perf_counter: fix uninitialized usage of event_list
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23 #include <linux/mm.h>
24 #include <linux/vmstat.h>
25 #include <linux/rculist.h>
26
27 #include <asm/irq_regs.h>
28
29 /*
30 * Each CPU has a list of per CPU counters:
31 */
32 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
33
34 int perf_max_counters __read_mostly = 1;
35 static int perf_reserved_percpu __read_mostly;
36 static int perf_overcommit __read_mostly = 1;
37
38 /*
39 * Mutex for (sysadmin-configurable) counter reservations:
40 */
41 static DEFINE_MUTEX(perf_resource_mutex);
42
43 /*
44 * Architecture provided APIs - weak aliases:
45 */
46 extern __weak const struct hw_perf_counter_ops *
47 hw_perf_counter_init(struct perf_counter *counter)
48 {
49 return NULL;
50 }
51
52 u64 __weak hw_perf_save_disable(void) { return 0; }
53 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
54 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
55 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
56 struct perf_cpu_context *cpuctx,
57 struct perf_counter_context *ctx, int cpu)
58 {
59 return 0;
60 }
61
62 void __weak perf_counter_print_debug(void) { }
63
64 static void
65 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
66 {
67 struct perf_counter *group_leader = counter->group_leader;
68
69 /*
70 * Depending on whether it is a standalone or sibling counter,
71 * add it straight to the context's counter list, or to the group
72 * leader's sibling list:
73 */
74 if (counter->group_leader == counter)
75 list_add_tail(&counter->list_entry, &ctx->counter_list);
76 else
77 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
78
79 list_add_rcu(&counter->event_entry, &ctx->event_list);
80 }
81
82 static void
83 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
84 {
85 struct perf_counter *sibling, *tmp;
86
87 list_del_init(&counter->list_entry);
88 list_del_rcu(&counter->event_entry);
89
90 /*
91 * If this was a group counter with sibling counters then
92 * upgrade the siblings to singleton counters by adding them
93 * to the context list directly:
94 */
95 list_for_each_entry_safe(sibling, tmp,
96 &counter->sibling_list, list_entry) {
97
98 list_move_tail(&sibling->list_entry, &ctx->counter_list);
99 sibling->group_leader = sibling;
100 }
101 }
102
103 static void
104 counter_sched_out(struct perf_counter *counter,
105 struct perf_cpu_context *cpuctx,
106 struct perf_counter_context *ctx)
107 {
108 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
109 return;
110
111 counter->state = PERF_COUNTER_STATE_INACTIVE;
112 counter->hw_ops->disable(counter);
113 counter->oncpu = -1;
114
115 if (!is_software_counter(counter))
116 cpuctx->active_oncpu--;
117 ctx->nr_active--;
118 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
119 cpuctx->exclusive = 0;
120 }
121
122 static void
123 group_sched_out(struct perf_counter *group_counter,
124 struct perf_cpu_context *cpuctx,
125 struct perf_counter_context *ctx)
126 {
127 struct perf_counter *counter;
128
129 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
130 return;
131
132 counter_sched_out(group_counter, cpuctx, ctx);
133
134 /*
135 * Schedule out siblings (if any):
136 */
137 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
138 counter_sched_out(counter, cpuctx, ctx);
139
140 if (group_counter->hw_event.exclusive)
141 cpuctx->exclusive = 0;
142 }
143
144 /*
145 * Cross CPU call to remove a performance counter
146 *
147 * We disable the counter on the hardware level first. After that we
148 * remove it from the context list.
149 */
150 static void __perf_counter_remove_from_context(void *info)
151 {
152 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
153 struct perf_counter *counter = info;
154 struct perf_counter_context *ctx = counter->ctx;
155 unsigned long flags;
156 u64 perf_flags;
157
158 /*
159 * If this is a task context, we need to check whether it is
160 * the current task context of this cpu. If not it has been
161 * scheduled out before the smp call arrived.
162 */
163 if (ctx->task && cpuctx->task_ctx != ctx)
164 return;
165
166 curr_rq_lock_irq_save(&flags);
167 spin_lock(&ctx->lock);
168
169 counter_sched_out(counter, cpuctx, ctx);
170
171 counter->task = NULL;
172 ctx->nr_counters--;
173
174 /*
175 * Protect the list operation against NMI by disabling the
176 * counters on a global level. NOP for non NMI based counters.
177 */
178 perf_flags = hw_perf_save_disable();
179 list_del_counter(counter, ctx);
180 hw_perf_restore(perf_flags);
181
182 if (!ctx->task) {
183 /*
184 * Allow more per task counters with respect to the
185 * reservation:
186 */
187 cpuctx->max_pertask =
188 min(perf_max_counters - ctx->nr_counters,
189 perf_max_counters - perf_reserved_percpu);
190 }
191
192 spin_unlock(&ctx->lock);
193 curr_rq_unlock_irq_restore(&flags);
194 }
195
196
197 /*
198 * Remove the counter from a task's (or a CPU's) list of counters.
199 *
200 * Must be called with counter->mutex and ctx->mutex held.
201 *
202 * CPU counters are removed with a smp call. For task counters we only
203 * call when the task is on a CPU.
204 */
205 static void perf_counter_remove_from_context(struct perf_counter *counter)
206 {
207 struct perf_counter_context *ctx = counter->ctx;
208 struct task_struct *task = ctx->task;
209
210 if (!task) {
211 /*
212 * Per cpu counters are removed via an smp call and
213 * the removal is always sucessful.
214 */
215 smp_call_function_single(counter->cpu,
216 __perf_counter_remove_from_context,
217 counter, 1);
218 return;
219 }
220
221 retry:
222 task_oncpu_function_call(task, __perf_counter_remove_from_context,
223 counter);
224
225 spin_lock_irq(&ctx->lock);
226 /*
227 * If the context is active we need to retry the smp call.
228 */
229 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
230 spin_unlock_irq(&ctx->lock);
231 goto retry;
232 }
233
234 /*
235 * The lock prevents that this context is scheduled in so we
236 * can remove the counter safely, if the call above did not
237 * succeed.
238 */
239 if (!list_empty(&counter->list_entry)) {
240 ctx->nr_counters--;
241 list_del_counter(counter, ctx);
242 counter->task = NULL;
243 }
244 spin_unlock_irq(&ctx->lock);
245 }
246
247 /*
248 * Cross CPU call to disable a performance counter
249 */
250 static void __perf_counter_disable(void *info)
251 {
252 struct perf_counter *counter = info;
253 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
254 struct perf_counter_context *ctx = counter->ctx;
255 unsigned long flags;
256
257 /*
258 * If this is a per-task counter, need to check whether this
259 * counter's task is the current task on this cpu.
260 */
261 if (ctx->task && cpuctx->task_ctx != ctx)
262 return;
263
264 curr_rq_lock_irq_save(&flags);
265 spin_lock(&ctx->lock);
266
267 /*
268 * If the counter is on, turn it off.
269 * If it is in error state, leave it in error state.
270 */
271 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
272 if (counter == counter->group_leader)
273 group_sched_out(counter, cpuctx, ctx);
274 else
275 counter_sched_out(counter, cpuctx, ctx);
276 counter->state = PERF_COUNTER_STATE_OFF;
277 }
278
279 spin_unlock(&ctx->lock);
280 curr_rq_unlock_irq_restore(&flags);
281 }
282
283 /*
284 * Disable a counter.
285 */
286 static void perf_counter_disable(struct perf_counter *counter)
287 {
288 struct perf_counter_context *ctx = counter->ctx;
289 struct task_struct *task = ctx->task;
290
291 if (!task) {
292 /*
293 * Disable the counter on the cpu that it's on
294 */
295 smp_call_function_single(counter->cpu, __perf_counter_disable,
296 counter, 1);
297 return;
298 }
299
300 retry:
301 task_oncpu_function_call(task, __perf_counter_disable, counter);
302
303 spin_lock_irq(&ctx->lock);
304 /*
305 * If the counter is still active, we need to retry the cross-call.
306 */
307 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
308 spin_unlock_irq(&ctx->lock);
309 goto retry;
310 }
311
312 /*
313 * Since we have the lock this context can't be scheduled
314 * in, so we can change the state safely.
315 */
316 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
317 counter->state = PERF_COUNTER_STATE_OFF;
318
319 spin_unlock_irq(&ctx->lock);
320 }
321
322 /*
323 * Disable a counter and all its children.
324 */
325 static void perf_counter_disable_family(struct perf_counter *counter)
326 {
327 struct perf_counter *child;
328
329 perf_counter_disable(counter);
330
331 /*
332 * Lock the mutex to protect the list of children
333 */
334 mutex_lock(&counter->mutex);
335 list_for_each_entry(child, &counter->child_list, child_list)
336 perf_counter_disable(child);
337 mutex_unlock(&counter->mutex);
338 }
339
340 static int
341 counter_sched_in(struct perf_counter *counter,
342 struct perf_cpu_context *cpuctx,
343 struct perf_counter_context *ctx,
344 int cpu)
345 {
346 if (counter->state <= PERF_COUNTER_STATE_OFF)
347 return 0;
348
349 counter->state = PERF_COUNTER_STATE_ACTIVE;
350 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
351 /*
352 * The new state must be visible before we turn it on in the hardware:
353 */
354 smp_wmb();
355
356 if (counter->hw_ops->enable(counter)) {
357 counter->state = PERF_COUNTER_STATE_INACTIVE;
358 counter->oncpu = -1;
359 return -EAGAIN;
360 }
361
362 if (!is_software_counter(counter))
363 cpuctx->active_oncpu++;
364 ctx->nr_active++;
365
366 if (counter->hw_event.exclusive)
367 cpuctx->exclusive = 1;
368
369 return 0;
370 }
371
372 /*
373 * Return 1 for a group consisting entirely of software counters,
374 * 0 if the group contains any hardware counters.
375 */
376 static int is_software_only_group(struct perf_counter *leader)
377 {
378 struct perf_counter *counter;
379
380 if (!is_software_counter(leader))
381 return 0;
382 list_for_each_entry(counter, &leader->sibling_list, list_entry)
383 if (!is_software_counter(counter))
384 return 0;
385 return 1;
386 }
387
388 /*
389 * Work out whether we can put this counter group on the CPU now.
390 */
391 static int group_can_go_on(struct perf_counter *counter,
392 struct perf_cpu_context *cpuctx,
393 int can_add_hw)
394 {
395 /*
396 * Groups consisting entirely of software counters can always go on.
397 */
398 if (is_software_only_group(counter))
399 return 1;
400 /*
401 * If an exclusive group is already on, no other hardware
402 * counters can go on.
403 */
404 if (cpuctx->exclusive)
405 return 0;
406 /*
407 * If this group is exclusive and there are already
408 * counters on the CPU, it can't go on.
409 */
410 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
411 return 0;
412 /*
413 * Otherwise, try to add it if all previous groups were able
414 * to go on.
415 */
416 return can_add_hw;
417 }
418
419 /*
420 * Cross CPU call to install and enable a performance counter
421 */
422 static void __perf_install_in_context(void *info)
423 {
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_counter *counter = info;
426 struct perf_counter_context *ctx = counter->ctx;
427 struct perf_counter *leader = counter->group_leader;
428 int cpu = smp_processor_id();
429 unsigned long flags;
430 u64 perf_flags;
431 int err;
432
433 /*
434 * If this is a task context, we need to check whether it is
435 * the current task context of this cpu. If not it has been
436 * scheduled out before the smp call arrived.
437 */
438 if (ctx->task && cpuctx->task_ctx != ctx)
439 return;
440
441 curr_rq_lock_irq_save(&flags);
442 spin_lock(&ctx->lock);
443
444 /*
445 * Protect the list operation against NMI by disabling the
446 * counters on a global level. NOP for non NMI based counters.
447 */
448 perf_flags = hw_perf_save_disable();
449
450 list_add_counter(counter, ctx);
451 ctx->nr_counters++;
452 counter->prev_state = PERF_COUNTER_STATE_OFF;
453
454 /*
455 * Don't put the counter on if it is disabled or if
456 * it is in a group and the group isn't on.
457 */
458 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
459 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
460 goto unlock;
461
462 /*
463 * An exclusive counter can't go on if there are already active
464 * hardware counters, and no hardware counter can go on if there
465 * is already an exclusive counter on.
466 */
467 if (!group_can_go_on(counter, cpuctx, 1))
468 err = -EEXIST;
469 else
470 err = counter_sched_in(counter, cpuctx, ctx, cpu);
471
472 if (err) {
473 /*
474 * This counter couldn't go on. If it is in a group
475 * then we have to pull the whole group off.
476 * If the counter group is pinned then put it in error state.
477 */
478 if (leader != counter)
479 group_sched_out(leader, cpuctx, ctx);
480 if (leader->hw_event.pinned)
481 leader->state = PERF_COUNTER_STATE_ERROR;
482 }
483
484 if (!err && !ctx->task && cpuctx->max_pertask)
485 cpuctx->max_pertask--;
486
487 unlock:
488 hw_perf_restore(perf_flags);
489
490 spin_unlock(&ctx->lock);
491 curr_rq_unlock_irq_restore(&flags);
492 }
493
494 /*
495 * Attach a performance counter to a context
496 *
497 * First we add the counter to the list with the hardware enable bit
498 * in counter->hw_config cleared.
499 *
500 * If the counter is attached to a task which is on a CPU we use a smp
501 * call to enable it in the task context. The task might have been
502 * scheduled away, but we check this in the smp call again.
503 *
504 * Must be called with ctx->mutex held.
505 */
506 static void
507 perf_install_in_context(struct perf_counter_context *ctx,
508 struct perf_counter *counter,
509 int cpu)
510 {
511 struct task_struct *task = ctx->task;
512
513 if (!task) {
514 /*
515 * Per cpu counters are installed via an smp call and
516 * the install is always sucessful.
517 */
518 smp_call_function_single(cpu, __perf_install_in_context,
519 counter, 1);
520 return;
521 }
522
523 counter->task = task;
524 retry:
525 task_oncpu_function_call(task, __perf_install_in_context,
526 counter);
527
528 spin_lock_irq(&ctx->lock);
529 /*
530 * we need to retry the smp call.
531 */
532 if (ctx->is_active && list_empty(&counter->list_entry)) {
533 spin_unlock_irq(&ctx->lock);
534 goto retry;
535 }
536
537 /*
538 * The lock prevents that this context is scheduled in so we
539 * can add the counter safely, if it the call above did not
540 * succeed.
541 */
542 if (list_empty(&counter->list_entry)) {
543 list_add_counter(counter, ctx);
544 ctx->nr_counters++;
545 }
546 spin_unlock_irq(&ctx->lock);
547 }
548
549 /*
550 * Cross CPU call to enable a performance counter
551 */
552 static void __perf_counter_enable(void *info)
553 {
554 struct perf_counter *counter = info;
555 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
556 struct perf_counter_context *ctx = counter->ctx;
557 struct perf_counter *leader = counter->group_leader;
558 unsigned long flags;
559 int err;
560
561 /*
562 * If this is a per-task counter, need to check whether this
563 * counter's task is the current task on this cpu.
564 */
565 if (ctx->task && cpuctx->task_ctx != ctx)
566 return;
567
568 curr_rq_lock_irq_save(&flags);
569 spin_lock(&ctx->lock);
570
571 counter->prev_state = counter->state;
572 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
573 goto unlock;
574 counter->state = PERF_COUNTER_STATE_INACTIVE;
575
576 /*
577 * If the counter is in a group and isn't the group leader,
578 * then don't put it on unless the group is on.
579 */
580 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
581 goto unlock;
582
583 if (!group_can_go_on(counter, cpuctx, 1))
584 err = -EEXIST;
585 else
586 err = counter_sched_in(counter, cpuctx, ctx,
587 smp_processor_id());
588
589 if (err) {
590 /*
591 * If this counter can't go on and it's part of a
592 * group, then the whole group has to come off.
593 */
594 if (leader != counter)
595 group_sched_out(leader, cpuctx, ctx);
596 if (leader->hw_event.pinned)
597 leader->state = PERF_COUNTER_STATE_ERROR;
598 }
599
600 unlock:
601 spin_unlock(&ctx->lock);
602 curr_rq_unlock_irq_restore(&flags);
603 }
604
605 /*
606 * Enable a counter.
607 */
608 static void perf_counter_enable(struct perf_counter *counter)
609 {
610 struct perf_counter_context *ctx = counter->ctx;
611 struct task_struct *task = ctx->task;
612
613 if (!task) {
614 /*
615 * Enable the counter on the cpu that it's on
616 */
617 smp_call_function_single(counter->cpu, __perf_counter_enable,
618 counter, 1);
619 return;
620 }
621
622 spin_lock_irq(&ctx->lock);
623 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
624 goto out;
625
626 /*
627 * If the counter is in error state, clear that first.
628 * That way, if we see the counter in error state below, we
629 * know that it has gone back into error state, as distinct
630 * from the task having been scheduled away before the
631 * cross-call arrived.
632 */
633 if (counter->state == PERF_COUNTER_STATE_ERROR)
634 counter->state = PERF_COUNTER_STATE_OFF;
635
636 retry:
637 spin_unlock_irq(&ctx->lock);
638 task_oncpu_function_call(task, __perf_counter_enable, counter);
639
640 spin_lock_irq(&ctx->lock);
641
642 /*
643 * If the context is active and the counter is still off,
644 * we need to retry the cross-call.
645 */
646 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
647 goto retry;
648
649 /*
650 * Since we have the lock this context can't be scheduled
651 * in, so we can change the state safely.
652 */
653 if (counter->state == PERF_COUNTER_STATE_OFF)
654 counter->state = PERF_COUNTER_STATE_INACTIVE;
655 out:
656 spin_unlock_irq(&ctx->lock);
657 }
658
659 /*
660 * Enable a counter and all its children.
661 */
662 static void perf_counter_enable_family(struct perf_counter *counter)
663 {
664 struct perf_counter *child;
665
666 perf_counter_enable(counter);
667
668 /*
669 * Lock the mutex to protect the list of children
670 */
671 mutex_lock(&counter->mutex);
672 list_for_each_entry(child, &counter->child_list, child_list)
673 perf_counter_enable(child);
674 mutex_unlock(&counter->mutex);
675 }
676
677 void __perf_counter_sched_out(struct perf_counter_context *ctx,
678 struct perf_cpu_context *cpuctx)
679 {
680 struct perf_counter *counter;
681 u64 flags;
682
683 spin_lock(&ctx->lock);
684 ctx->is_active = 0;
685 if (likely(!ctx->nr_counters))
686 goto out;
687
688 flags = hw_perf_save_disable();
689 if (ctx->nr_active) {
690 list_for_each_entry(counter, &ctx->counter_list, list_entry)
691 group_sched_out(counter, cpuctx, ctx);
692 }
693 hw_perf_restore(flags);
694 out:
695 spin_unlock(&ctx->lock);
696 }
697
698 /*
699 * Called from scheduler to remove the counters of the current task,
700 * with interrupts disabled.
701 *
702 * We stop each counter and update the counter value in counter->count.
703 *
704 * This does not protect us against NMI, but disable()
705 * sets the disabled bit in the control field of counter _before_
706 * accessing the counter control register. If a NMI hits, then it will
707 * not restart the counter.
708 */
709 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
710 {
711 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
712 struct perf_counter_context *ctx = &task->perf_counter_ctx;
713
714 if (likely(!cpuctx->task_ctx))
715 return;
716
717 __perf_counter_sched_out(ctx, cpuctx);
718
719 cpuctx->task_ctx = NULL;
720 }
721
722 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
723 {
724 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
725 }
726
727 static int
728 group_sched_in(struct perf_counter *group_counter,
729 struct perf_cpu_context *cpuctx,
730 struct perf_counter_context *ctx,
731 int cpu)
732 {
733 struct perf_counter *counter, *partial_group;
734 int ret;
735
736 if (group_counter->state == PERF_COUNTER_STATE_OFF)
737 return 0;
738
739 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
740 if (ret)
741 return ret < 0 ? ret : 0;
742
743 group_counter->prev_state = group_counter->state;
744 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
745 return -EAGAIN;
746
747 /*
748 * Schedule in siblings as one group (if any):
749 */
750 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
751 counter->prev_state = counter->state;
752 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
753 partial_group = counter;
754 goto group_error;
755 }
756 }
757
758 return 0;
759
760 group_error:
761 /*
762 * Groups can be scheduled in as one unit only, so undo any
763 * partial group before returning:
764 */
765 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
766 if (counter == partial_group)
767 break;
768 counter_sched_out(counter, cpuctx, ctx);
769 }
770 counter_sched_out(group_counter, cpuctx, ctx);
771
772 return -EAGAIN;
773 }
774
775 static void
776 __perf_counter_sched_in(struct perf_counter_context *ctx,
777 struct perf_cpu_context *cpuctx, int cpu)
778 {
779 struct perf_counter *counter;
780 u64 flags;
781 int can_add_hw = 1;
782
783 spin_lock(&ctx->lock);
784 ctx->is_active = 1;
785 if (likely(!ctx->nr_counters))
786 goto out;
787
788 flags = hw_perf_save_disable();
789
790 /*
791 * First go through the list and put on any pinned groups
792 * in order to give them the best chance of going on.
793 */
794 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
795 if (counter->state <= PERF_COUNTER_STATE_OFF ||
796 !counter->hw_event.pinned)
797 continue;
798 if (counter->cpu != -1 && counter->cpu != cpu)
799 continue;
800
801 if (group_can_go_on(counter, cpuctx, 1))
802 group_sched_in(counter, cpuctx, ctx, cpu);
803
804 /*
805 * If this pinned group hasn't been scheduled,
806 * put it in error state.
807 */
808 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
809 counter->state = PERF_COUNTER_STATE_ERROR;
810 }
811
812 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
813 /*
814 * Ignore counters in OFF or ERROR state, and
815 * ignore pinned counters since we did them already.
816 */
817 if (counter->state <= PERF_COUNTER_STATE_OFF ||
818 counter->hw_event.pinned)
819 continue;
820
821 /*
822 * Listen to the 'cpu' scheduling filter constraint
823 * of counters:
824 */
825 if (counter->cpu != -1 && counter->cpu != cpu)
826 continue;
827
828 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
829 if (group_sched_in(counter, cpuctx, ctx, cpu))
830 can_add_hw = 0;
831 }
832 }
833 hw_perf_restore(flags);
834 out:
835 spin_unlock(&ctx->lock);
836 }
837
838 /*
839 * Called from scheduler to add the counters of the current task
840 * with interrupts disabled.
841 *
842 * We restore the counter value and then enable it.
843 *
844 * This does not protect us against NMI, but enable()
845 * sets the enabled bit in the control field of counter _before_
846 * accessing the counter control register. If a NMI hits, then it will
847 * keep the counter running.
848 */
849 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
850 {
851 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
852 struct perf_counter_context *ctx = &task->perf_counter_ctx;
853
854 __perf_counter_sched_in(ctx, cpuctx, cpu);
855 cpuctx->task_ctx = ctx;
856 }
857
858 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
859 {
860 struct perf_counter_context *ctx = &cpuctx->ctx;
861
862 __perf_counter_sched_in(ctx, cpuctx, cpu);
863 }
864
865 int perf_counter_task_disable(void)
866 {
867 struct task_struct *curr = current;
868 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
869 struct perf_counter *counter;
870 unsigned long flags;
871 u64 perf_flags;
872 int cpu;
873
874 if (likely(!ctx->nr_counters))
875 return 0;
876
877 curr_rq_lock_irq_save(&flags);
878 cpu = smp_processor_id();
879
880 /* force the update of the task clock: */
881 __task_delta_exec(curr, 1);
882
883 perf_counter_task_sched_out(curr, cpu);
884
885 spin_lock(&ctx->lock);
886
887 /*
888 * Disable all the counters:
889 */
890 perf_flags = hw_perf_save_disable();
891
892 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
893 if (counter->state != PERF_COUNTER_STATE_ERROR)
894 counter->state = PERF_COUNTER_STATE_OFF;
895 }
896
897 hw_perf_restore(perf_flags);
898
899 spin_unlock(&ctx->lock);
900
901 curr_rq_unlock_irq_restore(&flags);
902
903 return 0;
904 }
905
906 int perf_counter_task_enable(void)
907 {
908 struct task_struct *curr = current;
909 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
910 struct perf_counter *counter;
911 unsigned long flags;
912 u64 perf_flags;
913 int cpu;
914
915 if (likely(!ctx->nr_counters))
916 return 0;
917
918 curr_rq_lock_irq_save(&flags);
919 cpu = smp_processor_id();
920
921 /* force the update of the task clock: */
922 __task_delta_exec(curr, 1);
923
924 perf_counter_task_sched_out(curr, cpu);
925
926 spin_lock(&ctx->lock);
927
928 /*
929 * Disable all the counters:
930 */
931 perf_flags = hw_perf_save_disable();
932
933 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
934 if (counter->state > PERF_COUNTER_STATE_OFF)
935 continue;
936 counter->state = PERF_COUNTER_STATE_INACTIVE;
937 counter->hw_event.disabled = 0;
938 }
939 hw_perf_restore(perf_flags);
940
941 spin_unlock(&ctx->lock);
942
943 perf_counter_task_sched_in(curr, cpu);
944
945 curr_rq_unlock_irq_restore(&flags);
946
947 return 0;
948 }
949
950 /*
951 * Round-robin a context's counters:
952 */
953 static void rotate_ctx(struct perf_counter_context *ctx)
954 {
955 struct perf_counter *counter;
956 u64 perf_flags;
957
958 if (!ctx->nr_counters)
959 return;
960
961 spin_lock(&ctx->lock);
962 /*
963 * Rotate the first entry last (works just fine for group counters too):
964 */
965 perf_flags = hw_perf_save_disable();
966 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
967 list_move_tail(&counter->list_entry, &ctx->counter_list);
968 break;
969 }
970 hw_perf_restore(perf_flags);
971
972 spin_unlock(&ctx->lock);
973 }
974
975 void perf_counter_task_tick(struct task_struct *curr, int cpu)
976 {
977 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
978 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
979 const int rotate_percpu = 0;
980
981 if (rotate_percpu)
982 perf_counter_cpu_sched_out(cpuctx);
983 perf_counter_task_sched_out(curr, cpu);
984
985 if (rotate_percpu)
986 rotate_ctx(&cpuctx->ctx);
987 rotate_ctx(ctx);
988
989 if (rotate_percpu)
990 perf_counter_cpu_sched_in(cpuctx, cpu);
991 perf_counter_task_sched_in(curr, cpu);
992 }
993
994 /*
995 * Cross CPU call to read the hardware counter
996 */
997 static void __read(void *info)
998 {
999 struct perf_counter *counter = info;
1000 unsigned long flags;
1001
1002 curr_rq_lock_irq_save(&flags);
1003 counter->hw_ops->read(counter);
1004 curr_rq_unlock_irq_restore(&flags);
1005 }
1006
1007 static u64 perf_counter_read(struct perf_counter *counter)
1008 {
1009 /*
1010 * If counter is enabled and currently active on a CPU, update the
1011 * value in the counter structure:
1012 */
1013 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1014 smp_call_function_single(counter->oncpu,
1015 __read, counter, 1);
1016 }
1017
1018 return atomic64_read(&counter->count);
1019 }
1020
1021 /*
1022 * Cross CPU call to switch performance data pointers
1023 */
1024 static void __perf_switch_irq_data(void *info)
1025 {
1026 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1027 struct perf_counter *counter = info;
1028 struct perf_counter_context *ctx = counter->ctx;
1029 struct perf_data *oldirqdata = counter->irqdata;
1030
1031 /*
1032 * If this is a task context, we need to check whether it is
1033 * the current task context of this cpu. If not it has been
1034 * scheduled out before the smp call arrived.
1035 */
1036 if (ctx->task) {
1037 if (cpuctx->task_ctx != ctx)
1038 return;
1039 spin_lock(&ctx->lock);
1040 }
1041
1042 /* Change the pointer NMI safe */
1043 atomic_long_set((atomic_long_t *)&counter->irqdata,
1044 (unsigned long) counter->usrdata);
1045 counter->usrdata = oldirqdata;
1046
1047 if (ctx->task)
1048 spin_unlock(&ctx->lock);
1049 }
1050
1051 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1052 {
1053 struct perf_counter_context *ctx = counter->ctx;
1054 struct perf_data *oldirqdata = counter->irqdata;
1055 struct task_struct *task = ctx->task;
1056
1057 if (!task) {
1058 smp_call_function_single(counter->cpu,
1059 __perf_switch_irq_data,
1060 counter, 1);
1061 return counter->usrdata;
1062 }
1063
1064 retry:
1065 spin_lock_irq(&ctx->lock);
1066 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1067 counter->irqdata = counter->usrdata;
1068 counter->usrdata = oldirqdata;
1069 spin_unlock_irq(&ctx->lock);
1070 return oldirqdata;
1071 }
1072 spin_unlock_irq(&ctx->lock);
1073 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1074 /* Might have failed, because task was scheduled out */
1075 if (counter->irqdata == oldirqdata)
1076 goto retry;
1077
1078 return counter->usrdata;
1079 }
1080
1081 static void put_context(struct perf_counter_context *ctx)
1082 {
1083 if (ctx->task)
1084 put_task_struct(ctx->task);
1085 }
1086
1087 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1088 {
1089 struct perf_cpu_context *cpuctx;
1090 struct perf_counter_context *ctx;
1091 struct task_struct *task;
1092
1093 /*
1094 * If cpu is not a wildcard then this is a percpu counter:
1095 */
1096 if (cpu != -1) {
1097 /* Must be root to operate on a CPU counter: */
1098 if (!capable(CAP_SYS_ADMIN))
1099 return ERR_PTR(-EACCES);
1100
1101 if (cpu < 0 || cpu > num_possible_cpus())
1102 return ERR_PTR(-EINVAL);
1103
1104 /*
1105 * We could be clever and allow to attach a counter to an
1106 * offline CPU and activate it when the CPU comes up, but
1107 * that's for later.
1108 */
1109 if (!cpu_isset(cpu, cpu_online_map))
1110 return ERR_PTR(-ENODEV);
1111
1112 cpuctx = &per_cpu(perf_cpu_context, cpu);
1113 ctx = &cpuctx->ctx;
1114
1115 return ctx;
1116 }
1117
1118 rcu_read_lock();
1119 if (!pid)
1120 task = current;
1121 else
1122 task = find_task_by_vpid(pid);
1123 if (task)
1124 get_task_struct(task);
1125 rcu_read_unlock();
1126
1127 if (!task)
1128 return ERR_PTR(-ESRCH);
1129
1130 ctx = &task->perf_counter_ctx;
1131 ctx->task = task;
1132
1133 /* Reuse ptrace permission checks for now. */
1134 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1135 put_context(ctx);
1136 return ERR_PTR(-EACCES);
1137 }
1138
1139 return ctx;
1140 }
1141
1142 static void free_counter_rcu(struct rcu_head *head)
1143 {
1144 struct perf_counter *counter;
1145
1146 counter = container_of(head, struct perf_counter, rcu_head);
1147 kfree(counter);
1148 }
1149
1150 /*
1151 * Called when the last reference to the file is gone.
1152 */
1153 static int perf_release(struct inode *inode, struct file *file)
1154 {
1155 struct perf_counter *counter = file->private_data;
1156 struct perf_counter_context *ctx = counter->ctx;
1157
1158 file->private_data = NULL;
1159
1160 mutex_lock(&ctx->mutex);
1161 mutex_lock(&counter->mutex);
1162
1163 perf_counter_remove_from_context(counter);
1164
1165 mutex_unlock(&counter->mutex);
1166 mutex_unlock(&ctx->mutex);
1167
1168 call_rcu(&counter->rcu_head, free_counter_rcu);
1169 put_context(ctx);
1170
1171 return 0;
1172 }
1173
1174 /*
1175 * Read the performance counter - simple non blocking version for now
1176 */
1177 static ssize_t
1178 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1179 {
1180 u64 cntval;
1181
1182 if (count != sizeof(cntval))
1183 return -EINVAL;
1184
1185 /*
1186 * Return end-of-file for a read on a counter that is in
1187 * error state (i.e. because it was pinned but it couldn't be
1188 * scheduled on to the CPU at some point).
1189 */
1190 if (counter->state == PERF_COUNTER_STATE_ERROR)
1191 return 0;
1192
1193 mutex_lock(&counter->mutex);
1194 cntval = perf_counter_read(counter);
1195 mutex_unlock(&counter->mutex);
1196
1197 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1198 }
1199
1200 static ssize_t
1201 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1202 {
1203 if (!usrdata->len)
1204 return 0;
1205
1206 count = min(count, (size_t)usrdata->len);
1207 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1208 return -EFAULT;
1209
1210 /* Adjust the counters */
1211 usrdata->len -= count;
1212 if (!usrdata->len)
1213 usrdata->rd_idx = 0;
1214 else
1215 usrdata->rd_idx += count;
1216
1217 return count;
1218 }
1219
1220 static ssize_t
1221 perf_read_irq_data(struct perf_counter *counter,
1222 char __user *buf,
1223 size_t count,
1224 int nonblocking)
1225 {
1226 struct perf_data *irqdata, *usrdata;
1227 DECLARE_WAITQUEUE(wait, current);
1228 ssize_t res, res2;
1229
1230 irqdata = counter->irqdata;
1231 usrdata = counter->usrdata;
1232
1233 if (usrdata->len + irqdata->len >= count)
1234 goto read_pending;
1235
1236 if (nonblocking)
1237 return -EAGAIN;
1238
1239 spin_lock_irq(&counter->waitq.lock);
1240 __add_wait_queue(&counter->waitq, &wait);
1241 for (;;) {
1242 set_current_state(TASK_INTERRUPTIBLE);
1243 if (usrdata->len + irqdata->len >= count)
1244 break;
1245
1246 if (signal_pending(current))
1247 break;
1248
1249 if (counter->state == PERF_COUNTER_STATE_ERROR)
1250 break;
1251
1252 spin_unlock_irq(&counter->waitq.lock);
1253 schedule();
1254 spin_lock_irq(&counter->waitq.lock);
1255 }
1256 __remove_wait_queue(&counter->waitq, &wait);
1257 __set_current_state(TASK_RUNNING);
1258 spin_unlock_irq(&counter->waitq.lock);
1259
1260 if (usrdata->len + irqdata->len < count &&
1261 counter->state != PERF_COUNTER_STATE_ERROR)
1262 return -ERESTARTSYS;
1263 read_pending:
1264 mutex_lock(&counter->mutex);
1265
1266 /* Drain pending data first: */
1267 res = perf_copy_usrdata(usrdata, buf, count);
1268 if (res < 0 || res == count)
1269 goto out;
1270
1271 /* Switch irq buffer: */
1272 usrdata = perf_switch_irq_data(counter);
1273 res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1274 if (res2 < 0) {
1275 if (!res)
1276 res = -EFAULT;
1277 } else {
1278 res += res2;
1279 }
1280 out:
1281 mutex_unlock(&counter->mutex);
1282
1283 return res;
1284 }
1285
1286 static ssize_t
1287 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1288 {
1289 struct perf_counter *counter = file->private_data;
1290
1291 switch (counter->hw_event.record_type) {
1292 case PERF_RECORD_SIMPLE:
1293 return perf_read_hw(counter, buf, count);
1294
1295 case PERF_RECORD_IRQ:
1296 case PERF_RECORD_GROUP:
1297 return perf_read_irq_data(counter, buf, count,
1298 file->f_flags & O_NONBLOCK);
1299 }
1300 return -EINVAL;
1301 }
1302
1303 static unsigned int perf_poll(struct file *file, poll_table *wait)
1304 {
1305 struct perf_counter *counter = file->private_data;
1306 unsigned int events = 0;
1307 unsigned long flags;
1308
1309 poll_wait(file, &counter->waitq, wait);
1310
1311 spin_lock_irqsave(&counter->waitq.lock, flags);
1312 if (counter->usrdata->len || counter->irqdata->len)
1313 events |= POLLIN;
1314 spin_unlock_irqrestore(&counter->waitq.lock, flags);
1315
1316 return events;
1317 }
1318
1319 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1320 {
1321 struct perf_counter *counter = file->private_data;
1322 int err = 0;
1323
1324 switch (cmd) {
1325 case PERF_COUNTER_IOC_ENABLE:
1326 perf_counter_enable_family(counter);
1327 break;
1328 case PERF_COUNTER_IOC_DISABLE:
1329 perf_counter_disable_family(counter);
1330 break;
1331 default:
1332 err = -ENOTTY;
1333 }
1334 return err;
1335 }
1336
1337 static const struct file_operations perf_fops = {
1338 .release = perf_release,
1339 .read = perf_read,
1340 .poll = perf_poll,
1341 .unlocked_ioctl = perf_ioctl,
1342 .compat_ioctl = perf_ioctl,
1343 };
1344
1345 /*
1346 * Generic software counter infrastructure
1347 */
1348
1349 static void perf_swcounter_update(struct perf_counter *counter)
1350 {
1351 struct hw_perf_counter *hwc = &counter->hw;
1352 u64 prev, now;
1353 s64 delta;
1354
1355 again:
1356 prev = atomic64_read(&hwc->prev_count);
1357 now = atomic64_read(&hwc->count);
1358 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1359 goto again;
1360
1361 delta = now - prev;
1362
1363 atomic64_add(delta, &counter->count);
1364 atomic64_sub(delta, &hwc->period_left);
1365 }
1366
1367 static void perf_swcounter_set_period(struct perf_counter *counter)
1368 {
1369 struct hw_perf_counter *hwc = &counter->hw;
1370 s64 left = atomic64_read(&hwc->period_left);
1371 s64 period = hwc->irq_period;
1372
1373 if (unlikely(left <= -period)) {
1374 left = period;
1375 atomic64_set(&hwc->period_left, left);
1376 }
1377
1378 if (unlikely(left <= 0)) {
1379 left += period;
1380 atomic64_add(period, &hwc->period_left);
1381 }
1382
1383 atomic64_set(&hwc->prev_count, -left);
1384 atomic64_set(&hwc->count, -left);
1385 }
1386
1387 static void perf_swcounter_save_and_restart(struct perf_counter *counter)
1388 {
1389 perf_swcounter_update(counter);
1390 perf_swcounter_set_period(counter);
1391 }
1392
1393 static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
1394 {
1395 struct perf_data *irqdata = counter->irqdata;
1396
1397 if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
1398 irqdata->overrun++;
1399 } else {
1400 u64 *p = (u64 *) &irqdata->data[irqdata->len];
1401
1402 *p = data;
1403 irqdata->len += sizeof(u64);
1404 }
1405 }
1406
1407 static void perf_swcounter_handle_group(struct perf_counter *sibling)
1408 {
1409 struct perf_counter *counter, *group_leader = sibling->group_leader;
1410
1411 list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
1412 counter->hw_ops->read(counter);
1413 perf_swcounter_store_irq(sibling, counter->hw_event.type);
1414 perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
1415 }
1416 }
1417
1418 static void perf_swcounter_interrupt(struct perf_counter *counter,
1419 int nmi, struct pt_regs *regs)
1420 {
1421 switch (counter->hw_event.record_type) {
1422 case PERF_RECORD_SIMPLE:
1423 break;
1424
1425 case PERF_RECORD_IRQ:
1426 perf_swcounter_store_irq(counter, instruction_pointer(regs));
1427 break;
1428
1429 case PERF_RECORD_GROUP:
1430 perf_swcounter_handle_group(counter);
1431 break;
1432 }
1433
1434 if (nmi) {
1435 counter->wakeup_pending = 1;
1436 set_perf_counter_pending();
1437 } else
1438 wake_up(&counter->waitq);
1439 }
1440
1441 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1442 {
1443 struct perf_counter *counter;
1444 struct pt_regs *regs;
1445
1446 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1447 counter->hw_ops->read(counter);
1448
1449 regs = get_irq_regs();
1450 /*
1451 * In case we exclude kernel IPs or are somehow not in interrupt
1452 * context, provide the next best thing, the user IP.
1453 */
1454 if ((counter->hw_event.exclude_kernel || !regs) &&
1455 !counter->hw_event.exclude_user)
1456 regs = task_pt_regs(current);
1457
1458 if (regs)
1459 perf_swcounter_interrupt(counter, 0, regs);
1460
1461 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1462
1463 return HRTIMER_RESTART;
1464 }
1465
1466 static void perf_swcounter_overflow(struct perf_counter *counter,
1467 int nmi, struct pt_regs *regs)
1468 {
1469 perf_swcounter_save_and_restart(counter);
1470 perf_swcounter_interrupt(counter, nmi, regs);
1471 }
1472
1473 static int perf_swcounter_match(struct perf_counter *counter,
1474 enum hw_event_types event,
1475 struct pt_regs *regs)
1476 {
1477 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1478 return 0;
1479
1480 if (counter->hw_event.raw)
1481 return 0;
1482
1483 if (counter->hw_event.type != event)
1484 return 0;
1485
1486 if (counter->hw_event.exclude_user && user_mode(regs))
1487 return 0;
1488
1489 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1490 return 0;
1491
1492 return 1;
1493 }
1494
1495 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1496 int nmi, struct pt_regs *regs)
1497 {
1498 int neg = atomic64_add_negative(nr, &counter->hw.count);
1499 if (counter->hw.irq_period && !neg)
1500 perf_swcounter_overflow(counter, nmi, regs);
1501 }
1502
1503 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1504 enum hw_event_types event, u64 nr,
1505 int nmi, struct pt_regs *regs)
1506 {
1507 struct perf_counter *counter;
1508
1509 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1510 return;
1511
1512 rcu_read_lock();
1513 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1514 if (perf_swcounter_match(counter, event, regs))
1515 perf_swcounter_add(counter, nr, nmi, regs);
1516 }
1517 rcu_read_unlock();
1518 }
1519
1520 void perf_swcounter_event(enum hw_event_types event, u64 nr,
1521 int nmi, struct pt_regs *regs)
1522 {
1523 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1524
1525 perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
1526 if (cpuctx->task_ctx)
1527 perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);
1528
1529 put_cpu_var(perf_cpu_context);
1530 }
1531
1532 static void perf_swcounter_read(struct perf_counter *counter)
1533 {
1534 perf_swcounter_update(counter);
1535 }
1536
1537 static int perf_swcounter_enable(struct perf_counter *counter)
1538 {
1539 perf_swcounter_set_period(counter);
1540 return 0;
1541 }
1542
1543 static void perf_swcounter_disable(struct perf_counter *counter)
1544 {
1545 perf_swcounter_update(counter);
1546 }
1547
1548 static const struct hw_perf_counter_ops perf_ops_generic = {
1549 .enable = perf_swcounter_enable,
1550 .disable = perf_swcounter_disable,
1551 .read = perf_swcounter_read,
1552 };
1553
1554 /*
1555 * Software counter: cpu wall time clock
1556 */
1557
1558 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1559 {
1560 int cpu = raw_smp_processor_id();
1561 s64 prev;
1562 u64 now;
1563
1564 now = cpu_clock(cpu);
1565 prev = atomic64_read(&counter->hw.prev_count);
1566 atomic64_set(&counter->hw.prev_count, now);
1567 atomic64_add(now - prev, &counter->count);
1568 }
1569
1570 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1571 {
1572 struct hw_perf_counter *hwc = &counter->hw;
1573 int cpu = raw_smp_processor_id();
1574
1575 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1576 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1577 hwc->hrtimer.function = perf_swcounter_hrtimer;
1578 if (hwc->irq_period) {
1579 __hrtimer_start_range_ns(&hwc->hrtimer,
1580 ns_to_ktime(hwc->irq_period), 0,
1581 HRTIMER_MODE_REL, 0);
1582 }
1583
1584 return 0;
1585 }
1586
1587 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1588 {
1589 hrtimer_cancel(&counter->hw.hrtimer);
1590 cpu_clock_perf_counter_update(counter);
1591 }
1592
1593 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1594 {
1595 cpu_clock_perf_counter_update(counter);
1596 }
1597
1598 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1599 .enable = cpu_clock_perf_counter_enable,
1600 .disable = cpu_clock_perf_counter_disable,
1601 .read = cpu_clock_perf_counter_read,
1602 };
1603
1604 /*
1605 * Software counter: task time clock
1606 */
1607
1608 /*
1609 * Called from within the scheduler:
1610 */
1611 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1612 {
1613 struct task_struct *curr = counter->task;
1614 u64 delta;
1615
1616 delta = __task_delta_exec(curr, update);
1617
1618 return curr->se.sum_exec_runtime + delta;
1619 }
1620
1621 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1622 {
1623 u64 prev;
1624 s64 delta;
1625
1626 prev = atomic64_read(&counter->hw.prev_count);
1627
1628 atomic64_set(&counter->hw.prev_count, now);
1629
1630 delta = now - prev;
1631
1632 atomic64_add(delta, &counter->count);
1633 }
1634
1635 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1636 {
1637 struct hw_perf_counter *hwc = &counter->hw;
1638
1639 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1640 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1641 hwc->hrtimer.function = perf_swcounter_hrtimer;
1642 if (hwc->irq_period) {
1643 __hrtimer_start_range_ns(&hwc->hrtimer,
1644 ns_to_ktime(hwc->irq_period), 0,
1645 HRTIMER_MODE_REL, 0);
1646 }
1647
1648 return 0;
1649 }
1650
1651 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1652 {
1653 hrtimer_cancel(&counter->hw.hrtimer);
1654 task_clock_perf_counter_update(counter,
1655 task_clock_perf_counter_val(counter, 0));
1656 }
1657
1658 static void task_clock_perf_counter_read(struct perf_counter *counter)
1659 {
1660 task_clock_perf_counter_update(counter,
1661 task_clock_perf_counter_val(counter, 1));
1662 }
1663
1664 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1665 .enable = task_clock_perf_counter_enable,
1666 .disable = task_clock_perf_counter_disable,
1667 .read = task_clock_perf_counter_read,
1668 };
1669
1670 /*
1671 * Software counter: context switches
1672 */
1673
1674 static u64 get_context_switches(struct perf_counter *counter)
1675 {
1676 struct task_struct *curr = counter->ctx->task;
1677
1678 if (curr)
1679 return curr->nvcsw + curr->nivcsw;
1680 return cpu_nr_switches(smp_processor_id());
1681 }
1682
1683 static void context_switches_perf_counter_update(struct perf_counter *counter)
1684 {
1685 u64 prev, now;
1686 s64 delta;
1687
1688 prev = atomic64_read(&counter->hw.prev_count);
1689 now = get_context_switches(counter);
1690
1691 atomic64_set(&counter->hw.prev_count, now);
1692
1693 delta = now - prev;
1694
1695 atomic64_add(delta, &counter->count);
1696 }
1697
1698 static void context_switches_perf_counter_read(struct perf_counter *counter)
1699 {
1700 context_switches_perf_counter_update(counter);
1701 }
1702
1703 static int context_switches_perf_counter_enable(struct perf_counter *counter)
1704 {
1705 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1706 atomic64_set(&counter->hw.prev_count,
1707 get_context_switches(counter));
1708 return 0;
1709 }
1710
1711 static void context_switches_perf_counter_disable(struct perf_counter *counter)
1712 {
1713 context_switches_perf_counter_update(counter);
1714 }
1715
1716 static const struct hw_perf_counter_ops perf_ops_context_switches = {
1717 .enable = context_switches_perf_counter_enable,
1718 .disable = context_switches_perf_counter_disable,
1719 .read = context_switches_perf_counter_read,
1720 };
1721
1722 /*
1723 * Software counter: cpu migrations
1724 */
1725
1726 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1727 {
1728 struct task_struct *curr = counter->ctx->task;
1729
1730 if (curr)
1731 return curr->se.nr_migrations;
1732 return cpu_nr_migrations(smp_processor_id());
1733 }
1734
1735 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1736 {
1737 u64 prev, now;
1738 s64 delta;
1739
1740 prev = atomic64_read(&counter->hw.prev_count);
1741 now = get_cpu_migrations(counter);
1742
1743 atomic64_set(&counter->hw.prev_count, now);
1744
1745 delta = now - prev;
1746
1747 atomic64_add(delta, &counter->count);
1748 }
1749
1750 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1751 {
1752 cpu_migrations_perf_counter_update(counter);
1753 }
1754
1755 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1756 {
1757 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1758 atomic64_set(&counter->hw.prev_count,
1759 get_cpu_migrations(counter));
1760 return 0;
1761 }
1762
1763 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1764 {
1765 cpu_migrations_perf_counter_update(counter);
1766 }
1767
1768 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1769 .enable = cpu_migrations_perf_counter_enable,
1770 .disable = cpu_migrations_perf_counter_disable,
1771 .read = cpu_migrations_perf_counter_read,
1772 };
1773
1774 static const struct hw_perf_counter_ops *
1775 sw_perf_counter_init(struct perf_counter *counter)
1776 {
1777 struct perf_counter_hw_event *hw_event = &counter->hw_event;
1778 const struct hw_perf_counter_ops *hw_ops = NULL;
1779 struct hw_perf_counter *hwc = &counter->hw;
1780
1781 /*
1782 * Software counters (currently) can't in general distinguish
1783 * between user, kernel and hypervisor events.
1784 * However, context switches and cpu migrations are considered
1785 * to be kernel events, and page faults are never hypervisor
1786 * events.
1787 */
1788 switch (counter->hw_event.type) {
1789 case PERF_COUNT_CPU_CLOCK:
1790 hw_ops = &perf_ops_cpu_clock;
1791
1792 if (hw_event->irq_period && hw_event->irq_period < 10000)
1793 hw_event->irq_period = 10000;
1794 break;
1795 case PERF_COUNT_TASK_CLOCK:
1796 /*
1797 * If the user instantiates this as a per-cpu counter,
1798 * use the cpu_clock counter instead.
1799 */
1800 if (counter->ctx->task)
1801 hw_ops = &perf_ops_task_clock;
1802 else
1803 hw_ops = &perf_ops_cpu_clock;
1804
1805 if (hw_event->irq_period && hw_event->irq_period < 10000)
1806 hw_event->irq_period = 10000;
1807 break;
1808 case PERF_COUNT_PAGE_FAULTS:
1809 case PERF_COUNT_PAGE_FAULTS_MIN:
1810 case PERF_COUNT_PAGE_FAULTS_MAJ:
1811 hw_ops = &perf_ops_generic;
1812 break;
1813 case PERF_COUNT_CONTEXT_SWITCHES:
1814 if (!counter->hw_event.exclude_kernel)
1815 hw_ops = &perf_ops_context_switches;
1816 break;
1817 case PERF_COUNT_CPU_MIGRATIONS:
1818 if (!counter->hw_event.exclude_kernel)
1819 hw_ops = &perf_ops_cpu_migrations;
1820 break;
1821 default:
1822 break;
1823 }
1824
1825 if (hw_ops)
1826 hwc->irq_period = hw_event->irq_period;
1827
1828 return hw_ops;
1829 }
1830
1831 /*
1832 * Allocate and initialize a counter structure
1833 */
1834 static struct perf_counter *
1835 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1836 int cpu,
1837 struct perf_counter_context *ctx,
1838 struct perf_counter *group_leader,
1839 gfp_t gfpflags)
1840 {
1841 const struct hw_perf_counter_ops *hw_ops;
1842 struct perf_counter *counter;
1843
1844 counter = kzalloc(sizeof(*counter), gfpflags);
1845 if (!counter)
1846 return NULL;
1847
1848 /*
1849 * Single counters are their own group leaders, with an
1850 * empty sibling list:
1851 */
1852 if (!group_leader)
1853 group_leader = counter;
1854
1855 mutex_init(&counter->mutex);
1856 INIT_LIST_HEAD(&counter->list_entry);
1857 INIT_LIST_HEAD(&counter->event_entry);
1858 INIT_LIST_HEAD(&counter->sibling_list);
1859 init_waitqueue_head(&counter->waitq);
1860
1861 INIT_LIST_HEAD(&counter->child_list);
1862
1863 counter->irqdata = &counter->data[0];
1864 counter->usrdata = &counter->data[1];
1865 counter->cpu = cpu;
1866 counter->hw_event = *hw_event;
1867 counter->wakeup_pending = 0;
1868 counter->group_leader = group_leader;
1869 counter->hw_ops = NULL;
1870 counter->ctx = ctx;
1871
1872 counter->state = PERF_COUNTER_STATE_INACTIVE;
1873 if (hw_event->disabled)
1874 counter->state = PERF_COUNTER_STATE_OFF;
1875
1876 hw_ops = NULL;
1877 if (!hw_event->raw && hw_event->type < 0)
1878 hw_ops = sw_perf_counter_init(counter);
1879 else
1880 hw_ops = hw_perf_counter_init(counter);
1881
1882 if (!hw_ops) {
1883 kfree(counter);
1884 return NULL;
1885 }
1886 counter->hw_ops = hw_ops;
1887
1888 return counter;
1889 }
1890
1891 /**
1892 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
1893 *
1894 * @hw_event_uptr: event type attributes for monitoring/sampling
1895 * @pid: target pid
1896 * @cpu: target cpu
1897 * @group_fd: group leader counter fd
1898 */
1899 SYSCALL_DEFINE5(perf_counter_open,
1900 const struct perf_counter_hw_event __user *, hw_event_uptr,
1901 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
1902 {
1903 struct perf_counter *counter, *group_leader;
1904 struct perf_counter_hw_event hw_event;
1905 struct perf_counter_context *ctx;
1906 struct file *counter_file = NULL;
1907 struct file *group_file = NULL;
1908 int fput_needed = 0;
1909 int fput_needed2 = 0;
1910 int ret;
1911
1912 /* for future expandability... */
1913 if (flags)
1914 return -EINVAL;
1915
1916 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1917 return -EFAULT;
1918
1919 /*
1920 * Get the target context (task or percpu):
1921 */
1922 ctx = find_get_context(pid, cpu);
1923 if (IS_ERR(ctx))
1924 return PTR_ERR(ctx);
1925
1926 /*
1927 * Look up the group leader (we will attach this counter to it):
1928 */
1929 group_leader = NULL;
1930 if (group_fd != -1) {
1931 ret = -EINVAL;
1932 group_file = fget_light(group_fd, &fput_needed);
1933 if (!group_file)
1934 goto err_put_context;
1935 if (group_file->f_op != &perf_fops)
1936 goto err_put_context;
1937
1938 group_leader = group_file->private_data;
1939 /*
1940 * Do not allow a recursive hierarchy (this new sibling
1941 * becoming part of another group-sibling):
1942 */
1943 if (group_leader->group_leader != group_leader)
1944 goto err_put_context;
1945 /*
1946 * Do not allow to attach to a group in a different
1947 * task or CPU context:
1948 */
1949 if (group_leader->ctx != ctx)
1950 goto err_put_context;
1951 /*
1952 * Only a group leader can be exclusive or pinned
1953 */
1954 if (hw_event.exclusive || hw_event.pinned)
1955 goto err_put_context;
1956 }
1957
1958 ret = -EINVAL;
1959 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
1960 GFP_KERNEL);
1961 if (!counter)
1962 goto err_put_context;
1963
1964 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1965 if (ret < 0)
1966 goto err_free_put_context;
1967
1968 counter_file = fget_light(ret, &fput_needed2);
1969 if (!counter_file)
1970 goto err_free_put_context;
1971
1972 counter->filp = counter_file;
1973 mutex_lock(&ctx->mutex);
1974 perf_install_in_context(ctx, counter, cpu);
1975 mutex_unlock(&ctx->mutex);
1976
1977 fput_light(counter_file, fput_needed2);
1978
1979 out_fput:
1980 fput_light(group_file, fput_needed);
1981
1982 return ret;
1983
1984 err_free_put_context:
1985 kfree(counter);
1986
1987 err_put_context:
1988 put_context(ctx);
1989
1990 goto out_fput;
1991 }
1992
1993 /*
1994 * Initialize the perf_counter context in a task_struct:
1995 */
1996 static void
1997 __perf_counter_init_context(struct perf_counter_context *ctx,
1998 struct task_struct *task)
1999 {
2000 memset(ctx, 0, sizeof(*ctx));
2001 spin_lock_init(&ctx->lock);
2002 mutex_init(&ctx->mutex);
2003 INIT_LIST_HEAD(&ctx->counter_list);
2004 INIT_LIST_HEAD(&ctx->event_list);
2005 ctx->task = task;
2006 }
2007
2008 /*
2009 * inherit a counter from parent task to child task:
2010 */
2011 static struct perf_counter *
2012 inherit_counter(struct perf_counter *parent_counter,
2013 struct task_struct *parent,
2014 struct perf_counter_context *parent_ctx,
2015 struct task_struct *child,
2016 struct perf_counter *group_leader,
2017 struct perf_counter_context *child_ctx)
2018 {
2019 struct perf_counter *child_counter;
2020
2021 /*
2022 * Instead of creating recursive hierarchies of counters,
2023 * we link inherited counters back to the original parent,
2024 * which has a filp for sure, which we use as the reference
2025 * count:
2026 */
2027 if (parent_counter->parent)
2028 parent_counter = parent_counter->parent;
2029
2030 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2031 parent_counter->cpu, child_ctx,
2032 group_leader, GFP_KERNEL);
2033 if (!child_counter)
2034 return NULL;
2035
2036 /*
2037 * Link it up in the child's context:
2038 */
2039 child_counter->task = child;
2040 list_add_counter(child_counter, child_ctx);
2041 child_ctx->nr_counters++;
2042
2043 child_counter->parent = parent_counter;
2044 /*
2045 * inherit into child's child as well:
2046 */
2047 child_counter->hw_event.inherit = 1;
2048
2049 /*
2050 * Get a reference to the parent filp - we will fput it
2051 * when the child counter exits. This is safe to do because
2052 * we are in the parent and we know that the filp still
2053 * exists and has a nonzero count:
2054 */
2055 atomic_long_inc(&parent_counter->filp->f_count);
2056
2057 /*
2058 * Link this into the parent counter's child list
2059 */
2060 mutex_lock(&parent_counter->mutex);
2061 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2062
2063 /*
2064 * Make the child state follow the state of the parent counter,
2065 * not its hw_event.disabled bit. We hold the parent's mutex,
2066 * so we won't race with perf_counter_{en,dis}able_family.
2067 */
2068 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2069 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2070 else
2071 child_counter->state = PERF_COUNTER_STATE_OFF;
2072
2073 mutex_unlock(&parent_counter->mutex);
2074
2075 return child_counter;
2076 }
2077
2078 static int inherit_group(struct perf_counter *parent_counter,
2079 struct task_struct *parent,
2080 struct perf_counter_context *parent_ctx,
2081 struct task_struct *child,
2082 struct perf_counter_context *child_ctx)
2083 {
2084 struct perf_counter *leader;
2085 struct perf_counter *sub;
2086
2087 leader = inherit_counter(parent_counter, parent, parent_ctx,
2088 child, NULL, child_ctx);
2089 if (!leader)
2090 return -ENOMEM;
2091 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2092 if (!inherit_counter(sub, parent, parent_ctx,
2093 child, leader, child_ctx))
2094 return -ENOMEM;
2095 }
2096 return 0;
2097 }
2098
2099 static void sync_child_counter(struct perf_counter *child_counter,
2100 struct perf_counter *parent_counter)
2101 {
2102 u64 parent_val, child_val;
2103
2104 parent_val = atomic64_read(&parent_counter->count);
2105 child_val = atomic64_read(&child_counter->count);
2106
2107 /*
2108 * Add back the child's count to the parent's count:
2109 */
2110 atomic64_add(child_val, &parent_counter->count);
2111
2112 /*
2113 * Remove this counter from the parent's list
2114 */
2115 mutex_lock(&parent_counter->mutex);
2116 list_del_init(&child_counter->child_list);
2117 mutex_unlock(&parent_counter->mutex);
2118
2119 /*
2120 * Release the parent counter, if this was the last
2121 * reference to it.
2122 */
2123 fput(parent_counter->filp);
2124 }
2125
2126 static void
2127 __perf_counter_exit_task(struct task_struct *child,
2128 struct perf_counter *child_counter,
2129 struct perf_counter_context *child_ctx)
2130 {
2131 struct perf_counter *parent_counter;
2132 struct perf_counter *sub, *tmp;
2133
2134 /*
2135 * If we do not self-reap then we have to wait for the
2136 * child task to unschedule (it will happen for sure),
2137 * so that its counter is at its final count. (This
2138 * condition triggers rarely - child tasks usually get
2139 * off their CPU before the parent has a chance to
2140 * get this far into the reaping action)
2141 */
2142 if (child != current) {
2143 wait_task_inactive(child, 0);
2144 list_del_init(&child_counter->list_entry);
2145 } else {
2146 struct perf_cpu_context *cpuctx;
2147 unsigned long flags;
2148 u64 perf_flags;
2149
2150 /*
2151 * Disable and unlink this counter.
2152 *
2153 * Be careful about zapping the list - IRQ/NMI context
2154 * could still be processing it:
2155 */
2156 curr_rq_lock_irq_save(&flags);
2157 perf_flags = hw_perf_save_disable();
2158
2159 cpuctx = &__get_cpu_var(perf_cpu_context);
2160
2161 group_sched_out(child_counter, cpuctx, child_ctx);
2162
2163 list_del_init(&child_counter->list_entry);
2164
2165 child_ctx->nr_counters--;
2166
2167 hw_perf_restore(perf_flags);
2168 curr_rq_unlock_irq_restore(&flags);
2169 }
2170
2171 parent_counter = child_counter->parent;
2172 /*
2173 * It can happen that parent exits first, and has counters
2174 * that are still around due to the child reference. These
2175 * counters need to be zapped - but otherwise linger.
2176 */
2177 if (parent_counter) {
2178 sync_child_counter(child_counter, parent_counter);
2179 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2180 list_entry) {
2181 if (sub->parent) {
2182 sync_child_counter(sub, sub->parent);
2183 kfree(sub);
2184 }
2185 }
2186 kfree(child_counter);
2187 }
2188 }
2189
2190 /*
2191 * When a child task exits, feed back counter values to parent counters.
2192 *
2193 * Note: we may be running in child context, but the PID is not hashed
2194 * anymore so new counters will not be added.
2195 */
2196 void perf_counter_exit_task(struct task_struct *child)
2197 {
2198 struct perf_counter *child_counter, *tmp;
2199 struct perf_counter_context *child_ctx;
2200
2201 child_ctx = &child->perf_counter_ctx;
2202
2203 if (likely(!child_ctx->nr_counters))
2204 return;
2205
2206 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2207 list_entry)
2208 __perf_counter_exit_task(child, child_counter, child_ctx);
2209 }
2210
2211 /*
2212 * Initialize the perf_counter context in task_struct
2213 */
2214 void perf_counter_init_task(struct task_struct *child)
2215 {
2216 struct perf_counter_context *child_ctx, *parent_ctx;
2217 struct perf_counter *counter;
2218 struct task_struct *parent = current;
2219
2220 child_ctx = &child->perf_counter_ctx;
2221 parent_ctx = &parent->perf_counter_ctx;
2222
2223 __perf_counter_init_context(child_ctx, child);
2224
2225 /*
2226 * This is executed from the parent task context, so inherit
2227 * counters that have been marked for cloning:
2228 */
2229
2230 if (likely(!parent_ctx->nr_counters))
2231 return;
2232
2233 /*
2234 * Lock the parent list. No need to lock the child - not PID
2235 * hashed yet and not running, so nobody can access it.
2236 */
2237 mutex_lock(&parent_ctx->mutex);
2238
2239 /*
2240 * We dont have to disable NMIs - we are only looking at
2241 * the list, not manipulating it:
2242 */
2243 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2244 if (!counter->hw_event.inherit)
2245 continue;
2246
2247 if (inherit_group(counter, parent,
2248 parent_ctx, child, child_ctx))
2249 break;
2250 }
2251
2252 mutex_unlock(&parent_ctx->mutex);
2253 }
2254
2255 static void __cpuinit perf_counter_init_cpu(int cpu)
2256 {
2257 struct perf_cpu_context *cpuctx;
2258
2259 cpuctx = &per_cpu(perf_cpu_context, cpu);
2260 __perf_counter_init_context(&cpuctx->ctx, NULL);
2261
2262 mutex_lock(&perf_resource_mutex);
2263 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2264 mutex_unlock(&perf_resource_mutex);
2265
2266 hw_perf_counter_setup(cpu);
2267 }
2268
2269 #ifdef CONFIG_HOTPLUG_CPU
2270 static void __perf_counter_exit_cpu(void *info)
2271 {
2272 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2273 struct perf_counter_context *ctx = &cpuctx->ctx;
2274 struct perf_counter *counter, *tmp;
2275
2276 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2277 __perf_counter_remove_from_context(counter);
2278 }
2279 static void perf_counter_exit_cpu(int cpu)
2280 {
2281 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2282 struct perf_counter_context *ctx = &cpuctx->ctx;
2283
2284 mutex_lock(&ctx->mutex);
2285 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2286 mutex_unlock(&ctx->mutex);
2287 }
2288 #else
2289 static inline void perf_counter_exit_cpu(int cpu) { }
2290 #endif
2291
2292 static int __cpuinit
2293 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2294 {
2295 unsigned int cpu = (long)hcpu;
2296
2297 switch (action) {
2298
2299 case CPU_UP_PREPARE:
2300 case CPU_UP_PREPARE_FROZEN:
2301 perf_counter_init_cpu(cpu);
2302 break;
2303
2304 case CPU_DOWN_PREPARE:
2305 case CPU_DOWN_PREPARE_FROZEN:
2306 perf_counter_exit_cpu(cpu);
2307 break;
2308
2309 default:
2310 break;
2311 }
2312
2313 return NOTIFY_OK;
2314 }
2315
2316 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2317 .notifier_call = perf_cpu_notify,
2318 };
2319
2320 static int __init perf_counter_init(void)
2321 {
2322 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2323 (void *)(long)smp_processor_id());
2324 register_cpu_notifier(&perf_cpu_nb);
2325
2326 return 0;
2327 }
2328 early_initcall(perf_counter_init);
2329
2330 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2331 {
2332 return sprintf(buf, "%d\n", perf_reserved_percpu);
2333 }
2334
2335 static ssize_t
2336 perf_set_reserve_percpu(struct sysdev_class *class,
2337 const char *buf,
2338 size_t count)
2339 {
2340 struct perf_cpu_context *cpuctx;
2341 unsigned long val;
2342 int err, cpu, mpt;
2343
2344 err = strict_strtoul(buf, 10, &val);
2345 if (err)
2346 return err;
2347 if (val > perf_max_counters)
2348 return -EINVAL;
2349
2350 mutex_lock(&perf_resource_mutex);
2351 perf_reserved_percpu = val;
2352 for_each_online_cpu(cpu) {
2353 cpuctx = &per_cpu(perf_cpu_context, cpu);
2354 spin_lock_irq(&cpuctx->ctx.lock);
2355 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2356 perf_max_counters - perf_reserved_percpu);
2357 cpuctx->max_pertask = mpt;
2358 spin_unlock_irq(&cpuctx->ctx.lock);
2359 }
2360 mutex_unlock(&perf_resource_mutex);
2361
2362 return count;
2363 }
2364
2365 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2366 {
2367 return sprintf(buf, "%d\n", perf_overcommit);
2368 }
2369
2370 static ssize_t
2371 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2372 {
2373 unsigned long val;
2374 int err;
2375
2376 err = strict_strtoul(buf, 10, &val);
2377 if (err)
2378 return err;
2379 if (val > 1)
2380 return -EINVAL;
2381
2382 mutex_lock(&perf_resource_mutex);
2383 perf_overcommit = val;
2384 mutex_unlock(&perf_resource_mutex);
2385
2386 return count;
2387 }
2388
2389 static SYSDEV_CLASS_ATTR(
2390 reserve_percpu,
2391 0644,
2392 perf_show_reserve_percpu,
2393 perf_set_reserve_percpu
2394 );
2395
2396 static SYSDEV_CLASS_ATTR(
2397 overcommit,
2398 0644,
2399 perf_show_overcommit,
2400 perf_set_overcommit
2401 );
2402
2403 static struct attribute *perfclass_attrs[] = {
2404 &attr_reserve_percpu.attr,
2405 &attr_overcommit.attr,
2406 NULL
2407 };
2408
2409 static struct attribute_group perfclass_attr_group = {
2410 .attrs = perfclass_attrs,
2411 .name = "perf_counters",
2412 };
2413
2414 static int __init perf_counter_sysfs_init(void)
2415 {
2416 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2417 &perfclass_attr_group);
2418 }
2419 device_initcall(perf_counter_sysfs_init);