[SERIAL] don't disable xscale serial ports after autoconfig
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <linux/moduleloader.h>
40 #include <asm-generic/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <asm/kdebug.h>
44
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47
48 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
49 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
50
51 static DEFINE_SPINLOCK(kprobe_lock); /* Protects kprobe_table */
52 DEFINE_SPINLOCK(kretprobe_lock); /* Protects kretprobe_inst_table */
53 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
54
55 /*
56 * kprobe->ainsn.insn points to the copy of the instruction to be
57 * single-stepped. x86_64, POWER4 and above have no-exec support and
58 * stepping on the instruction on a vmalloced/kmalloced/data page
59 * is a recipe for disaster
60 */
61 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
62
63 struct kprobe_insn_page {
64 struct hlist_node hlist;
65 kprobe_opcode_t *insns; /* Page of instruction slots */
66 char slot_used[INSNS_PER_PAGE];
67 int nused;
68 };
69
70 static struct hlist_head kprobe_insn_pages;
71
72 /**
73 * get_insn_slot() - Find a slot on an executable page for an instruction.
74 * We allocate an executable page if there's no room on existing ones.
75 */
76 kprobe_opcode_t __kprobes *get_insn_slot(void)
77 {
78 struct kprobe_insn_page *kip;
79 struct hlist_node *pos;
80
81 hlist_for_each(pos, &kprobe_insn_pages) {
82 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
83 if (kip->nused < INSNS_PER_PAGE) {
84 int i;
85 for (i = 0; i < INSNS_PER_PAGE; i++) {
86 if (!kip->slot_used[i]) {
87 kip->slot_used[i] = 1;
88 kip->nused++;
89 return kip->insns + (i * MAX_INSN_SIZE);
90 }
91 }
92 /* Surprise! No unused slots. Fix kip->nused. */
93 kip->nused = INSNS_PER_PAGE;
94 }
95 }
96
97 /* All out of space. Need to allocate a new page. Use slot 0.*/
98 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
99 if (!kip) {
100 return NULL;
101 }
102
103 /*
104 * Use module_alloc so this page is within +/- 2GB of where the
105 * kernel image and loaded module images reside. This is required
106 * so x86_64 can correctly handle the %rip-relative fixups.
107 */
108 kip->insns = module_alloc(PAGE_SIZE);
109 if (!kip->insns) {
110 kfree(kip);
111 return NULL;
112 }
113 INIT_HLIST_NODE(&kip->hlist);
114 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
115 memset(kip->slot_used, 0, INSNS_PER_PAGE);
116 kip->slot_used[0] = 1;
117 kip->nused = 1;
118 return kip->insns;
119 }
120
121 void __kprobes free_insn_slot(kprobe_opcode_t *slot)
122 {
123 struct kprobe_insn_page *kip;
124 struct hlist_node *pos;
125
126 hlist_for_each(pos, &kprobe_insn_pages) {
127 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
128 if (kip->insns <= slot &&
129 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
130 int i = (slot - kip->insns) / MAX_INSN_SIZE;
131 kip->slot_used[i] = 0;
132 kip->nused--;
133 if (kip->nused == 0) {
134 /*
135 * Page is no longer in use. Free it unless
136 * it's the last one. We keep the last one
137 * so as not to have to set it up again the
138 * next time somebody inserts a probe.
139 */
140 hlist_del(&kip->hlist);
141 if (hlist_empty(&kprobe_insn_pages)) {
142 INIT_HLIST_NODE(&kip->hlist);
143 hlist_add_head(&kip->hlist,
144 &kprobe_insn_pages);
145 } else {
146 module_free(NULL, kip->insns);
147 kfree(kip);
148 }
149 }
150 return;
151 }
152 }
153 }
154
155 /* We have preemption disabled.. so it is safe to use __ versions */
156 static inline void set_kprobe_instance(struct kprobe *kp)
157 {
158 __get_cpu_var(kprobe_instance) = kp;
159 }
160
161 static inline void reset_kprobe_instance(void)
162 {
163 __get_cpu_var(kprobe_instance) = NULL;
164 }
165
166 /*
167 * This routine is called either:
168 * - under the kprobe_lock spinlock - during kprobe_[un]register()
169 * OR
170 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
171 */
172 struct kprobe __kprobes *get_kprobe(void *addr)
173 {
174 struct hlist_head *head;
175 struct hlist_node *node;
176 struct kprobe *p;
177
178 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
179 hlist_for_each_entry_rcu(p, node, head, hlist) {
180 if (p->addr == addr)
181 return p;
182 }
183 return NULL;
184 }
185
186 /*
187 * Aggregate handlers for multiple kprobes support - these handlers
188 * take care of invoking the individual kprobe handlers on p->list
189 */
190 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
191 {
192 struct kprobe *kp;
193
194 list_for_each_entry_rcu(kp, &p->list, list) {
195 if (kp->pre_handler) {
196 set_kprobe_instance(kp);
197 if (kp->pre_handler(kp, regs))
198 return 1;
199 }
200 reset_kprobe_instance();
201 }
202 return 0;
203 }
204
205 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
206 unsigned long flags)
207 {
208 struct kprobe *kp;
209
210 list_for_each_entry_rcu(kp, &p->list, list) {
211 if (kp->post_handler) {
212 set_kprobe_instance(kp);
213 kp->post_handler(kp, regs, flags);
214 reset_kprobe_instance();
215 }
216 }
217 return;
218 }
219
220 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
221 int trapnr)
222 {
223 struct kprobe *cur = __get_cpu_var(kprobe_instance);
224
225 /*
226 * if we faulted "during" the execution of a user specified
227 * probe handler, invoke just that probe's fault handler
228 */
229 if (cur && cur->fault_handler) {
230 if (cur->fault_handler(cur, regs, trapnr))
231 return 1;
232 }
233 return 0;
234 }
235
236 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
237 {
238 struct kprobe *cur = __get_cpu_var(kprobe_instance);
239 int ret = 0;
240
241 if (cur && cur->break_handler) {
242 if (cur->break_handler(cur, regs))
243 ret = 1;
244 }
245 reset_kprobe_instance();
246 return ret;
247 }
248
249 /* Called with kretprobe_lock held */
250 struct kretprobe_instance __kprobes *get_free_rp_inst(struct kretprobe *rp)
251 {
252 struct hlist_node *node;
253 struct kretprobe_instance *ri;
254 hlist_for_each_entry(ri, node, &rp->free_instances, uflist)
255 return ri;
256 return NULL;
257 }
258
259 /* Called with kretprobe_lock held */
260 static struct kretprobe_instance __kprobes *get_used_rp_inst(struct kretprobe
261 *rp)
262 {
263 struct hlist_node *node;
264 struct kretprobe_instance *ri;
265 hlist_for_each_entry(ri, node, &rp->used_instances, uflist)
266 return ri;
267 return NULL;
268 }
269
270 /* Called with kretprobe_lock held */
271 void __kprobes add_rp_inst(struct kretprobe_instance *ri)
272 {
273 /*
274 * Remove rp inst off the free list -
275 * Add it back when probed function returns
276 */
277 hlist_del(&ri->uflist);
278
279 /* Add rp inst onto table */
280 INIT_HLIST_NODE(&ri->hlist);
281 hlist_add_head(&ri->hlist,
282 &kretprobe_inst_table[hash_ptr(ri->task, KPROBE_HASH_BITS)]);
283
284 /* Also add this rp inst to the used list. */
285 INIT_HLIST_NODE(&ri->uflist);
286 hlist_add_head(&ri->uflist, &ri->rp->used_instances);
287 }
288
289 /* Called with kretprobe_lock held */
290 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri)
291 {
292 /* remove rp inst off the rprobe_inst_table */
293 hlist_del(&ri->hlist);
294 if (ri->rp) {
295 /* remove rp inst off the used list */
296 hlist_del(&ri->uflist);
297 /* put rp inst back onto the free list */
298 INIT_HLIST_NODE(&ri->uflist);
299 hlist_add_head(&ri->uflist, &ri->rp->free_instances);
300 } else
301 /* Unregistering */
302 kfree(ri);
303 }
304
305 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk)
306 {
307 return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
308 }
309
310 /*
311 * This function is called from exit_thread or flush_thread when task tk's
312 * stack is being recycled so that we can recycle any function-return probe
313 * instances associated with this task. These left over instances represent
314 * probed functions that have been called but will never return.
315 */
316 void __kprobes kprobe_flush_task(struct task_struct *tk)
317 {
318 struct kretprobe_instance *ri;
319 struct hlist_head *head;
320 struct hlist_node *node, *tmp;
321 unsigned long flags = 0;
322
323 spin_lock_irqsave(&kretprobe_lock, flags);
324 head = kretprobe_inst_table_head(current);
325 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
326 if (ri->task == tk)
327 recycle_rp_inst(ri);
328 }
329 spin_unlock_irqrestore(&kretprobe_lock, flags);
330 }
331
332 /*
333 * This kprobe pre_handler is registered with every kretprobe. When probe
334 * hits it will set up the return probe.
335 */
336 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
337 struct pt_regs *regs)
338 {
339 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
340 unsigned long flags = 0;
341
342 /*TODO: consider to only swap the RA after the last pre_handler fired */
343 spin_lock_irqsave(&kretprobe_lock, flags);
344 arch_prepare_kretprobe(rp, regs);
345 spin_unlock_irqrestore(&kretprobe_lock, flags);
346 return 0;
347 }
348
349 static inline void free_rp_inst(struct kretprobe *rp)
350 {
351 struct kretprobe_instance *ri;
352 while ((ri = get_free_rp_inst(rp)) != NULL) {
353 hlist_del(&ri->uflist);
354 kfree(ri);
355 }
356 }
357
358 /*
359 * Keep all fields in the kprobe consistent
360 */
361 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
362 {
363 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
364 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
365 }
366
367 /*
368 * Add the new probe to old_p->list. Fail if this is the
369 * second jprobe at the address - two jprobes can't coexist
370 */
371 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
372 {
373 struct kprobe *kp;
374
375 if (p->break_handler) {
376 list_for_each_entry_rcu(kp, &old_p->list, list) {
377 if (kp->break_handler)
378 return -EEXIST;
379 }
380 list_add_tail_rcu(&p->list, &old_p->list);
381 } else
382 list_add_rcu(&p->list, &old_p->list);
383 return 0;
384 }
385
386 /*
387 * Fill in the required fields of the "manager kprobe". Replace the
388 * earlier kprobe in the hlist with the manager kprobe
389 */
390 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
391 {
392 copy_kprobe(p, ap);
393 ap->addr = p->addr;
394 ap->pre_handler = aggr_pre_handler;
395 ap->post_handler = aggr_post_handler;
396 ap->fault_handler = aggr_fault_handler;
397 ap->break_handler = aggr_break_handler;
398
399 INIT_LIST_HEAD(&ap->list);
400 list_add_rcu(&p->list, &ap->list);
401
402 INIT_HLIST_NODE(&ap->hlist);
403 hlist_del_rcu(&p->hlist);
404 hlist_add_head_rcu(&ap->hlist,
405 &kprobe_table[hash_ptr(ap->addr, KPROBE_HASH_BITS)]);
406 }
407
408 /*
409 * This is the second or subsequent kprobe at the address - handle
410 * the intricacies
411 * TODO: Move kcalloc outside the spin_lock
412 */
413 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
414 struct kprobe *p)
415 {
416 int ret = 0;
417 struct kprobe *ap;
418
419 if (old_p->pre_handler == aggr_pre_handler) {
420 copy_kprobe(old_p, p);
421 ret = add_new_kprobe(old_p, p);
422 } else {
423 ap = kcalloc(1, sizeof(struct kprobe), GFP_ATOMIC);
424 if (!ap)
425 return -ENOMEM;
426 add_aggr_kprobe(ap, old_p);
427 copy_kprobe(ap, p);
428 ret = add_new_kprobe(ap, p);
429 }
430 return ret;
431 }
432
433 /* kprobe removal house-keeping routines */
434 static inline void cleanup_kprobe(struct kprobe *p, unsigned long flags)
435 {
436 arch_disarm_kprobe(p);
437 hlist_del_rcu(&p->hlist);
438 spin_unlock_irqrestore(&kprobe_lock, flags);
439 arch_remove_kprobe(p);
440 }
441
442 static inline void cleanup_aggr_kprobe(struct kprobe *old_p,
443 struct kprobe *p, unsigned long flags)
444 {
445 list_del_rcu(&p->list);
446 if (list_empty(&old_p->list))
447 cleanup_kprobe(old_p, flags);
448 else
449 spin_unlock_irqrestore(&kprobe_lock, flags);
450 }
451
452 static int __kprobes in_kprobes_functions(unsigned long addr)
453 {
454 if (addr >= (unsigned long)__kprobes_text_start
455 && addr < (unsigned long)__kprobes_text_end)
456 return -EINVAL;
457 return 0;
458 }
459
460 int __kprobes register_kprobe(struct kprobe *p)
461 {
462 int ret = 0;
463 unsigned long flags = 0;
464 struct kprobe *old_p;
465
466 if ((ret = in_kprobes_functions((unsigned long) p->addr)) != 0)
467 return ret;
468 if ((ret = arch_prepare_kprobe(p)) != 0)
469 goto rm_kprobe;
470
471 p->nmissed = 0;
472 spin_lock_irqsave(&kprobe_lock, flags);
473 old_p = get_kprobe(p->addr);
474 if (old_p) {
475 ret = register_aggr_kprobe(old_p, p);
476 goto out;
477 }
478
479 arch_copy_kprobe(p);
480 INIT_HLIST_NODE(&p->hlist);
481 hlist_add_head_rcu(&p->hlist,
482 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
483
484 arch_arm_kprobe(p);
485
486 out:
487 spin_unlock_irqrestore(&kprobe_lock, flags);
488 rm_kprobe:
489 if (ret == -EEXIST)
490 arch_remove_kprobe(p);
491 return ret;
492 }
493
494 void __kprobes unregister_kprobe(struct kprobe *p)
495 {
496 unsigned long flags;
497 struct kprobe *old_p;
498
499 spin_lock_irqsave(&kprobe_lock, flags);
500 old_p = get_kprobe(p->addr);
501 if (old_p) {
502 /* cleanup_*_kprobe() does the spin_unlock_irqrestore */
503 if (old_p->pre_handler == aggr_pre_handler)
504 cleanup_aggr_kprobe(old_p, p, flags);
505 else
506 cleanup_kprobe(p, flags);
507
508 synchronize_sched();
509 if (old_p->pre_handler == aggr_pre_handler &&
510 list_empty(&old_p->list))
511 kfree(old_p);
512 } else
513 spin_unlock_irqrestore(&kprobe_lock, flags);
514 }
515
516 static struct notifier_block kprobe_exceptions_nb = {
517 .notifier_call = kprobe_exceptions_notify,
518 .priority = 0x7fffffff /* we need to notified first */
519 };
520
521 int __kprobes register_jprobe(struct jprobe *jp)
522 {
523 /* Todo: Verify probepoint is a function entry point */
524 jp->kp.pre_handler = setjmp_pre_handler;
525 jp->kp.break_handler = longjmp_break_handler;
526
527 return register_kprobe(&jp->kp);
528 }
529
530 void __kprobes unregister_jprobe(struct jprobe *jp)
531 {
532 unregister_kprobe(&jp->kp);
533 }
534
535 #ifdef ARCH_SUPPORTS_KRETPROBES
536
537 int __kprobes register_kretprobe(struct kretprobe *rp)
538 {
539 int ret = 0;
540 struct kretprobe_instance *inst;
541 int i;
542
543 rp->kp.pre_handler = pre_handler_kretprobe;
544
545 /* Pre-allocate memory for max kretprobe instances */
546 if (rp->maxactive <= 0) {
547 #ifdef CONFIG_PREEMPT
548 rp->maxactive = max(10, 2 * NR_CPUS);
549 #else
550 rp->maxactive = NR_CPUS;
551 #endif
552 }
553 INIT_HLIST_HEAD(&rp->used_instances);
554 INIT_HLIST_HEAD(&rp->free_instances);
555 for (i = 0; i < rp->maxactive; i++) {
556 inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL);
557 if (inst == NULL) {
558 free_rp_inst(rp);
559 return -ENOMEM;
560 }
561 INIT_HLIST_NODE(&inst->uflist);
562 hlist_add_head(&inst->uflist, &rp->free_instances);
563 }
564
565 rp->nmissed = 0;
566 /* Establish function entry probe point */
567 if ((ret = register_kprobe(&rp->kp)) != 0)
568 free_rp_inst(rp);
569 return ret;
570 }
571
572 #else /* ARCH_SUPPORTS_KRETPROBES */
573
574 int __kprobes register_kretprobe(struct kretprobe *rp)
575 {
576 return -ENOSYS;
577 }
578
579 #endif /* ARCH_SUPPORTS_KRETPROBES */
580
581 void __kprobes unregister_kretprobe(struct kretprobe *rp)
582 {
583 unsigned long flags;
584 struct kretprobe_instance *ri;
585
586 unregister_kprobe(&rp->kp);
587 /* No race here */
588 spin_lock_irqsave(&kretprobe_lock, flags);
589 free_rp_inst(rp);
590 while ((ri = get_used_rp_inst(rp)) != NULL) {
591 ri->rp = NULL;
592 hlist_del(&ri->uflist);
593 }
594 spin_unlock_irqrestore(&kretprobe_lock, flags);
595 }
596
597 static int __init init_kprobes(void)
598 {
599 int i, err = 0;
600
601 /* FIXME allocate the probe table, currently defined statically */
602 /* initialize all list heads */
603 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
604 INIT_HLIST_HEAD(&kprobe_table[i]);
605 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
606 }
607
608 err = arch_init_kprobes();
609 if (!err)
610 err = register_die_notifier(&kprobe_exceptions_nb);
611
612 return err;
613 }
614
615 __initcall(init_kprobes);
616
617 EXPORT_SYMBOL_GPL(register_kprobe);
618 EXPORT_SYMBOL_GPL(unregister_kprobe);
619 EXPORT_SYMBOL_GPL(register_jprobe);
620 EXPORT_SYMBOL_GPL(unregister_jprobe);
621 EXPORT_SYMBOL_GPL(jprobe_return);
622 EXPORT_SYMBOL_GPL(register_kretprobe);
623 EXPORT_SYMBOL_GPL(unregister_kretprobe);
624