Pull platform-drivers into test branch
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / mutex.c
1 /*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * Also see Documentation/mutex-design.txt.
14 */
15 #include <linux/mutex.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/debug_locks.h>
21
22 /*
23 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
24 * which forces all calls into the slowpath:
25 */
26 #ifdef CONFIG_DEBUG_MUTEXES
27 # include "mutex-debug.h"
28 # include <asm-generic/mutex-null.h>
29 #else
30 # include "mutex.h"
31 # include <asm/mutex.h>
32 #endif
33
34 /***
35 * mutex_init - initialize the mutex
36 * @lock: the mutex to be initialized
37 *
38 * Initialize the mutex to unlocked state.
39 *
40 * It is not allowed to initialize an already locked mutex.
41 */
42 void
43 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
44 {
45 atomic_set(&lock->count, 1);
46 spin_lock_init(&lock->wait_lock);
47 INIT_LIST_HEAD(&lock->wait_list);
48
49 debug_mutex_init(lock, name, key);
50 }
51
52 EXPORT_SYMBOL(__mutex_init);
53
54 /*
55 * We split the mutex lock/unlock logic into separate fastpath and
56 * slowpath functions, to reduce the register pressure on the fastpath.
57 * We also put the fastpath first in the kernel image, to make sure the
58 * branch is predicted by the CPU as default-untaken.
59 */
60 static void fastcall noinline __sched
61 __mutex_lock_slowpath(atomic_t *lock_count);
62
63 /***
64 * mutex_lock - acquire the mutex
65 * @lock: the mutex to be acquired
66 *
67 * Lock the mutex exclusively for this task. If the mutex is not
68 * available right now, it will sleep until it can get it.
69 *
70 * The mutex must later on be released by the same task that
71 * acquired it. Recursive locking is not allowed. The task
72 * may not exit without first unlocking the mutex. Also, kernel
73 * memory where the mutex resides mutex must not be freed with
74 * the mutex still locked. The mutex must first be initialized
75 * (or statically defined) before it can be locked. memset()-ing
76 * the mutex to 0 is not allowed.
77 *
78 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
79 * checks that will enforce the restrictions and will also do
80 * deadlock debugging. )
81 *
82 * This function is similar to (but not equivalent to) down().
83 */
84 void inline fastcall __sched mutex_lock(struct mutex *lock)
85 {
86 might_sleep();
87 /*
88 * The locking fastpath is the 1->0 transition from
89 * 'unlocked' into 'locked' state.
90 */
91 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
92 }
93
94 EXPORT_SYMBOL(mutex_lock);
95
96 static void fastcall noinline __sched
97 __mutex_unlock_slowpath(atomic_t *lock_count);
98
99 /***
100 * mutex_unlock - release the mutex
101 * @lock: the mutex to be released
102 *
103 * Unlock a mutex that has been locked by this task previously.
104 *
105 * This function must not be used in interrupt context. Unlocking
106 * of a not locked mutex is not allowed.
107 *
108 * This function is similar to (but not equivalent to) up().
109 */
110 void fastcall __sched mutex_unlock(struct mutex *lock)
111 {
112 /*
113 * The unlocking fastpath is the 0->1 transition from 'locked'
114 * into 'unlocked' state:
115 */
116 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
117 }
118
119 EXPORT_SYMBOL(mutex_unlock);
120
121 /*
122 * Lock a mutex (possibly interruptible), slowpath:
123 */
124 static inline int __sched
125 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass)
126 {
127 struct task_struct *task = current;
128 struct mutex_waiter waiter;
129 unsigned int old_val;
130 unsigned long flags;
131
132 spin_lock_mutex(&lock->wait_lock, flags);
133
134 debug_mutex_lock_common(lock, &waiter);
135 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
136 debug_mutex_add_waiter(lock, &waiter, task->thread_info);
137
138 /* add waiting tasks to the end of the waitqueue (FIFO): */
139 list_add_tail(&waiter.list, &lock->wait_list);
140 waiter.task = task;
141
142 for (;;) {
143 /*
144 * Lets try to take the lock again - this is needed even if
145 * we get here for the first time (shortly after failing to
146 * acquire the lock), to make sure that we get a wakeup once
147 * it's unlocked. Later on, if we sleep, this is the
148 * operation that gives us the lock. We xchg it to -1, so
149 * that when we release the lock, we properly wake up the
150 * other waiters:
151 */
152 old_val = atomic_xchg(&lock->count, -1);
153 if (old_val == 1)
154 break;
155
156 /*
157 * got a signal? (This code gets eliminated in the
158 * TASK_UNINTERRUPTIBLE case.)
159 */
160 if (unlikely(state == TASK_INTERRUPTIBLE &&
161 signal_pending(task))) {
162 mutex_remove_waiter(lock, &waiter, task->thread_info);
163 mutex_release(&lock->dep_map, 1, _RET_IP_);
164 spin_unlock_mutex(&lock->wait_lock, flags);
165
166 debug_mutex_free_waiter(&waiter);
167 return -EINTR;
168 }
169 __set_task_state(task, state);
170
171 /* didnt get the lock, go to sleep: */
172 spin_unlock_mutex(&lock->wait_lock, flags);
173 schedule();
174 spin_lock_mutex(&lock->wait_lock, flags);
175 }
176
177 /* got the lock - rejoice! */
178 mutex_remove_waiter(lock, &waiter, task->thread_info);
179 debug_mutex_set_owner(lock, task->thread_info);
180
181 /* set it to 0 if there are no waiters left: */
182 if (likely(list_empty(&lock->wait_list)))
183 atomic_set(&lock->count, 0);
184
185 spin_unlock_mutex(&lock->wait_lock, flags);
186
187 debug_mutex_free_waiter(&waiter);
188
189 return 0;
190 }
191
192 static void fastcall noinline __sched
193 __mutex_lock_slowpath(atomic_t *lock_count)
194 {
195 struct mutex *lock = container_of(lock_count, struct mutex, count);
196
197 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0);
198 }
199
200 #ifdef CONFIG_DEBUG_LOCK_ALLOC
201 void __sched
202 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
203 {
204 might_sleep();
205 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass);
206 }
207
208 EXPORT_SYMBOL_GPL(mutex_lock_nested);
209
210 int __sched
211 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
212 {
213 might_sleep();
214 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass);
215 }
216
217 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
218 #endif
219
220 /*
221 * Release the lock, slowpath:
222 */
223 static fastcall inline void
224 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
225 {
226 struct mutex *lock = container_of(lock_count, struct mutex, count);
227 unsigned long flags;
228
229 spin_lock_mutex(&lock->wait_lock, flags);
230 mutex_release(&lock->dep_map, nested, _RET_IP_);
231 debug_mutex_unlock(lock);
232
233 /*
234 * some architectures leave the lock unlocked in the fastpath failure
235 * case, others need to leave it locked. In the later case we have to
236 * unlock it here
237 */
238 if (__mutex_slowpath_needs_to_unlock())
239 atomic_set(&lock->count, 1);
240
241 if (!list_empty(&lock->wait_list)) {
242 /* get the first entry from the wait-list: */
243 struct mutex_waiter *waiter =
244 list_entry(lock->wait_list.next,
245 struct mutex_waiter, list);
246
247 debug_mutex_wake_waiter(lock, waiter);
248
249 wake_up_process(waiter->task);
250 }
251
252 debug_mutex_clear_owner(lock);
253
254 spin_unlock_mutex(&lock->wait_lock, flags);
255 }
256
257 /*
258 * Release the lock, slowpath:
259 */
260 static fastcall noinline void
261 __mutex_unlock_slowpath(atomic_t *lock_count)
262 {
263 __mutex_unlock_common_slowpath(lock_count, 1);
264 }
265
266 /*
267 * Here come the less common (and hence less performance-critical) APIs:
268 * mutex_lock_interruptible() and mutex_trylock().
269 */
270 static int fastcall noinline __sched
271 __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
272
273 /***
274 * mutex_lock_interruptible - acquire the mutex, interruptable
275 * @lock: the mutex to be acquired
276 *
277 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
278 * been acquired or sleep until the mutex becomes available. If a
279 * signal arrives while waiting for the lock then this function
280 * returns -EINTR.
281 *
282 * This function is similar to (but not equivalent to) down_interruptible().
283 */
284 int fastcall __sched mutex_lock_interruptible(struct mutex *lock)
285 {
286 might_sleep();
287 return __mutex_fastpath_lock_retval
288 (&lock->count, __mutex_lock_interruptible_slowpath);
289 }
290
291 EXPORT_SYMBOL(mutex_lock_interruptible);
292
293 static int fastcall noinline __sched
294 __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
295 {
296 struct mutex *lock = container_of(lock_count, struct mutex, count);
297
298 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0);
299 }
300
301 /*
302 * Spinlock based trylock, we take the spinlock and check whether we
303 * can get the lock:
304 */
305 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
306 {
307 struct mutex *lock = container_of(lock_count, struct mutex, count);
308 unsigned long flags;
309 int prev;
310
311 spin_lock_mutex(&lock->wait_lock, flags);
312
313 prev = atomic_xchg(&lock->count, -1);
314 if (likely(prev == 1)) {
315 debug_mutex_set_owner(lock, current_thread_info());
316 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
317 }
318 /* Set it back to 0 if there are no waiters: */
319 if (likely(list_empty(&lock->wait_list)))
320 atomic_set(&lock->count, 0);
321
322 spin_unlock_mutex(&lock->wait_lock, flags);
323
324 return prev == 1;
325 }
326
327 /***
328 * mutex_trylock - try acquire the mutex, without waiting
329 * @lock: the mutex to be acquired
330 *
331 * Try to acquire the mutex atomically. Returns 1 if the mutex
332 * has been acquired successfully, and 0 on contention.
333 *
334 * NOTE: this function follows the spin_trylock() convention, so
335 * it is negated to the down_trylock() return values! Be careful
336 * about this when converting semaphore users to mutexes.
337 *
338 * This function must not be used in interrupt context. The
339 * mutex must be released by the same task that acquired it.
340 */
341 int fastcall __sched mutex_trylock(struct mutex *lock)
342 {
343 return __mutex_fastpath_trylock(&lock->count,
344 __mutex_trylock_slowpath);
345 }
346
347 EXPORT_SYMBOL(mutex_trylock);