KVM: PPC: Book3S: Add API for in-kernel XICS emulation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / mutex.c
1 /*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/mutex-design.txt.
19 */
20 #include <linux/mutex.h>
21 #include <linux/sched.h>
22 #include <linux/sched/rt.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/debug_locks.h>
27
28 /*
29 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
30 * which forces all calls into the slowpath:
31 */
32 #ifdef CONFIG_DEBUG_MUTEXES
33 # include "mutex-debug.h"
34 # include <asm-generic/mutex-null.h>
35 #else
36 # include "mutex.h"
37 # include <asm/mutex.h>
38 #endif
39
40 void
41 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
42 {
43 atomic_set(&lock->count, 1);
44 spin_lock_init(&lock->wait_lock);
45 INIT_LIST_HEAD(&lock->wait_list);
46 mutex_clear_owner(lock);
47
48 debug_mutex_init(lock, name, key);
49 }
50
51 EXPORT_SYMBOL(__mutex_init);
52
53 #ifndef CONFIG_DEBUG_LOCK_ALLOC
54 /*
55 * We split the mutex lock/unlock logic into separate fastpath and
56 * slowpath functions, to reduce the register pressure on the fastpath.
57 * We also put the fastpath first in the kernel image, to make sure the
58 * branch is predicted by the CPU as default-untaken.
59 */
60 static __used noinline void __sched
61 __mutex_lock_slowpath(atomic_t *lock_count);
62
63 /**
64 * mutex_lock - acquire the mutex
65 * @lock: the mutex to be acquired
66 *
67 * Lock the mutex exclusively for this task. If the mutex is not
68 * available right now, it will sleep until it can get it.
69 *
70 * The mutex must later on be released by the same task that
71 * acquired it. Recursive locking is not allowed. The task
72 * may not exit without first unlocking the mutex. Also, kernel
73 * memory where the mutex resides mutex must not be freed with
74 * the mutex still locked. The mutex must first be initialized
75 * (or statically defined) before it can be locked. memset()-ing
76 * the mutex to 0 is not allowed.
77 *
78 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
79 * checks that will enforce the restrictions and will also do
80 * deadlock debugging. )
81 *
82 * This function is similar to (but not equivalent to) down().
83 */
84 void __sched mutex_lock(struct mutex *lock)
85 {
86 might_sleep();
87 /*
88 * The locking fastpath is the 1->0 transition from
89 * 'unlocked' into 'locked' state.
90 */
91 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
92 mutex_set_owner(lock);
93 }
94
95 EXPORT_SYMBOL(mutex_lock);
96 #endif
97
98 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
99
100 /**
101 * mutex_unlock - release the mutex
102 * @lock: the mutex to be released
103 *
104 * Unlock a mutex that has been locked by this task previously.
105 *
106 * This function must not be used in interrupt context. Unlocking
107 * of a not locked mutex is not allowed.
108 *
109 * This function is similar to (but not equivalent to) up().
110 */
111 void __sched mutex_unlock(struct mutex *lock)
112 {
113 /*
114 * The unlocking fastpath is the 0->1 transition from 'locked'
115 * into 'unlocked' state:
116 */
117 #ifndef CONFIG_DEBUG_MUTEXES
118 /*
119 * When debugging is enabled we must not clear the owner before time,
120 * the slow path will always be taken, and that clears the owner field
121 * after verifying that it was indeed current.
122 */
123 mutex_clear_owner(lock);
124 #endif
125 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
126 }
127
128 EXPORT_SYMBOL(mutex_unlock);
129
130 /*
131 * Lock a mutex (possibly interruptible), slowpath:
132 */
133 static inline int __sched
134 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
135 struct lockdep_map *nest_lock, unsigned long ip)
136 {
137 struct task_struct *task = current;
138 struct mutex_waiter waiter;
139 unsigned long flags;
140
141 preempt_disable();
142 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
143
144 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
145 /*
146 * Optimistic spinning.
147 *
148 * We try to spin for acquisition when we find that there are no
149 * pending waiters and the lock owner is currently running on a
150 * (different) CPU.
151 *
152 * The rationale is that if the lock owner is running, it is likely to
153 * release the lock soon.
154 *
155 * Since this needs the lock owner, and this mutex implementation
156 * doesn't track the owner atomically in the lock field, we need to
157 * track it non-atomically.
158 *
159 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
160 * to serialize everything.
161 */
162
163 for (;;) {
164 struct task_struct *owner;
165
166 /*
167 * If there's an owner, wait for it to either
168 * release the lock or go to sleep.
169 */
170 owner = ACCESS_ONCE(lock->owner);
171 if (owner && !mutex_spin_on_owner(lock, owner))
172 break;
173
174 if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
175 lock_acquired(&lock->dep_map, ip);
176 mutex_set_owner(lock);
177 preempt_enable();
178 return 0;
179 }
180
181 /*
182 * When there's no owner, we might have preempted between the
183 * owner acquiring the lock and setting the owner field. If
184 * we're an RT task that will live-lock because we won't let
185 * the owner complete.
186 */
187 if (!owner && (need_resched() || rt_task(task)))
188 break;
189
190 /*
191 * The cpu_relax() call is a compiler barrier which forces
192 * everything in this loop to be re-loaded. We don't need
193 * memory barriers as we'll eventually observe the right
194 * values at the cost of a few extra spins.
195 */
196 arch_mutex_cpu_relax();
197 }
198 #endif
199 spin_lock_mutex(&lock->wait_lock, flags);
200
201 debug_mutex_lock_common(lock, &waiter);
202 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
203
204 /* add waiting tasks to the end of the waitqueue (FIFO): */
205 list_add_tail(&waiter.list, &lock->wait_list);
206 waiter.task = task;
207
208 if (atomic_xchg(&lock->count, -1) == 1)
209 goto done;
210
211 lock_contended(&lock->dep_map, ip);
212
213 for (;;) {
214 /*
215 * Lets try to take the lock again - this is needed even if
216 * we get here for the first time (shortly after failing to
217 * acquire the lock), to make sure that we get a wakeup once
218 * it's unlocked. Later on, if we sleep, this is the
219 * operation that gives us the lock. We xchg it to -1, so
220 * that when we release the lock, we properly wake up the
221 * other waiters:
222 */
223 if (atomic_xchg(&lock->count, -1) == 1)
224 break;
225
226 /*
227 * got a signal? (This code gets eliminated in the
228 * TASK_UNINTERRUPTIBLE case.)
229 */
230 if (unlikely(signal_pending_state(state, task))) {
231 mutex_remove_waiter(lock, &waiter,
232 task_thread_info(task));
233 mutex_release(&lock->dep_map, 1, ip);
234 spin_unlock_mutex(&lock->wait_lock, flags);
235
236 debug_mutex_free_waiter(&waiter);
237 preempt_enable();
238 return -EINTR;
239 }
240 __set_task_state(task, state);
241
242 /* didn't get the lock, go to sleep: */
243 spin_unlock_mutex(&lock->wait_lock, flags);
244 schedule_preempt_disabled();
245 spin_lock_mutex(&lock->wait_lock, flags);
246 }
247
248 done:
249 lock_acquired(&lock->dep_map, ip);
250 /* got the lock - rejoice! */
251 mutex_remove_waiter(lock, &waiter, current_thread_info());
252 mutex_set_owner(lock);
253
254 /* set it to 0 if there are no waiters left: */
255 if (likely(list_empty(&lock->wait_list)))
256 atomic_set(&lock->count, 0);
257
258 spin_unlock_mutex(&lock->wait_lock, flags);
259
260 debug_mutex_free_waiter(&waiter);
261 preempt_enable();
262
263 return 0;
264 }
265
266 #ifdef CONFIG_DEBUG_LOCK_ALLOC
267 void __sched
268 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
269 {
270 might_sleep();
271 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
272 }
273
274 EXPORT_SYMBOL_GPL(mutex_lock_nested);
275
276 void __sched
277 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
278 {
279 might_sleep();
280 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
281 }
282
283 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
284
285 int __sched
286 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
287 {
288 might_sleep();
289 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
290 }
291 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
292
293 int __sched
294 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
295 {
296 might_sleep();
297 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
298 subclass, NULL, _RET_IP_);
299 }
300
301 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
302 #endif
303
304 /*
305 * Release the lock, slowpath:
306 */
307 static inline void
308 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
309 {
310 struct mutex *lock = container_of(lock_count, struct mutex, count);
311 unsigned long flags;
312
313 spin_lock_mutex(&lock->wait_lock, flags);
314 mutex_release(&lock->dep_map, nested, _RET_IP_);
315 debug_mutex_unlock(lock);
316
317 /*
318 * some architectures leave the lock unlocked in the fastpath failure
319 * case, others need to leave it locked. In the later case we have to
320 * unlock it here
321 */
322 if (__mutex_slowpath_needs_to_unlock())
323 atomic_set(&lock->count, 1);
324
325 if (!list_empty(&lock->wait_list)) {
326 /* get the first entry from the wait-list: */
327 struct mutex_waiter *waiter =
328 list_entry(lock->wait_list.next,
329 struct mutex_waiter, list);
330
331 debug_mutex_wake_waiter(lock, waiter);
332
333 wake_up_process(waiter->task);
334 }
335
336 spin_unlock_mutex(&lock->wait_lock, flags);
337 }
338
339 /*
340 * Release the lock, slowpath:
341 */
342 static __used noinline void
343 __mutex_unlock_slowpath(atomic_t *lock_count)
344 {
345 __mutex_unlock_common_slowpath(lock_count, 1);
346 }
347
348 #ifndef CONFIG_DEBUG_LOCK_ALLOC
349 /*
350 * Here come the less common (and hence less performance-critical) APIs:
351 * mutex_lock_interruptible() and mutex_trylock().
352 */
353 static noinline int __sched
354 __mutex_lock_killable_slowpath(atomic_t *lock_count);
355
356 static noinline int __sched
357 __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
358
359 /**
360 * mutex_lock_interruptible - acquire the mutex, interruptible
361 * @lock: the mutex to be acquired
362 *
363 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
364 * been acquired or sleep until the mutex becomes available. If a
365 * signal arrives while waiting for the lock then this function
366 * returns -EINTR.
367 *
368 * This function is similar to (but not equivalent to) down_interruptible().
369 */
370 int __sched mutex_lock_interruptible(struct mutex *lock)
371 {
372 int ret;
373
374 might_sleep();
375 ret = __mutex_fastpath_lock_retval
376 (&lock->count, __mutex_lock_interruptible_slowpath);
377 if (!ret)
378 mutex_set_owner(lock);
379
380 return ret;
381 }
382
383 EXPORT_SYMBOL(mutex_lock_interruptible);
384
385 int __sched mutex_lock_killable(struct mutex *lock)
386 {
387 int ret;
388
389 might_sleep();
390 ret = __mutex_fastpath_lock_retval
391 (&lock->count, __mutex_lock_killable_slowpath);
392 if (!ret)
393 mutex_set_owner(lock);
394
395 return ret;
396 }
397 EXPORT_SYMBOL(mutex_lock_killable);
398
399 static __used noinline void __sched
400 __mutex_lock_slowpath(atomic_t *lock_count)
401 {
402 struct mutex *lock = container_of(lock_count, struct mutex, count);
403
404 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
405 }
406
407 static noinline int __sched
408 __mutex_lock_killable_slowpath(atomic_t *lock_count)
409 {
410 struct mutex *lock = container_of(lock_count, struct mutex, count);
411
412 return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
413 }
414
415 static noinline int __sched
416 __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
417 {
418 struct mutex *lock = container_of(lock_count, struct mutex, count);
419
420 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
421 }
422 #endif
423
424 /*
425 * Spinlock based trylock, we take the spinlock and check whether we
426 * can get the lock:
427 */
428 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
429 {
430 struct mutex *lock = container_of(lock_count, struct mutex, count);
431 unsigned long flags;
432 int prev;
433
434 spin_lock_mutex(&lock->wait_lock, flags);
435
436 prev = atomic_xchg(&lock->count, -1);
437 if (likely(prev == 1)) {
438 mutex_set_owner(lock);
439 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
440 }
441
442 /* Set it back to 0 if there are no waiters: */
443 if (likely(list_empty(&lock->wait_list)))
444 atomic_set(&lock->count, 0);
445
446 spin_unlock_mutex(&lock->wait_lock, flags);
447
448 return prev == 1;
449 }
450
451 /**
452 * mutex_trylock - try to acquire the mutex, without waiting
453 * @lock: the mutex to be acquired
454 *
455 * Try to acquire the mutex atomically. Returns 1 if the mutex
456 * has been acquired successfully, and 0 on contention.
457 *
458 * NOTE: this function follows the spin_trylock() convention, so
459 * it is negated from the down_trylock() return values! Be careful
460 * about this when converting semaphore users to mutexes.
461 *
462 * This function must not be used in interrupt context. The
463 * mutex must be released by the same task that acquired it.
464 */
465 int __sched mutex_trylock(struct mutex *lock)
466 {
467 int ret;
468
469 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
470 if (ret)
471 mutex_set_owner(lock);
472
473 return ret;
474 }
475 EXPORT_SYMBOL(mutex_trylock);
476
477 /**
478 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
479 * @cnt: the atomic which we are to dec
480 * @lock: the mutex to return holding if we dec to 0
481 *
482 * return true and hold lock if we dec to 0, return false otherwise
483 */
484 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
485 {
486 /* dec if we can't possibly hit 0 */
487 if (atomic_add_unless(cnt, -1, 1))
488 return 0;
489 /* we might hit 0, so take the lock */
490 mutex_lock(lock);
491 if (!atomic_dec_and_test(cnt)) {
492 /* when we actually did the dec, we didn't hit 0 */
493 mutex_unlock(lock);
494 return 0;
495 }
496 /* we hit 0, and we hold the lock */
497 return 1;
498 }
499 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);