_entry *list;
1644 int nr = 0;
1645
1646 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1647 while (list != PENDING_TAIL) {
1648 void (*func)(struct perf_pending_entry *);
1649 struct perf_pending_entry *entry = list;
1650
1651 list = list->next;
1652
1653 func = entry->func;
1654 entry->next = NULL;
1655 /*
1656 * Ensure we observe the unqueue before we issue the wakeup,
1657 * so that we won't be waiting forever.
1658 * -- see perf_not_pending().
1659 */
1660 smp_wmb();
1661
1662 func(entry);
1663 nr++;
1664 }
1665
1666 return nr;
1667 }
1668
1669 static inline int perf_not_pending(struct perf_counter *counter)
1670 {
1671 /*
1672 * If we flush on whatever cpu we run, there is a chance we don't
1673 * need to wait.
1674 */
1675 get_cpu();
1676 __perf_pending_run();
1677 put_cpu();
1678
1679 /*
1680 * Ensure we see the proper queue state before going to sleep
1681 * so that we do not miss the wakeup. -- see perf_pending_handle()
1682 */
1683 smp_rmb();
1684 return counter->pending.next == NULL;
1685 }
1686
1687 static void perf_pending_sync(struct perf_counter *counter)
1688 {
1689 wait_event(counter->waitq, perf_not_pending(counter));
1690 }
1691
1692 void perf_counter_do_pending(void)
1693 {
1694 __perf_pending_run();
1695 }
1696
1697 /*
1698 * Callchain support -- arch specific
1699 */
1700
1701 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1702 {
1703 return NULL;
1704 }
1705
1706 /*
1707 * Output
1708 */
1709
1710 struct perf_output_handle {
1711 struct perf_counter *counter;
1712 struct perf_mmap_data *data;
1713 unsigned int offset;
1714 unsigned int head;
1715 int nmi;
1716 int overflow;
1717 int locked;
1718 unsigned long flags;
1719 };
1720
1721 static void perf_output_wakeup(struct perf_output_handle *handle)
1722 {
1723 atomic_set(&handle->data->poll, POLL_IN);
1724
1725 if (handle->nmi) {
1726 handle->counter->pending_wakeup = 1;
1727 perf_pending_queue(&handle->counter->pending,
1728 perf_pending_counter);
1729 } else
1730 perf_counter_wakeup(handle->counter);
1731 }
1732
1733 /*
1734 * Curious locking construct.
1735 *
1736 * We need to ensure a later event doesn't publish a head when a former
1737 * event isn't done writing. However since we need to deal with NMIs we
1738 * cannot fully serialize things.
1739 *
1740 * What we do is serialize between CPUs so we only have to deal with NMI
1741 * nesting on a single CPU.
1742 *
1743 * We only publish the head (and generate a wakeup) when the outer-most
1744 * event completes.
1745 */
1746 static void perf_output_lock(struct perf_output_handle *handle)
1747 {
1748 struct perf_mmap_data *data = handle->data;
1749 int cpu;
1750
1751 handle->locked = 0;
1752
1753 local_irq_save(handle->flags);
1754 cpu = smp_processor_id();
1755
1756 if (in_nmi() && atomic_read(&data->lock) == cpu)
1757 return;
1758
1759 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1760 cpu_relax();
1761
1762 handle->locked = 1;
1763 }
1764
1765 static void perf_output_unlock(struct perf_output_handle *handle)
1766 {
1767 struct perf_mmap_data *data = handle->data;
1768 int head, cpu;
1769
1770 data->done_head = data->head;
1771
1772 if (!handle->locked)
1773 goto out;
1774
1775 again:
1776 /*
1777 * The xchg implies a full barrier that ensures all writes are done
1778 * before we publish the new head, matched by a rmb() in userspace when
1779 * reading this position.
1780 */
1781 while ((head = atomic_xchg(&data->done_head, 0)))
1782 data->user_page->data_head = head;
1783
1784 /*
1785 * NMI can happen here, which means we can miss a done_head update.
1786 */
1787
1788 cpu = atomic_xchg(&data->lock, -1);
1789 WARN_ON_ONCE(cpu != smp_processor_id());
1790
1791 /*
1792 * Therefore we have to validate we did not indeed do so.
1793 */
1794 if (unlikely(atomic_read(&data->done_head))) {
1795 /*
1796 * Since we had it locked, we can lock it again.
1797 */
1798 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1799 cpu_relax();
1800
1801 goto again;
1802 }
1803
1804 if (atomic_xchg(&data->wakeup, 0))
1805 perf_output_wakeup(handle);
1806 out:
1807 local_irq_restore(handle->flags);
1808 }
1809
1810 static int perf_output_begin(struct perf_output_handle *handle,
1811 struct perf_counter *counter, unsigned int size,
1812 int nmi, int overflow)
1813 {
1814 struct perf_mmap_data *data;
1815 unsigned int offset, head;
1816
1817 rcu_read_lock();
1818 data = rcu_dereference(counter->data);
1819 if (!data)
1820 goto out;
1821
1822 handle->data = data;
1823 handle->counter = counter;
1824 handle->nmi = nmi;
1825 handle->overflow = overflow;
1826
1827 if (!data->nr_pages)
1828 goto fail;
1829
1830 perf_output_lock(handle);
1831
1832 do {
1833 offset = head = atomic_read(&data->head);
1834 head += size;
1835 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1836
1837 handle->offset = offset;
1838 handle->head = head;
1839
1840 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1841 atomic_set(&data->wakeup, 1);
1842
1843 return 0;
1844
1845 fail:
1846 perf_output_wakeup(handle);
1847 out:
1848 rcu_read_unlock();
1849
1850 return -ENOSPC;
1851 }
1852
1853 static void perf_output_copy(struct perf_output_handle *handle,
1854 void *buf, unsigned int len)
1855 {
1856 unsigned int pages_mask;
1857 unsigned int offset;
1858 unsigned int size;
1859 void **pages;
1860
1861 offset = handle->offset;
1862 pages_mask = handle->data->nr_pages - 1;
1863 pages = handle->data->data_pages;
1864
1865 do {
1866 unsigned int page_offset;
1867 int nr;
1868
1869 nr = (offset >> PAGE_SHIFT) & pages_mask;
1870 page_offset = offset & (PAGE_SIZE - 1);
1871 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1872
1873 memcpy(pages[nr] + page_offset, buf, size);
1874
1875 len -= size;
1876 buf += size;
1877 offset += size;
1878 } while (len);
1879
1880 handle->offset = offset;
1881
1882 WARN_ON_ONCE(handle->offset > handle->head);
1883 }
1884
1885 #define perf_output_put(handle, x) \
1886 perf_output_copy((handle), &(x), sizeof(x))
1887
1888 static void perf_output_end(struct perf_output_handle *handle)
1889 {
1890 struct perf_counter *counter = handle->counter;
1891 struct perf_mmap_data *data = handle->data;
1892
1893 int wakeup_events = counter->hw_event.wakeup_events;
1894
1895 if (handle->overflow && wakeup_events) {
1896 int events = atomic_inc_return(&data->events);
1897 if (events >= wakeup_events) {
1898 atomic_sub(wakeup_events, &data->events);
1899 atomic_set(&data->wakeup, 1);
1900 }
1901 }
1902
1903 perf_output_unlock(handle);
1904 rcu_read_unlock();
1905 }
1906
1907 static void perf_counter_output(struct perf_counter *counter,
1908 int nmi, struct pt_regs *regs, u64 addr)
1909 {
1910 int ret;
1911 u64 record_type = counter->hw_event.record_type;
1912 struct perf_output_handle handle;
1913 struct perf_event_header header;
1914 u64 ip;
1915 struct {
1916 u32 pid, tid;
1917 } tid_entry;
1918 struct {
1919 u64 event;
1920 u64 counter;
1921 } group_entry;
1922 struct perf_callchain_entry *callchain = NULL;
1923 int callchain_size = 0;
1924 u64 time;
1925
1926 header.type = 0;
1927 header.size = sizeof(header);
1928
1929 header.misc = PERF_EVENT_MISC_OVERFLOW;
1930 header.misc |= user_mode(regs) ?
1931 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1932
1933 if (record_type & PERF_RECORD_IP) {
1934 ip = instruction_pointer(regs);
1935 header.type |= PERF_RECORD_IP;
1936 header.size += sizeof(ip);
1937 }
1938
1939 if (record_type & PERF_RECORD_TID) {
1940 /* namespace issues */
1941 tid_entry.pid = current->group_leader->pid;
1942 tid_entry.tid = current->pid;
1943
1944 header.type |= PERF_RECORD_TID;
1945 header.size += sizeof(tid_entry);
1946 }
1947
1948 if (record_type & PERF_RECORD_TIME) {
1949 /*
1950 * Maybe do better on x86 and provide cpu_clock_nmi()
1951 */
1952 time = sched_clock();
1953
1954 header.type |= PERF_RECORD_TIME;
1955 header.size += sizeof(u64);
1956 }
1957
1958 if (record_type & PERF_RECORD_ADDR) {
1959 header.type |= PERF_RECORD_ADDR;
1960 header.size += sizeof(u64);
1961 }
1962
1963 if (record_type & PERF_RECORD_GROUP) {
1964 header.type |= PERF_RECORD_GROUP;
1965 header.size += sizeof(u64) +
1966 counter->nr_siblings * sizeof(group_entry);
1967 }
1968
1969 if (record_type & PERF_RECORD_CALLCHAIN) {
1970 callchain = perf_callchain(regs);
1971
1972 if (callchain) {
1973 callchain_size = (1 + callchain->nr) * sizeof(u64);
1974
1975 header.type |= PERF_RECORD_CALLCHAIN;
1976 header.size += callchain_size;
1977 }
1978 }
1979
1980 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1981 if (ret)
1982 return;
1983
1984 perf_output_put(&handle, header);
1985
1986 if (record_type & PERF_RECORD_IP)
1987 perf_output_put(&handle, ip);
1988
1989 if (record_type & PERF_RECORD_TID)
1990 perf_output_put(&handle, tid_entry);
1991
1992 if (record_type & PERF_RECORD_TIME)
1993 perf_output_put(&handle, time);
1994
1995 if (record_type & PERF_RECORD_ADDR)
1996 perf_output_put(&handle, addr);
1997
1998 if (record_type & PERF_RECORD_GROUP) {
1999 struct perf_counter *leader, *sub;
2000 u64 nr = counter->nr_siblings;
2001
2002 perf_output_put(&handle, nr);
2003
2004 leader = counter->group_leader;
2005 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2006 if (sub != counter)
2007 sub->pmu->read(sub);
2008
2009 group_entry.event = sub->hw_event.config;
2010 group_entry.counter = atomic64_read(&sub->count);
2011
2012 perf_output_put(&handle, group_entry);
2013 }
2014 }
2015
2016 if (callchain)
2017 perf_output_copy(&handle, callchain, callchain_size);
2018
2019 perf_output_end(&handle);
2020 }
2021
2022 /*
2023 * comm tracking
2024 */
2025
2026 struct perf_comm_event {
2027 struct task_struct *task;
2028 char *comm;
2029 int comm_size;
2030
2031 struct {
2032 struct perf_event_header header;
2033
2034 u32 pid;
2035 u32 tid;
2036 } event;
2037 };
2038
2039 static void perf_counter_comm_output(struct perf_counter *counter,
2040 struct perf_comm_event *comm_event)
2041 {
2042 struct perf_output_handle handle;
2043 int size = comm_event->event.header.size;
2044 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2045
2046 if (ret)
2047 return;
2048
2049 perf_output_put(&handle, comm_event->event);
2050 perf_output_copy(&handle, comm_event->comm,
2051 comm_event->comm_size);
2052 perf_output_end(&handle);
2053 }
2054
2055 static int perf_counter_comm_match(struct perf_counter *counter,
2056 struct perf_comm_event *comm_event)
2057 {
2058 if (counter->hw_event.comm &&
2059 comm_event->event.header.type == PERF_EVENT_COMM)
2060 return 1;
2061
2062 return 0;
2063 }
2064
2065 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2066 struct perf_comm_event *comm_event)
2067 {
2068 struct perf_counter *counter;
2069
2070 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2071 return;
2072
2073 rcu_read_lock();
2074 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2075 if (perf_counter_comm_match(counter, comm_event))
2076 perf_counter_comm_output(counter, comm_event);
2077 }
2078 rcu_read_unlock();
2079 }
2080
2081 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2082 {
2083 struct perf_cpu_context *cpuctx;
2084 unsigned int size;
2085 char *comm = comm_event->task->comm;
2086
2087 size = ALIGN(strlen(comm)+1, sizeof(u64));
2088
2089 comm_event->comm = comm;
2090 comm_event->comm_size = size;
2091
2092 comm_event->event.header.size = sizeof(comm_event->event) + size;
2093
2094 cpuctx = &get_cpu_var(perf_cpu_context);
2095 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2096 put_cpu_var(perf_cpu_context);
2097
2098 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2099 }
2100
2101 void perf_counter_comm(struct task_struct *task)
2102 {
2103 struct perf_comm_event comm_event;
2104
2105 if (!atomic_read(&nr_comm_tracking))
2106 return;
2107
2108 comm_event = (struct perf_comm_event){
2109 .task = task,
2110 .event = {
2111 .header = { .type = PERF_EVENT_COMM, },
2112 .pid = task->group_leader->pid,
2113 .tid = task->pid,
2114 },
2115 };
2116
2117 perf_counter_comm_event(&comm_event);
2118 }
2119
2120 /*
2121 * mmap tracking
2122 */
2123
2124 struct perf_mmap_event {
2125 struct file *file;
2126 char *file_name;
2127 int file_size;
2128
2129 struct {
2130 struct perf_event_header header;
2131
2132 u32 pid;
2133 u32 tid;
2134 u64 start;
2135 u64 len;
2136 u64 pgoff;
2137 } event;
2138 };
2139
2140 static void perf_counter_mmap_output(struct perf_counter *counter,
2141 struct perf_mmap_event *mmap_event)
2142 {
2143 struct perf_output_handle handle;
2144 int size = mmap_event->event.header.size;
2145 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2146
2147 if (ret)
2148 return;
2149
2150 perf_output_put(&handle, mmap_event->event);
2151 perf_output_copy(&handle, mmap_event->file_name,
2152 mmap_event->file_size);
2153 perf_output_end(&handle);
2154 }
2155
2156 static int perf_counter_mmap_match(struct perf_counter *counter,
2157 struct perf_mmap_event *mmap_event)
2158 {
2159 if (counter->hw_event.mmap &&
2160 mmap_event->event.header.type == PERF_EVENT_MMAP)
2161 return 1;
2162
2163 if (counter->hw_event.munmap &&
2164 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2165 return 1;
2166
2167 return 0;
2168 }
2169
2170 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2171 struct perf_mmap_event *mmap_event)
2172 {
2173 struct perf_counter *counter;
2174
2175 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2176 return;
2177
2178 rcu_read_lock();
2179 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2180 if (perf_counter_mmap_match(counter, mmap_event))
2181 perf_counter_mmap_output(counter, mmap_event);
2182 }
2183 rcu_read_unlock();
2184 }
2185
2186 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2187 {
2188 struct perf_cpu_context *cpuctx;
2189 struct file *file = mmap_event->file;
2190 unsigned int size;
2191 char tmp[16];
2192 char *buf = NULL;
2193 char *name;
2194
2195 if (file) {
2196 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2197 if (!buf) {
2198 name = strncpy(tmp, "//enomem", sizeof(tmp));
2199 goto got_name;
2200 }
2201 name = d_path(&file->f_path, buf, PATH_MAX);
2202 if (IS_ERR(name)) {
2203 name = strncpy(tmp, "//toolong", sizeof(tmp));
2204 goto got_name;
2205 }
2206 } else {
2207 name = strncpy(tmp, "//anon", sizeof(tmp));
2208 goto got_name;
2209 }
2210
2211 got_name:
2212 size = ALIGN(strlen(name)+1, sizeof(u64));
2213
2214 mmap_event->file_name = name;
2215 mmap_event->file_size = size;
2216
2217 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2218
2219 cpuctx = &get_cpu_var(perf_cpu_context);
2220 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2221 put_cpu_var(perf_cpu_context);
2222
2223 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2224
2225 kfree(buf);
2226 }
2227
2228 void perf_counter_mmap(unsigned long addr, unsigned long len,
2229 unsigned long pgoff, struct file *file)
2230 {
2231 struct perf_mmap_event mmap_event;
2232
2233 if (!atomic_read(&nr_mmap_tracking))
2234 return;
2235
2236 mmap_event = (struct perf_mmap_event){
2237 .file = file,
2238 .event = {
2239 .header = { .type = PERF_EVENT_MMAP, },
2240 .pid = current->group_leader->pid,
2241 .tid = current->pid,
2242 .start = addr,
2243 .len = len,
2244 .pgoff = pgoff,
2245 },
2246 };
2247
2248 perf_counter_mmap_event(&mmap_event);
2249 }
2250
2251 void perf_counter_munmap(unsigned long addr, unsigned long len,
2252 unsigned long pgoff, struct file *file)
2253 {
2254 struct perf_mmap_event mmap_event;
2255
2256 if (!atomic_read(&nr_munmap_tracking))
2257 return;
2258
2259 mmap_event = (struct perf_mmap_event){
2260 .file = file,
2261 .event = {
2262 .header = { .type = PERF_EVENT_MUNMAP, },
2263 .pid = current->group_leader->pid,
2264 .tid = current->pid,
2265 .start = addr,
2266 .len = len,
2267 .pgoff = pgoff,
2268 },
2269 };
2270
2271 perf_counter_mmap_event(&mmap_event);
2272 }
2273
2274 /*
2275 * Generic counter overflow handling.
2276 */
2277
2278 int perf_counter_overflow(struct perf_counter *counter,
2279 int nmi, struct pt_regs *regs, u64 addr)
2280 {
2281 int events = atomic_read(&counter->event_limit);
2282 int ret = 0;
2283
2284 counter->pending_kill = POLL_IN;
2285 if (events && atomic_dec_and_test(&counter->event_limit)) {
2286 ret = 1;
2287 counter->pending_kill = POLL_HUP;
2288 if (nmi) {
2289 counter->pending_disable = 1;
2290 perf_pending_queue(&counter->pending,
2291 perf_pending_counter);
2292 } else
2293 perf_counter_disable(counter);
2294 }
2295
2296 perf_counter_output(counter, nmi, regs, addr);
2297 return ret;
2298 }
2299
2300 /*
2301 * Generic software counter infrastructure
2302 */
2303
2304 static void perf_swcounter_update(struct perf_counter *counter)
2305 {
2306 struct hw_perf_counter *hwc = &counter->hw;
2307 u64 prev, now;
2308 s64 delta;
2309
2310 again:
2311 prev = atomic64_read(&hwc->prev_count);
2312 now = atomic64_read(&hwc->count);
2313 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2314 goto again;
2315
2316 delta = now - prev;
2317
2318 atomic64_add(delta, &counter->count);
2319 atomic64_sub(delta, &hwc->period_left);
2320 }
2321
2322 static void perf_swcounter_set_period(struct perf_counter *counter)
2323 {
2324 struct hw_perf_counter *hwc = &counter->hw;
2325 s64 left = atomic64_read(&hwc->period_left);
2326 s64 period = hwc->irq_period;
2327
2328 if (unlikely(left <= -period)) {
2329 left = period;
2330 atomic64_set(&hwc->period_left, left);
2331 }
2332
2333 if (unlikely(left <= 0)) {
2334 left += period;
2335 atomic64_add(period, &hwc->period_left);
2336 }
2337
2338 atomic64_set(&hwc->prev_count, -left);
2339 atomic64_set(&hwc->count, -left);
2340 }
2341
2342 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2343 {
2344 enum hrtimer_restart ret = HRTIMER_RESTART;
2345 struct perf_counter *counter;
2346 struct pt_regs *regs;
2347
2348 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2349 counter->pmu->read(counter);
2350
2351 regs = get_irq_regs();
2352 /*
2353 * In case we exclude kernel IPs or are somehow not in interrupt
2354 * context, provide the next best thing, the user IP.
2355 */
2356 if ((counter->hw_event.exclude_kernel || !regs) &&
2357 !counter->hw_event.exclude_user)
2358 regs = task_pt_regs(current);
2359
2360 if (regs) {
2361 if (perf_counter_overflow(counter, 0, regs, 0))
2362 ret = HRTIMER_NORESTART;
2363 }
2364
2365 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2366
2367 return ret;
2368 }
2369
2370 static void perf_swcounter_overflow(struct perf_counter *counter,
2371 int nmi, struct pt_regs *regs, u64 addr)
2372 {
2373 perf_swcounter_update(counter);
2374 perf_swcounter_set_period(counter);
2375 if (perf_counter_overflow(counter, nmi, regs, addr))
2376 /* soft-disable the counter */
2377 ;
2378
2379 }
2380
2381 static int perf_swcounter_match(struct perf_counter *counter,
2382 enum perf_event_types type,
2383 u32 event, struct pt_regs *regs)
2384 {
2385 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2386 return 0;
2387
2388 if (perf_event_raw(&counter->hw_event))
2389 return 0;
2390
2391 if (perf_event_type(&counter->hw_event) != type)
2392 return 0;
2393
2394 if (perf_event_id(&counter->hw_event) != event)
2395 return 0;
2396
2397 if (counter->hw_event.exclude_user && user_mode(regs))
2398 return 0;
2399
2400 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2401 return 0;
2402
2403 return 1;
2404 }
2405
2406 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2407 int nmi, struct pt_regs *regs, u64 addr)
2408 {
2409 int neg = atomic64_add_negative(nr, &counter->hw.count);
2410 if (counter->hw.irq_period && !neg)
2411 perf_swcounter_overflow(counter, nmi, regs, addr);
2412 }
2413
2414 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2415 enum perf_event_types type, u32 event,
2416 u64 nr, int nmi, struct pt_regs *regs,
2417 u64 addr)
2418 {
2419 struct perf_counter *counter;
2420
2421 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2422 return;
2423
2424 rcu_read_lock();
2425 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2426 if (perf_swcounter_match(counter, type, event, regs))
2427 perf_swcounter_add(counter, nr, nmi, regs, addr);
2428 }
2429 rcu_read_unlock();
2430 }
2431
2432 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2433 {
2434 if (in_nmi())
2435 return &cpuctx->recursion[3];
2436
2437 if (in_irq())
2438 return &cpuctx->recursion[2];
2439
2440 if (in_softirq())
2441 return &cpuctx->recursion[1];
2442
2443 return &cpuctx->recursion[0];
2444 }
2445
2446 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2447 u64 nr, int nmi, struct pt_regs *regs,
2448 u64 addr)
2449 {
2450 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2451 int *recursion = perf_swcounter_recursion_context(cpuctx);
2452
2453 if (*recursion)
2454 goto out;
2455
2456 (*recursion)++;
2457 barrier();
2458
2459 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2460 nr, nmi, regs, addr);
2461 if (cpuctx->task_ctx) {
2462 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2463 nr, nmi, regs, addr);
2464 }
2465
2466 barrier();
2467 (*recursion)--;
2468
2469 out:
2470 put_cpu_var(perf_cpu_context);
2471 }
2472
2473 void
2474 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2475 {
2476 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2477 }
2478
2479 static void perf_swcounter_read(struct perf_counter *counter)
2480 {
2481 perf_swcounter_update(counter);
2482 }
2483
2484 static int perf_swcounter_enable(struct perf_counter *counter)
2485 {
2486 perf_swcounter_set_period(counter);
2487 return 0;
2488 }
2489
2490 static void perf_swcounter_disable(struct perf_counter *counter)
2491 {
2492 perf_swcounter_update(counter);
2493 }
2494
2495 static const struct pmu perf_ops_generic = {
2496 .enable = perf_swcounter_enable,
2497 .disable = perf_swcounter_disable,
2498 .read = perf_swcounter_read,
2499 };
2500
2501 /*
2502 * Software counter: cpu wall time clock
2503 */
2504
2505 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2506 {
2507 int cpu = raw_smp_processor_id();
2508 s64 prev;
2509 u64 now;
2510
2511 now = cpu_clock(cpu);
2512 prev = atomic64_read(&counter->hw.prev_count);
2513 atomic64_set(&counter->hw.prev_count, now);
2514 atomic64_add(now - prev, &counter->count);
2515 }
2516
2517 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2518 {
2519 struct hw_perf_counter *hwc = &counter->hw;
2520 int cpu = raw_smp_processor_id();
2521
2522 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2523 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2524 hwc->hrtimer.function = perf_swcounter_hrtimer;
2525 if (hwc->irq_period) {
2526 __hrtimer_start_range_ns(&hwc->hrtimer,
2527 ns_to_ktime(hwc->irq_period), 0,
2528 HRTIMER_MODE_REL, 0);
2529 }
2530
2531 return 0;
2532 }
2533
2534 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2535 {
2536 hrtimer_cancel(&counter->hw.hrtimer);
2537 cpu_clock_perf_counter_update(counter);
2538 }
2539
2540 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2541 {
2542 cpu_clock_perf_counter_update(counter);
2543 }
2544
2545 static const struct pmu perf_ops_cpu_clock = {
2546 .enable = cpu_clock_perf_counter_enable,
2547 .disable = cpu_clock_perf_counter_disable,
2548 .read = cpu_clock_perf_counter_read,
2549 };
2550
2551 /*
2552 * Software counter: task time clock
2553 */
2554
2555 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2556 {
2557 u64 prev;
2558 s64 delta;
2559
2560 prev = atomic64_xchg(&counter->hw.prev_count, now);
2561 delta = now - prev;
2562 atomic64_add(delta, &counter->count);
2563 }
2564
2565 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2566 {
2567 struct hw_perf_counter *hwc = &counter->hw;
2568 u64 now;
2569
2570 now = counter->ctx->time;
2571
2572 atomic64_set(&hwc->prev_count, now);
2573 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2574 hwc->hrtimer.function = perf_swcounter_hrtimer;
2575 if (hwc->irq_period) {
2576 __hrtimer_start_range_ns(&hwc->hrtimer,
2577 ns_to_ktime(hwc->irq_period), 0,
2578 HRTIMER_MODE_REL, 0);
2579 }
2580
2581 return 0;
2582 }
2583
2584 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2585 {
2586 hrtimer_cancel(&counter->hw.hrtimer);
2587 task_clock_perf_counter_update(counter, counter->ctx->time);
2588
2589 }
2590
2591 static void task_clock_perf_counter_read(struct perf_counter *counter)
2592 {
2593 u64 time;
2594
2595 if (!in_nmi()) {
2596 update_context_time(counter->ctx);
2597 time = counter->ctx->time;
2598 } else {
2599 u64 now = perf_clock();
2600 u64 delta = now - counter->ctx->timestamp;
2601 time = counter->ctx->time + delta;
2602 }
2603
2604 task_clock_perf_counter_update(counter, time);
2605 }
2606
2607 static const struct pmu perf_ops_task_clock = {
2608 .enable = task_clock_perf_counter_enable,
2609 .disable = task_clock_perf_counter_disable,
2610 .read = task_clock_perf_counter_read,
2611 };
2612
2613 /*
2614 * Software counter: cpu migrations
2615 */
2616
2617 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2618 {
2619 struct task_struct *curr = counter->ctx->task;
2620
2621 if (curr)
2622 return curr->se.nr_migrations;
2623 return cpu_nr_migrations(smp_processor_id());
2624 }
2625
2626 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2627 {
2628 u64 prev, now;
2629 s64 delta;
2630
2631 prev = atomic64_read(&counter->hw.prev_count);
2632 now = get_cpu_migrations(counter);
2633
2634 atomic64_set(&counter->hw.prev_count, now);
2635
2636 delta = now - prev;
2637
2638 atomic64_add(delta, &counter->count);
2639 }
2640
2641 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2642 {
2643 cpu_migrations_perf_counter_update(counter);
2644 }
2645
2646 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2647 {
2648 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2649 atomic64_set(&counter->hw.prev_count,
2650 get_cpu_migrations(counter));
2651 return 0;
2652 }
2653
2654 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2655 {
2656 cpu_migrations_perf_counter_update(counter);
2657 }
2658
2659 static const struct pmu perf_ops_cpu_migrations = {
2660 .enable = cpu_migrations_perf_counter_enable,
2661 .disable = cpu_migrations_perf_counter_disable,
2662 .read = cpu_migrations_perf_counter_read,
2663 };
2664
2665 #ifdef CONFIG_EVENT_PROFILE
2666 void perf_tpcounter_event(int event_id)
2667 {
2668 struct pt_regs *regs = get_irq_regs();
2669
2670 if (!regs)
2671 regs = task_pt_regs(current);
2672
2673 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2674 }
2675 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2676
2677 extern int ftrace_profile_enable(int);
2678 extern void ftrace_profile_disable(int);
2679
2680 static void tp_perf_counter_destroy(struct perf_counter *counter)
2681 {
2682 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2683 }
2684
2685 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2686 {
2687 int event_id = perf_event_id(&counter->hw_event);
2688 int ret;
2689
2690 ret = ftrace_profile_enable(event_id);
2691 if (ret)
2692 return NULL;
2693
2694 counter->destroy = tp_perf_counter_destroy;
2695 counter->hw.irq_period = counter->hw_event.irq_period;
2696
2697 return &perf_ops_generic;
2698 }
2699 #else
2700 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2701 {
2702 return NULL;
2703 }
2704 #endif
2705
2706 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2707 {
2708 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2709 const struct pmu *pmu = NULL;
2710 struct hw_perf_counter *hwc = &counter->hw;
2711
2712 /*
2713 * Software counters (currently) can't in general distinguish
2714 * between user, kernel and hypervisor events.
2715 * However, context switches and cpu migrations are considered
2716 * to be kernel events, and page faults are never hypervisor
2717 * events.
2718 */
2719 switch (perf_event_id(&counter->hw_event)) {
2720 case PERF_COUNT_CPU_CLOCK:
2721 pmu = &perf_ops_cpu_clock;
2722
2723 if (hw_event->irq_period && hw_event->irq_period < 10000)
2724 hw_event->irq_period = 10000;
2725 break;
2726 case PERF_COUNT_TASK_CLOCK:
2727 /*
2728 * If the user instantiates this as a per-cpu counter,
2729 * use the cpu_clock counter instead.
2730 */
2731 if (counter->ctx->task)
2732 pmu = &perf_ops_task_clock;
2733 else
2734 pmu = &perf_ops_cpu_clock;
2735
2736 if (hw_event->irq_period && hw_event->irq_period < 10000)
2737 hw_event->irq_period = 10000;
2738 break;
2739 case PERF_COUNT_PAGE_FAULTS:
2740 case PERF_COUNT_PAGE_FAULTS_MIN:
2741 case PERF_COUNT_PAGE_FAULTS_MAJ:
2742 case PERF_COUNT_CONTEXT_SWITCHES:
2743 pmu = &perf_ops_generic;
2744 break;
2745 case PERF_COUNT_CPU_MIGRATIONS:
2746 if (!counter->hw_event.exclude_kernel)
2747 pmu = &perf_ops_cpu_migrations;
2748 break;
2749 }
2750
2751 if (pmu)
2752 hwc->irq_period = hw_event->irq_period;
2753
2754 return pmu;
2755 }
2756
2757 /*
2758 * Allocate and initialize a counter structure
2759 */
2760 static struct perf_counter *
2761 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2762 int cpu,
2763 struct perf_counter_context *ctx,
2764 struct perf_counter *group_leader,
2765 gfp_t gfpflags)
2766 {
2767 const struct pmu *pmu;
2768 struct perf_counter *counter;
2769 long err;
2770
2771 counter = kzalloc(sizeof(*counter), gfpflags);
2772 if (!counter)
2773 return ERR_PTR(-ENOMEM);
2774
2775 /*
2776 * Single counters are their own group leaders, with an
2777 * empty sibling list:
2778 */
2779 if (!group_leader)
2780 group_leader = counter;
2781
2782 mutex_init(&counter->mutex);
2783 INIT_LIST_HEAD(&counter->list_entry);
2784 INIT_LIST_HEAD(&counter->event_entry);
2785 INIT_LIST_HEAD(&counter->sibling_list);
2786 init_waitqueue_head(&counter->waitq);
2787
2788 mutex_init(&counter->mmap_mutex);
2789
2790 INIT_LIST_HEAD(&counter->child_list);
2791
2792 counter->cpu = cpu;
2793 counter->hw_event = *hw_event;
2794 counter->group_leader = group_leader;
2795 counter->pmu = NULL;
2796 counter->ctx = ctx;
2797
2798 counter->state = PERF_COUNTER_STATE_INACTIVE;
2799 if (hw_event->disabled)
2800 counter->state = PERF_COUNTER_STATE_OFF;
2801
2802 pmu = NULL;
2803
2804 if (perf_event_raw(hw_event)) {
2805 pmu = hw_perf_counter_init(counter);
2806 goto done;
2807 }
2808
2809 switch (perf_event_type(hw_event)) {
2810 case PERF_TYPE_HARDWARE:
2811 pmu = hw_perf_counter_init(counter);
2812 break;
2813
2814 case PERF_TYPE_SOFTWARE:
2815 pmu = sw_perf_counter_init(counter);
2816 break;
2817
2818 case PERF_TYPE_TRACEPOINT:
2819 pmu = tp_perf_counter_init(counter);
2820 break;
2821 }
2822 done:
2823 err = 0;
2824 if (!pmu)
2825 err = -EINVAL;
2826 else if (IS_ERR(pmu))
2827 err = PTR_ERR(pmu);
2828
2829 if (err) {
2830 kfree(counter);
2831 return ERR_PTR(err);
2832 }
2833
2834 counter->pmu = pmu;
2835
2836 if (counter->hw_event.mmap)
2837 atomic_inc(&nr_mmap_tracking);
2838 if (counter->hw_event.munmap)
2839 atomic_inc(&nr_munmap_tracking);
2840 if (counter->hw_event.comm)
2841 atomic_inc(&nr_comm_tracking);
2842
2843 return counter;
2844 }
2845
2846 /**
2847 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2848 *
2849 * @hw_event_uptr: event type attributes for monitoring/sampling
2850 * @pid: target pid
2851 * @cpu: target cpu
2852 * @group_fd: group leader counter fd
2853 */
2854 SYSCALL_DEFINE5(perf_counter_open,
2855 const struct perf_counter_hw_event __user *, hw_event_uptr,
2856 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2857 {
2858 struct perf_counter *counter, *group_leader;
2859 struct perf_counter_hw_event hw_event;
2860 struct perf_counter_context *ctx;
2861 struct file *counter_file = NULL;
2862 struct file *group_file = NULL;
2863 int fput_needed = 0;
2864 int fput_needed2 = 0;
2865 int ret;
2866
2867 /* for future expandability... */
2868 if (flags)
2869 return -EINVAL;
2870
2871 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2872 return -EFAULT;
2873
2874 /*
2875 * Get the target context (task or percpu):
2876 */
2877 ctx = find_get_context(pid, cpu);
2878 if (IS_ERR(ctx))
2879 return PTR_ERR(ctx);
2880
2881 /*
2882 * Look up the group leader (we will attach this counter to it):
2883 */
2884 group_leader = NULL;
2885 if (group_fd != -1) {
2886 ret = -EINVAL;
2887 group_file = fget_light(group_fd, &fput_needed);
2888 if (!group_file)
2889 goto err_put_context;
2890 if (group_file->f_op != &perf_fops)
2891 goto err_put_context;
2892
2893 group_leader = group_file->private_data;
2894 /*
2895 * Do not allow a recursive hierarchy (this new sibling
2896 * becoming part of another group-sibling):
2897 */
2898 if (group_leader->group_leader != group_leader)
2899 goto err_put_context;
2900 /*
2901 * Do not allow to attach to a group in a different
2902 * task or CPU context:
2903 */
2904 if (group_leader->ctx != ctx)
2905 goto err_put_context;
2906 /*
2907 * Only a group leader can be exclusive or pinned
2908 */
2909 if (hw_event.exclusive || hw_event.pinned)
2910 goto err_put_context;
2911 }
2912
2913 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2914 GFP_KERNEL);
2915 ret = PTR_ERR(counter);
2916 if (IS_ERR(counter))
2917 goto err_put_context;
2918
2919 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2920 if (ret < 0)
2921 goto err_free_put_context;
2922
2923 counter_file = fget_light(ret, &fput_needed2);
2924 if (!counter_file)
2925 goto err_free_put_context;
2926
2927 counter->filp = counter_file;
2928 mutex_lock(&ctx->mutex);
2929 perf_install_in_context(ctx, counter, cpu);
2930 mutex_unlock(&ctx->mutex);
2931
2932 fput_light(counter_file, fput_needed2);
2933
2934 out_fput:
2935 fput_light(group_file, fput_needed);
2936
2937 return ret;
2938
2939 err_free_put_context:
2940 kfree(counter);
2941
2942 err_put_context:
2943 put_context(ctx);
2944
2945 goto out_fput;
2946 }
2947
2948 /*
2949 * Initialize the perf_counter context in a task_struct:
2950 */
2951 static void
2952 __perf_counter_init_context(struct perf_counter_context *ctx,
2953 struct task_struct *task)
2954 {
2955 memset(ctx, 0, sizeof(*ctx));
2956 spin_lock_init(&ctx->lock);
2957 mutex_init(&ctx->mutex);
2958 INIT_LIST_HEAD(&ctx->counter_list);
2959 INIT_LIST_HEAD(&ctx->event_list);
2960 ctx->task = task;
2961 }
2962
2963 /*
2964 * inherit a counter from parent task to child task:
2965 */
2966 static struct perf_counter *
2967 inherit_counter(struct perf_counter *parent_counter,
2968 struct task_struct *parent,
2969 struct perf_counter_context *parent_ctx,
2970 struct task_struct *child,
2971 struct perf_counter *group_leader,
2972 struct perf_counter_context *child_ctx)
2973 {
2974 struct perf_counter *child_counter;
2975
2976 /*
2977 * Instead of creating recursive hierarchies of counters,
2978 * we link inherited counters back to the original parent,
2979 * which has a filp for sure, which we use as the reference
2980 * count:
2981 */
2982 if (parent_counter->parent)
2983 parent_counter = parent_counter->parent;
2984
2985 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2986 parent_counter->cpu, child_ctx,
2987 group_leader, GFP_KERNEL);
2988 if (IS_ERR(child_counter))
2989 return child_counter;
2990
2991 /*
2992 * Link it up in the child's context:
2993 */
2994 child_counter->task = child;
2995 add_counter_to_ctx(child_counter, child_ctx);
2996
2997 child_counter->parent = parent_counter;
2998 /*
2999 * inherit into child's child as well:
3000 */
3001 child_counter->hw_event.inherit = 1;
3002
3003 /*
3004 * Get a reference to the parent filp - we will fput it
3005 * when the child counter exits. This is safe to do because
3006 * we are in the parent and we know that the filp still
3007 * exists and has a nonzero count:
3008 */
3009 atomic_long_inc(&parent_counter->filp->f_count);
3010
3011 /*
3012 * Link this into the parent counter's child list
3013 */
3014 mutex_lock(&parent_counter->mutex);
3015 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3016
3017 /*
3018 * Make the child state follow the state of the parent counter,
3019 * not its hw_event.disabled bit. We hold the parent's mutex,
3020 * so we won't race with perf_counter_{en,dis}able_family.
3021 */
3022 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3023 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3024 else
3025 child_counter->state = PERF_COUNTER_STATE_OFF;
3026
3027 mutex_unlock(&parent_counter->mutex);
3028
3029 return child_counter;
3030 }
3031
3032 static int inherit_group(struct perf_counter *parent_counter,
3033 struct task_struct *parent,
3034 struct perf_counter_context *parent_ctx,
3035 struct task_struct *child,
3036 struct perf_counter_context *child_ctx)
3037 {
3038 struct perf_counter *leader;
3039 struct perf_counter *sub;
3040 struct perf_counter *child_ctr;
3041
3042 leader = inherit_counter(parent_counter, parent, parent_ctx,
3043 child, NULL, child_ctx);
3044 if (IS_ERR(leader))
3045 return PTR_ERR(leader);
3046 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3047 child_ctr = inherit_counter(sub, parent, parent_ctx,
3048 child, leader, child_ctx);
3049 if (IS_ERR(child_ctr))
3050 return PTR_ERR(child_ctr);
3051 }
3052 return 0;
3053 }
3054
3055 static void sync_child_counter(struct perf_counter *child_counter,
3056 struct perf_counter *parent_counter)
3057 {
3058 u64 parent_val, child_val;
3059
3060 parent_val = atomic64_read(&parent_counter->count);
3061 child_val = atomic64_read(&child_counter->count);
3062
3063 /*
3064 * Add back the child's count to the parent's count:
3065 */
3066 atomic64_add(child_val, &parent_counter->count);
3067 atomic64_add(child_counter->total_time_enabled,
3068 &parent_counter->child_total_time_enabled);
3069 atomic64_add(child_counter->total_time_running,
3070 &parent_counter->child_total_time_running);
3071
3072 /*
3073 * Remove this counter from the parent's list
3074 */
3075 mutex_lock(&parent_counter->mutex);
3076 list_del_init(&child_counter->child_list);
3077 mutex_unlock(&parent_counter->mutex);
3078
3079 /*
3080 * Release the parent counter, if this was the last
3081 * reference to it.
3082 */
3083 fput(parent_counter->filp);
3084 }
3085
3086 static void
3087 __perf_counter_exit_task(struct task_struct *child,
3088 struct perf_counter *child_counter,
3089 struct perf_counter_context *child_ctx)
3090 {
3091 struct perf_counter *parent_counter;
3092 struct perf_counter *sub, *tmp;
3093
3094 /*
3095 * If we do not self-reap then we have to wait for the
3096 * child task to unschedule (it will happen for sure),
3097 * so that its counter is at its final count. (This
3098 * condition triggers rarely - child tasks usually get
3099 * off their CPU before the parent has a chance to
3100 * get this far into the reaping action)
3101 */
3102 if (child != current) {
3103 wait_task_inactive(child, 0);
3104 list_del_init(&child_counter->list_entry);
3105 update_counter_times(child_counter);
3106 } else {
3107 struct perf_cpu_context *cpuctx;
3108 unsigned long flags;
3109 u64 perf_flags;
3110
3111 /*
3112 * Disable and unlink this counter.
3113 *
3114 * Be careful about zapping the list - IRQ/NMI context
3115 * could still be processing it:
3116 */
3117 local_irq_save(flags);
3118 perf_flags = hw_perf_save_disable();
3119
3120 cpuctx = &__get_cpu_var(perf_cpu_context);
3121
3122 group_sched_out(child_counter, cpuctx, child_ctx);
3123 update_counter_times(child_counter);
3124
3125 list_del_init(&child_counter->list_entry);
3126
3127 child_ctx->nr_counters--;
3128
3129 hw_perf_restore(perf_flags);
3130 local_irq_restore(flags);
3131 }
3132
3133 parent_counter = child_counter->parent;
3134 /*
3135 * It can happen that parent exits first, and has counters
3136 * that are still around due to the child reference. These
3137 * counters need to be zapped - but otherwise linger.
3138 */
3139 if (parent_counter) {
3140 sync_child_counter(child_counter, parent_counter);
3141 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3142 list_entry) {
3143 if (sub->parent) {
3144 sync_child_counter(sub, sub->parent);
3145 free_counter(sub);
3146 }
3147 }
3148 free_counter(child_counter);
3149 }
3150 }
3151
3152 /*
3153 * When a child task exits, feed back counter values to parent counters.
3154 *
3155 * Note: we may be running in child context, but the PID is not hashed
3156 * anymore so new counters will not be added.
3157 */
3158 void perf_counter_exit_task(struct task_struct *child)
3159 {
3160 struct perf_counter *child_counter, *tmp;
3161 struct perf_counter_context *child_ctx;
3162
3163 child_ctx = &child->perf_counter_ctx;
3164
3165 if (likely(!child_ctx->nr_counters))
3166 return;
3167
3168 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3169 list_entry)
3170 __perf_counter_exit_task(child, child_counter, child_ctx);
3171 }
3172
3173 /*
3174 * Initialize the perf_counter context in task_struct
3175 */
3176 void perf_counter_init_task(struct task_struct *child)
3177 {
3178 struct perf_counter_context *child_ctx, *parent_ctx;
3179 struct perf_counter *counter;
3180 struct task_struct *parent = current;
3181
3182 child_ctx = &child->perf_counter_ctx;
3183 parent_ctx = &parent->perf_counter_ctx;
3184
3185 __perf_counter_init_context(child_ctx, child);
3186
3187 /*
3188 * This is executed from the parent task context, so inherit
3189 * counters that have been marked for cloning:
3190 */
3191
3192 if (likely(!parent_ctx->nr_counters))
3193 return;
3194
3195 /*
3196 * Lock the parent list. No need to lock the child - not PID
3197 * hashed yet and not running, so nobody can access it.
3198 */
3199 mutex_lock(&parent_ctx->mutex);
3200
3201 /*
3202 * We dont have to disable NMIs - we are only looking at
3203 * the list, not manipulating it:
3204 */
3205 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3206 if (!counter->hw_event.inherit)
3207 continue;
3208
3209 if (inherit_group(counter, parent,
3210 parent_ctx, child, child_ctx))
3211 break;
3212 }
3213
3214 mutex_unlock(&parent_ctx->mutex);
3215 }
3216
3217 static void __cpuinit perf_counter_init_cpu(int cpu)
3218 {
3219 struct perf_cpu_context *cpuctx;
3220
3221 cpuctx = &per_cpu(perf_cpu_context, cpu);
3222 __perf_counter_init_context(&cpuctx->ctx, NULL);
3223
3224 spin_lock(&perf_resource_lock);
3225 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3226 spin_unlock(&perf_resource_lock);
3227
3228 hw_perf_counter_setup(cpu);
3229 }
3230
3231 #ifdef CONFIG_HOTPLUG_CPU
3232 static void __perf_counter_exit_cpu(void *info)
3233 {
3234 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3235 struct perf_counter_context *ctx = &cpuctx->ctx;
3236 struct perf_counter *counter, *tmp;
3237
3238 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3239 __perf_counter_remove_from_context(counter);
3240 }
3241 static void perf_counter_exit_cpu(int cpu)
3242 {
3243 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3244 struct perf_counter_context *ctx = &cpuctx->ctx;
3245
3246 mutex_lock(&ctx->mutex);
3247 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3248 mutex_unlock(&ctx->mutex);
3249 }
3250 #else
3251 static inline void perf_counter_exit_cpu(int cpu) { }
3252 #endif
3253
3254 static int __cpuinit
3255 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3256 {
3257 unsigned int cpu = (long)hcpu;
3258
3259 switch (action) {
3260
3261 case CPU_UP_PREPARE:
3262 case CPU_UP_PREPARE_FROZEN:
3263 perf_counter_init_cpu(cpu);
3264 break;
3265
3266 case CPU_DOWN_PREPARE:
3267 case CPU_DOWN_PREPARE_FROZEN:
3268 perf_counter_exit_cpu(cpu);
3269 break;
3270
3271 default:
3272 break;
3273 }
3274
3275 return NOTIFY_OK;
3276 }
3277
3278 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3279 .notifier_call = perf_cpu_notify,
3280 };
3281
3282 void __init perf_counter_init(void)
3283 {
3284 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3285 (void *)(long)smp_processor_id());
3286 register_cpu_notifier(&perf_cpu_nb);
3287 }
3288
3289 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3290 {
3291 return sprintf(buf, "%d\n", perf_reserved_percpu);
3292 }
3293
3294 static ssize_t
3295 perf_set_reserve_percpu(struct sysdev_class *class,
3296 const char *buf,
3297 size_t count)
3298 {
3299 struct perf_cpu_context *cpuctx;
3300 unsigned long val;
3301 int err, cpu, mpt;
3302
3303 err = strict_strtoul(buf, 10, &val);
3304 if (err)
3305 return err;
3306 if (val > perf_max_counters)
3307 return -EINVAL;
3308
3309 spin_lock(&perf_resource_lock);
3310 perf_reserved_percpu = val;
3311 for_each_online_cpu(cpu) {
3312 cpuctx = &per_cpu(perf_cpu_context, cpu);
3313 spin_lock_irq(&cpuctx->ctx.lock);
3314 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3315 perf_max_counters - perf_reserved_percpu);
3316 cpuctx->max_pertask = mpt;
3317 spin_unlock_irq(&cpuctx->ctx.lock);
3318 }
3319 spin_unlock(&perf_resource_lock);
3320
3321 return count;
3322 }
3323
3324 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3325 {
3326 return sprintf(buf, "%d\n", perf_overcommit);
3327 }
3328
3329 static ssize_t
3330 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3331 {
3332 unsigned long val;
3333 int err;
3334
3335 err = strict_strtoul(buf, 10, &val);
3336 if (err)
3337 return err;
3338 if (val > 1)
3339 return -EINVAL;
3340
3341 spin_lock(&perf_resource_lock);
3342 perf_overcommit = val;
3343 spin_unlock(&perf_resource_lock);
3344
3345 return count;
3346 }
3347
3348 static SYSDEV_CLASS_ATTR(
3349 reserve_percpu,
3350 0644,
3351 perf_show_reserve_percpu,
3352 perf_set_reserve_percpu
3353 );
3354
3355 static SYSDEV_CLASS_ATTR(
3356 overcommit,
3357 0644,
3358 perf_show_overcommit,
3359 perf_set_overcommit
3360 );
3361
3362 static struct attribute *perfclass_attrs[] = {
3363 &attr_reserve_percpu.attr,
3364 &attr_overcommit.attr,
3365 NULL
3366 };
3367
3368 static struct attribute_group perfclass_attr_group = {
3369 .attrs = perfclass_attrs,
3370 .name = "perf_counters",
3371 };
3372
3373 static int __init perf_counter_sysfs_init(void)
3374 {
3375 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3376 &perfclass_attr_group);
3377 }
3378 device_initcall(perf_counter_sysfs_init);