ptrace: cleanup arch_ptrace() on xtensa
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
78 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
79 static struct {
80 spinlock_t lock ____cacheline_aligned_in_smp;
81 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
82
83 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
84 {
85 return &(kretprobe_table_locks[hash].lock);
86 }
87
88 /*
89 * Normally, functions that we'd want to prohibit kprobes in, are marked
90 * __kprobes. But, there are cases where such functions already belong to
91 * a different section (__sched for preempt_schedule)
92 *
93 * For such cases, we now have a blacklist
94 */
95 static struct kprobe_blackpoint kprobe_blacklist[] = {
96 {"preempt_schedule",},
97 {"native_get_debugreg",},
98 {"irq_entries_start",},
99 {"common_interrupt",},
100 {"mcount",}, /* mcount can be called from everywhere */
101 {NULL} /* Terminator */
102 };
103
104 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
105 /*
106 * kprobe->ainsn.insn points to the copy of the instruction to be
107 * single-stepped. x86_64, POWER4 and above have no-exec support and
108 * stepping on the instruction on a vmalloced/kmalloced/data page
109 * is a recipe for disaster
110 */
111 struct kprobe_insn_page {
112 struct list_head list;
113 kprobe_opcode_t *insns; /* Page of instruction slots */
114 int nused;
115 int ngarbage;
116 char slot_used[];
117 };
118
119 #define KPROBE_INSN_PAGE_SIZE(slots) \
120 (offsetof(struct kprobe_insn_page, slot_used) + \
121 (sizeof(char) * (slots)))
122
123 struct kprobe_insn_cache {
124 struct list_head pages; /* list of kprobe_insn_page */
125 size_t insn_size; /* size of instruction slot */
126 int nr_garbage;
127 };
128
129 static int slots_per_page(struct kprobe_insn_cache *c)
130 {
131 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
132 }
133
134 enum kprobe_slot_state {
135 SLOT_CLEAN = 0,
136 SLOT_DIRTY = 1,
137 SLOT_USED = 2,
138 };
139
140 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
141 static struct kprobe_insn_cache kprobe_insn_slots = {
142 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
143 .insn_size = MAX_INSN_SIZE,
144 .nr_garbage = 0,
145 };
146 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
147
148 /**
149 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 * We allocate an executable page if there's no room on existing ones.
151 */
152 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
153 {
154 struct kprobe_insn_page *kip;
155
156 retry:
157 list_for_each_entry(kip, &c->pages, list) {
158 if (kip->nused < slots_per_page(c)) {
159 int i;
160 for (i = 0; i < slots_per_page(c); i++) {
161 if (kip->slot_used[i] == SLOT_CLEAN) {
162 kip->slot_used[i] = SLOT_USED;
163 kip->nused++;
164 return kip->insns + (i * c->insn_size);
165 }
166 }
167 /* kip->nused is broken. Fix it. */
168 kip->nused = slots_per_page(c);
169 WARN_ON(1);
170 }
171 }
172
173 /* If there are any garbage slots, collect it and try again. */
174 if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 goto retry;
176
177 /* All out of space. Need to allocate a new page. */
178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 if (!kip)
180 return NULL;
181
182 /*
183 * Use module_alloc so this page is within +/- 2GB of where the
184 * kernel image and loaded module images reside. This is required
185 * so x86_64 can correctly handle the %rip-relative fixups.
186 */
187 kip->insns = module_alloc(PAGE_SIZE);
188 if (!kip->insns) {
189 kfree(kip);
190 return NULL;
191 }
192 INIT_LIST_HEAD(&kip->list);
193 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
194 kip->slot_used[0] = SLOT_USED;
195 kip->nused = 1;
196 kip->ngarbage = 0;
197 list_add(&kip->list, &c->pages);
198 return kip->insns;
199 }
200
201
202 kprobe_opcode_t __kprobes *get_insn_slot(void)
203 {
204 kprobe_opcode_t *ret = NULL;
205
206 mutex_lock(&kprobe_insn_mutex);
207 ret = __get_insn_slot(&kprobe_insn_slots);
208 mutex_unlock(&kprobe_insn_mutex);
209
210 return ret;
211 }
212
213 /* Return 1 if all garbages are collected, otherwise 0. */
214 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
215 {
216 kip->slot_used[idx] = SLOT_CLEAN;
217 kip->nused--;
218 if (kip->nused == 0) {
219 /*
220 * Page is no longer in use. Free it unless
221 * it's the last one. We keep the last one
222 * so as not to have to set it up again the
223 * next time somebody inserts a probe.
224 */
225 if (!list_is_singular(&kip->list)) {
226 list_del(&kip->list);
227 module_free(NULL, kip->insns);
228 kfree(kip);
229 }
230 return 1;
231 }
232 return 0;
233 }
234
235 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
236 {
237 struct kprobe_insn_page *kip, *next;
238
239 /* Ensure no-one is interrupted on the garbages */
240 synchronize_sched();
241
242 list_for_each_entry_safe(kip, next, &c->pages, list) {
243 int i;
244 if (kip->ngarbage == 0)
245 continue;
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < slots_per_page(c); i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY &&
249 collect_one_slot(kip, i))
250 break;
251 }
252 }
253 c->nr_garbage = 0;
254 return 0;
255 }
256
257 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
258 kprobe_opcode_t *slot, int dirty)
259 {
260 struct kprobe_insn_page *kip;
261
262 list_for_each_entry(kip, &c->pages, list) {
263 long idx = ((long)slot - (long)kip->insns) /
264 (c->insn_size * sizeof(kprobe_opcode_t));
265 if (idx >= 0 && idx < slots_per_page(c)) {
266 WARN_ON(kip->slot_used[idx] != SLOT_USED);
267 if (dirty) {
268 kip->slot_used[idx] = SLOT_DIRTY;
269 kip->ngarbage++;
270 if (++c->nr_garbage > slots_per_page(c))
271 collect_garbage_slots(c);
272 } else
273 collect_one_slot(kip, idx);
274 return;
275 }
276 }
277 /* Could not free this slot. */
278 WARN_ON(1);
279 }
280
281 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
282 {
283 mutex_lock(&kprobe_insn_mutex);
284 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
285 mutex_unlock(&kprobe_insn_mutex);
286 }
287 #ifdef CONFIG_OPTPROBES
288 /* For optimized_kprobe buffer */
289 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
290 static struct kprobe_insn_cache kprobe_optinsn_slots = {
291 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
292 /* .insn_size is initialized later */
293 .nr_garbage = 0,
294 };
295 /* Get a slot for optimized_kprobe buffer */
296 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
297 {
298 kprobe_opcode_t *ret = NULL;
299
300 mutex_lock(&kprobe_optinsn_mutex);
301 ret = __get_insn_slot(&kprobe_optinsn_slots);
302 mutex_unlock(&kprobe_optinsn_mutex);
303
304 return ret;
305 }
306
307 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
308 {
309 mutex_lock(&kprobe_optinsn_mutex);
310 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
311 mutex_unlock(&kprobe_optinsn_mutex);
312 }
313 #endif
314 #endif
315
316 /* We have preemption disabled.. so it is safe to use __ versions */
317 static inline void set_kprobe_instance(struct kprobe *kp)
318 {
319 __get_cpu_var(kprobe_instance) = kp;
320 }
321
322 static inline void reset_kprobe_instance(void)
323 {
324 __get_cpu_var(kprobe_instance) = NULL;
325 }
326
327 /*
328 * This routine is called either:
329 * - under the kprobe_mutex - during kprobe_[un]register()
330 * OR
331 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
332 */
333 struct kprobe __kprobes *get_kprobe(void *addr)
334 {
335 struct hlist_head *head;
336 struct hlist_node *node;
337 struct kprobe *p;
338
339 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340 hlist_for_each_entry_rcu(p, node, head, hlist) {
341 if (p->addr == addr)
342 return p;
343 }
344
345 return NULL;
346 }
347
348 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
349
350 /* Return true if the kprobe is an aggregator */
351 static inline int kprobe_aggrprobe(struct kprobe *p)
352 {
353 return p->pre_handler == aggr_pre_handler;
354 }
355
356 /*
357 * Keep all fields in the kprobe consistent
358 */
359 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
360 {
361 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
362 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
363 }
364
365 #ifdef CONFIG_OPTPROBES
366 /* NOTE: change this value only with kprobe_mutex held */
367 static bool kprobes_allow_optimization;
368
369 /*
370 * Call all pre_handler on the list, but ignores its return value.
371 * This must be called from arch-dep optimized caller.
372 */
373 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
374 {
375 struct kprobe *kp;
376
377 list_for_each_entry_rcu(kp, &p->list, list) {
378 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
379 set_kprobe_instance(kp);
380 kp->pre_handler(kp, regs);
381 }
382 reset_kprobe_instance();
383 }
384 }
385
386 /* Return true(!0) if the kprobe is ready for optimization. */
387 static inline int kprobe_optready(struct kprobe *p)
388 {
389 struct optimized_kprobe *op;
390
391 if (kprobe_aggrprobe(p)) {
392 op = container_of(p, struct optimized_kprobe, kp);
393 return arch_prepared_optinsn(&op->optinsn);
394 }
395
396 return 0;
397 }
398
399 /*
400 * Return an optimized kprobe whose optimizing code replaces
401 * instructions including addr (exclude breakpoint).
402 */
403 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
404 {
405 int i;
406 struct kprobe *p = NULL;
407 struct optimized_kprobe *op;
408
409 /* Don't check i == 0, since that is a breakpoint case. */
410 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
411 p = get_kprobe((void *)(addr - i));
412
413 if (p && kprobe_optready(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 if (arch_within_optimized_kprobe(op, addr))
416 return p;
417 }
418
419 return NULL;
420 }
421
422 /* Optimization staging list, protected by kprobe_mutex */
423 static LIST_HEAD(optimizing_list);
424
425 static void kprobe_optimizer(struct work_struct *work);
426 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
427 #define OPTIMIZE_DELAY 5
428
429 /* Kprobe jump optimizer */
430 static __kprobes void kprobe_optimizer(struct work_struct *work)
431 {
432 struct optimized_kprobe *op, *tmp;
433
434 /* Lock modules while optimizing kprobes */
435 mutex_lock(&module_mutex);
436 mutex_lock(&kprobe_mutex);
437 if (kprobes_all_disarmed || !kprobes_allow_optimization)
438 goto end;
439
440 /*
441 * Wait for quiesence period to ensure all running interrupts
442 * are done. Because optprobe may modify multiple instructions
443 * there is a chance that Nth instruction is interrupted. In that
444 * case, running interrupt can return to 2nd-Nth byte of jump
445 * instruction. This wait is for avoiding it.
446 */
447 synchronize_sched();
448
449 /*
450 * The optimization/unoptimization refers online_cpus via
451 * stop_machine() and cpu-hotplug modifies online_cpus.
452 * And same time, text_mutex will be held in cpu-hotplug and here.
453 * This combination can cause a deadlock (cpu-hotplug try to lock
454 * text_mutex but stop_machine can not be done because online_cpus
455 * has been changed)
456 * To avoid this deadlock, we need to call get_online_cpus()
457 * for preventing cpu-hotplug outside of text_mutex locking.
458 */
459 get_online_cpus();
460 mutex_lock(&text_mutex);
461 list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
462 WARN_ON(kprobe_disabled(&op->kp));
463 if (arch_optimize_kprobe(op) < 0)
464 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
465 list_del_init(&op->list);
466 }
467 mutex_unlock(&text_mutex);
468 put_online_cpus();
469 end:
470 mutex_unlock(&kprobe_mutex);
471 mutex_unlock(&module_mutex);
472 }
473
474 /* Optimize kprobe if p is ready to be optimized */
475 static __kprobes void optimize_kprobe(struct kprobe *p)
476 {
477 struct optimized_kprobe *op;
478
479 /* Check if the kprobe is disabled or not ready for optimization. */
480 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
481 (kprobe_disabled(p) || kprobes_all_disarmed))
482 return;
483
484 /* Both of break_handler and post_handler are not supported. */
485 if (p->break_handler || p->post_handler)
486 return;
487
488 op = container_of(p, struct optimized_kprobe, kp);
489
490 /* Check there is no other kprobes at the optimized instructions */
491 if (arch_check_optimized_kprobe(op) < 0)
492 return;
493
494 /* Check if it is already optimized. */
495 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
496 return;
497
498 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
499 list_add(&op->list, &optimizing_list);
500 if (!delayed_work_pending(&optimizing_work))
501 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
502 }
503
504 /* Unoptimize a kprobe if p is optimized */
505 static __kprobes void unoptimize_kprobe(struct kprobe *p)
506 {
507 struct optimized_kprobe *op;
508
509 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
510 op = container_of(p, struct optimized_kprobe, kp);
511 if (!list_empty(&op->list))
512 /* Dequeue from the optimization queue */
513 list_del_init(&op->list);
514 else
515 /* Replace jump with break */
516 arch_unoptimize_kprobe(op);
517 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
518 }
519 }
520
521 /* Remove optimized instructions */
522 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
523 {
524 struct optimized_kprobe *op;
525
526 op = container_of(p, struct optimized_kprobe, kp);
527 if (!list_empty(&op->list)) {
528 /* Dequeue from the optimization queue */
529 list_del_init(&op->list);
530 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
531 }
532 /* Don't unoptimize, because the target code will be freed. */
533 arch_remove_optimized_kprobe(op);
534 }
535
536 /* Try to prepare optimized instructions */
537 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
538 {
539 struct optimized_kprobe *op;
540
541 op = container_of(p, struct optimized_kprobe, kp);
542 arch_prepare_optimized_kprobe(op);
543 }
544
545 /* Free optimized instructions and optimized_kprobe */
546 static __kprobes void free_aggr_kprobe(struct kprobe *p)
547 {
548 struct optimized_kprobe *op;
549
550 op = container_of(p, struct optimized_kprobe, kp);
551 arch_remove_optimized_kprobe(op);
552 kfree(op);
553 }
554
555 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
556 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
557 {
558 struct optimized_kprobe *op;
559
560 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
561 if (!op)
562 return NULL;
563
564 INIT_LIST_HEAD(&op->list);
565 op->kp.addr = p->addr;
566 arch_prepare_optimized_kprobe(op);
567
568 return &op->kp;
569 }
570
571 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
572
573 /*
574 * Prepare an optimized_kprobe and optimize it
575 * NOTE: p must be a normal registered kprobe
576 */
577 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
578 {
579 struct kprobe *ap;
580 struct optimized_kprobe *op;
581
582 ap = alloc_aggr_kprobe(p);
583 if (!ap)
584 return;
585
586 op = container_of(ap, struct optimized_kprobe, kp);
587 if (!arch_prepared_optinsn(&op->optinsn)) {
588 /* If failed to setup optimizing, fallback to kprobe */
589 free_aggr_kprobe(ap);
590 return;
591 }
592
593 init_aggr_kprobe(ap, p);
594 optimize_kprobe(ap);
595 }
596
597 #ifdef CONFIG_SYSCTL
598 static void __kprobes optimize_all_kprobes(void)
599 {
600 struct hlist_head *head;
601 struct hlist_node *node;
602 struct kprobe *p;
603 unsigned int i;
604
605 /* If optimization is already allowed, just return */
606 if (kprobes_allow_optimization)
607 return;
608
609 kprobes_allow_optimization = true;
610 mutex_lock(&text_mutex);
611 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
612 head = &kprobe_table[i];
613 hlist_for_each_entry_rcu(p, node, head, hlist)
614 if (!kprobe_disabled(p))
615 optimize_kprobe(p);
616 }
617 mutex_unlock(&text_mutex);
618 printk(KERN_INFO "Kprobes globally optimized\n");
619 }
620
621 static void __kprobes unoptimize_all_kprobes(void)
622 {
623 struct hlist_head *head;
624 struct hlist_node *node;
625 struct kprobe *p;
626 unsigned int i;
627
628 /* If optimization is already prohibited, just return */
629 if (!kprobes_allow_optimization)
630 return;
631
632 kprobes_allow_optimization = false;
633 printk(KERN_INFO "Kprobes globally unoptimized\n");
634 get_online_cpus(); /* For avoiding text_mutex deadlock */
635 mutex_lock(&text_mutex);
636 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
637 head = &kprobe_table[i];
638 hlist_for_each_entry_rcu(p, node, head, hlist) {
639 if (!kprobe_disabled(p))
640 unoptimize_kprobe(p);
641 }
642 }
643
644 mutex_unlock(&text_mutex);
645 put_online_cpus();
646 /* Allow all currently running kprobes to complete */
647 synchronize_sched();
648 }
649
650 int sysctl_kprobes_optimization;
651 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
652 void __user *buffer, size_t *length,
653 loff_t *ppos)
654 {
655 int ret;
656
657 mutex_lock(&kprobe_mutex);
658 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
659 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
660
661 if (sysctl_kprobes_optimization)
662 optimize_all_kprobes();
663 else
664 unoptimize_all_kprobes();
665 mutex_unlock(&kprobe_mutex);
666
667 return ret;
668 }
669 #endif /* CONFIG_SYSCTL */
670
671 static void __kprobes __arm_kprobe(struct kprobe *p)
672 {
673 struct kprobe *old_p;
674
675 /* Check collision with other optimized kprobes */
676 old_p = get_optimized_kprobe((unsigned long)p->addr);
677 if (unlikely(old_p))
678 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
679
680 arch_arm_kprobe(p);
681 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
682 }
683
684 static void __kprobes __disarm_kprobe(struct kprobe *p)
685 {
686 struct kprobe *old_p;
687
688 unoptimize_kprobe(p); /* Try to unoptimize */
689 arch_disarm_kprobe(p);
690
691 /* If another kprobe was blocked, optimize it. */
692 old_p = get_optimized_kprobe((unsigned long)p->addr);
693 if (unlikely(old_p))
694 optimize_kprobe(old_p);
695 }
696
697 #else /* !CONFIG_OPTPROBES */
698
699 #define optimize_kprobe(p) do {} while (0)
700 #define unoptimize_kprobe(p) do {} while (0)
701 #define kill_optimized_kprobe(p) do {} while (0)
702 #define prepare_optimized_kprobe(p) do {} while (0)
703 #define try_to_optimize_kprobe(p) do {} while (0)
704 #define __arm_kprobe(p) arch_arm_kprobe(p)
705 #define __disarm_kprobe(p) arch_disarm_kprobe(p)
706
707 static __kprobes void free_aggr_kprobe(struct kprobe *p)
708 {
709 kfree(p);
710 }
711
712 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
713 {
714 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
715 }
716 #endif /* CONFIG_OPTPROBES */
717
718 /* Arm a kprobe with text_mutex */
719 static void __kprobes arm_kprobe(struct kprobe *kp)
720 {
721 /*
722 * Here, since __arm_kprobe() doesn't use stop_machine(),
723 * this doesn't cause deadlock on text_mutex. So, we don't
724 * need get_online_cpus().
725 */
726 mutex_lock(&text_mutex);
727 __arm_kprobe(kp);
728 mutex_unlock(&text_mutex);
729 }
730
731 /* Disarm a kprobe with text_mutex */
732 static void __kprobes disarm_kprobe(struct kprobe *kp)
733 {
734 get_online_cpus(); /* For avoiding text_mutex deadlock */
735 mutex_lock(&text_mutex);
736 __disarm_kprobe(kp);
737 mutex_unlock(&text_mutex);
738 put_online_cpus();
739 }
740
741 /*
742 * Aggregate handlers for multiple kprobes support - these handlers
743 * take care of invoking the individual kprobe handlers on p->list
744 */
745 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
746 {
747 struct kprobe *kp;
748
749 list_for_each_entry_rcu(kp, &p->list, list) {
750 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
751 set_kprobe_instance(kp);
752 if (kp->pre_handler(kp, regs))
753 return 1;
754 }
755 reset_kprobe_instance();
756 }
757 return 0;
758 }
759
760 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
761 unsigned long flags)
762 {
763 struct kprobe *kp;
764
765 list_for_each_entry_rcu(kp, &p->list, list) {
766 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
767 set_kprobe_instance(kp);
768 kp->post_handler(kp, regs, flags);
769 reset_kprobe_instance();
770 }
771 }
772 }
773
774 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
775 int trapnr)
776 {
777 struct kprobe *cur = __get_cpu_var(kprobe_instance);
778
779 /*
780 * if we faulted "during" the execution of a user specified
781 * probe handler, invoke just that probe's fault handler
782 */
783 if (cur && cur->fault_handler) {
784 if (cur->fault_handler(cur, regs, trapnr))
785 return 1;
786 }
787 return 0;
788 }
789
790 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
791 {
792 struct kprobe *cur = __get_cpu_var(kprobe_instance);
793 int ret = 0;
794
795 if (cur && cur->break_handler) {
796 if (cur->break_handler(cur, regs))
797 ret = 1;
798 }
799 reset_kprobe_instance();
800 return ret;
801 }
802
803 /* Walks the list and increments nmissed count for multiprobe case */
804 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
805 {
806 struct kprobe *kp;
807 if (!kprobe_aggrprobe(p)) {
808 p->nmissed++;
809 } else {
810 list_for_each_entry_rcu(kp, &p->list, list)
811 kp->nmissed++;
812 }
813 return;
814 }
815
816 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
817 struct hlist_head *head)
818 {
819 struct kretprobe *rp = ri->rp;
820
821 /* remove rp inst off the rprobe_inst_table */
822 hlist_del(&ri->hlist);
823 INIT_HLIST_NODE(&ri->hlist);
824 if (likely(rp)) {
825 spin_lock(&rp->lock);
826 hlist_add_head(&ri->hlist, &rp->free_instances);
827 spin_unlock(&rp->lock);
828 } else
829 /* Unregistering */
830 hlist_add_head(&ri->hlist, head);
831 }
832
833 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
834 struct hlist_head **head, unsigned long *flags)
835 __acquires(hlist_lock)
836 {
837 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
838 spinlock_t *hlist_lock;
839
840 *head = &kretprobe_inst_table[hash];
841 hlist_lock = kretprobe_table_lock_ptr(hash);
842 spin_lock_irqsave(hlist_lock, *flags);
843 }
844
845 static void __kprobes kretprobe_table_lock(unsigned long hash,
846 unsigned long *flags)
847 __acquires(hlist_lock)
848 {
849 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
850 spin_lock_irqsave(hlist_lock, *flags);
851 }
852
853 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
854 unsigned long *flags)
855 __releases(hlist_lock)
856 {
857 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
858 spinlock_t *hlist_lock;
859
860 hlist_lock = kretprobe_table_lock_ptr(hash);
861 spin_unlock_irqrestore(hlist_lock, *flags);
862 }
863
864 static void __kprobes kretprobe_table_unlock(unsigned long hash,
865 unsigned long *flags)
866 __releases(hlist_lock)
867 {
868 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
869 spin_unlock_irqrestore(hlist_lock, *flags);
870 }
871
872 /*
873 * This function is called from finish_task_switch when task tk becomes dead,
874 * so that we can recycle any function-return probe instances associated
875 * with this task. These left over instances represent probed functions
876 * that have been called but will never return.
877 */
878 void __kprobes kprobe_flush_task(struct task_struct *tk)
879 {
880 struct kretprobe_instance *ri;
881 struct hlist_head *head, empty_rp;
882 struct hlist_node *node, *tmp;
883 unsigned long hash, flags = 0;
884
885 if (unlikely(!kprobes_initialized))
886 /* Early boot. kretprobe_table_locks not yet initialized. */
887 return;
888
889 hash = hash_ptr(tk, KPROBE_HASH_BITS);
890 head = &kretprobe_inst_table[hash];
891 kretprobe_table_lock(hash, &flags);
892 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
893 if (ri->task == tk)
894 recycle_rp_inst(ri, &empty_rp);
895 }
896 kretprobe_table_unlock(hash, &flags);
897 INIT_HLIST_HEAD(&empty_rp);
898 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
899 hlist_del(&ri->hlist);
900 kfree(ri);
901 }
902 }
903
904 static inline void free_rp_inst(struct kretprobe *rp)
905 {
906 struct kretprobe_instance *ri;
907 struct hlist_node *pos, *next;
908
909 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
910 hlist_del(&ri->hlist);
911 kfree(ri);
912 }
913 }
914
915 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
916 {
917 unsigned long flags, hash;
918 struct kretprobe_instance *ri;
919 struct hlist_node *pos, *next;
920 struct hlist_head *head;
921
922 /* No race here */
923 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
924 kretprobe_table_lock(hash, &flags);
925 head = &kretprobe_inst_table[hash];
926 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
927 if (ri->rp == rp)
928 ri->rp = NULL;
929 }
930 kretprobe_table_unlock(hash, &flags);
931 }
932 free_rp_inst(rp);
933 }
934
935 /*
936 * Add the new probe to ap->list. Fail if this is the
937 * second jprobe at the address - two jprobes can't coexist
938 */
939 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
940 {
941 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
942
943 if (p->break_handler || p->post_handler)
944 unoptimize_kprobe(ap); /* Fall back to normal kprobe */
945
946 if (p->break_handler) {
947 if (ap->break_handler)
948 return -EEXIST;
949 list_add_tail_rcu(&p->list, &ap->list);
950 ap->break_handler = aggr_break_handler;
951 } else
952 list_add_rcu(&p->list, &ap->list);
953 if (p->post_handler && !ap->post_handler)
954 ap->post_handler = aggr_post_handler;
955
956 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
957 ap->flags &= ~KPROBE_FLAG_DISABLED;
958 if (!kprobes_all_disarmed)
959 /* Arm the breakpoint again. */
960 __arm_kprobe(ap);
961 }
962 return 0;
963 }
964
965 /*
966 * Fill in the required fields of the "manager kprobe". Replace the
967 * earlier kprobe in the hlist with the manager kprobe
968 */
969 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
970 {
971 /* Copy p's insn slot to ap */
972 copy_kprobe(p, ap);
973 flush_insn_slot(ap);
974 ap->addr = p->addr;
975 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
976 ap->pre_handler = aggr_pre_handler;
977 ap->fault_handler = aggr_fault_handler;
978 /* We don't care the kprobe which has gone. */
979 if (p->post_handler && !kprobe_gone(p))
980 ap->post_handler = aggr_post_handler;
981 if (p->break_handler && !kprobe_gone(p))
982 ap->break_handler = aggr_break_handler;
983
984 INIT_LIST_HEAD(&ap->list);
985 INIT_HLIST_NODE(&ap->hlist);
986
987 list_add_rcu(&p->list, &ap->list);
988 hlist_replace_rcu(&p->hlist, &ap->hlist);
989 }
990
991 /*
992 * This is the second or subsequent kprobe at the address - handle
993 * the intricacies
994 */
995 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
996 struct kprobe *p)
997 {
998 int ret = 0;
999 struct kprobe *ap = old_p;
1000
1001 if (!kprobe_aggrprobe(old_p)) {
1002 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
1003 ap = alloc_aggr_kprobe(old_p);
1004 if (!ap)
1005 return -ENOMEM;
1006 init_aggr_kprobe(ap, old_p);
1007 }
1008
1009 if (kprobe_gone(ap)) {
1010 /*
1011 * Attempting to insert new probe at the same location that
1012 * had a probe in the module vaddr area which already
1013 * freed. So, the instruction slot has already been
1014 * released. We need a new slot for the new probe.
1015 */
1016 ret = arch_prepare_kprobe(ap);
1017 if (ret)
1018 /*
1019 * Even if fail to allocate new slot, don't need to
1020 * free aggr_probe. It will be used next time, or
1021 * freed by unregister_kprobe.
1022 */
1023 return ret;
1024
1025 /* Prepare optimized instructions if possible. */
1026 prepare_optimized_kprobe(ap);
1027
1028 /*
1029 * Clear gone flag to prevent allocating new slot again, and
1030 * set disabled flag because it is not armed yet.
1031 */
1032 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1033 | KPROBE_FLAG_DISABLED;
1034 }
1035
1036 /* Copy ap's insn slot to p */
1037 copy_kprobe(ap, p);
1038 return add_new_kprobe(ap, p);
1039 }
1040
1041 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1042 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1043 {
1044 struct kprobe *kp;
1045
1046 list_for_each_entry_rcu(kp, &p->list, list) {
1047 if (!kprobe_disabled(kp))
1048 /*
1049 * There is an active probe on the list.
1050 * We can't disable aggr_kprobe.
1051 */
1052 return 0;
1053 }
1054 p->flags |= KPROBE_FLAG_DISABLED;
1055 return 1;
1056 }
1057
1058 static int __kprobes in_kprobes_functions(unsigned long addr)
1059 {
1060 struct kprobe_blackpoint *kb;
1061
1062 if (addr >= (unsigned long)__kprobes_text_start &&
1063 addr < (unsigned long)__kprobes_text_end)
1064 return -EINVAL;
1065 /*
1066 * If there exists a kprobe_blacklist, verify and
1067 * fail any probe registration in the prohibited area
1068 */
1069 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1070 if (kb->start_addr) {
1071 if (addr >= kb->start_addr &&
1072 addr < (kb->start_addr + kb->range))
1073 return -EINVAL;
1074 }
1075 }
1076 return 0;
1077 }
1078
1079 /*
1080 * If we have a symbol_name argument, look it up and add the offset field
1081 * to it. This way, we can specify a relative address to a symbol.
1082 */
1083 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1084 {
1085 kprobe_opcode_t *addr = p->addr;
1086 if (p->symbol_name) {
1087 if (addr)
1088 return NULL;
1089 kprobe_lookup_name(p->symbol_name, addr);
1090 }
1091
1092 if (!addr)
1093 return NULL;
1094 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1095 }
1096
1097 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1098 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1099 {
1100 struct kprobe *old_p, *list_p;
1101
1102 old_p = get_kprobe(p->addr);
1103 if (unlikely(!old_p))
1104 return NULL;
1105
1106 if (p != old_p) {
1107 list_for_each_entry_rcu(list_p, &old_p->list, list)
1108 if (list_p == p)
1109 /* kprobe p is a valid probe */
1110 goto valid;
1111 return NULL;
1112 }
1113 valid:
1114 return old_p;
1115 }
1116
1117 /* Return error if the kprobe is being re-registered */
1118 static inline int check_kprobe_rereg(struct kprobe *p)
1119 {
1120 int ret = 0;
1121 struct kprobe *old_p;
1122
1123 mutex_lock(&kprobe_mutex);
1124 old_p = __get_valid_kprobe(p);
1125 if (old_p)
1126 ret = -EINVAL;
1127 mutex_unlock(&kprobe_mutex);
1128 return ret;
1129 }
1130
1131 int __kprobes register_kprobe(struct kprobe *p)
1132 {
1133 int ret = 0;
1134 struct kprobe *old_p;
1135 struct module *probed_mod;
1136 kprobe_opcode_t *addr;
1137
1138 addr = kprobe_addr(p);
1139 if (!addr)
1140 return -EINVAL;
1141 p->addr = addr;
1142
1143 ret = check_kprobe_rereg(p);
1144 if (ret)
1145 return ret;
1146
1147 preempt_disable();
1148 if (!kernel_text_address((unsigned long) p->addr) ||
1149 in_kprobes_functions((unsigned long) p->addr) ||
1150 ftrace_text_reserved(p->addr, p->addr) ||
1151 jump_label_text_reserved(p->addr, p->addr)) {
1152 preempt_enable();
1153 return -EINVAL;
1154 }
1155
1156 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1157 p->flags &= KPROBE_FLAG_DISABLED;
1158
1159 /*
1160 * Check if are we probing a module.
1161 */
1162 probed_mod = __module_text_address((unsigned long) p->addr);
1163 if (probed_mod) {
1164 /*
1165 * We must hold a refcount of the probed module while updating
1166 * its code to prohibit unexpected unloading.
1167 */
1168 if (unlikely(!try_module_get(probed_mod))) {
1169 preempt_enable();
1170 return -EINVAL;
1171 }
1172 /*
1173 * If the module freed .init.text, we couldn't insert
1174 * kprobes in there.
1175 */
1176 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1177 probed_mod->state != MODULE_STATE_COMING) {
1178 module_put(probed_mod);
1179 preempt_enable();
1180 return -EINVAL;
1181 }
1182 }
1183 preempt_enable();
1184
1185 p->nmissed = 0;
1186 INIT_LIST_HEAD(&p->list);
1187 mutex_lock(&kprobe_mutex);
1188
1189 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1190 mutex_lock(&text_mutex);
1191
1192 old_p = get_kprobe(p->addr);
1193 if (old_p) {
1194 /* Since this may unoptimize old_p, locking text_mutex. */
1195 ret = register_aggr_kprobe(old_p, p);
1196 goto out;
1197 }
1198
1199 ret = arch_prepare_kprobe(p);
1200 if (ret)
1201 goto out;
1202
1203 INIT_HLIST_NODE(&p->hlist);
1204 hlist_add_head_rcu(&p->hlist,
1205 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1206
1207 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1208 __arm_kprobe(p);
1209
1210 /* Try to optimize kprobe */
1211 try_to_optimize_kprobe(p);
1212
1213 out:
1214 mutex_unlock(&text_mutex);
1215 put_online_cpus();
1216 mutex_unlock(&kprobe_mutex);
1217
1218 if (probed_mod)
1219 module_put(probed_mod);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL_GPL(register_kprobe);
1224
1225 /*
1226 * Unregister a kprobe without a scheduler synchronization.
1227 */
1228 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1229 {
1230 struct kprobe *old_p, *list_p;
1231
1232 old_p = __get_valid_kprobe(p);
1233 if (old_p == NULL)
1234 return -EINVAL;
1235
1236 if (old_p == p ||
1237 (kprobe_aggrprobe(old_p) &&
1238 list_is_singular(&old_p->list))) {
1239 /*
1240 * Only probe on the hash list. Disarm only if kprobes are
1241 * enabled and not gone - otherwise, the breakpoint would
1242 * already have been removed. We save on flushing icache.
1243 */
1244 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1245 disarm_kprobe(old_p);
1246 hlist_del_rcu(&old_p->hlist);
1247 } else {
1248 if (p->break_handler && !kprobe_gone(p))
1249 old_p->break_handler = NULL;
1250 if (p->post_handler && !kprobe_gone(p)) {
1251 list_for_each_entry_rcu(list_p, &old_p->list, list) {
1252 if ((list_p != p) && (list_p->post_handler))
1253 goto noclean;
1254 }
1255 old_p->post_handler = NULL;
1256 }
1257 noclean:
1258 list_del_rcu(&p->list);
1259 if (!kprobe_disabled(old_p)) {
1260 try_to_disable_aggr_kprobe(old_p);
1261 if (!kprobes_all_disarmed) {
1262 if (kprobe_disabled(old_p))
1263 disarm_kprobe(old_p);
1264 else
1265 /* Try to optimize this probe again */
1266 optimize_kprobe(old_p);
1267 }
1268 }
1269 }
1270 return 0;
1271 }
1272
1273 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1274 {
1275 struct kprobe *old_p;
1276
1277 if (list_empty(&p->list))
1278 arch_remove_kprobe(p);
1279 else if (list_is_singular(&p->list)) {
1280 /* "p" is the last child of an aggr_kprobe */
1281 old_p = list_entry(p->list.next, struct kprobe, list);
1282 list_del(&p->list);
1283 arch_remove_kprobe(old_p);
1284 free_aggr_kprobe(old_p);
1285 }
1286 }
1287
1288 int __kprobes register_kprobes(struct kprobe **kps, int num)
1289 {
1290 int i, ret = 0;
1291
1292 if (num <= 0)
1293 return -EINVAL;
1294 for (i = 0; i < num; i++) {
1295 ret = register_kprobe(kps[i]);
1296 if (ret < 0) {
1297 if (i > 0)
1298 unregister_kprobes(kps, i);
1299 break;
1300 }
1301 }
1302 return ret;
1303 }
1304 EXPORT_SYMBOL_GPL(register_kprobes);
1305
1306 void __kprobes unregister_kprobe(struct kprobe *p)
1307 {
1308 unregister_kprobes(&p, 1);
1309 }
1310 EXPORT_SYMBOL_GPL(unregister_kprobe);
1311
1312 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1313 {
1314 int i;
1315
1316 if (num <= 0)
1317 return;
1318 mutex_lock(&kprobe_mutex);
1319 for (i = 0; i < num; i++)
1320 if (__unregister_kprobe_top(kps[i]) < 0)
1321 kps[i]->addr = NULL;
1322 mutex_unlock(&kprobe_mutex);
1323
1324 synchronize_sched();
1325 for (i = 0; i < num; i++)
1326 if (kps[i]->addr)
1327 __unregister_kprobe_bottom(kps[i]);
1328 }
1329 EXPORT_SYMBOL_GPL(unregister_kprobes);
1330
1331 static struct notifier_block kprobe_exceptions_nb = {
1332 .notifier_call = kprobe_exceptions_notify,
1333 .priority = 0x7fffffff /* we need to be notified first */
1334 };
1335
1336 unsigned long __weak arch_deref_entry_point(void *entry)
1337 {
1338 return (unsigned long)entry;
1339 }
1340
1341 int __kprobes register_jprobes(struct jprobe **jps, int num)
1342 {
1343 struct jprobe *jp;
1344 int ret = 0, i;
1345
1346 if (num <= 0)
1347 return -EINVAL;
1348 for (i = 0; i < num; i++) {
1349 unsigned long addr, offset;
1350 jp = jps[i];
1351 addr = arch_deref_entry_point(jp->entry);
1352
1353 /* Verify probepoint is a function entry point */
1354 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1355 offset == 0) {
1356 jp->kp.pre_handler = setjmp_pre_handler;
1357 jp->kp.break_handler = longjmp_break_handler;
1358 ret = register_kprobe(&jp->kp);
1359 } else
1360 ret = -EINVAL;
1361
1362 if (ret < 0) {
1363 if (i > 0)
1364 unregister_jprobes(jps, i);
1365 break;
1366 }
1367 }
1368 return ret;
1369 }
1370 EXPORT_SYMBOL_GPL(register_jprobes);
1371
1372 int __kprobes register_jprobe(struct jprobe *jp)
1373 {
1374 return register_jprobes(&jp, 1);
1375 }
1376 EXPORT_SYMBOL_GPL(register_jprobe);
1377
1378 void __kprobes unregister_jprobe(struct jprobe *jp)
1379 {
1380 unregister_jprobes(&jp, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(unregister_jprobe);
1383
1384 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1385 {
1386 int i;
1387
1388 if (num <= 0)
1389 return;
1390 mutex_lock(&kprobe_mutex);
1391 for (i = 0; i < num; i++)
1392 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1393 jps[i]->kp.addr = NULL;
1394 mutex_unlock(&kprobe_mutex);
1395
1396 synchronize_sched();
1397 for (i = 0; i < num; i++) {
1398 if (jps[i]->kp.addr)
1399 __unregister_kprobe_bottom(&jps[i]->kp);
1400 }
1401 }
1402 EXPORT_SYMBOL_GPL(unregister_jprobes);
1403
1404 #ifdef CONFIG_KRETPROBES
1405 /*
1406 * This kprobe pre_handler is registered with every kretprobe. When probe
1407 * hits it will set up the return probe.
1408 */
1409 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1410 struct pt_regs *regs)
1411 {
1412 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1413 unsigned long hash, flags = 0;
1414 struct kretprobe_instance *ri;
1415
1416 /*TODO: consider to only swap the RA after the last pre_handler fired */
1417 hash = hash_ptr(current, KPROBE_HASH_BITS);
1418 spin_lock_irqsave(&rp->lock, flags);
1419 if (!hlist_empty(&rp->free_instances)) {
1420 ri = hlist_entry(rp->free_instances.first,
1421 struct kretprobe_instance, hlist);
1422 hlist_del(&ri->hlist);
1423 spin_unlock_irqrestore(&rp->lock, flags);
1424
1425 ri->rp = rp;
1426 ri->task = current;
1427
1428 if (rp->entry_handler && rp->entry_handler(ri, regs))
1429 return 0;
1430
1431 arch_prepare_kretprobe(ri, regs);
1432
1433 /* XXX(hch): why is there no hlist_move_head? */
1434 INIT_HLIST_NODE(&ri->hlist);
1435 kretprobe_table_lock(hash, &flags);
1436 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1437 kretprobe_table_unlock(hash, &flags);
1438 } else {
1439 rp->nmissed++;
1440 spin_unlock_irqrestore(&rp->lock, flags);
1441 }
1442 return 0;
1443 }
1444
1445 int __kprobes register_kretprobe(struct kretprobe *rp)
1446 {
1447 int ret = 0;
1448 struct kretprobe_instance *inst;
1449 int i;
1450 void *addr;
1451
1452 if (kretprobe_blacklist_size) {
1453 addr = kprobe_addr(&rp->kp);
1454 if (!addr)
1455 return -EINVAL;
1456
1457 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1458 if (kretprobe_blacklist[i].addr == addr)
1459 return -EINVAL;
1460 }
1461 }
1462
1463 rp->kp.pre_handler = pre_handler_kretprobe;
1464 rp->kp.post_handler = NULL;
1465 rp->kp.fault_handler = NULL;
1466 rp->kp.break_handler = NULL;
1467
1468 /* Pre-allocate memory for max kretprobe instances */
1469 if (rp->maxactive <= 0) {
1470 #ifdef CONFIG_PREEMPT
1471 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1472 #else
1473 rp->maxactive = num_possible_cpus();
1474 #endif
1475 }
1476 spin_lock_init(&rp->lock);
1477 INIT_HLIST_HEAD(&rp->free_instances);
1478 for (i = 0; i < rp->maxactive; i++) {
1479 inst = kmalloc(sizeof(struct kretprobe_instance) +
1480 rp->data_size, GFP_KERNEL);
1481 if (inst == NULL) {
1482 free_rp_inst(rp);
1483 return -ENOMEM;
1484 }
1485 INIT_HLIST_NODE(&inst->hlist);
1486 hlist_add_head(&inst->hlist, &rp->free_instances);
1487 }
1488
1489 rp->nmissed = 0;
1490 /* Establish function entry probe point */
1491 ret = register_kprobe(&rp->kp);
1492 if (ret != 0)
1493 free_rp_inst(rp);
1494 return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(register_kretprobe);
1497
1498 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1499 {
1500 int ret = 0, i;
1501
1502 if (num <= 0)
1503 return -EINVAL;
1504 for (i = 0; i < num; i++) {
1505 ret = register_kretprobe(rps[i]);
1506 if (ret < 0) {
1507 if (i > 0)
1508 unregister_kretprobes(rps, i);
1509 break;
1510 }
1511 }
1512 return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(register_kretprobes);
1515
1516 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1517 {
1518 unregister_kretprobes(&rp, 1);
1519 }
1520 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1521
1522 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1523 {
1524 int i;
1525
1526 if (num <= 0)
1527 return;
1528 mutex_lock(&kprobe_mutex);
1529 for (i = 0; i < num; i++)
1530 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1531 rps[i]->kp.addr = NULL;
1532 mutex_unlock(&kprobe_mutex);
1533
1534 synchronize_sched();
1535 for (i = 0; i < num; i++) {
1536 if (rps[i]->kp.addr) {
1537 __unregister_kprobe_bottom(&rps[i]->kp);
1538 cleanup_rp_inst(rps[i]);
1539 }
1540 }
1541 }
1542 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1543
1544 #else /* CONFIG_KRETPROBES */
1545 int __kprobes register_kretprobe(struct kretprobe *rp)
1546 {
1547 return -ENOSYS;
1548 }
1549 EXPORT_SYMBOL_GPL(register_kretprobe);
1550
1551 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1552 {
1553 return -ENOSYS;
1554 }
1555 EXPORT_SYMBOL_GPL(register_kretprobes);
1556
1557 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1558 {
1559 }
1560 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1561
1562 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1563 {
1564 }
1565 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1566
1567 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1568 struct pt_regs *regs)
1569 {
1570 return 0;
1571 }
1572
1573 #endif /* CONFIG_KRETPROBES */
1574
1575 /* Set the kprobe gone and remove its instruction buffer. */
1576 static void __kprobes kill_kprobe(struct kprobe *p)
1577 {
1578 struct kprobe *kp;
1579
1580 p->flags |= KPROBE_FLAG_GONE;
1581 if (kprobe_aggrprobe(p)) {
1582 /*
1583 * If this is an aggr_kprobe, we have to list all the
1584 * chained probes and mark them GONE.
1585 */
1586 list_for_each_entry_rcu(kp, &p->list, list)
1587 kp->flags |= KPROBE_FLAG_GONE;
1588 p->post_handler = NULL;
1589 p->break_handler = NULL;
1590 kill_optimized_kprobe(p);
1591 }
1592 /*
1593 * Here, we can remove insn_slot safely, because no thread calls
1594 * the original probed function (which will be freed soon) any more.
1595 */
1596 arch_remove_kprobe(p);
1597 }
1598
1599 /* Disable one kprobe */
1600 int __kprobes disable_kprobe(struct kprobe *kp)
1601 {
1602 int ret = 0;
1603 struct kprobe *p;
1604
1605 mutex_lock(&kprobe_mutex);
1606
1607 /* Check whether specified probe is valid. */
1608 p = __get_valid_kprobe(kp);
1609 if (unlikely(p == NULL)) {
1610 ret = -EINVAL;
1611 goto out;
1612 }
1613
1614 /* If the probe is already disabled (or gone), just return */
1615 if (kprobe_disabled(kp))
1616 goto out;
1617
1618 kp->flags |= KPROBE_FLAG_DISABLED;
1619 if (p != kp)
1620 /* When kp != p, p is always enabled. */
1621 try_to_disable_aggr_kprobe(p);
1622
1623 if (!kprobes_all_disarmed && kprobe_disabled(p))
1624 disarm_kprobe(p);
1625 out:
1626 mutex_unlock(&kprobe_mutex);
1627 return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(disable_kprobe);
1630
1631 /* Enable one kprobe */
1632 int __kprobes enable_kprobe(struct kprobe *kp)
1633 {
1634 int ret = 0;
1635 struct kprobe *p;
1636
1637 mutex_lock(&kprobe_mutex);
1638
1639 /* Check whether specified probe is valid. */
1640 p = __get_valid_kprobe(kp);
1641 if (unlikely(p == NULL)) {
1642 ret = -EINVAL;
1643 goto out;
1644 }
1645
1646 if (kprobe_gone(kp)) {
1647 /* This kprobe has gone, we couldn't enable it. */
1648 ret = -EINVAL;
1649 goto out;
1650 }
1651
1652 if (p != kp)
1653 kp->flags &= ~KPROBE_FLAG_DISABLED;
1654
1655 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1656 p->flags &= ~KPROBE_FLAG_DISABLED;
1657 arm_kprobe(p);
1658 }
1659 out:
1660 mutex_unlock(&kprobe_mutex);
1661 return ret;
1662 }
1663 EXPORT_SYMBOL_GPL(enable_kprobe);
1664
1665 void __kprobes dump_kprobe(struct kprobe *kp)
1666 {
1667 printk(KERN_WARNING "Dumping kprobe:\n");
1668 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1669 kp->symbol_name, kp->addr, kp->offset);
1670 }
1671
1672 /* Module notifier call back, checking kprobes on the module */
1673 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1674 unsigned long val, void *data)
1675 {
1676 struct module *mod = data;
1677 struct hlist_head *head;
1678 struct hlist_node *node;
1679 struct kprobe *p;
1680 unsigned int i;
1681 int checkcore = (val == MODULE_STATE_GOING);
1682
1683 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1684 return NOTIFY_DONE;
1685
1686 /*
1687 * When MODULE_STATE_GOING was notified, both of module .text and
1688 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1689 * notified, only .init.text section would be freed. We need to
1690 * disable kprobes which have been inserted in the sections.
1691 */
1692 mutex_lock(&kprobe_mutex);
1693 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1694 head = &kprobe_table[i];
1695 hlist_for_each_entry_rcu(p, node, head, hlist)
1696 if (within_module_init((unsigned long)p->addr, mod) ||
1697 (checkcore &&
1698 within_module_core((unsigned long)p->addr, mod))) {
1699 /*
1700 * The vaddr this probe is installed will soon
1701 * be vfreed buy not synced to disk. Hence,
1702 * disarming the breakpoint isn't needed.
1703 */
1704 kill_kprobe(p);
1705 }
1706 }
1707 mutex_unlock(&kprobe_mutex);
1708 return NOTIFY_DONE;
1709 }
1710
1711 static struct notifier_block kprobe_module_nb = {
1712 .notifier_call = kprobes_module_callback,
1713 .priority = 0
1714 };
1715
1716 static int __init init_kprobes(void)
1717 {
1718 int i, err = 0;
1719 unsigned long offset = 0, size = 0;
1720 char *modname, namebuf[128];
1721 const char *symbol_name;
1722 void *addr;
1723 struct kprobe_blackpoint *kb;
1724
1725 /* FIXME allocate the probe table, currently defined statically */
1726 /* initialize all list heads */
1727 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1728 INIT_HLIST_HEAD(&kprobe_table[i]);
1729 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1730 spin_lock_init(&(kretprobe_table_locks[i].lock));
1731 }
1732
1733 /*
1734 * Lookup and populate the kprobe_blacklist.
1735 *
1736 * Unlike the kretprobe blacklist, we'll need to determine
1737 * the range of addresses that belong to the said functions,
1738 * since a kprobe need not necessarily be at the beginning
1739 * of a function.
1740 */
1741 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1742 kprobe_lookup_name(kb->name, addr);
1743 if (!addr)
1744 continue;
1745
1746 kb->start_addr = (unsigned long)addr;
1747 symbol_name = kallsyms_lookup(kb->start_addr,
1748 &size, &offset, &modname, namebuf);
1749 if (!symbol_name)
1750 kb->range = 0;
1751 else
1752 kb->range = size;
1753 }
1754
1755 if (kretprobe_blacklist_size) {
1756 /* lookup the function address from its name */
1757 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1758 kprobe_lookup_name(kretprobe_blacklist[i].name,
1759 kretprobe_blacklist[i].addr);
1760 if (!kretprobe_blacklist[i].addr)
1761 printk("kretprobe: lookup failed: %s\n",
1762 kretprobe_blacklist[i].name);
1763 }
1764 }
1765
1766 #if defined(CONFIG_OPTPROBES)
1767 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1768 /* Init kprobe_optinsn_slots */
1769 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1770 #endif
1771 /* By default, kprobes can be optimized */
1772 kprobes_allow_optimization = true;
1773 #endif
1774
1775 /* By default, kprobes are armed */
1776 kprobes_all_disarmed = false;
1777
1778 err = arch_init_kprobes();
1779 if (!err)
1780 err = register_die_notifier(&kprobe_exceptions_nb);
1781 if (!err)
1782 err = register_module_notifier(&kprobe_module_nb);
1783
1784 kprobes_initialized = (err == 0);
1785
1786 if (!err)
1787 init_test_probes();
1788 return err;
1789 }
1790
1791 #ifdef CONFIG_DEBUG_FS
1792 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1793 const char *sym, int offset, char *modname, struct kprobe *pp)
1794 {
1795 char *kprobe_type;
1796
1797 if (p->pre_handler == pre_handler_kretprobe)
1798 kprobe_type = "r";
1799 else if (p->pre_handler == setjmp_pre_handler)
1800 kprobe_type = "j";
1801 else
1802 kprobe_type = "k";
1803
1804 if (sym)
1805 seq_printf(pi, "%p %s %s+0x%x %s ",
1806 p->addr, kprobe_type, sym, offset,
1807 (modname ? modname : " "));
1808 else
1809 seq_printf(pi, "%p %s %p ",
1810 p->addr, kprobe_type, p->addr);
1811
1812 if (!pp)
1813 pp = p;
1814 seq_printf(pi, "%s%s%s\n",
1815 (kprobe_gone(p) ? "[GONE]" : ""),
1816 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
1817 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1818 }
1819
1820 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1821 {
1822 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1823 }
1824
1825 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1826 {
1827 (*pos)++;
1828 if (*pos >= KPROBE_TABLE_SIZE)
1829 return NULL;
1830 return pos;
1831 }
1832
1833 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1834 {
1835 /* Nothing to do */
1836 }
1837
1838 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1839 {
1840 struct hlist_head *head;
1841 struct hlist_node *node;
1842 struct kprobe *p, *kp;
1843 const char *sym = NULL;
1844 unsigned int i = *(loff_t *) v;
1845 unsigned long offset = 0;
1846 char *modname, namebuf[128];
1847
1848 head = &kprobe_table[i];
1849 preempt_disable();
1850 hlist_for_each_entry_rcu(p, node, head, hlist) {
1851 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1852 &offset, &modname, namebuf);
1853 if (kprobe_aggrprobe(p)) {
1854 list_for_each_entry_rcu(kp, &p->list, list)
1855 report_probe(pi, kp, sym, offset, modname, p);
1856 } else
1857 report_probe(pi, p, sym, offset, modname, NULL);
1858 }
1859 preempt_enable();
1860 return 0;
1861 }
1862
1863 static const struct seq_operations kprobes_seq_ops = {
1864 .start = kprobe_seq_start,
1865 .next = kprobe_seq_next,
1866 .stop = kprobe_seq_stop,
1867 .show = show_kprobe_addr
1868 };
1869
1870 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1871 {
1872 return seq_open(filp, &kprobes_seq_ops);
1873 }
1874
1875 static const struct file_operations debugfs_kprobes_operations = {
1876 .open = kprobes_open,
1877 .read = seq_read,
1878 .llseek = seq_lseek,
1879 .release = seq_release,
1880 };
1881
1882 static void __kprobes arm_all_kprobes(void)
1883 {
1884 struct hlist_head *head;
1885 struct hlist_node *node;
1886 struct kprobe *p;
1887 unsigned int i;
1888
1889 mutex_lock(&kprobe_mutex);
1890
1891 /* If kprobes are armed, just return */
1892 if (!kprobes_all_disarmed)
1893 goto already_enabled;
1894
1895 /* Arming kprobes doesn't optimize kprobe itself */
1896 mutex_lock(&text_mutex);
1897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1898 head = &kprobe_table[i];
1899 hlist_for_each_entry_rcu(p, node, head, hlist)
1900 if (!kprobe_disabled(p))
1901 __arm_kprobe(p);
1902 }
1903 mutex_unlock(&text_mutex);
1904
1905 kprobes_all_disarmed = false;
1906 printk(KERN_INFO "Kprobes globally enabled\n");
1907
1908 already_enabled:
1909 mutex_unlock(&kprobe_mutex);
1910 return;
1911 }
1912
1913 static void __kprobes disarm_all_kprobes(void)
1914 {
1915 struct hlist_head *head;
1916 struct hlist_node *node;
1917 struct kprobe *p;
1918 unsigned int i;
1919
1920 mutex_lock(&kprobe_mutex);
1921
1922 /* If kprobes are already disarmed, just return */
1923 if (kprobes_all_disarmed)
1924 goto already_disabled;
1925
1926 kprobes_all_disarmed = true;
1927 printk(KERN_INFO "Kprobes globally disabled\n");
1928
1929 /*
1930 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1931 * because disarming may also unoptimize kprobes.
1932 */
1933 get_online_cpus();
1934 mutex_lock(&text_mutex);
1935 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1936 head = &kprobe_table[i];
1937 hlist_for_each_entry_rcu(p, node, head, hlist) {
1938 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1939 __disarm_kprobe(p);
1940 }
1941 }
1942
1943 mutex_unlock(&text_mutex);
1944 put_online_cpus();
1945 mutex_unlock(&kprobe_mutex);
1946 /* Allow all currently running kprobes to complete */
1947 synchronize_sched();
1948 return;
1949
1950 already_disabled:
1951 mutex_unlock(&kprobe_mutex);
1952 return;
1953 }
1954
1955 /*
1956 * XXX: The debugfs bool file interface doesn't allow for callbacks
1957 * when the bool state is switched. We can reuse that facility when
1958 * available
1959 */
1960 static ssize_t read_enabled_file_bool(struct file *file,
1961 char __user *user_buf, size_t count, loff_t *ppos)
1962 {
1963 char buf[3];
1964
1965 if (!kprobes_all_disarmed)
1966 buf[0] = '1';
1967 else
1968 buf[0] = '0';
1969 buf[1] = '\n';
1970 buf[2] = 0x00;
1971 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1972 }
1973
1974 static ssize_t write_enabled_file_bool(struct file *file,
1975 const char __user *user_buf, size_t count, loff_t *ppos)
1976 {
1977 char buf[32];
1978 int buf_size;
1979
1980 buf_size = min(count, (sizeof(buf)-1));
1981 if (copy_from_user(buf, user_buf, buf_size))
1982 return -EFAULT;
1983
1984 switch (buf[0]) {
1985 case 'y':
1986 case 'Y':
1987 case '1':
1988 arm_all_kprobes();
1989 break;
1990 case 'n':
1991 case 'N':
1992 case '0':
1993 disarm_all_kprobes();
1994 break;
1995 }
1996
1997 return count;
1998 }
1999
2000 static const struct file_operations fops_kp = {
2001 .read = read_enabled_file_bool,
2002 .write = write_enabled_file_bool,
2003 .llseek = default_llseek,
2004 };
2005
2006 static int __kprobes debugfs_kprobe_init(void)
2007 {
2008 struct dentry *dir, *file;
2009 unsigned int value = 1;
2010
2011 dir = debugfs_create_dir("kprobes", NULL);
2012 if (!dir)
2013 return -ENOMEM;
2014
2015 file = debugfs_create_file("list", 0444, dir, NULL,
2016 &debugfs_kprobes_operations);
2017 if (!file) {
2018 debugfs_remove(dir);
2019 return -ENOMEM;
2020 }
2021
2022 file = debugfs_create_file("enabled", 0600, dir,
2023 &value, &fops_kp);
2024 if (!file) {
2025 debugfs_remove(dir);
2026 return -ENOMEM;
2027 }
2028
2029 return 0;
2030 }
2031
2032 late_initcall(debugfs_kprobe_init);
2033 #endif /* CONFIG_DEBUG_FS */
2034
2035 module_init(init_kprobes);
2036
2037 /* defined in arch/.../kernel/kprobes.c */
2038 EXPORT_SYMBOL_GPL(jprobe_return);