sched/topology: Fix percpu data types in struct sd_data & struct s_data
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
280
281 /* Block module loading/unloading? */
282 int modules_disabled = 0;
283 core_param(nomodule, modules_disabled, bint, 0);
284
285 /* Waiting for a module to finish initializing? */
286 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
287
288 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
289
290 int register_module_notifier(struct notifier_block *nb)
291 {
292 return blocking_notifier_chain_register(&module_notify_list, nb);
293 }
294 EXPORT_SYMBOL(register_module_notifier);
295
296 int unregister_module_notifier(struct notifier_block *nb)
297 {
298 return blocking_notifier_chain_unregister(&module_notify_list, nb);
299 }
300 EXPORT_SYMBOL(unregister_module_notifier);
301
302 struct load_info {
303 const char *name;
304 Elf_Ehdr *hdr;
305 unsigned long len;
306 Elf_Shdr *sechdrs;
307 char *secstrings, *strtab;
308 unsigned long symoffs, stroffs;
309 struct _ddebug *debug;
310 unsigned int num_debug;
311 bool sig_ok;
312 #ifdef CONFIG_KALLSYMS
313 unsigned long mod_kallsyms_init_off;
314 #endif
315 struct {
316 unsigned int sym, str, mod, vers, info, pcpu;
317 } index;
318 };
319
320 /*
321 * We require a truly strong try_module_get(): 0 means success.
322 * Otherwise an error is returned due to ongoing or failed
323 * initialization etc.
324 */
325 static inline int strong_try_module_get(struct module *mod)
326 {
327 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
328 if (mod && mod->state == MODULE_STATE_COMING)
329 return -EBUSY;
330 if (try_module_get(mod))
331 return 0;
332 else
333 return -ENOENT;
334 }
335
336 static inline void add_taint_module(struct module *mod, unsigned flag,
337 enum lockdep_ok lockdep_ok)
338 {
339 add_taint(flag, lockdep_ok);
340 set_bit(flag, &mod->taints);
341 }
342
343 /*
344 * A thread that wants to hold a reference to a module only while it
345 * is running can call this to safely exit. nfsd and lockd use this.
346 */
347 void __noreturn __module_put_and_exit(struct module *mod, long code)
348 {
349 module_put(mod);
350 do_exit(code);
351 }
352 EXPORT_SYMBOL(__module_put_and_exit);
353
354 /* Find a module section: 0 means not found. */
355 static unsigned int find_sec(const struct load_info *info, const char *name)
356 {
357 unsigned int i;
358
359 for (i = 1; i < info->hdr->e_shnum; i++) {
360 Elf_Shdr *shdr = &info->sechdrs[i];
361 /* Alloc bit cleared means "ignore it." */
362 if ((shdr->sh_flags & SHF_ALLOC)
363 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
364 return i;
365 }
366 return 0;
367 }
368
369 /* Find a module section, or NULL. */
370 static void *section_addr(const struct load_info *info, const char *name)
371 {
372 /* Section 0 has sh_addr 0. */
373 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
374 }
375
376 /* Find a module section, or NULL. Fill in number of "objects" in section. */
377 static void *section_objs(const struct load_info *info,
378 const char *name,
379 size_t object_size,
380 unsigned int *num)
381 {
382 unsigned int sec = find_sec(info, name);
383
384 /* Section 0 has sh_addr 0 and sh_size 0. */
385 *num = info->sechdrs[sec].sh_size / object_size;
386 return (void *)info->sechdrs[sec].sh_addr;
387 }
388
389 /* Provided by the linker */
390 extern const struct kernel_symbol __start___ksymtab[];
391 extern const struct kernel_symbol __stop___ksymtab[];
392 extern const struct kernel_symbol __start___ksymtab_gpl[];
393 extern const struct kernel_symbol __stop___ksymtab_gpl[];
394 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
395 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
396 extern const s32 __start___kcrctab[];
397 extern const s32 __start___kcrctab_gpl[];
398 extern const s32 __start___kcrctab_gpl_future[];
399 #ifdef CONFIG_UNUSED_SYMBOLS
400 extern const struct kernel_symbol __start___ksymtab_unused[];
401 extern const struct kernel_symbol __stop___ksymtab_unused[];
402 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
404 extern const s32 __start___kcrctab_unused[];
405 extern const s32 __start___kcrctab_unused_gpl[];
406 #endif
407
408 #ifndef CONFIG_MODVERSIONS
409 #define symversion(base, idx) NULL
410 #else
411 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
412 #endif
413
414 static bool each_symbol_in_section(const struct symsearch *arr,
415 unsigned int arrsize,
416 struct module *owner,
417 bool (*fn)(const struct symsearch *syms,
418 struct module *owner,
419 void *data),
420 void *data)
421 {
422 unsigned int j;
423
424 for (j = 0; j < arrsize; j++) {
425 if (fn(&arr[j], owner, data))
426 return true;
427 }
428
429 return false;
430 }
431
432 /* Returns true as soon as fn returns true, otherwise false. */
433 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
434 struct module *owner,
435 void *data),
436 void *data)
437 {
438 struct module *mod;
439 static const struct symsearch arr[] = {
440 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
441 NOT_GPL_ONLY, false },
442 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
443 __start___kcrctab_gpl,
444 GPL_ONLY, false },
445 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
446 __start___kcrctab_gpl_future,
447 WILL_BE_GPL_ONLY, false },
448 #ifdef CONFIG_UNUSED_SYMBOLS
449 { __start___ksymtab_unused, __stop___ksymtab_unused,
450 __start___kcrctab_unused,
451 NOT_GPL_ONLY, true },
452 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
453 __start___kcrctab_unused_gpl,
454 GPL_ONLY, true },
455 #endif
456 };
457
458 module_assert_mutex_or_preempt();
459
460 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
461 return true;
462
463 list_for_each_entry_rcu(mod, &modules, list) {
464 struct symsearch arr[] = {
465 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
466 NOT_GPL_ONLY, false },
467 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
468 mod->gpl_crcs,
469 GPL_ONLY, false },
470 { mod->gpl_future_syms,
471 mod->gpl_future_syms + mod->num_gpl_future_syms,
472 mod->gpl_future_crcs,
473 WILL_BE_GPL_ONLY, false },
474 #ifdef CONFIG_UNUSED_SYMBOLS
475 { mod->unused_syms,
476 mod->unused_syms + mod->num_unused_syms,
477 mod->unused_crcs,
478 NOT_GPL_ONLY, true },
479 { mod->unused_gpl_syms,
480 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
481 mod->unused_gpl_crcs,
482 GPL_ONLY, true },
483 #endif
484 };
485
486 if (mod->state == MODULE_STATE_UNFORMED)
487 continue;
488
489 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
490 return true;
491 }
492 return false;
493 }
494 EXPORT_SYMBOL_GPL(each_symbol_section);
495
496 struct find_symbol_arg {
497 /* Input */
498 const char *name;
499 bool gplok;
500 bool warn;
501
502 /* Output */
503 struct module *owner;
504 const s32 *crc;
505 const struct kernel_symbol *sym;
506 };
507
508 static bool check_symbol(const struct symsearch *syms,
509 struct module *owner,
510 unsigned int symnum, void *data)
511 {
512 struct find_symbol_arg *fsa = data;
513
514 if (!fsa->gplok) {
515 if (syms->licence == GPL_ONLY)
516 return false;
517 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
518 pr_warn("Symbol %s is being used by a non-GPL module, "
519 "which will not be allowed in the future\n",
520 fsa->name);
521 }
522 }
523
524 #ifdef CONFIG_UNUSED_SYMBOLS
525 if (syms->unused && fsa->warn) {
526 pr_warn("Symbol %s is marked as UNUSED, however this module is "
527 "using it.\n", fsa->name);
528 pr_warn("This symbol will go away in the future.\n");
529 pr_warn("Please evaluate if this is the right api to use and "
530 "if it really is, submit a report to the linux kernel "
531 "mailing list together with submitting your code for "
532 "inclusion.\n");
533 }
534 #endif
535
536 fsa->owner = owner;
537 fsa->crc = symversion(syms->crcs, symnum);
538 fsa->sym = &syms->start[symnum];
539 return true;
540 }
541
542 static int cmp_name(const void *va, const void *vb)
543 {
544 const char *a;
545 const struct kernel_symbol *b;
546 a = va; b = vb;
547 return strcmp(a, b->name);
548 }
549
550 static bool find_symbol_in_section(const struct symsearch *syms,
551 struct module *owner,
552 void *data)
553 {
554 struct find_symbol_arg *fsa = data;
555 struct kernel_symbol *sym;
556
557 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
558 sizeof(struct kernel_symbol), cmp_name);
559
560 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
561 return true;
562
563 return false;
564 }
565
566 /* Find a symbol and return it, along with, (optional) crc and
567 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
568 const struct kernel_symbol *find_symbol(const char *name,
569 struct module **owner,
570 const s32 **crc,
571 bool gplok,
572 bool warn)
573 {
574 struct find_symbol_arg fsa;
575
576 fsa.name = name;
577 fsa.gplok = gplok;
578 fsa.warn = warn;
579
580 if (each_symbol_section(find_symbol_in_section, &fsa)) {
581 if (owner)
582 *owner = fsa.owner;
583 if (crc)
584 *crc = fsa.crc;
585 return fsa.sym;
586 }
587
588 pr_debug("Failed to find symbol %s\n", name);
589 return NULL;
590 }
591 EXPORT_SYMBOL_GPL(find_symbol);
592
593 /*
594 * Search for module by name: must hold module_mutex (or preempt disabled
595 * for read-only access).
596 */
597 static struct module *find_module_all(const char *name, size_t len,
598 bool even_unformed)
599 {
600 struct module *mod;
601
602 module_assert_mutex_or_preempt();
603
604 list_for_each_entry_rcu(mod, &modules, list) {
605 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
606 continue;
607 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
608 return mod;
609 }
610 return NULL;
611 }
612
613 struct module *find_module(const char *name)
614 {
615 module_assert_mutex();
616 return find_module_all(name, strlen(name), false);
617 }
618 EXPORT_SYMBOL_GPL(find_module);
619
620 #ifdef CONFIG_SMP
621
622 static inline void __percpu *mod_percpu(struct module *mod)
623 {
624 return mod->percpu;
625 }
626
627 static int percpu_modalloc(struct module *mod, struct load_info *info)
628 {
629 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
630 unsigned long align = pcpusec->sh_addralign;
631
632 if (!pcpusec->sh_size)
633 return 0;
634
635 if (align > PAGE_SIZE) {
636 pr_warn("%s: per-cpu alignment %li > %li\n",
637 mod->name, align, PAGE_SIZE);
638 align = PAGE_SIZE;
639 }
640
641 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
642 if (!mod->percpu) {
643 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
644 mod->name, (unsigned long)pcpusec->sh_size);
645 return -ENOMEM;
646 }
647 mod->percpu_size = pcpusec->sh_size;
648 return 0;
649 }
650
651 static void percpu_modfree(struct module *mod)
652 {
653 free_percpu(mod->percpu);
654 }
655
656 static unsigned int find_pcpusec(struct load_info *info)
657 {
658 return find_sec(info, ".data..percpu");
659 }
660
661 static void percpu_modcopy(struct module *mod,
662 const void *from, unsigned long size)
663 {
664 int cpu;
665
666 for_each_possible_cpu(cpu)
667 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
668 }
669
670 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
671 {
672 struct module *mod;
673 unsigned int cpu;
674
675 preempt_disable();
676
677 list_for_each_entry_rcu(mod, &modules, list) {
678 if (mod->state == MODULE_STATE_UNFORMED)
679 continue;
680 if (!mod->percpu_size)
681 continue;
682 for_each_possible_cpu(cpu) {
683 void *start = per_cpu_ptr(mod->percpu, cpu);
684 void *va = (void *)addr;
685
686 if (va >= start && va < start + mod->percpu_size) {
687 if (can_addr) {
688 *can_addr = (unsigned long) (va - start);
689 *can_addr += (unsigned long)
690 per_cpu_ptr(mod->percpu,
691 get_boot_cpu_id());
692 }
693 preempt_enable();
694 return true;
695 }
696 }
697 }
698
699 preempt_enable();
700 return false;
701 }
702
703 /**
704 * is_module_percpu_address - test whether address is from module static percpu
705 * @addr: address to test
706 *
707 * Test whether @addr belongs to module static percpu area.
708 *
709 * RETURNS:
710 * %true if @addr is from module static percpu area
711 */
712 bool is_module_percpu_address(unsigned long addr)
713 {
714 return __is_module_percpu_address(addr, NULL);
715 }
716
717 #else /* ... !CONFIG_SMP */
718
719 static inline void __percpu *mod_percpu(struct module *mod)
720 {
721 return NULL;
722 }
723 static int percpu_modalloc(struct module *mod, struct load_info *info)
724 {
725 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
726 if (info->sechdrs[info->index.pcpu].sh_size != 0)
727 return -ENOMEM;
728 return 0;
729 }
730 static inline void percpu_modfree(struct module *mod)
731 {
732 }
733 static unsigned int find_pcpusec(struct load_info *info)
734 {
735 return 0;
736 }
737 static inline void percpu_modcopy(struct module *mod,
738 const void *from, unsigned long size)
739 {
740 /* pcpusec should be 0, and size of that section should be 0. */
741 BUG_ON(size != 0);
742 }
743 bool is_module_percpu_address(unsigned long addr)
744 {
745 return false;
746 }
747
748 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
749 {
750 return false;
751 }
752
753 #endif /* CONFIG_SMP */
754
755 #define MODINFO_ATTR(field) \
756 static void setup_modinfo_##field(struct module *mod, const char *s) \
757 { \
758 mod->field = kstrdup(s, GFP_KERNEL); \
759 } \
760 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
761 struct module_kobject *mk, char *buffer) \
762 { \
763 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
764 } \
765 static int modinfo_##field##_exists(struct module *mod) \
766 { \
767 return mod->field != NULL; \
768 } \
769 static void free_modinfo_##field(struct module *mod) \
770 { \
771 kfree(mod->field); \
772 mod->field = NULL; \
773 } \
774 static struct module_attribute modinfo_##field = { \
775 .attr = { .name = __stringify(field), .mode = 0444 }, \
776 .show = show_modinfo_##field, \
777 .setup = setup_modinfo_##field, \
778 .test = modinfo_##field##_exists, \
779 .free = free_modinfo_##field, \
780 };
781
782 MODINFO_ATTR(version);
783 MODINFO_ATTR(srcversion);
784
785 static char last_unloaded_module[MODULE_NAME_LEN+1];
786
787 #ifdef CONFIG_MODULE_UNLOAD
788
789 EXPORT_TRACEPOINT_SYMBOL(module_get);
790
791 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
792 #define MODULE_REF_BASE 1
793
794 /* Init the unload section of the module. */
795 static int module_unload_init(struct module *mod)
796 {
797 /*
798 * Initialize reference counter to MODULE_REF_BASE.
799 * refcnt == 0 means module is going.
800 */
801 atomic_set(&mod->refcnt, MODULE_REF_BASE);
802
803 INIT_LIST_HEAD(&mod->source_list);
804 INIT_LIST_HEAD(&mod->target_list);
805
806 /* Hold reference count during initialization. */
807 atomic_inc(&mod->refcnt);
808
809 return 0;
810 }
811
812 /* Does a already use b? */
813 static int already_uses(struct module *a, struct module *b)
814 {
815 struct module_use *use;
816
817 list_for_each_entry(use, &b->source_list, source_list) {
818 if (use->source == a) {
819 pr_debug("%s uses %s!\n", a->name, b->name);
820 return 1;
821 }
822 }
823 pr_debug("%s does not use %s!\n", a->name, b->name);
824 return 0;
825 }
826
827 /*
828 * Module a uses b
829 * - we add 'a' as a "source", 'b' as a "target" of module use
830 * - the module_use is added to the list of 'b' sources (so
831 * 'b' can walk the list to see who sourced them), and of 'a'
832 * targets (so 'a' can see what modules it targets).
833 */
834 static int add_module_usage(struct module *a, struct module *b)
835 {
836 struct module_use *use;
837
838 pr_debug("Allocating new usage for %s.\n", a->name);
839 use = kmalloc(sizeof(*use), GFP_ATOMIC);
840 if (!use) {
841 pr_warn("%s: out of memory loading\n", a->name);
842 return -ENOMEM;
843 }
844
845 use->source = a;
846 use->target = b;
847 list_add(&use->source_list, &b->source_list);
848 list_add(&use->target_list, &a->target_list);
849 return 0;
850 }
851
852 /* Module a uses b: caller needs module_mutex() */
853 int ref_module(struct module *a, struct module *b)
854 {
855 int err;
856
857 if (b == NULL || already_uses(a, b))
858 return 0;
859
860 /* If module isn't available, we fail. */
861 err = strong_try_module_get(b);
862 if (err)
863 return err;
864
865 err = add_module_usage(a, b);
866 if (err) {
867 module_put(b);
868 return err;
869 }
870 return 0;
871 }
872 EXPORT_SYMBOL_GPL(ref_module);
873
874 /* Clear the unload stuff of the module. */
875 static void module_unload_free(struct module *mod)
876 {
877 struct module_use *use, *tmp;
878
879 mutex_lock(&module_mutex);
880 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
881 struct module *i = use->target;
882 pr_debug("%s unusing %s\n", mod->name, i->name);
883 module_put(i);
884 list_del(&use->source_list);
885 list_del(&use->target_list);
886 kfree(use);
887 }
888 mutex_unlock(&module_mutex);
889 }
890
891 #ifdef CONFIG_MODULE_FORCE_UNLOAD
892 static inline int try_force_unload(unsigned int flags)
893 {
894 int ret = (flags & O_TRUNC);
895 if (ret)
896 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
897 return ret;
898 }
899 #else
900 static inline int try_force_unload(unsigned int flags)
901 {
902 return 0;
903 }
904 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
905
906 /* Try to release refcount of module, 0 means success. */
907 static int try_release_module_ref(struct module *mod)
908 {
909 int ret;
910
911 /* Try to decrement refcnt which we set at loading */
912 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
913 BUG_ON(ret < 0);
914 if (ret)
915 /* Someone can put this right now, recover with checking */
916 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
917
918 return ret;
919 }
920
921 static int try_stop_module(struct module *mod, int flags, int *forced)
922 {
923 /* If it's not unused, quit unless we're forcing. */
924 if (try_release_module_ref(mod) != 0) {
925 *forced = try_force_unload(flags);
926 if (!(*forced))
927 return -EWOULDBLOCK;
928 }
929
930 /* Mark it as dying. */
931 mod->state = MODULE_STATE_GOING;
932
933 return 0;
934 }
935
936 /**
937 * module_refcount - return the refcount or -1 if unloading
938 *
939 * @mod: the module we're checking
940 *
941 * Returns:
942 * -1 if the module is in the process of unloading
943 * otherwise the number of references in the kernel to the module
944 */
945 int module_refcount(struct module *mod)
946 {
947 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
948 }
949 EXPORT_SYMBOL(module_refcount);
950
951 /* This exists whether we can unload or not */
952 static void free_module(struct module *mod);
953
954 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
955 unsigned int, flags)
956 {
957 struct module *mod;
958 char name[MODULE_NAME_LEN];
959 int ret, forced = 0;
960
961 if (!capable(CAP_SYS_MODULE) || modules_disabled)
962 return -EPERM;
963
964 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
965 return -EFAULT;
966 name[MODULE_NAME_LEN-1] = '\0';
967
968 audit_log_kern_module(name);
969
970 if (mutex_lock_interruptible(&module_mutex) != 0)
971 return -EINTR;
972
973 mod = find_module(name);
974 if (!mod) {
975 ret = -ENOENT;
976 goto out;
977 }
978
979 if (!list_empty(&mod->source_list)) {
980 /* Other modules depend on us: get rid of them first. */
981 ret = -EWOULDBLOCK;
982 goto out;
983 }
984
985 /* Doing init or already dying? */
986 if (mod->state != MODULE_STATE_LIVE) {
987 /* FIXME: if (force), slam module count damn the torpedoes */
988 pr_debug("%s already dying\n", mod->name);
989 ret = -EBUSY;
990 goto out;
991 }
992
993 /* If it has an init func, it must have an exit func to unload */
994 if (mod->init && !mod->exit) {
995 forced = try_force_unload(flags);
996 if (!forced) {
997 /* This module can't be removed */
998 ret = -EBUSY;
999 goto out;
1000 }
1001 }
1002
1003 /* Stop the machine so refcounts can't move and disable module. */
1004 ret = try_stop_module(mod, flags, &forced);
1005 if (ret != 0)
1006 goto out;
1007
1008 mutex_unlock(&module_mutex);
1009 /* Final destruction now no one is using it. */
1010 if (mod->exit != NULL)
1011 mod->exit();
1012 blocking_notifier_call_chain(&module_notify_list,
1013 MODULE_STATE_GOING, mod);
1014 klp_module_going(mod);
1015 ftrace_release_mod(mod);
1016
1017 async_synchronize_full();
1018
1019 /* Store the name of the last unloaded module for diagnostic purposes */
1020 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1021
1022 free_module(mod);
1023 return 0;
1024 out:
1025 mutex_unlock(&module_mutex);
1026 return ret;
1027 }
1028
1029 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1030 {
1031 struct module_use *use;
1032 int printed_something = 0;
1033
1034 seq_printf(m, " %i ", module_refcount(mod));
1035
1036 /*
1037 * Always include a trailing , so userspace can differentiate
1038 * between this and the old multi-field proc format.
1039 */
1040 list_for_each_entry(use, &mod->source_list, source_list) {
1041 printed_something = 1;
1042 seq_printf(m, "%s,", use->source->name);
1043 }
1044
1045 if (mod->init != NULL && mod->exit == NULL) {
1046 printed_something = 1;
1047 seq_puts(m, "[permanent],");
1048 }
1049
1050 if (!printed_something)
1051 seq_puts(m, "-");
1052 }
1053
1054 void __symbol_put(const char *symbol)
1055 {
1056 struct module *owner;
1057
1058 preempt_disable();
1059 if (!find_symbol(symbol, &owner, NULL, true, false))
1060 BUG();
1061 module_put(owner);
1062 preempt_enable();
1063 }
1064 EXPORT_SYMBOL(__symbol_put);
1065
1066 /* Note this assumes addr is a function, which it currently always is. */
1067 void symbol_put_addr(void *addr)
1068 {
1069 struct module *modaddr;
1070 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1071
1072 if (core_kernel_text(a))
1073 return;
1074
1075 /*
1076 * Even though we hold a reference on the module; we still need to
1077 * disable preemption in order to safely traverse the data structure.
1078 */
1079 preempt_disable();
1080 modaddr = __module_text_address(a);
1081 BUG_ON(!modaddr);
1082 module_put(modaddr);
1083 preempt_enable();
1084 }
1085 EXPORT_SYMBOL_GPL(symbol_put_addr);
1086
1087 static ssize_t show_refcnt(struct module_attribute *mattr,
1088 struct module_kobject *mk, char *buffer)
1089 {
1090 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1091 }
1092
1093 static struct module_attribute modinfo_refcnt =
1094 __ATTR(refcnt, 0444, show_refcnt, NULL);
1095
1096 void __module_get(struct module *module)
1097 {
1098 if (module) {
1099 preempt_disable();
1100 atomic_inc(&module->refcnt);
1101 trace_module_get(module, _RET_IP_);
1102 preempt_enable();
1103 }
1104 }
1105 EXPORT_SYMBOL(__module_get);
1106
1107 bool try_module_get(struct module *module)
1108 {
1109 bool ret = true;
1110
1111 if (module) {
1112 preempt_disable();
1113 /* Note: here, we can fail to get a reference */
1114 if (likely(module_is_live(module) &&
1115 atomic_inc_not_zero(&module->refcnt) != 0))
1116 trace_module_get(module, _RET_IP_);
1117 else
1118 ret = false;
1119
1120 preempt_enable();
1121 }
1122 return ret;
1123 }
1124 EXPORT_SYMBOL(try_module_get);
1125
1126 void module_put(struct module *module)
1127 {
1128 int ret;
1129
1130 if (module) {
1131 preempt_disable();
1132 ret = atomic_dec_if_positive(&module->refcnt);
1133 WARN_ON(ret < 0); /* Failed to put refcount */
1134 trace_module_put(module, _RET_IP_);
1135 preempt_enable();
1136 }
1137 }
1138 EXPORT_SYMBOL(module_put);
1139
1140 #else /* !CONFIG_MODULE_UNLOAD */
1141 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1142 {
1143 /* We don't know the usage count, or what modules are using. */
1144 seq_puts(m, " - -");
1145 }
1146
1147 static inline void module_unload_free(struct module *mod)
1148 {
1149 }
1150
1151 int ref_module(struct module *a, struct module *b)
1152 {
1153 return strong_try_module_get(b);
1154 }
1155 EXPORT_SYMBOL_GPL(ref_module);
1156
1157 static inline int module_unload_init(struct module *mod)
1158 {
1159 return 0;
1160 }
1161 #endif /* CONFIG_MODULE_UNLOAD */
1162
1163 static size_t module_flags_taint(struct module *mod, char *buf)
1164 {
1165 size_t l = 0;
1166 int i;
1167
1168 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1169 if (taint_flags[i].module && test_bit(i, &mod->taints))
1170 buf[l++] = taint_flags[i].c_true;
1171 }
1172
1173 return l;
1174 }
1175
1176 static ssize_t show_initstate(struct module_attribute *mattr,
1177 struct module_kobject *mk, char *buffer)
1178 {
1179 const char *state = "unknown";
1180
1181 switch (mk->mod->state) {
1182 case MODULE_STATE_LIVE:
1183 state = "live";
1184 break;
1185 case MODULE_STATE_COMING:
1186 state = "coming";
1187 break;
1188 case MODULE_STATE_GOING:
1189 state = "going";
1190 break;
1191 default:
1192 BUG();
1193 }
1194 return sprintf(buffer, "%s\n", state);
1195 }
1196
1197 static struct module_attribute modinfo_initstate =
1198 __ATTR(initstate, 0444, show_initstate, NULL);
1199
1200 static ssize_t store_uevent(struct module_attribute *mattr,
1201 struct module_kobject *mk,
1202 const char *buffer, size_t count)
1203 {
1204 int rc;
1205
1206 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1207 return rc ? rc : count;
1208 }
1209
1210 struct module_attribute module_uevent =
1211 __ATTR(uevent, 0200, NULL, store_uevent);
1212
1213 static ssize_t show_coresize(struct module_attribute *mattr,
1214 struct module_kobject *mk, char *buffer)
1215 {
1216 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1217 }
1218
1219 static struct module_attribute modinfo_coresize =
1220 __ATTR(coresize, 0444, show_coresize, NULL);
1221
1222 static ssize_t show_initsize(struct module_attribute *mattr,
1223 struct module_kobject *mk, char *buffer)
1224 {
1225 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1226 }
1227
1228 static struct module_attribute modinfo_initsize =
1229 __ATTR(initsize, 0444, show_initsize, NULL);
1230
1231 static ssize_t show_taint(struct module_attribute *mattr,
1232 struct module_kobject *mk, char *buffer)
1233 {
1234 size_t l;
1235
1236 l = module_flags_taint(mk->mod, buffer);
1237 buffer[l++] = '\n';
1238 return l;
1239 }
1240
1241 static struct module_attribute modinfo_taint =
1242 __ATTR(taint, 0444, show_taint, NULL);
1243
1244 static struct module_attribute *modinfo_attrs[] = {
1245 &module_uevent,
1246 &modinfo_version,
1247 &modinfo_srcversion,
1248 &modinfo_initstate,
1249 &modinfo_coresize,
1250 &modinfo_initsize,
1251 &modinfo_taint,
1252 #ifdef CONFIG_MODULE_UNLOAD
1253 &modinfo_refcnt,
1254 #endif
1255 NULL,
1256 };
1257
1258 static const char vermagic[] = VERMAGIC_STRING;
1259
1260 static int try_to_force_load(struct module *mod, const char *reason)
1261 {
1262 #ifdef CONFIG_MODULE_FORCE_LOAD
1263 if (!test_taint(TAINT_FORCED_MODULE))
1264 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1265 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1266 return 0;
1267 #else
1268 return -ENOEXEC;
1269 #endif
1270 }
1271
1272 #ifdef CONFIG_MODVERSIONS
1273
1274 static u32 resolve_rel_crc(const s32 *crc)
1275 {
1276 return *(u32 *)((void *)crc + *crc);
1277 }
1278
1279 static int check_version(const struct load_info *info,
1280 const char *symname,
1281 struct module *mod,
1282 const s32 *crc)
1283 {
1284 Elf_Shdr *sechdrs = info->sechdrs;
1285 unsigned int versindex = info->index.vers;
1286 unsigned int i, num_versions;
1287 struct modversion_info *versions;
1288
1289 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1290 if (!crc)
1291 return 1;
1292
1293 /* No versions at all? modprobe --force does this. */
1294 if (versindex == 0)
1295 return try_to_force_load(mod, symname) == 0;
1296
1297 versions = (void *) sechdrs[versindex].sh_addr;
1298 num_versions = sechdrs[versindex].sh_size
1299 / sizeof(struct modversion_info);
1300
1301 for (i = 0; i < num_versions; i++) {
1302 u32 crcval;
1303
1304 if (strcmp(versions[i].name, symname) != 0)
1305 continue;
1306
1307 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1308 crcval = resolve_rel_crc(crc);
1309 else
1310 crcval = *crc;
1311 if (versions[i].crc == crcval)
1312 return 1;
1313 pr_debug("Found checksum %X vs module %lX\n",
1314 crcval, versions[i].crc);
1315 goto bad_version;
1316 }
1317
1318 /* Broken toolchain. Warn once, then let it go.. */
1319 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1320 return 1;
1321
1322 bad_version:
1323 pr_warn("%s: disagrees about version of symbol %s\n",
1324 info->name, symname);
1325 return 0;
1326 }
1327
1328 static inline int check_modstruct_version(const struct load_info *info,
1329 struct module *mod)
1330 {
1331 const s32 *crc;
1332
1333 /*
1334 * Since this should be found in kernel (which can't be removed), no
1335 * locking is necessary -- use preempt_disable() to placate lockdep.
1336 */
1337 preempt_disable();
1338 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1339 &crc, true, false)) {
1340 preempt_enable();
1341 BUG();
1342 }
1343 preempt_enable();
1344 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1345 mod, crc);
1346 }
1347
1348 /* First part is kernel version, which we ignore if module has crcs. */
1349 static inline int same_magic(const char *amagic, const char *bmagic,
1350 bool has_crcs)
1351 {
1352 if (has_crcs) {
1353 amagic += strcspn(amagic, " ");
1354 bmagic += strcspn(bmagic, " ");
1355 }
1356 return strcmp(amagic, bmagic) == 0;
1357 }
1358 #else
1359 static inline int check_version(const struct load_info *info,
1360 const char *symname,
1361 struct module *mod,
1362 const s32 *crc)
1363 {
1364 return 1;
1365 }
1366
1367 static inline int check_modstruct_version(const struct load_info *info,
1368 struct module *mod)
1369 {
1370 return 1;
1371 }
1372
1373 static inline int same_magic(const char *amagic, const char *bmagic,
1374 bool has_crcs)
1375 {
1376 return strcmp(amagic, bmagic) == 0;
1377 }
1378 #endif /* CONFIG_MODVERSIONS */
1379
1380 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1381 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1382 const struct load_info *info,
1383 const char *name,
1384 char ownername[])
1385 {
1386 struct module *owner;
1387 const struct kernel_symbol *sym;
1388 const s32 *crc;
1389 int err;
1390
1391 /*
1392 * The module_mutex should not be a heavily contended lock;
1393 * if we get the occasional sleep here, we'll go an extra iteration
1394 * in the wait_event_interruptible(), which is harmless.
1395 */
1396 sched_annotate_sleep();
1397 mutex_lock(&module_mutex);
1398 sym = find_symbol(name, &owner, &crc,
1399 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1400 if (!sym)
1401 goto unlock;
1402
1403 if (!check_version(info, name, mod, crc)) {
1404 sym = ERR_PTR(-EINVAL);
1405 goto getname;
1406 }
1407
1408 err = ref_module(mod, owner);
1409 if (err) {
1410 sym = ERR_PTR(err);
1411 goto getname;
1412 }
1413
1414 getname:
1415 /* We must make copy under the lock if we failed to get ref. */
1416 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1417 unlock:
1418 mutex_unlock(&module_mutex);
1419 return sym;
1420 }
1421
1422 static const struct kernel_symbol *
1423 resolve_symbol_wait(struct module *mod,
1424 const struct load_info *info,
1425 const char *name)
1426 {
1427 const struct kernel_symbol *ksym;
1428 char owner[MODULE_NAME_LEN];
1429
1430 if (wait_event_interruptible_timeout(module_wq,
1431 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1432 || PTR_ERR(ksym) != -EBUSY,
1433 30 * HZ) <= 0) {
1434 pr_warn("%s: gave up waiting for init of module %s.\n",
1435 mod->name, owner);
1436 }
1437 return ksym;
1438 }
1439
1440 /*
1441 * /sys/module/foo/sections stuff
1442 * J. Corbet <corbet@lwn.net>
1443 */
1444 #ifdef CONFIG_SYSFS
1445
1446 #ifdef CONFIG_KALLSYMS
1447 static inline bool sect_empty(const Elf_Shdr *sect)
1448 {
1449 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1450 }
1451
1452 struct module_sect_attr {
1453 struct module_attribute mattr;
1454 char *name;
1455 unsigned long address;
1456 };
1457
1458 struct module_sect_attrs {
1459 struct attribute_group grp;
1460 unsigned int nsections;
1461 struct module_sect_attr attrs[0];
1462 };
1463
1464 static ssize_t module_sect_show(struct module_attribute *mattr,
1465 struct module_kobject *mk, char *buf)
1466 {
1467 struct module_sect_attr *sattr =
1468 container_of(mattr, struct module_sect_attr, mattr);
1469 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1470 }
1471
1472 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1473 {
1474 unsigned int section;
1475
1476 for (section = 0; section < sect_attrs->nsections; section++)
1477 kfree(sect_attrs->attrs[section].name);
1478 kfree(sect_attrs);
1479 }
1480
1481 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1482 {
1483 unsigned int nloaded = 0, i, size[2];
1484 struct module_sect_attrs *sect_attrs;
1485 struct module_sect_attr *sattr;
1486 struct attribute **gattr;
1487
1488 /* Count loaded sections and allocate structures */
1489 for (i = 0; i < info->hdr->e_shnum; i++)
1490 if (!sect_empty(&info->sechdrs[i]))
1491 nloaded++;
1492 size[0] = ALIGN(sizeof(*sect_attrs)
1493 + nloaded * sizeof(sect_attrs->attrs[0]),
1494 sizeof(sect_attrs->grp.attrs[0]));
1495 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1496 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1497 if (sect_attrs == NULL)
1498 return;
1499
1500 /* Setup section attributes. */
1501 sect_attrs->grp.name = "sections";
1502 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1503
1504 sect_attrs->nsections = 0;
1505 sattr = &sect_attrs->attrs[0];
1506 gattr = &sect_attrs->grp.attrs[0];
1507 for (i = 0; i < info->hdr->e_shnum; i++) {
1508 Elf_Shdr *sec = &info->sechdrs[i];
1509 if (sect_empty(sec))
1510 continue;
1511 sattr->address = sec->sh_addr;
1512 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1513 GFP_KERNEL);
1514 if (sattr->name == NULL)
1515 goto out;
1516 sect_attrs->nsections++;
1517 sysfs_attr_init(&sattr->mattr.attr);
1518 sattr->mattr.show = module_sect_show;
1519 sattr->mattr.store = NULL;
1520 sattr->mattr.attr.name = sattr->name;
1521 sattr->mattr.attr.mode = S_IRUGO;
1522 *(gattr++) = &(sattr++)->mattr.attr;
1523 }
1524 *gattr = NULL;
1525
1526 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1527 goto out;
1528
1529 mod->sect_attrs = sect_attrs;
1530 return;
1531 out:
1532 free_sect_attrs(sect_attrs);
1533 }
1534
1535 static void remove_sect_attrs(struct module *mod)
1536 {
1537 if (mod->sect_attrs) {
1538 sysfs_remove_group(&mod->mkobj.kobj,
1539 &mod->sect_attrs->grp);
1540 /* We are positive that no one is using any sect attrs
1541 * at this point. Deallocate immediately. */
1542 free_sect_attrs(mod->sect_attrs);
1543 mod->sect_attrs = NULL;
1544 }
1545 }
1546
1547 /*
1548 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1549 */
1550
1551 struct module_notes_attrs {
1552 struct kobject *dir;
1553 unsigned int notes;
1554 struct bin_attribute attrs[0];
1555 };
1556
1557 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1558 struct bin_attribute *bin_attr,
1559 char *buf, loff_t pos, size_t count)
1560 {
1561 /*
1562 * The caller checked the pos and count against our size.
1563 */
1564 memcpy(buf, bin_attr->private + pos, count);
1565 return count;
1566 }
1567
1568 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1569 unsigned int i)
1570 {
1571 if (notes_attrs->dir) {
1572 while (i-- > 0)
1573 sysfs_remove_bin_file(notes_attrs->dir,
1574 &notes_attrs->attrs[i]);
1575 kobject_put(notes_attrs->dir);
1576 }
1577 kfree(notes_attrs);
1578 }
1579
1580 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1581 {
1582 unsigned int notes, loaded, i;
1583 struct module_notes_attrs *notes_attrs;
1584 struct bin_attribute *nattr;
1585
1586 /* failed to create section attributes, so can't create notes */
1587 if (!mod->sect_attrs)
1588 return;
1589
1590 /* Count notes sections and allocate structures. */
1591 notes = 0;
1592 for (i = 0; i < info->hdr->e_shnum; i++)
1593 if (!sect_empty(&info->sechdrs[i]) &&
1594 (info->sechdrs[i].sh_type == SHT_NOTE))
1595 ++notes;
1596
1597 if (notes == 0)
1598 return;
1599
1600 notes_attrs = kzalloc(sizeof(*notes_attrs)
1601 + notes * sizeof(notes_attrs->attrs[0]),
1602 GFP_KERNEL);
1603 if (notes_attrs == NULL)
1604 return;
1605
1606 notes_attrs->notes = notes;
1607 nattr = &notes_attrs->attrs[0];
1608 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1609 if (sect_empty(&info->sechdrs[i]))
1610 continue;
1611 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1612 sysfs_bin_attr_init(nattr);
1613 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1614 nattr->attr.mode = S_IRUGO;
1615 nattr->size = info->sechdrs[i].sh_size;
1616 nattr->private = (void *) info->sechdrs[i].sh_addr;
1617 nattr->read = module_notes_read;
1618 ++nattr;
1619 }
1620 ++loaded;
1621 }
1622
1623 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1624 if (!notes_attrs->dir)
1625 goto out;
1626
1627 for (i = 0; i < notes; ++i)
1628 if (sysfs_create_bin_file(notes_attrs->dir,
1629 &notes_attrs->attrs[i]))
1630 goto out;
1631
1632 mod->notes_attrs = notes_attrs;
1633 return;
1634
1635 out:
1636 free_notes_attrs(notes_attrs, i);
1637 }
1638
1639 static void remove_notes_attrs(struct module *mod)
1640 {
1641 if (mod->notes_attrs)
1642 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1643 }
1644
1645 #else
1646
1647 static inline void add_sect_attrs(struct module *mod,
1648 const struct load_info *info)
1649 {
1650 }
1651
1652 static inline void remove_sect_attrs(struct module *mod)
1653 {
1654 }
1655
1656 static inline void add_notes_attrs(struct module *mod,
1657 const struct load_info *info)
1658 {
1659 }
1660
1661 static inline void remove_notes_attrs(struct module *mod)
1662 {
1663 }
1664 #endif /* CONFIG_KALLSYMS */
1665
1666 static void del_usage_links(struct module *mod)
1667 {
1668 #ifdef CONFIG_MODULE_UNLOAD
1669 struct module_use *use;
1670
1671 mutex_lock(&module_mutex);
1672 list_for_each_entry(use, &mod->target_list, target_list)
1673 sysfs_remove_link(use->target->holders_dir, mod->name);
1674 mutex_unlock(&module_mutex);
1675 #endif
1676 }
1677
1678 static int add_usage_links(struct module *mod)
1679 {
1680 int ret = 0;
1681 #ifdef CONFIG_MODULE_UNLOAD
1682 struct module_use *use;
1683
1684 mutex_lock(&module_mutex);
1685 list_for_each_entry(use, &mod->target_list, target_list) {
1686 ret = sysfs_create_link(use->target->holders_dir,
1687 &mod->mkobj.kobj, mod->name);
1688 if (ret)
1689 break;
1690 }
1691 mutex_unlock(&module_mutex);
1692 if (ret)
1693 del_usage_links(mod);
1694 #endif
1695 return ret;
1696 }
1697
1698 static int module_add_modinfo_attrs(struct module *mod)
1699 {
1700 struct module_attribute *attr;
1701 struct module_attribute *temp_attr;
1702 int error = 0;
1703 int i;
1704
1705 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1706 (ARRAY_SIZE(modinfo_attrs) + 1)),
1707 GFP_KERNEL);
1708 if (!mod->modinfo_attrs)
1709 return -ENOMEM;
1710
1711 temp_attr = mod->modinfo_attrs;
1712 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1713 if (!attr->test || attr->test(mod)) {
1714 memcpy(temp_attr, attr, sizeof(*temp_attr));
1715 sysfs_attr_init(&temp_attr->attr);
1716 error = sysfs_create_file(&mod->mkobj.kobj,
1717 &temp_attr->attr);
1718 ++temp_attr;
1719 }
1720 }
1721 return error;
1722 }
1723
1724 static void module_remove_modinfo_attrs(struct module *mod)
1725 {
1726 struct module_attribute *attr;
1727 int i;
1728
1729 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1730 /* pick a field to test for end of list */
1731 if (!attr->attr.name)
1732 break;
1733 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1734 if (attr->free)
1735 attr->free(mod);
1736 }
1737 kfree(mod->modinfo_attrs);
1738 }
1739
1740 static void mod_kobject_put(struct module *mod)
1741 {
1742 DECLARE_COMPLETION_ONSTACK(c);
1743 mod->mkobj.kobj_completion = &c;
1744 kobject_put(&mod->mkobj.kobj);
1745 wait_for_completion(&c);
1746 }
1747
1748 static int mod_sysfs_init(struct module *mod)
1749 {
1750 int err;
1751 struct kobject *kobj;
1752
1753 if (!module_sysfs_initialized) {
1754 pr_err("%s: module sysfs not initialized\n", mod->name);
1755 err = -EINVAL;
1756 goto out;
1757 }
1758
1759 kobj = kset_find_obj(module_kset, mod->name);
1760 if (kobj) {
1761 pr_err("%s: module is already loaded\n", mod->name);
1762 kobject_put(kobj);
1763 err = -EINVAL;
1764 goto out;
1765 }
1766
1767 mod->mkobj.mod = mod;
1768
1769 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1770 mod->mkobj.kobj.kset = module_kset;
1771 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1772 "%s", mod->name);
1773 if (err)
1774 mod_kobject_put(mod);
1775
1776 /* delay uevent until full sysfs population */
1777 out:
1778 return err;
1779 }
1780
1781 static int mod_sysfs_setup(struct module *mod,
1782 const struct load_info *info,
1783 struct kernel_param *kparam,
1784 unsigned int num_params)
1785 {
1786 int err;
1787
1788 err = mod_sysfs_init(mod);
1789 if (err)
1790 goto out;
1791
1792 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1793 if (!mod->holders_dir) {
1794 err = -ENOMEM;
1795 goto out_unreg;
1796 }
1797
1798 err = module_param_sysfs_setup(mod, kparam, num_params);
1799 if (err)
1800 goto out_unreg_holders;
1801
1802 err = module_add_modinfo_attrs(mod);
1803 if (err)
1804 goto out_unreg_param;
1805
1806 err = add_usage_links(mod);
1807 if (err)
1808 goto out_unreg_modinfo_attrs;
1809
1810 add_sect_attrs(mod, info);
1811 add_notes_attrs(mod, info);
1812
1813 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1814 return 0;
1815
1816 out_unreg_modinfo_attrs:
1817 module_remove_modinfo_attrs(mod);
1818 out_unreg_param:
1819 module_param_sysfs_remove(mod);
1820 out_unreg_holders:
1821 kobject_put(mod->holders_dir);
1822 out_unreg:
1823 mod_kobject_put(mod);
1824 out:
1825 return err;
1826 }
1827
1828 static void mod_sysfs_fini(struct module *mod)
1829 {
1830 remove_notes_attrs(mod);
1831 remove_sect_attrs(mod);
1832 mod_kobject_put(mod);
1833 }
1834
1835 static void init_param_lock(struct module *mod)
1836 {
1837 mutex_init(&mod->param_lock);
1838 }
1839 #else /* !CONFIG_SYSFS */
1840
1841 static int mod_sysfs_setup(struct module *mod,
1842 const struct load_info *info,
1843 struct kernel_param *kparam,
1844 unsigned int num_params)
1845 {
1846 return 0;
1847 }
1848
1849 static void mod_sysfs_fini(struct module *mod)
1850 {
1851 }
1852
1853 static void module_remove_modinfo_attrs(struct module *mod)
1854 {
1855 }
1856
1857 static void del_usage_links(struct module *mod)
1858 {
1859 }
1860
1861 static void init_param_lock(struct module *mod)
1862 {
1863 }
1864 #endif /* CONFIG_SYSFS */
1865
1866 static void mod_sysfs_teardown(struct module *mod)
1867 {
1868 del_usage_links(mod);
1869 module_remove_modinfo_attrs(mod);
1870 module_param_sysfs_remove(mod);
1871 kobject_put(mod->mkobj.drivers_dir);
1872 kobject_put(mod->holders_dir);
1873 mod_sysfs_fini(mod);
1874 }
1875
1876 #ifdef CONFIG_STRICT_MODULE_RWX
1877 /*
1878 * LKM RO/NX protection: protect module's text/ro-data
1879 * from modification and any data from execution.
1880 *
1881 * General layout of module is:
1882 * [text] [read-only-data] [ro-after-init] [writable data]
1883 * text_size -----^ ^ ^ ^
1884 * ro_size ------------------------| | |
1885 * ro_after_init_size -----------------------------| |
1886 * size -----------------------------------------------------------|
1887 *
1888 * These values are always page-aligned (as is base)
1889 */
1890 static void frob_text(const struct module_layout *layout,
1891 int (*set_memory)(unsigned long start, int num_pages))
1892 {
1893 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1894 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1895 set_memory((unsigned long)layout->base,
1896 layout->text_size >> PAGE_SHIFT);
1897 }
1898
1899 static void frob_rodata(const struct module_layout *layout,
1900 int (*set_memory)(unsigned long start, int num_pages))
1901 {
1902 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1903 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1904 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1905 set_memory((unsigned long)layout->base + layout->text_size,
1906 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1907 }
1908
1909 static void frob_ro_after_init(const struct module_layout *layout,
1910 int (*set_memory)(unsigned long start, int num_pages))
1911 {
1912 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1913 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1914 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1915 set_memory((unsigned long)layout->base + layout->ro_size,
1916 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1917 }
1918
1919 static void frob_writable_data(const struct module_layout *layout,
1920 int (*set_memory)(unsigned long start, int num_pages))
1921 {
1922 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1923 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1924 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1925 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1926 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1927 }
1928
1929 /* livepatching wants to disable read-only so it can frob module. */
1930 void module_disable_ro(const struct module *mod)
1931 {
1932 if (!rodata_enabled)
1933 return;
1934
1935 frob_text(&mod->core_layout, set_memory_rw);
1936 frob_rodata(&mod->core_layout, set_memory_rw);
1937 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1938 frob_text(&mod->init_layout, set_memory_rw);
1939 frob_rodata(&mod->init_layout, set_memory_rw);
1940 }
1941
1942 void module_enable_ro(const struct module *mod, bool after_init)
1943 {
1944 if (!rodata_enabled)
1945 return;
1946
1947 frob_text(&mod->core_layout, set_memory_ro);
1948 frob_rodata(&mod->core_layout, set_memory_ro);
1949 frob_text(&mod->init_layout, set_memory_ro);
1950 frob_rodata(&mod->init_layout, set_memory_ro);
1951
1952 if (after_init)
1953 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1954 }
1955
1956 static void module_enable_nx(const struct module *mod)
1957 {
1958 frob_rodata(&mod->core_layout, set_memory_nx);
1959 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1960 frob_writable_data(&mod->core_layout, set_memory_nx);
1961 frob_rodata(&mod->init_layout, set_memory_nx);
1962 frob_writable_data(&mod->init_layout, set_memory_nx);
1963 }
1964
1965 static void module_disable_nx(const struct module *mod)
1966 {
1967 frob_rodata(&mod->core_layout, set_memory_x);
1968 frob_ro_after_init(&mod->core_layout, set_memory_x);
1969 frob_writable_data(&mod->core_layout, set_memory_x);
1970 frob_rodata(&mod->init_layout, set_memory_x);
1971 frob_writable_data(&mod->init_layout, set_memory_x);
1972 }
1973
1974 /* Iterate through all modules and set each module's text as RW */
1975 void set_all_modules_text_rw(void)
1976 {
1977 struct module *mod;
1978
1979 if (!rodata_enabled)
1980 return;
1981
1982 mutex_lock(&module_mutex);
1983 list_for_each_entry_rcu(mod, &modules, list) {
1984 if (mod->state == MODULE_STATE_UNFORMED)
1985 continue;
1986
1987 frob_text(&mod->core_layout, set_memory_rw);
1988 frob_text(&mod->init_layout, set_memory_rw);
1989 }
1990 mutex_unlock(&module_mutex);
1991 }
1992
1993 /* Iterate through all modules and set each module's text as RO */
1994 void set_all_modules_text_ro(void)
1995 {
1996 struct module *mod;
1997
1998 if (!rodata_enabled)
1999 return;
2000
2001 mutex_lock(&module_mutex);
2002 list_for_each_entry_rcu(mod, &modules, list) {
2003 /*
2004 * Ignore going modules since it's possible that ro
2005 * protection has already been disabled, otherwise we'll
2006 * run into protection faults at module deallocation.
2007 */
2008 if (mod->state == MODULE_STATE_UNFORMED ||
2009 mod->state == MODULE_STATE_GOING)
2010 continue;
2011
2012 frob_text(&mod->core_layout, set_memory_ro);
2013 frob_text(&mod->init_layout, set_memory_ro);
2014 }
2015 mutex_unlock(&module_mutex);
2016 }
2017
2018 static void disable_ro_nx(const struct module_layout *layout)
2019 {
2020 if (rodata_enabled) {
2021 frob_text(layout, set_memory_rw);
2022 frob_rodata(layout, set_memory_rw);
2023 frob_ro_after_init(layout, set_memory_rw);
2024 }
2025 frob_rodata(layout, set_memory_x);
2026 frob_ro_after_init(layout, set_memory_x);
2027 frob_writable_data(layout, set_memory_x);
2028 }
2029
2030 #else
2031 static void disable_ro_nx(const struct module_layout *layout) { }
2032 static void module_enable_nx(const struct module *mod) { }
2033 static void module_disable_nx(const struct module *mod) { }
2034 #endif
2035
2036 #ifdef CONFIG_LIVEPATCH
2037 /*
2038 * Persist Elf information about a module. Copy the Elf header,
2039 * section header table, section string table, and symtab section
2040 * index from info to mod->klp_info.
2041 */
2042 static int copy_module_elf(struct module *mod, struct load_info *info)
2043 {
2044 unsigned int size, symndx;
2045 int ret;
2046
2047 size = sizeof(*mod->klp_info);
2048 mod->klp_info = kmalloc(size, GFP_KERNEL);
2049 if (mod->klp_info == NULL)
2050 return -ENOMEM;
2051
2052 /* Elf header */
2053 size = sizeof(mod->klp_info->hdr);
2054 memcpy(&mod->klp_info->hdr, info->hdr, size);
2055
2056 /* Elf section header table */
2057 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2058 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2059 if (mod->klp_info->sechdrs == NULL) {
2060 ret = -ENOMEM;
2061 goto free_info;
2062 }
2063 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2064
2065 /* Elf section name string table */
2066 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2067 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2068 if (mod->klp_info->secstrings == NULL) {
2069 ret = -ENOMEM;
2070 goto free_sechdrs;
2071 }
2072 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2073
2074 /* Elf symbol section index */
2075 symndx = info->index.sym;
2076 mod->klp_info->symndx = symndx;
2077
2078 /*
2079 * For livepatch modules, core_kallsyms.symtab is a complete
2080 * copy of the original symbol table. Adjust sh_addr to point
2081 * to core_kallsyms.symtab since the copy of the symtab in module
2082 * init memory is freed at the end of do_init_module().
2083 */
2084 mod->klp_info->sechdrs[symndx].sh_addr = \
2085 (unsigned long) mod->core_kallsyms.symtab;
2086
2087 return 0;
2088
2089 free_sechdrs:
2090 kfree(mod->klp_info->sechdrs);
2091 free_info:
2092 kfree(mod->klp_info);
2093 return ret;
2094 }
2095
2096 static void free_module_elf(struct module *mod)
2097 {
2098 kfree(mod->klp_info->sechdrs);
2099 kfree(mod->klp_info->secstrings);
2100 kfree(mod->klp_info);
2101 }
2102 #else /* !CONFIG_LIVEPATCH */
2103 static int copy_module_elf(struct module *mod, struct load_info *info)
2104 {
2105 return 0;
2106 }
2107
2108 static void free_module_elf(struct module *mod)
2109 {
2110 }
2111 #endif /* CONFIG_LIVEPATCH */
2112
2113 void __weak module_memfree(void *module_region)
2114 {
2115 vfree(module_region);
2116 }
2117
2118 void __weak module_arch_cleanup(struct module *mod)
2119 {
2120 }
2121
2122 void __weak module_arch_freeing_init(struct module *mod)
2123 {
2124 }
2125
2126 /* Free a module, remove from lists, etc. */
2127 static void free_module(struct module *mod)
2128 {
2129 trace_module_free(mod);
2130
2131 mod_sysfs_teardown(mod);
2132
2133 /* We leave it in list to prevent duplicate loads, but make sure
2134 * that noone uses it while it's being deconstructed. */
2135 mutex_lock(&module_mutex);
2136 mod->state = MODULE_STATE_UNFORMED;
2137 mutex_unlock(&module_mutex);
2138
2139 /* Remove dynamic debug info */
2140 ddebug_remove_module(mod->name);
2141
2142 /* Arch-specific cleanup. */
2143 module_arch_cleanup(mod);
2144
2145 /* Module unload stuff */
2146 module_unload_free(mod);
2147
2148 /* Free any allocated parameters. */
2149 destroy_params(mod->kp, mod->num_kp);
2150
2151 if (is_livepatch_module(mod))
2152 free_module_elf(mod);
2153
2154 /* Now we can delete it from the lists */
2155 mutex_lock(&module_mutex);
2156 /* Unlink carefully: kallsyms could be walking list. */
2157 list_del_rcu(&mod->list);
2158 mod_tree_remove(mod);
2159 /* Remove this module from bug list, this uses list_del_rcu */
2160 module_bug_cleanup(mod);
2161 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2162 synchronize_sched();
2163 mutex_unlock(&module_mutex);
2164
2165 /* This may be empty, but that's OK */
2166 disable_ro_nx(&mod->init_layout);
2167 module_arch_freeing_init(mod);
2168 module_memfree(mod->init_layout.base);
2169 kfree(mod->args);
2170 percpu_modfree(mod);
2171
2172 /* Free lock-classes; relies on the preceding sync_rcu(). */
2173 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2174
2175 /* Finally, free the core (containing the module structure) */
2176 disable_ro_nx(&mod->core_layout);
2177 module_memfree(mod->core_layout.base);
2178
2179 #ifdef CONFIG_MPU
2180 update_protections(current->mm);
2181 #endif
2182 }
2183
2184 void *__symbol_get(const char *symbol)
2185 {
2186 struct module *owner;
2187 const struct kernel_symbol *sym;
2188
2189 preempt_disable();
2190 sym = find_symbol(symbol, &owner, NULL, true, true);
2191 if (sym && strong_try_module_get(owner))
2192 sym = NULL;
2193 preempt_enable();
2194
2195 return sym ? (void *)sym->value : NULL;
2196 }
2197 EXPORT_SYMBOL_GPL(__symbol_get);
2198
2199 /*
2200 * Ensure that an exported symbol [global namespace] does not already exist
2201 * in the kernel or in some other module's exported symbol table.
2202 *
2203 * You must hold the module_mutex.
2204 */
2205 static int verify_export_symbols(struct module *mod)
2206 {
2207 unsigned int i;
2208 struct module *owner;
2209 const struct kernel_symbol *s;
2210 struct {
2211 const struct kernel_symbol *sym;
2212 unsigned int num;
2213 } arr[] = {
2214 { mod->syms, mod->num_syms },
2215 { mod->gpl_syms, mod->num_gpl_syms },
2216 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2217 #ifdef CONFIG_UNUSED_SYMBOLS
2218 { mod->unused_syms, mod->num_unused_syms },
2219 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2220 #endif
2221 };
2222
2223 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2224 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2225 if (find_symbol(s->name, &owner, NULL, true, false)) {
2226 pr_err("%s: exports duplicate symbol %s"
2227 " (owned by %s)\n",
2228 mod->name, s->name, module_name(owner));
2229 return -ENOEXEC;
2230 }
2231 }
2232 }
2233 return 0;
2234 }
2235
2236 /* Change all symbols so that st_value encodes the pointer directly. */
2237 static int simplify_symbols(struct module *mod, const struct load_info *info)
2238 {
2239 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2240 Elf_Sym *sym = (void *)symsec->sh_addr;
2241 unsigned long secbase;
2242 unsigned int i;
2243 int ret = 0;
2244 const struct kernel_symbol *ksym;
2245
2246 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2247 const char *name = info->strtab + sym[i].st_name;
2248
2249 switch (sym[i].st_shndx) {
2250 case SHN_COMMON:
2251 /* Ignore common symbols */
2252 if (!strncmp(name, "__gnu_lto", 9))
2253 break;
2254
2255 /* We compiled with -fno-common. These are not
2256 supposed to happen. */
2257 pr_debug("Common symbol: %s\n", name);
2258 pr_warn("%s: please compile with -fno-common\n",
2259 mod->name);
2260 ret = -ENOEXEC;
2261 break;
2262
2263 case SHN_ABS:
2264 /* Don't need to do anything */
2265 pr_debug("Absolute symbol: 0x%08lx\n",
2266 (long)sym[i].st_value);
2267 break;
2268
2269 case SHN_LIVEPATCH:
2270 /* Livepatch symbols are resolved by livepatch */
2271 break;
2272
2273 case SHN_UNDEF:
2274 ksym = resolve_symbol_wait(mod, info, name);
2275 /* Ok if resolved. */
2276 if (ksym && !IS_ERR(ksym)) {
2277 sym[i].st_value = ksym->value;
2278 break;
2279 }
2280
2281 /* Ok if weak. */
2282 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2283 break;
2284
2285 pr_warn("%s: Unknown symbol %s (err %li)\n",
2286 mod->name, name, PTR_ERR(ksym));
2287 ret = PTR_ERR(ksym) ?: -ENOENT;
2288 break;
2289
2290 default:
2291 /* Divert to percpu allocation if a percpu var. */
2292 if (sym[i].st_shndx == info->index.pcpu)
2293 secbase = (unsigned long)mod_percpu(mod);
2294 else
2295 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2296 sym[i].st_value += secbase;
2297 break;
2298 }
2299 }
2300
2301 return ret;
2302 }
2303
2304 static int apply_relocations(struct module *mod, const struct load_info *info)
2305 {
2306 unsigned int i;
2307 int err = 0;
2308
2309 /* Now do relocations. */
2310 for (i = 1; i < info->hdr->e_shnum; i++) {
2311 unsigned int infosec = info->sechdrs[i].sh_info;
2312
2313 /* Not a valid relocation section? */
2314 if (infosec >= info->hdr->e_shnum)
2315 continue;
2316
2317 /* Don't bother with non-allocated sections */
2318 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2319 continue;
2320
2321 /* Livepatch relocation sections are applied by livepatch */
2322 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2323 continue;
2324
2325 if (info->sechdrs[i].sh_type == SHT_REL)
2326 err = apply_relocate(info->sechdrs, info->strtab,
2327 info->index.sym, i, mod);
2328 else if (info->sechdrs[i].sh_type == SHT_RELA)
2329 err = apply_relocate_add(info->sechdrs, info->strtab,
2330 info->index.sym, i, mod);
2331 if (err < 0)
2332 break;
2333 }
2334 return err;
2335 }
2336
2337 /* Additional bytes needed by arch in front of individual sections */
2338 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2339 unsigned int section)
2340 {
2341 /* default implementation just returns zero */
2342 return 0;
2343 }
2344
2345 /* Update size with this section: return offset. */
2346 static long get_offset(struct module *mod, unsigned int *size,
2347 Elf_Shdr *sechdr, unsigned int section)
2348 {
2349 long ret;
2350
2351 *size += arch_mod_section_prepend(mod, section);
2352 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2353 *size = ret + sechdr->sh_size;
2354 return ret;
2355 }
2356
2357 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2358 might -- code, read-only data, read-write data, small data. Tally
2359 sizes, and place the offsets into sh_entsize fields: high bit means it
2360 belongs in init. */
2361 static void layout_sections(struct module *mod, struct load_info *info)
2362 {
2363 static unsigned long const masks[][2] = {
2364 /* NOTE: all executable code must be the first section
2365 * in this array; otherwise modify the text_size
2366 * finder in the two loops below */
2367 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2368 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2369 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2370 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2371 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2372 };
2373 unsigned int m, i;
2374
2375 for (i = 0; i < info->hdr->e_shnum; i++)
2376 info->sechdrs[i].sh_entsize = ~0UL;
2377
2378 pr_debug("Core section allocation order:\n");
2379 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2380 for (i = 0; i < info->hdr->e_shnum; ++i) {
2381 Elf_Shdr *s = &info->sechdrs[i];
2382 const char *sname = info->secstrings + s->sh_name;
2383
2384 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2385 || (s->sh_flags & masks[m][1])
2386 || s->sh_entsize != ~0UL
2387 || strstarts(sname, ".init"))
2388 continue;
2389 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2390 pr_debug("\t%s\n", sname);
2391 }
2392 switch (m) {
2393 case 0: /* executable */
2394 mod->core_layout.size = debug_align(mod->core_layout.size);
2395 mod->core_layout.text_size = mod->core_layout.size;
2396 break;
2397 case 1: /* RO: text and ro-data */
2398 mod->core_layout.size = debug_align(mod->core_layout.size);
2399 mod->core_layout.ro_size = mod->core_layout.size;
2400 break;
2401 case 2: /* RO after init */
2402 mod->core_layout.size = debug_align(mod->core_layout.size);
2403 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2404 break;
2405 case 4: /* whole core */
2406 mod->core_layout.size = debug_align(mod->core_layout.size);
2407 break;
2408 }
2409 }
2410
2411 pr_debug("Init section allocation order:\n");
2412 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2413 for (i = 0; i < info->hdr->e_shnum; ++i) {
2414 Elf_Shdr *s = &info->sechdrs[i];
2415 const char *sname = info->secstrings + s->sh_name;
2416
2417 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2418 || (s->sh_flags & masks[m][1])
2419 || s->sh_entsize != ~0UL
2420 || !strstarts(sname, ".init"))
2421 continue;
2422 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2423 | INIT_OFFSET_MASK);
2424 pr_debug("\t%s\n", sname);
2425 }
2426 switch (m) {
2427 case 0: /* executable */
2428 mod->init_layout.size = debug_align(mod->init_layout.size);
2429 mod->init_layout.text_size = mod->init_layout.size;
2430 break;
2431 case 1: /* RO: text and ro-data */
2432 mod->init_layout.size = debug_align(mod->init_layout.size);
2433 mod->init_layout.ro_size = mod->init_layout.size;
2434 break;
2435 case 2:
2436 /*
2437 * RO after init doesn't apply to init_layout (only
2438 * core_layout), so it just takes the value of ro_size.
2439 */
2440 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2441 break;
2442 case 4: /* whole init */
2443 mod->init_layout.size = debug_align(mod->init_layout.size);
2444 break;
2445 }
2446 }
2447 }
2448
2449 static void set_license(struct module *mod, const char *license)
2450 {
2451 if (!license)
2452 license = "unspecified";
2453
2454 if (!license_is_gpl_compatible(license)) {
2455 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2456 pr_warn("%s: module license '%s' taints kernel.\n",
2457 mod->name, license);
2458 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2459 LOCKDEP_NOW_UNRELIABLE);
2460 }
2461 }
2462
2463 /* Parse tag=value strings from .modinfo section */
2464 static char *next_string(char *string, unsigned long *secsize)
2465 {
2466 /* Skip non-zero chars */
2467 while (string[0]) {
2468 string++;
2469 if ((*secsize)-- <= 1)
2470 return NULL;
2471 }
2472
2473 /* Skip any zero padding. */
2474 while (!string[0]) {
2475 string++;
2476 if ((*secsize)-- <= 1)
2477 return NULL;
2478 }
2479 return string;
2480 }
2481
2482 static char *get_modinfo(struct load_info *info, const char *tag)
2483 {
2484 char *p;
2485 unsigned int taglen = strlen(tag);
2486 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2487 unsigned long size = infosec->sh_size;
2488
2489 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2490 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2491 return p + taglen + 1;
2492 }
2493 return NULL;
2494 }
2495
2496 static void setup_modinfo(struct module *mod, struct load_info *info)
2497 {
2498 struct module_attribute *attr;
2499 int i;
2500
2501 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2502 if (attr->setup)
2503 attr->setup(mod, get_modinfo(info, attr->attr.name));
2504 }
2505 }
2506
2507 static void free_modinfo(struct module *mod)
2508 {
2509 struct module_attribute *attr;
2510 int i;
2511
2512 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2513 if (attr->free)
2514 attr->free(mod);
2515 }
2516 }
2517
2518 #ifdef CONFIG_KALLSYMS
2519
2520 /* lookup symbol in given range of kernel_symbols */
2521 static const struct kernel_symbol *lookup_symbol(const char *name,
2522 const struct kernel_symbol *start,
2523 const struct kernel_symbol *stop)
2524 {
2525 return bsearch(name, start, stop - start,
2526 sizeof(struct kernel_symbol), cmp_name);
2527 }
2528
2529 static int is_exported(const char *name, unsigned long value,
2530 const struct module *mod)
2531 {
2532 const struct kernel_symbol *ks;
2533 if (!mod)
2534 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2535 else
2536 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2537 return ks != NULL && ks->value == value;
2538 }
2539
2540 /* As per nm */
2541 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2542 {
2543 const Elf_Shdr *sechdrs = info->sechdrs;
2544
2545 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2546 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2547 return 'v';
2548 else
2549 return 'w';
2550 }
2551 if (sym->st_shndx == SHN_UNDEF)
2552 return 'U';
2553 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2554 return 'a';
2555 if (sym->st_shndx >= SHN_LORESERVE)
2556 return '?';
2557 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2558 return 't';
2559 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2560 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2561 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2562 return 'r';
2563 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2564 return 'g';
2565 else
2566 return 'd';
2567 }
2568 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2569 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2570 return 's';
2571 else
2572 return 'b';
2573 }
2574 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2575 ".debug")) {
2576 return 'n';
2577 }
2578 return '?';
2579 }
2580
2581 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2582 unsigned int shnum, unsigned int pcpundx)
2583 {
2584 const Elf_Shdr *sec;
2585
2586 if (src->st_shndx == SHN_UNDEF
2587 || src->st_shndx >= shnum
2588 || !src->st_name)
2589 return false;
2590
2591 #ifdef CONFIG_KALLSYMS_ALL
2592 if (src->st_shndx == pcpundx)
2593 return true;
2594 #endif
2595
2596 sec = sechdrs + src->st_shndx;
2597 if (!(sec->sh_flags & SHF_ALLOC)
2598 #ifndef CONFIG_KALLSYMS_ALL
2599 || !(sec->sh_flags & SHF_EXECINSTR)
2600 #endif
2601 || (sec->sh_entsize & INIT_OFFSET_MASK))
2602 return false;
2603
2604 return true;
2605 }
2606
2607 /*
2608 * We only allocate and copy the strings needed by the parts of symtab
2609 * we keep. This is simple, but has the effect of making multiple
2610 * copies of duplicates. We could be more sophisticated, see
2611 * linux-kernel thread starting with
2612 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2613 */
2614 static void layout_symtab(struct module *mod, struct load_info *info)
2615 {
2616 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2617 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2618 const Elf_Sym *src;
2619 unsigned int i, nsrc, ndst, strtab_size = 0;
2620
2621 /* Put symbol section at end of init part of module. */
2622 symsect->sh_flags |= SHF_ALLOC;
2623 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2624 info->index.sym) | INIT_OFFSET_MASK;
2625 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2626
2627 src = (void *)info->hdr + symsect->sh_offset;
2628 nsrc = symsect->sh_size / sizeof(*src);
2629
2630 /* Compute total space required for the core symbols' strtab. */
2631 for (ndst = i = 0; i < nsrc; i++) {
2632 if (i == 0 || is_livepatch_module(mod) ||
2633 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2634 info->index.pcpu)) {
2635 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2636 ndst++;
2637 }
2638 }
2639
2640 /* Append room for core symbols at end of core part. */
2641 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2642 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2643 mod->core_layout.size += strtab_size;
2644 mod->core_layout.size = debug_align(mod->core_layout.size);
2645
2646 /* Put string table section at end of init part of module. */
2647 strsect->sh_flags |= SHF_ALLOC;
2648 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2649 info->index.str) | INIT_OFFSET_MASK;
2650 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2651
2652 /* We'll tack temporary mod_kallsyms on the end. */
2653 mod->init_layout.size = ALIGN(mod->init_layout.size,
2654 __alignof__(struct mod_kallsyms));
2655 info->mod_kallsyms_init_off = mod->init_layout.size;
2656 mod->init_layout.size += sizeof(struct mod_kallsyms);
2657 mod->init_layout.size = debug_align(mod->init_layout.size);
2658 }
2659
2660 /*
2661 * We use the full symtab and strtab which layout_symtab arranged to
2662 * be appended to the init section. Later we switch to the cut-down
2663 * core-only ones.
2664 */
2665 static void add_kallsyms(struct module *mod, const struct load_info *info)
2666 {
2667 unsigned int i, ndst;
2668 const Elf_Sym *src;
2669 Elf_Sym *dst;
2670 char *s;
2671 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2672
2673 /* Set up to point into init section. */
2674 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2675
2676 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2677 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2678 /* Make sure we get permanent strtab: don't use info->strtab. */
2679 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2680
2681 /* Set types up while we still have access to sections. */
2682 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2683 mod->kallsyms->symtab[i].st_info
2684 = elf_type(&mod->kallsyms->symtab[i], info);
2685
2686 /* Now populate the cut down core kallsyms for after init. */
2687 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2688 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2689 src = mod->kallsyms->symtab;
2690 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2691 if (i == 0 || is_livepatch_module(mod) ||
2692 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2693 info->index.pcpu)) {
2694 dst[ndst] = src[i];
2695 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2696 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2697 KSYM_NAME_LEN) + 1;
2698 }
2699 }
2700 mod->core_kallsyms.num_symtab = ndst;
2701 }
2702 #else
2703 static inline void layout_symtab(struct module *mod, struct load_info *info)
2704 {
2705 }
2706
2707 static void add_kallsyms(struct module *mod, const struct load_info *info)
2708 {
2709 }
2710 #endif /* CONFIG_KALLSYMS */
2711
2712 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2713 {
2714 if (!debug)
2715 return;
2716 #ifdef CONFIG_DYNAMIC_DEBUG
2717 if (ddebug_add_module(debug, num, mod->name))
2718 pr_err("dynamic debug error adding module: %s\n",
2719 debug->modname);
2720 #endif
2721 }
2722
2723 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2724 {
2725 if (debug)
2726 ddebug_remove_module(mod->name);
2727 }
2728
2729 void * __weak module_alloc(unsigned long size)
2730 {
2731 return vmalloc_exec(size);
2732 }
2733
2734 #ifdef CONFIG_DEBUG_KMEMLEAK
2735 static void kmemleak_load_module(const struct module *mod,
2736 const struct load_info *info)
2737 {
2738 unsigned int i;
2739
2740 /* only scan the sections containing data */
2741 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2742
2743 for (i = 1; i < info->hdr->e_shnum; i++) {
2744 /* Scan all writable sections that's not executable */
2745 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2746 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2747 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2748 continue;
2749
2750 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2751 info->sechdrs[i].sh_size, GFP_KERNEL);
2752 }
2753 }
2754 #else
2755 static inline void kmemleak_load_module(const struct module *mod,
2756 const struct load_info *info)
2757 {
2758 }
2759 #endif
2760
2761 #ifdef CONFIG_MODULE_SIG
2762 static int module_sig_check(struct load_info *info, int flags)
2763 {
2764 int err = -ENOKEY;
2765 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2766 const void *mod = info->hdr;
2767
2768 /*
2769 * Require flags == 0, as a module with version information
2770 * removed is no longer the module that was signed
2771 */
2772 if (flags == 0 &&
2773 info->len > markerlen &&
2774 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2775 /* We truncate the module to discard the signature */
2776 info->len -= markerlen;
2777 err = mod_verify_sig(mod, &info->len);
2778 }
2779
2780 if (!err) {
2781 info->sig_ok = true;
2782 return 0;
2783 }
2784
2785 /* Not having a signature is only an error if we're strict. */
2786 if (err == -ENOKEY && !sig_enforce)
2787 err = 0;
2788
2789 return err;
2790 }
2791 #else /* !CONFIG_MODULE_SIG */
2792 static int module_sig_check(struct load_info *info, int flags)
2793 {
2794 return 0;
2795 }
2796 #endif /* !CONFIG_MODULE_SIG */
2797
2798 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2799 static int elf_header_check(struct load_info *info)
2800 {
2801 if (info->len < sizeof(*(info->hdr)))
2802 return -ENOEXEC;
2803
2804 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2805 || info->hdr->e_type != ET_REL
2806 || !elf_check_arch(info->hdr)
2807 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2808 return -ENOEXEC;
2809
2810 if (info->hdr->e_shoff >= info->len
2811 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2812 info->len - info->hdr->e_shoff))
2813 return -ENOEXEC;
2814
2815 return 0;
2816 }
2817
2818 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2819
2820 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2821 {
2822 do {
2823 unsigned long n = min(len, COPY_CHUNK_SIZE);
2824
2825 if (copy_from_user(dst, usrc, n) != 0)
2826 return -EFAULT;
2827 cond_resched();
2828 dst += n;
2829 usrc += n;
2830 len -= n;
2831 } while (len);
2832 return 0;
2833 }
2834
2835 #ifdef CONFIG_LIVEPATCH
2836 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2837 {
2838 if (get_modinfo(info, "livepatch")) {
2839 mod->klp = true;
2840 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2841 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2842 mod->name);
2843 }
2844
2845 return 0;
2846 }
2847 #else /* !CONFIG_LIVEPATCH */
2848 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2849 {
2850 if (get_modinfo(info, "livepatch")) {
2851 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2852 mod->name);
2853 return -ENOEXEC;
2854 }
2855
2856 return 0;
2857 }
2858 #endif /* CONFIG_LIVEPATCH */
2859
2860 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2861 {
2862 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2863 return;
2864
2865 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2866 mod->name);
2867 }
2868
2869 /* Sets info->hdr and info->len. */
2870 static int copy_module_from_user(const void __user *umod, unsigned long len,
2871 struct load_info *info)
2872 {
2873 int err;
2874
2875 info->len = len;
2876 if (info->len < sizeof(*(info->hdr)))
2877 return -ENOEXEC;
2878
2879 err = security_kernel_read_file(NULL, READING_MODULE);
2880 if (err)
2881 return err;
2882
2883 /* Suck in entire file: we'll want most of it. */
2884 info->hdr = __vmalloc(info->len,
2885 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2886 if (!info->hdr)
2887 return -ENOMEM;
2888
2889 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2890 vfree(info->hdr);
2891 return -EFAULT;
2892 }
2893
2894 return 0;
2895 }
2896
2897 static void free_copy(struct load_info *info)
2898 {
2899 vfree(info->hdr);
2900 }
2901
2902 static int rewrite_section_headers(struct load_info *info, int flags)
2903 {
2904 unsigned int i;
2905
2906 /* This should always be true, but let's be sure. */
2907 info->sechdrs[0].sh_addr = 0;
2908
2909 for (i = 1; i < info->hdr->e_shnum; i++) {
2910 Elf_Shdr *shdr = &info->sechdrs[i];
2911 if (shdr->sh_type != SHT_NOBITS
2912 && info->len < shdr->sh_offset + shdr->sh_size) {
2913 pr_err("Module len %lu truncated\n", info->len);
2914 return -ENOEXEC;
2915 }
2916
2917 /* Mark all sections sh_addr with their address in the
2918 temporary image. */
2919 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2920
2921 #ifndef CONFIG_MODULE_UNLOAD
2922 /* Don't load .exit sections */
2923 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2924 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2925 #endif
2926 }
2927
2928 /* Track but don't keep modinfo and version sections. */
2929 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2930 info->index.vers = 0; /* Pretend no __versions section! */
2931 else
2932 info->index.vers = find_sec(info, "__versions");
2933 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2934
2935 info->index.info = find_sec(info, ".modinfo");
2936 if (!info->index.info)
2937 info->name = "(missing .modinfo section)";
2938 else
2939 info->name = get_modinfo(info, "name");
2940 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2941
2942 return 0;
2943 }
2944
2945 /*
2946 * Set up our basic convenience variables (pointers to section headers,
2947 * search for module section index etc), and do some basic section
2948 * verification.
2949 *
2950 * Return the temporary module pointer (we'll replace it with the final
2951 * one when we move the module sections around).
2952 */
2953 static struct module *setup_load_info(struct load_info *info, int flags)
2954 {
2955 unsigned int i;
2956 int err;
2957 struct module *mod;
2958
2959 /* Set up the convenience variables */
2960 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2961 info->secstrings = (void *)info->hdr
2962 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2963
2964 err = rewrite_section_headers(info, flags);
2965 if (err)
2966 return ERR_PTR(err);
2967
2968 /* Find internal symbols and strings. */
2969 for (i = 1; i < info->hdr->e_shnum; i++) {
2970 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2971 info->index.sym = i;
2972 info->index.str = info->sechdrs[i].sh_link;
2973 info->strtab = (char *)info->hdr
2974 + info->sechdrs[info->index.str].sh_offset;
2975 break;
2976 }
2977 }
2978
2979 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2980 if (!info->index.mod) {
2981 pr_warn("%s: No module found in object\n",
2982 info->name ?: "(missing .modinfo name field)");
2983 return ERR_PTR(-ENOEXEC);
2984 }
2985 /* This is temporary: point mod into copy of data. */
2986 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2987
2988 /*
2989 * If we didn't load the .modinfo 'name' field, fall back to
2990 * on-disk struct mod 'name' field.
2991 */
2992 if (!info->name)
2993 info->name = mod->name;
2994
2995 if (info->index.sym == 0) {
2996 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
2997 return ERR_PTR(-ENOEXEC);
2998 }
2999
3000 info->index.pcpu = find_pcpusec(info);
3001
3002 /* Check module struct version now, before we try to use module. */
3003 if (!check_modstruct_version(info, mod))
3004 return ERR_PTR(-ENOEXEC);
3005
3006 return mod;
3007 }
3008
3009 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3010 {
3011 const char *modmagic = get_modinfo(info, "vermagic");
3012 int err;
3013
3014 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3015 modmagic = NULL;
3016
3017 /* This is allowed: modprobe --force will invalidate it. */
3018 if (!modmagic) {
3019 err = try_to_force_load(mod, "bad vermagic");
3020 if (err)
3021 return err;
3022 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3023 pr_err("%s: version magic '%s' should be '%s'\n",
3024 info->name, modmagic, vermagic);
3025 return -ENOEXEC;
3026 }
3027
3028 if (!get_modinfo(info, "intree")) {
3029 if (!test_taint(TAINT_OOT_MODULE))
3030 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3031 mod->name);
3032 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3033 }
3034
3035 check_modinfo_retpoline(mod, info);
3036
3037 if (get_modinfo(info, "staging")) {
3038 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3039 pr_warn("%s: module is from the staging directory, the quality "
3040 "is unknown, you have been warned.\n", mod->name);
3041 }
3042
3043 err = check_modinfo_livepatch(mod, info);
3044 if (err)
3045 return err;
3046
3047 /* Set up license info based on the info section */
3048 set_license(mod, get_modinfo(info, "license"));
3049
3050 return 0;
3051 }
3052
3053 static int find_module_sections(struct module *mod, struct load_info *info)
3054 {
3055 mod->kp = section_objs(info, "__param",
3056 sizeof(*mod->kp), &mod->num_kp);
3057 mod->syms = section_objs(info, "__ksymtab",
3058 sizeof(*mod->syms), &mod->num_syms);
3059 mod->crcs = section_addr(info, "__kcrctab");
3060 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3061 sizeof(*mod->gpl_syms),
3062 &mod->num_gpl_syms);
3063 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3064 mod->gpl_future_syms = section_objs(info,
3065 "__ksymtab_gpl_future",
3066 sizeof(*mod->gpl_future_syms),
3067 &mod->num_gpl_future_syms);
3068 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3069
3070 #ifdef CONFIG_UNUSED_SYMBOLS
3071 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3072 sizeof(*mod->unused_syms),
3073 &mod->num_unused_syms);
3074 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3075 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3076 sizeof(*mod->unused_gpl_syms),
3077 &mod->num_unused_gpl_syms);
3078 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3079 #endif
3080 #ifdef CONFIG_CONSTRUCTORS
3081 mod->ctors = section_objs(info, ".ctors",
3082 sizeof(*mod->ctors), &mod->num_ctors);
3083 if (!mod->ctors)
3084 mod->ctors = section_objs(info, ".init_array",
3085 sizeof(*mod->ctors), &mod->num_ctors);
3086 else if (find_sec(info, ".init_array")) {
3087 /*
3088 * This shouldn't happen with same compiler and binutils
3089 * building all parts of the module.
3090 */
3091 pr_warn("%s: has both .ctors and .init_array.\n",
3092 mod->name);
3093 return -EINVAL;
3094 }
3095 #endif
3096
3097 #ifdef CONFIG_TRACEPOINTS
3098 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3099 sizeof(*mod->tracepoints_ptrs),
3100 &mod->num_tracepoints);
3101 #endif
3102 #ifdef HAVE_JUMP_LABEL
3103 mod->jump_entries = section_objs(info, "__jump_table",
3104 sizeof(*mod->jump_entries),
3105 &mod->num_jump_entries);
3106 #endif
3107 #ifdef CONFIG_EVENT_TRACING
3108 mod->trace_events = section_objs(info, "_ftrace_events",
3109 sizeof(*mod->trace_events),
3110 &mod->num_trace_events);
3111 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3112 sizeof(*mod->trace_evals),
3113 &mod->num_trace_evals);
3114 #endif
3115 #ifdef CONFIG_TRACING
3116 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3117 sizeof(*mod->trace_bprintk_fmt_start),
3118 &mod->num_trace_bprintk_fmt);
3119 #endif
3120 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3121 /* sechdrs[0].sh_size is always zero */
3122 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3123 sizeof(*mod->ftrace_callsites),
3124 &mod->num_ftrace_callsites);
3125 #endif
3126
3127 mod->extable = section_objs(info, "__ex_table",
3128 sizeof(*mod->extable), &mod->num_exentries);
3129
3130 if (section_addr(info, "__obsparm"))
3131 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3132
3133 info->debug = section_objs(info, "__verbose",
3134 sizeof(*info->debug), &info->num_debug);
3135
3136 return 0;
3137 }
3138
3139 static int move_module(struct module *mod, struct load_info *info)
3140 {
3141 int i;
3142 void *ptr;
3143
3144 /* Do the allocs. */
3145 ptr = module_alloc(mod->core_layout.size);
3146 /*
3147 * The pointer to this block is stored in the module structure
3148 * which is inside the block. Just mark it as not being a
3149 * leak.
3150 */
3151 kmemleak_not_leak(ptr);
3152 if (!ptr)
3153 return -ENOMEM;
3154
3155 memset(ptr, 0, mod->core_layout.size);
3156 mod->core_layout.base = ptr;
3157
3158 if (mod->init_layout.size) {
3159 ptr = module_alloc(mod->init_layout.size);
3160 /*
3161 * The pointer to this block is stored in the module structure
3162 * which is inside the block. This block doesn't need to be
3163 * scanned as it contains data and code that will be freed
3164 * after the module is initialized.
3165 */
3166 kmemleak_ignore(ptr);
3167 if (!ptr) {
3168 module_memfree(mod->core_layout.base);
3169 return -ENOMEM;
3170 }
3171 memset(ptr, 0, mod->init_layout.size);
3172 mod->init_layout.base = ptr;
3173 } else
3174 mod->init_layout.base = NULL;
3175
3176 /* Transfer each section which specifies SHF_ALLOC */
3177 pr_debug("final section addresses:\n");
3178 for (i = 0; i < info->hdr->e_shnum; i++) {
3179 void *dest;
3180 Elf_Shdr *shdr = &info->sechdrs[i];
3181
3182 if (!(shdr->sh_flags & SHF_ALLOC))
3183 continue;
3184
3185 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3186 dest = mod->init_layout.base
3187 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3188 else
3189 dest = mod->core_layout.base + shdr->sh_entsize;
3190
3191 if (shdr->sh_type != SHT_NOBITS)
3192 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3193 /* Update sh_addr to point to copy in image. */
3194 shdr->sh_addr = (unsigned long)dest;
3195 pr_debug("\t0x%lx %s\n",
3196 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3197 }
3198
3199 return 0;
3200 }
3201
3202 static int check_module_license_and_versions(struct module *mod)
3203 {
3204 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3205
3206 /*
3207 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3208 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3209 * using GPL-only symbols it needs.
3210 */
3211 if (strcmp(mod->name, "ndiswrapper") == 0)
3212 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3213
3214 /* driverloader was caught wrongly pretending to be under GPL */
3215 if (strcmp(mod->name, "driverloader") == 0)
3216 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3217 LOCKDEP_NOW_UNRELIABLE);
3218
3219 /* lve claims to be GPL but upstream won't provide source */
3220 if (strcmp(mod->name, "lve") == 0)
3221 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3222 LOCKDEP_NOW_UNRELIABLE);
3223
3224 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3225 pr_warn("%s: module license taints kernel.\n", mod->name);
3226
3227 #ifdef CONFIG_MODVERSIONS
3228 if ((mod->num_syms && !mod->crcs)
3229 || (mod->num_gpl_syms && !mod->gpl_crcs)
3230 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3231 #ifdef CONFIG_UNUSED_SYMBOLS
3232 || (mod->num_unused_syms && !mod->unused_crcs)
3233 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3234 #endif
3235 ) {
3236 return try_to_force_load(mod,
3237 "no versions for exported symbols");
3238 }
3239 #endif
3240 return 0;
3241 }
3242
3243 static void flush_module_icache(const struct module *mod)
3244 {
3245 mm_segment_t old_fs;
3246
3247 /* flush the icache in correct context */
3248 old_fs = get_fs();
3249 set_fs(KERNEL_DS);
3250
3251 /*
3252 * Flush the instruction cache, since we've played with text.
3253 * Do it before processing of module parameters, so the module
3254 * can provide parameter accessor functions of its own.
3255 */
3256 if (mod->init_layout.base)
3257 flush_icache_range((unsigned long)mod->init_layout.base,
3258 (unsigned long)mod->init_layout.base
3259 + mod->init_layout.size);
3260 flush_icache_range((unsigned long)mod->core_layout.base,
3261 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3262
3263 set_fs(old_fs);
3264 }
3265
3266 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3267 Elf_Shdr *sechdrs,
3268 char *secstrings,
3269 struct module *mod)
3270 {
3271 return 0;
3272 }
3273
3274 /* module_blacklist is a comma-separated list of module names */
3275 static char *module_blacklist;
3276 static bool blacklisted(const char *module_name)
3277 {
3278 const char *p;
3279 size_t len;
3280
3281 if (!module_blacklist)
3282 return false;
3283
3284 for (p = module_blacklist; *p; p += len) {
3285 len = strcspn(p, ",");
3286 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3287 return true;
3288 if (p[len] == ',')
3289 len++;
3290 }
3291 return false;
3292 }
3293 core_param(module_blacklist, module_blacklist, charp, 0400);
3294
3295 static struct module *layout_and_allocate(struct load_info *info, int flags)
3296 {
3297 /* Module within temporary copy. */
3298 struct module *mod;
3299 unsigned int ndx;
3300 int err;
3301
3302 mod = setup_load_info(info, flags);
3303 if (IS_ERR(mod))
3304 return mod;
3305
3306 if (blacklisted(info->name))
3307 return ERR_PTR(-EPERM);
3308
3309 err = check_modinfo(mod, info, flags);
3310 if (err)
3311 return ERR_PTR(err);
3312
3313 /* Allow arches to frob section contents and sizes. */
3314 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3315 info->secstrings, mod);
3316 if (err < 0)
3317 return ERR_PTR(err);
3318
3319 /* We will do a special allocation for per-cpu sections later. */
3320 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3321
3322 /*
3323 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3324 * layout_sections() can put it in the right place.
3325 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3326 */
3327 ndx = find_sec(info, ".data..ro_after_init");
3328 if (ndx)
3329 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3330
3331 /* Determine total sizes, and put offsets in sh_entsize. For now
3332 this is done generically; there doesn't appear to be any
3333 special cases for the architectures. */
3334 layout_sections(mod, info);
3335 layout_symtab(mod, info);
3336
3337 /* Allocate and move to the final place */
3338 err = move_module(mod, info);
3339 if (err)
3340 return ERR_PTR(err);
3341
3342 /* Module has been copied to its final place now: return it. */
3343 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3344 kmemleak_load_module(mod, info);
3345 return mod;
3346 }
3347
3348 /* mod is no longer valid after this! */
3349 static void module_deallocate(struct module *mod, struct load_info *info)
3350 {
3351 percpu_modfree(mod);
3352 module_arch_freeing_init(mod);
3353 module_memfree(mod->init_layout.base);
3354 module_memfree(mod->core_layout.base);
3355 }
3356
3357 int __weak module_finalize(const Elf_Ehdr *hdr,
3358 const Elf_Shdr *sechdrs,
3359 struct module *me)
3360 {
3361 return 0;
3362 }
3363
3364 static int post_relocation(struct module *mod, const struct load_info *info)
3365 {
3366 /* Sort exception table now relocations are done. */
3367 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3368
3369 /* Copy relocated percpu area over. */
3370 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3371 info->sechdrs[info->index.pcpu].sh_size);
3372
3373 /* Setup kallsyms-specific fields. */
3374 add_kallsyms(mod, info);
3375
3376 /* Arch-specific module finalizing. */
3377 return module_finalize(info->hdr, info->sechdrs, mod);
3378 }
3379
3380 /* Is this module of this name done loading? No locks held. */
3381 static bool finished_loading(const char *name)
3382 {
3383 struct module *mod;
3384 bool ret;
3385
3386 /*
3387 * The module_mutex should not be a heavily contended lock;
3388 * if we get the occasional sleep here, we'll go an extra iteration
3389 * in the wait_event_interruptible(), which is harmless.
3390 */
3391 sched_annotate_sleep();
3392 mutex_lock(&module_mutex);
3393 mod = find_module_all(name, strlen(name), true);
3394 ret = !mod || mod->state == MODULE_STATE_LIVE
3395 || mod->state == MODULE_STATE_GOING;
3396 mutex_unlock(&module_mutex);
3397
3398 return ret;
3399 }
3400
3401 /* Call module constructors. */
3402 static void do_mod_ctors(struct module *mod)
3403 {
3404 #ifdef CONFIG_CONSTRUCTORS
3405 unsigned long i;
3406
3407 for (i = 0; i < mod->num_ctors; i++)
3408 mod->ctors[i]();
3409 #endif
3410 }
3411
3412 /* For freeing module_init on success, in case kallsyms traversing */
3413 struct mod_initfree {
3414 struct rcu_head rcu;
3415 void *module_init;
3416 };
3417
3418 static void do_free_init(struct rcu_head *head)
3419 {
3420 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3421 module_memfree(m->module_init);
3422 kfree(m);
3423 }
3424
3425 /*
3426 * This is where the real work happens.
3427 *
3428 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3429 * helper command 'lx-symbols'.
3430 */
3431 static noinline int do_init_module(struct module *mod)
3432 {
3433 int ret = 0;
3434 struct mod_initfree *freeinit;
3435
3436 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3437 if (!freeinit) {
3438 ret = -ENOMEM;
3439 goto fail;
3440 }
3441 freeinit->module_init = mod->init_layout.base;
3442
3443 /*
3444 * We want to find out whether @mod uses async during init. Clear
3445 * PF_USED_ASYNC. async_schedule*() will set it.
3446 */
3447 current->flags &= ~PF_USED_ASYNC;
3448
3449 do_mod_ctors(mod);
3450 /* Start the module */
3451 if (mod->init != NULL)
3452 ret = do_one_initcall(mod->init);
3453 if (ret < 0) {
3454 goto fail_free_freeinit;
3455 }
3456 if (ret > 0) {
3457 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3458 "follow 0/-E convention\n"
3459 "%s: loading module anyway...\n",
3460 __func__, mod->name, ret, __func__);
3461 dump_stack();
3462 }
3463
3464 /* Now it's a first class citizen! */
3465 mod->state = MODULE_STATE_LIVE;
3466 blocking_notifier_call_chain(&module_notify_list,
3467 MODULE_STATE_LIVE, mod);
3468
3469 /*
3470 * We need to finish all async code before the module init sequence
3471 * is done. This has potential to deadlock. For example, a newly
3472 * detected block device can trigger request_module() of the
3473 * default iosched from async probing task. Once userland helper
3474 * reaches here, async_synchronize_full() will wait on the async
3475 * task waiting on request_module() and deadlock.
3476 *
3477 * This deadlock is avoided by perfomring async_synchronize_full()
3478 * iff module init queued any async jobs. This isn't a full
3479 * solution as it will deadlock the same if module loading from
3480 * async jobs nests more than once; however, due to the various
3481 * constraints, this hack seems to be the best option for now.
3482 * Please refer to the following thread for details.
3483 *
3484 * http://thread.gmane.org/gmane.linux.kernel/1420814
3485 */
3486 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3487 async_synchronize_full();
3488
3489 mutex_lock(&module_mutex);
3490 /* Drop initial reference. */
3491 module_put(mod);
3492 trim_init_extable(mod);
3493 #ifdef CONFIG_KALLSYMS
3494 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3495 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3496 #endif
3497 module_enable_ro(mod, true);
3498 mod_tree_remove_init(mod);
3499 disable_ro_nx(&mod->init_layout);
3500 module_arch_freeing_init(mod);
3501 mod->init_layout.base = NULL;
3502 mod->init_layout.size = 0;
3503 mod->init_layout.ro_size = 0;
3504 mod->init_layout.ro_after_init_size = 0;
3505 mod->init_layout.text_size = 0;
3506 /*
3507 * We want to free module_init, but be aware that kallsyms may be
3508 * walking this with preempt disabled. In all the failure paths, we
3509 * call synchronize_sched(), but we don't want to slow down the success
3510 * path, so use actual RCU here.
3511 * Note that module_alloc() on most architectures creates W+X page
3512 * mappings which won't be cleaned up until do_free_init() runs. Any
3513 * code such as mark_rodata_ro() which depends on those mappings to
3514 * be cleaned up needs to sync with the queued work - ie
3515 * rcu_barrier_sched()
3516 */
3517 call_rcu_sched(&freeinit->rcu, do_free_init);
3518 mutex_unlock(&module_mutex);
3519 wake_up_all(&module_wq);
3520
3521 return 0;
3522
3523 fail_free_freeinit:
3524 kfree(freeinit);
3525 fail:
3526 /* Try to protect us from buggy refcounters. */
3527 mod->state = MODULE_STATE_GOING;
3528 synchronize_sched();
3529 module_put(mod);
3530 blocking_notifier_call_chain(&module_notify_list,
3531 MODULE_STATE_GOING, mod);
3532 klp_module_going(mod);
3533 ftrace_release_mod(mod);
3534 free_module(mod);
3535 wake_up_all(&module_wq);
3536 return ret;
3537 }
3538
3539 static int may_init_module(void)
3540 {
3541 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3542 return -EPERM;
3543
3544 return 0;
3545 }
3546
3547 /*
3548 * We try to place it in the list now to make sure it's unique before
3549 * we dedicate too many resources. In particular, temporary percpu
3550 * memory exhaustion.
3551 */
3552 static int add_unformed_module(struct module *mod)
3553 {
3554 int err;
3555 struct module *old;
3556
3557 mod->state = MODULE_STATE_UNFORMED;
3558
3559 again:
3560 mutex_lock(&module_mutex);
3561 old = find_module_all(mod->name, strlen(mod->name), true);
3562 if (old != NULL) {
3563 if (old->state == MODULE_STATE_COMING
3564 || old->state == MODULE_STATE_UNFORMED) {
3565 /* Wait in case it fails to load. */
3566 mutex_unlock(&module_mutex);
3567 err = wait_event_interruptible(module_wq,
3568 finished_loading(mod->name));
3569 if (err)
3570 goto out_unlocked;
3571 goto again;
3572 }
3573 err = -EEXIST;
3574 goto out;
3575 }
3576 mod_update_bounds(mod);
3577 list_add_rcu(&mod->list, &modules);
3578 mod_tree_insert(mod);
3579 err = 0;
3580
3581 out:
3582 mutex_unlock(&module_mutex);
3583 out_unlocked:
3584 return err;
3585 }
3586
3587 static int complete_formation(struct module *mod, struct load_info *info)
3588 {
3589 int err;
3590
3591 mutex_lock(&module_mutex);
3592
3593 /* Find duplicate symbols (must be called under lock). */
3594 err = verify_export_symbols(mod);
3595 if (err < 0)
3596 goto out;
3597
3598 /* This relies on module_mutex for list integrity. */
3599 module_bug_finalize(info->hdr, info->sechdrs, mod);
3600
3601 module_enable_ro(mod, false);
3602 module_enable_nx(mod);
3603
3604 /* Mark state as coming so strong_try_module_get() ignores us,
3605 * but kallsyms etc. can see us. */
3606 mod->state = MODULE_STATE_COMING;
3607 mutex_unlock(&module_mutex);
3608
3609 return 0;
3610
3611 out:
3612 mutex_unlock(&module_mutex);
3613 return err;
3614 }
3615
3616 static int prepare_coming_module(struct module *mod)
3617 {
3618 int err;
3619
3620 ftrace_module_enable(mod);
3621 err = klp_module_coming(mod);
3622 if (err)
3623 return err;
3624
3625 blocking_notifier_call_chain(&module_notify_list,
3626 MODULE_STATE_COMING, mod);
3627 return 0;
3628 }
3629
3630 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3631 void *arg)
3632 {
3633 struct module *mod = arg;
3634 int ret;
3635
3636 if (strcmp(param, "async_probe") == 0) {
3637 mod->async_probe_requested = true;
3638 return 0;
3639 }
3640
3641 /* Check for magic 'dyndbg' arg */
3642 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3643 if (ret != 0)
3644 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3645 return 0;
3646 }
3647
3648 /* Allocate and load the module: note that size of section 0 is always
3649 zero, and we rely on this for optional sections. */
3650 static int load_module(struct load_info *info, const char __user *uargs,
3651 int flags)
3652 {
3653 struct module *mod;
3654 long err;
3655 char *after_dashes;
3656
3657 err = module_sig_check(info, flags);
3658 if (err)
3659 goto free_copy;
3660
3661 err = elf_header_check(info);
3662 if (err)
3663 goto free_copy;
3664
3665 /* Figure out module layout, and allocate all the memory. */
3666 mod = layout_and_allocate(info, flags);
3667 if (IS_ERR(mod)) {
3668 err = PTR_ERR(mod);
3669 goto free_copy;
3670 }
3671
3672 audit_log_kern_module(mod->name);
3673
3674 /* Reserve our place in the list. */
3675 err = add_unformed_module(mod);
3676 if (err)
3677 goto free_module;
3678
3679 #ifdef CONFIG_MODULE_SIG
3680 mod->sig_ok = info->sig_ok;
3681 if (!mod->sig_ok) {
3682 pr_notice_once("%s: module verification failed: signature "
3683 "and/or required key missing - tainting "
3684 "kernel\n", mod->name);
3685 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3686 }
3687 #endif
3688
3689 /* To avoid stressing percpu allocator, do this once we're unique. */
3690 err = percpu_modalloc(mod, info);
3691 if (err)
3692 goto unlink_mod;
3693
3694 /* Now module is in final location, initialize linked lists, etc. */
3695 err = module_unload_init(mod);
3696 if (err)
3697 goto unlink_mod;
3698
3699 init_param_lock(mod);
3700
3701 /* Now we've got everything in the final locations, we can
3702 * find optional sections. */
3703 err = find_module_sections(mod, info);
3704 if (err)
3705 goto free_unload;
3706
3707 err = check_module_license_and_versions(mod);
3708 if (err)
3709 goto free_unload;
3710
3711 /* Set up MODINFO_ATTR fields */
3712 setup_modinfo(mod, info);
3713
3714 /* Fix up syms, so that st_value is a pointer to location. */
3715 err = simplify_symbols(mod, info);
3716 if (err < 0)
3717 goto free_modinfo;
3718
3719 err = apply_relocations(mod, info);
3720 if (err < 0)
3721 goto free_modinfo;
3722
3723 err = post_relocation(mod, info);
3724 if (err < 0)
3725 goto free_modinfo;
3726
3727 flush_module_icache(mod);
3728
3729 /* Now copy in args */
3730 mod->args = strndup_user(uargs, ~0UL >> 1);
3731 if (IS_ERR(mod->args)) {
3732 err = PTR_ERR(mod->args);
3733 goto free_arch_cleanup;
3734 }
3735
3736 dynamic_debug_setup(mod, info->debug, info->num_debug);
3737
3738 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3739 ftrace_module_init(mod);
3740
3741 /* Finally it's fully formed, ready to start executing. */
3742 err = complete_formation(mod, info);
3743 if (err)
3744 goto ddebug_cleanup;
3745
3746 err = prepare_coming_module(mod);
3747 if (err)
3748 goto bug_cleanup;
3749
3750 /* Module is ready to execute: parsing args may do that. */
3751 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3752 -32768, 32767, mod,
3753 unknown_module_param_cb);
3754 if (IS_ERR(after_dashes)) {
3755 err = PTR_ERR(after_dashes);
3756 goto coming_cleanup;
3757 } else if (after_dashes) {
3758 pr_warn("%s: parameters '%s' after `--' ignored\n",
3759 mod->name, after_dashes);
3760 }
3761
3762 /* Link in to sysfs. */
3763 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3764 if (err < 0)
3765 goto coming_cleanup;
3766
3767 if (is_livepatch_module(mod)) {
3768 err = copy_module_elf(mod, info);
3769 if (err < 0)
3770 goto sysfs_cleanup;
3771 }
3772
3773 /* Get rid of temporary copy. */
3774 free_copy(info);
3775
3776 /* Done! */
3777 trace_module_load(mod);
3778
3779 return do_init_module(mod);
3780
3781 sysfs_cleanup:
3782 mod_sysfs_teardown(mod);
3783 coming_cleanup:
3784 mod->state = MODULE_STATE_GOING;
3785 destroy_params(mod->kp, mod->num_kp);
3786 blocking_notifier_call_chain(&module_notify_list,
3787 MODULE_STATE_GOING, mod);
3788 klp_module_going(mod);
3789 bug_cleanup:
3790 /* module_bug_cleanup needs module_mutex protection */
3791 mutex_lock(&module_mutex);
3792 module_bug_cleanup(mod);
3793 mutex_unlock(&module_mutex);
3794
3795 /* we can't deallocate the module until we clear memory protection */
3796 module_disable_ro(mod);
3797 module_disable_nx(mod);
3798
3799 ddebug_cleanup:
3800 dynamic_debug_remove(mod, info->debug);
3801 synchronize_sched();
3802 kfree(mod->args);
3803 free_arch_cleanup:
3804 module_arch_cleanup(mod);
3805 free_modinfo:
3806 free_modinfo(mod);
3807 free_unload:
3808 module_unload_free(mod);
3809 unlink_mod:
3810 mutex_lock(&module_mutex);
3811 /* Unlink carefully: kallsyms could be walking list. */
3812 list_del_rcu(&mod->list);
3813 mod_tree_remove(mod);
3814 wake_up_all(&module_wq);
3815 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3816 synchronize_sched();
3817 mutex_unlock(&module_mutex);
3818 free_module:
3819 /*
3820 * Ftrace needs to clean up what it initialized.
3821 * This does nothing if ftrace_module_init() wasn't called,
3822 * but it must be called outside of module_mutex.
3823 */
3824 ftrace_release_mod(mod);
3825 /* Free lock-classes; relies on the preceding sync_rcu() */
3826 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3827
3828 module_deallocate(mod, info);
3829 free_copy:
3830 free_copy(info);
3831 return err;
3832 }
3833
3834 SYSCALL_DEFINE3(init_module, void __user *, umod,
3835 unsigned long, len, const char __user *, uargs)
3836 {
3837 int err;
3838 struct load_info info = { };
3839
3840 err = may_init_module();
3841 if (err)
3842 return err;
3843
3844 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3845 umod, len, uargs);
3846
3847 err = copy_module_from_user(umod, len, &info);
3848 if (err)
3849 return err;
3850
3851 return load_module(&info, uargs, 0);
3852 }
3853
3854 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3855 {
3856 struct load_info info = { };
3857 loff_t size;
3858 void *hdr;
3859 int err;
3860
3861 err = may_init_module();
3862 if (err)
3863 return err;
3864
3865 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3866
3867 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3868 |MODULE_INIT_IGNORE_VERMAGIC))
3869 return -EINVAL;
3870
3871 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3872 READING_MODULE);
3873 if (err)
3874 return err;
3875 info.hdr = hdr;
3876 info.len = size;
3877
3878 return load_module(&info, uargs, flags);
3879 }
3880
3881 static inline int within(unsigned long addr, void *start, unsigned long size)
3882 {
3883 return ((void *)addr >= start && (void *)addr < start + size);
3884 }
3885
3886 #ifdef CONFIG_KALLSYMS
3887 /*
3888 * This ignores the intensely annoying "mapping symbols" found
3889 * in ARM ELF files: $a, $t and $d.
3890 */
3891 static inline int is_arm_mapping_symbol(const char *str)
3892 {
3893 if (str[0] == '.' && str[1] == 'L')
3894 return true;
3895 return str[0] == '$' && strchr("axtd", str[1])
3896 && (str[2] == '\0' || str[2] == '.');
3897 }
3898
3899 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3900 {
3901 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3902 }
3903
3904 static const char *get_ksymbol(struct module *mod,
3905 unsigned long addr,
3906 unsigned long *size,
3907 unsigned long *offset)
3908 {
3909 unsigned int i, best = 0;
3910 unsigned long nextval;
3911 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3912
3913 /* At worse, next value is at end of module */
3914 if (within_module_init(addr, mod))
3915 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3916 else
3917 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3918
3919 /* Scan for closest preceding symbol, and next symbol. (ELF
3920 starts real symbols at 1). */
3921 for (i = 1; i < kallsyms->num_symtab; i++) {
3922 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3923 continue;
3924
3925 /* We ignore unnamed symbols: they're uninformative
3926 * and inserted at a whim. */
3927 if (*symname(kallsyms, i) == '\0'
3928 || is_arm_mapping_symbol(symname(kallsyms, i)))
3929 continue;
3930
3931 if (kallsyms->symtab[i].st_value <= addr
3932 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3933 best = i;
3934 if (kallsyms->symtab[i].st_value > addr
3935 && kallsyms->symtab[i].st_value < nextval)
3936 nextval = kallsyms->symtab[i].st_value;
3937 }
3938
3939 if (!best)
3940 return NULL;
3941
3942 if (size)
3943 *size = nextval - kallsyms->symtab[best].st_value;
3944 if (offset)
3945 *offset = addr - kallsyms->symtab[best].st_value;
3946 return symname(kallsyms, best);
3947 }
3948
3949 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3950 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3951 const char *module_address_lookup(unsigned long addr,
3952 unsigned long *size,
3953 unsigned long *offset,
3954 char **modname,
3955 char *namebuf)
3956 {
3957 const char *ret = NULL;
3958 struct module *mod;
3959
3960 preempt_disable();
3961 mod = __module_address(addr);
3962 if (mod) {
3963 if (modname)
3964 *modname = mod->name;
3965 ret = get_ksymbol(mod, addr, size, offset);
3966 }
3967 /* Make a copy in here where it's safe */
3968 if (ret) {
3969 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3970 ret = namebuf;
3971 }
3972 preempt_enable();
3973
3974 return ret;
3975 }
3976
3977 int lookup_module_symbol_name(unsigned long addr, char *symname)
3978 {
3979 struct module *mod;
3980
3981 preempt_disable();
3982 list_for_each_entry_rcu(mod, &modules, list) {
3983 if (mod->state == MODULE_STATE_UNFORMED)
3984 continue;
3985 if (within_module(addr, mod)) {
3986 const char *sym;
3987
3988 sym = get_ksymbol(mod, addr, NULL, NULL);
3989 if (!sym)
3990 goto out;
3991 strlcpy(symname, sym, KSYM_NAME_LEN);
3992 preempt_enable();
3993 return 0;
3994 }
3995 }
3996 out:
3997 preempt_enable();
3998 return -ERANGE;
3999 }
4000
4001 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4002 unsigned long *offset, char *modname, char *name)
4003 {
4004 struct module *mod;
4005
4006 preempt_disable();
4007 list_for_each_entry_rcu(mod, &modules, list) {
4008 if (mod->state == MODULE_STATE_UNFORMED)
4009 continue;
4010 if (within_module(addr, mod)) {
4011 const char *sym;
4012
4013 sym = get_ksymbol(mod, addr, size, offset);
4014 if (!sym)
4015 goto out;
4016 if (modname)
4017 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4018 if (name)
4019 strlcpy(name, sym, KSYM_NAME_LEN);
4020 preempt_enable();
4021 return 0;
4022 }
4023 }
4024 out:
4025 preempt_enable();
4026 return -ERANGE;
4027 }
4028
4029 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4030 char *name, char *module_name, int *exported)
4031 {
4032 struct module *mod;
4033
4034 preempt_disable();
4035 list_for_each_entry_rcu(mod, &modules, list) {
4036 struct mod_kallsyms *kallsyms;
4037
4038 if (mod->state == MODULE_STATE_UNFORMED)
4039 continue;
4040 kallsyms = rcu_dereference_sched(mod->kallsyms);
4041 if (symnum < kallsyms->num_symtab) {
4042 *value = kallsyms->symtab[symnum].st_value;
4043 *type = kallsyms->symtab[symnum].st_info;
4044 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4045 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4046 *exported = is_exported(name, *value, mod);
4047 preempt_enable();
4048 return 0;
4049 }
4050 symnum -= kallsyms->num_symtab;
4051 }
4052 preempt_enable();
4053 return -ERANGE;
4054 }
4055
4056 static unsigned long mod_find_symname(struct module *mod, const char *name)
4057 {
4058 unsigned int i;
4059 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4060
4061 for (i = 0; i < kallsyms->num_symtab; i++)
4062 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4063 kallsyms->symtab[i].st_shndx != SHN_UNDEF)
4064 return kallsyms->symtab[i].st_value;
4065 return 0;
4066 }
4067
4068 /* Look for this name: can be of form module:name. */
4069 unsigned long module_kallsyms_lookup_name(const char *name)
4070 {
4071 struct module *mod;
4072 char *colon;
4073 unsigned long ret = 0;
4074
4075 /* Don't lock: we're in enough trouble already. */
4076 preempt_disable();
4077 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4078 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4079 ret = mod_find_symname(mod, colon+1);
4080 } else {
4081 list_for_each_entry_rcu(mod, &modules, list) {
4082 if (mod->state == MODULE_STATE_UNFORMED)
4083 continue;
4084 if ((ret = mod_find_symname(mod, name)) != 0)
4085 break;
4086 }
4087 }
4088 preempt_enable();
4089 return ret;
4090 }
4091
4092 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4093 struct module *, unsigned long),
4094 void *data)
4095 {
4096 struct module *mod;
4097 unsigned int i;
4098 int ret;
4099
4100 module_assert_mutex();
4101
4102 list_for_each_entry(mod, &modules, list) {
4103 /* We hold module_mutex: no need for rcu_dereference_sched */
4104 struct mod_kallsyms *kallsyms = mod->kallsyms;
4105
4106 if (mod->state == MODULE_STATE_UNFORMED)
4107 continue;
4108 for (i = 0; i < kallsyms->num_symtab; i++) {
4109
4110 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
4111 continue;
4112
4113 ret = fn(data, symname(kallsyms, i),
4114 mod, kallsyms->symtab[i].st_value);
4115 if (ret != 0)
4116 return ret;
4117 }
4118 }
4119 return 0;
4120 }
4121 #endif /* CONFIG_KALLSYMS */
4122
4123 /* Maximum number of characters written by module_flags() */
4124 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4125
4126 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4127 static char *module_flags(struct module *mod, char *buf)
4128 {
4129 int bx = 0;
4130
4131 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4132 if (mod->taints ||
4133 mod->state == MODULE_STATE_GOING ||
4134 mod->state == MODULE_STATE_COMING) {
4135 buf[bx++] = '(';
4136 bx += module_flags_taint(mod, buf + bx);
4137 /* Show a - for module-is-being-unloaded */
4138 if (mod->state == MODULE_STATE_GOING)
4139 buf[bx++] = '-';
4140 /* Show a + for module-is-being-loaded */
4141 if (mod->state == MODULE_STATE_COMING)
4142 buf[bx++] = '+';
4143 buf[bx++] = ')';
4144 }
4145 buf[bx] = '\0';
4146
4147 return buf;
4148 }
4149
4150 #ifdef CONFIG_PROC_FS
4151 /* Called by the /proc file system to return a list of modules. */
4152 static void *m_start(struct seq_file *m, loff_t *pos)
4153 {
4154 mutex_lock(&module_mutex);
4155 return seq_list_start(&modules, *pos);
4156 }
4157
4158 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4159 {
4160 return seq_list_next(p, &modules, pos);
4161 }
4162
4163 static void m_stop(struct seq_file *m, void *p)
4164 {
4165 mutex_unlock(&module_mutex);
4166 }
4167
4168 static int m_show(struct seq_file *m, void *p)
4169 {
4170 struct module *mod = list_entry(p, struct module, list);
4171 char buf[MODULE_FLAGS_BUF_SIZE];
4172
4173 /* We always ignore unformed modules. */
4174 if (mod->state == MODULE_STATE_UNFORMED)
4175 return 0;
4176
4177 seq_printf(m, "%s %u",
4178 mod->name, mod->init_layout.size + mod->core_layout.size);
4179 print_unload_info(m, mod);
4180
4181 /* Informative for users. */
4182 seq_printf(m, " %s",
4183 mod->state == MODULE_STATE_GOING ? "Unloading" :
4184 mod->state == MODULE_STATE_COMING ? "Loading" :
4185 "Live");
4186 /* Used by oprofile and other similar tools. */
4187 seq_printf(m, " 0x%pK", mod->core_layout.base);
4188
4189 /* Taints info */
4190 if (mod->taints)
4191 seq_printf(m, " %s", module_flags(mod, buf));
4192
4193 seq_puts(m, "\n");
4194 return 0;
4195 }
4196
4197 /* Format: modulename size refcount deps address
4198
4199 Where refcount is a number or -, and deps is a comma-separated list
4200 of depends or -.
4201 */
4202 static const struct seq_operations modules_op = {
4203 .start = m_start,
4204 .next = m_next,
4205 .stop = m_stop,
4206 .show = m_show
4207 };
4208
4209 static int modules_open(struct inode *inode, struct file *file)
4210 {
4211 return seq_open(file, &modules_op);
4212 }
4213
4214 static const struct file_operations proc_modules_operations = {
4215 .open = modules_open,
4216 .read = seq_read,
4217 .llseek = seq_lseek,
4218 .release = seq_release,
4219 };
4220
4221 static int __init proc_modules_init(void)
4222 {
4223 proc_create("modules", 0, NULL, &proc_modules_operations);
4224 return 0;
4225 }
4226 module_init(proc_modules_init);
4227 #endif
4228
4229 /* Given an address, look for it in the module exception tables. */
4230 const struct exception_table_entry *search_module_extables(unsigned long addr)
4231 {
4232 const struct exception_table_entry *e = NULL;
4233 struct module *mod;
4234
4235 preempt_disable();
4236 mod = __module_address(addr);
4237 if (!mod)
4238 goto out;
4239
4240 if (!mod->num_exentries)
4241 goto out;
4242
4243 e = search_extable(mod->extable,
4244 mod->num_exentries,
4245 addr);
4246 out:
4247 preempt_enable();
4248
4249 /*
4250 * Now, if we found one, we are running inside it now, hence
4251 * we cannot unload the module, hence no refcnt needed.
4252 */
4253 return e;
4254 }
4255
4256 /*
4257 * is_module_address - is this address inside a module?
4258 * @addr: the address to check.
4259 *
4260 * See is_module_text_address() if you simply want to see if the address
4261 * is code (not data).
4262 */
4263 bool is_module_address(unsigned long addr)
4264 {
4265 bool ret;
4266
4267 preempt_disable();
4268 ret = __module_address(addr) != NULL;
4269 preempt_enable();
4270
4271 return ret;
4272 }
4273
4274 /*
4275 * __module_address - get the module which contains an address.
4276 * @addr: the address.
4277 *
4278 * Must be called with preempt disabled or module mutex held so that
4279 * module doesn't get freed during this.
4280 */
4281 struct module *__module_address(unsigned long addr)
4282 {
4283 struct module *mod;
4284
4285 if (addr < module_addr_min || addr > module_addr_max)
4286 return NULL;
4287
4288 module_assert_mutex_or_preempt();
4289
4290 mod = mod_find(addr);
4291 if (mod) {
4292 BUG_ON(!within_module(addr, mod));
4293 if (mod->state == MODULE_STATE_UNFORMED)
4294 mod = NULL;
4295 }
4296 return mod;
4297 }
4298 EXPORT_SYMBOL_GPL(__module_address);
4299
4300 /*
4301 * is_module_text_address - is this address inside module code?
4302 * @addr: the address to check.
4303 *
4304 * See is_module_address() if you simply want to see if the address is
4305 * anywhere in a module. See kernel_text_address() for testing if an
4306 * address corresponds to kernel or module code.
4307 */
4308 bool is_module_text_address(unsigned long addr)
4309 {
4310 bool ret;
4311
4312 preempt_disable();
4313 ret = __module_text_address(addr) != NULL;
4314 preempt_enable();
4315
4316 return ret;
4317 }
4318
4319 /*
4320 * __module_text_address - get the module whose code contains an address.
4321 * @addr: the address.
4322 *
4323 * Must be called with preempt disabled or module mutex held so that
4324 * module doesn't get freed during this.
4325 */
4326 struct module *__module_text_address(unsigned long addr)
4327 {
4328 struct module *mod = __module_address(addr);
4329 if (mod) {
4330 /* Make sure it's within the text section. */
4331 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4332 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4333 mod = NULL;
4334 }
4335 return mod;
4336 }
4337 EXPORT_SYMBOL_GPL(__module_text_address);
4338
4339 /* Don't grab lock, we're oopsing. */
4340 void print_modules(void)
4341 {
4342 struct module *mod;
4343 char buf[MODULE_FLAGS_BUF_SIZE];
4344
4345 printk(KERN_DEFAULT "Modules linked in:");
4346 /* Most callers should already have preempt disabled, but make sure */
4347 preempt_disable();
4348 list_for_each_entry_rcu(mod, &modules, list) {
4349 if (mod->state == MODULE_STATE_UNFORMED)
4350 continue;
4351 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4352 }
4353 preempt_enable();
4354 if (last_unloaded_module[0])
4355 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4356 pr_cont("\n");
4357 }
4358
4359 #ifdef CONFIG_MODVERSIONS
4360 /* Generate the signature for all relevant module structures here.
4361 * If these change, we don't want to try to parse the module. */
4362 void module_layout(struct module *mod,
4363 struct modversion_info *ver,
4364 struct kernel_param *kp,
4365 struct kernel_symbol *ks,
4366 struct tracepoint * const *tp)
4367 {
4368 }
4369 EXPORT_SYMBOL(module_layout);
4370 #endif