asm-generic: add another generic ext2 atomic bitops
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <asm/uaccess.h>
40
41 #include <trace/events/module.h>
42
43 extern int max_threads;
44
45 static struct workqueue_struct *khelper_wq;
46
47 #define CAP_BSET (void *)1
48 #define CAP_PI (void *)2
49
50 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
51 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
52 static DEFINE_SPINLOCK(umh_sysctl_lock);
53
54 #ifdef CONFIG_MODULES
55
56 /*
57 modprobe_path is set via /proc/sys.
58 */
59 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
60
61 /**
62 * __request_module - try to load a kernel module
63 * @wait: wait (or not) for the operation to complete
64 * @fmt: printf style format string for the name of the module
65 * @...: arguments as specified in the format string
66 *
67 * Load a module using the user mode module loader. The function returns
68 * zero on success or a negative errno code on failure. Note that a
69 * successful module load does not mean the module did not then unload
70 * and exit on an error of its own. Callers must check that the service
71 * they requested is now available not blindly invoke it.
72 *
73 * If module auto-loading support is disabled then this function
74 * becomes a no-operation.
75 */
76 int __request_module(bool wait, const char *fmt, ...)
77 {
78 va_list args;
79 char module_name[MODULE_NAME_LEN];
80 unsigned int max_modprobes;
81 int ret;
82 char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
83 static char *envp[] = { "HOME=/",
84 "TERM=linux",
85 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
86 NULL };
87 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
88 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
89 static int kmod_loop_msg;
90
91 va_start(args, fmt);
92 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
93 va_end(args);
94 if (ret >= MODULE_NAME_LEN)
95 return -ENAMETOOLONG;
96
97 ret = security_kernel_module_request(module_name);
98 if (ret)
99 return ret;
100
101 /* If modprobe needs a service that is in a module, we get a recursive
102 * loop. Limit the number of running kmod threads to max_threads/2 or
103 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
104 * would be to run the parents of this process, counting how many times
105 * kmod was invoked. That would mean accessing the internals of the
106 * process tables to get the command line, proc_pid_cmdline is static
107 * and it is not worth changing the proc code just to handle this case.
108 * KAO.
109 *
110 * "trace the ppid" is simple, but will fail if someone's
111 * parent exits. I think this is as good as it gets. --RR
112 */
113 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
114 atomic_inc(&kmod_concurrent);
115 if (atomic_read(&kmod_concurrent) > max_modprobes) {
116 /* We may be blaming an innocent here, but unlikely */
117 if (kmod_loop_msg++ < 5)
118 printk(KERN_ERR
119 "request_module: runaway loop modprobe %s\n",
120 module_name);
121 atomic_dec(&kmod_concurrent);
122 return -ENOMEM;
123 }
124
125 trace_module_request(module_name, wait, _RET_IP_);
126
127 ret = call_usermodehelper_fns(modprobe_path, argv, envp,
128 wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC,
129 NULL, NULL, NULL);
130
131 atomic_dec(&kmod_concurrent);
132 return ret;
133 }
134 EXPORT_SYMBOL(__request_module);
135 #endif /* CONFIG_MODULES */
136
137 /*
138 * This is the task which runs the usermode application
139 */
140 static int ____call_usermodehelper(void *data)
141 {
142 struct subprocess_info *sub_info = data;
143 struct cred *new;
144 int retval;
145
146 spin_lock_irq(&current->sighand->siglock);
147 flush_signal_handlers(current, 1);
148 spin_unlock_irq(&current->sighand->siglock);
149
150 /* We can run anywhere, unlike our parent keventd(). */
151 set_cpus_allowed_ptr(current, cpu_all_mask);
152
153 /*
154 * Our parent is keventd, which runs with elevated scheduling priority.
155 * Avoid propagating that into the userspace child.
156 */
157 set_user_nice(current, 0);
158
159 retval = -ENOMEM;
160 new = prepare_kernel_cred(current);
161 if (!new)
162 goto fail;
163
164 spin_lock(&umh_sysctl_lock);
165 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
166 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
167 new->cap_inheritable);
168 spin_unlock(&umh_sysctl_lock);
169
170 if (sub_info->init) {
171 retval = sub_info->init(sub_info, new);
172 if (retval) {
173 abort_creds(new);
174 goto fail;
175 }
176 }
177
178 commit_creds(new);
179
180 retval = kernel_execve(sub_info->path,
181 (const char *const *)sub_info->argv,
182 (const char *const *)sub_info->envp);
183
184 /* Exec failed? */
185 fail:
186 sub_info->retval = retval;
187 do_exit(0);
188 }
189
190 void call_usermodehelper_freeinfo(struct subprocess_info *info)
191 {
192 if (info->cleanup)
193 (*info->cleanup)(info);
194 kfree(info);
195 }
196 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
197
198 /* Keventd can't block, but this (a child) can. */
199 static int wait_for_helper(void *data)
200 {
201 struct subprocess_info *sub_info = data;
202 pid_t pid;
203
204 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
205 spin_lock_irq(&current->sighand->siglock);
206 current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
207 spin_unlock_irq(&current->sighand->siglock);
208
209 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
210 if (pid < 0) {
211 sub_info->retval = pid;
212 } else {
213 int ret = -ECHILD;
214 /*
215 * Normally it is bogus to call wait4() from in-kernel because
216 * wait4() wants to write the exit code to a userspace address.
217 * But wait_for_helper() always runs as keventd, and put_user()
218 * to a kernel address works OK for kernel threads, due to their
219 * having an mm_segment_t which spans the entire address space.
220 *
221 * Thus the __user pointer cast is valid here.
222 */
223 sys_wait4(pid, (int __user *)&ret, 0, NULL);
224
225 /*
226 * If ret is 0, either ____call_usermodehelper failed and the
227 * real error code is already in sub_info->retval or
228 * sub_info->retval is 0 anyway, so don't mess with it then.
229 */
230 if (ret)
231 sub_info->retval = ret;
232 }
233
234 complete(sub_info->complete);
235 return 0;
236 }
237
238 /* This is run by khelper thread */
239 static void __call_usermodehelper(struct work_struct *work)
240 {
241 struct subprocess_info *sub_info =
242 container_of(work, struct subprocess_info, work);
243 enum umh_wait wait = sub_info->wait;
244 pid_t pid;
245
246 /* CLONE_VFORK: wait until the usermode helper has execve'd
247 * successfully We need the data structures to stay around
248 * until that is done. */
249 if (wait == UMH_WAIT_PROC)
250 pid = kernel_thread(wait_for_helper, sub_info,
251 CLONE_FS | CLONE_FILES | SIGCHLD);
252 else
253 pid = kernel_thread(____call_usermodehelper, sub_info,
254 CLONE_VFORK | SIGCHLD);
255
256 switch (wait) {
257 case UMH_NO_WAIT:
258 call_usermodehelper_freeinfo(sub_info);
259 break;
260
261 case UMH_WAIT_PROC:
262 if (pid > 0)
263 break;
264 /* FALLTHROUGH */
265 case UMH_WAIT_EXEC:
266 if (pid < 0)
267 sub_info->retval = pid;
268 complete(sub_info->complete);
269 }
270 }
271
272 /*
273 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
274 * (used for preventing user land processes from being created after the user
275 * land has been frozen during a system-wide hibernation or suspend operation).
276 */
277 static int usermodehelper_disabled;
278
279 /* Number of helpers running */
280 static atomic_t running_helpers = ATOMIC_INIT(0);
281
282 /*
283 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
284 * helpers to finish.
285 */
286 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
287
288 /*
289 * Time to wait for running_helpers to become zero before the setting of
290 * usermodehelper_disabled in usermodehelper_pm_callback() fails
291 */
292 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
293
294 /**
295 * usermodehelper_disable - prevent new helpers from being started
296 */
297 int usermodehelper_disable(void)
298 {
299 long retval;
300
301 usermodehelper_disabled = 1;
302 smp_mb();
303 /*
304 * From now on call_usermodehelper_exec() won't start any new
305 * helpers, so it is sufficient if running_helpers turns out to
306 * be zero at one point (it may be increased later, but that
307 * doesn't matter).
308 */
309 retval = wait_event_timeout(running_helpers_waitq,
310 atomic_read(&running_helpers) == 0,
311 RUNNING_HELPERS_TIMEOUT);
312 if (retval)
313 return 0;
314
315 usermodehelper_disabled = 0;
316 return -EAGAIN;
317 }
318
319 /**
320 * usermodehelper_enable - allow new helpers to be started again
321 */
322 void usermodehelper_enable(void)
323 {
324 usermodehelper_disabled = 0;
325 }
326
327 /**
328 * usermodehelper_is_disabled - check if new helpers are allowed to be started
329 */
330 bool usermodehelper_is_disabled(void)
331 {
332 return usermodehelper_disabled;
333 }
334 EXPORT_SYMBOL_GPL(usermodehelper_is_disabled);
335
336 static void helper_lock(void)
337 {
338 atomic_inc(&running_helpers);
339 smp_mb__after_atomic_inc();
340 }
341
342 static void helper_unlock(void)
343 {
344 if (atomic_dec_and_test(&running_helpers))
345 wake_up(&running_helpers_waitq);
346 }
347
348 /**
349 * call_usermodehelper_setup - prepare to call a usermode helper
350 * @path: path to usermode executable
351 * @argv: arg vector for process
352 * @envp: environment for process
353 * @gfp_mask: gfp mask for memory allocation
354 *
355 * Returns either %NULL on allocation failure, or a subprocess_info
356 * structure. This should be passed to call_usermodehelper_exec to
357 * exec the process and free the structure.
358 */
359 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
360 char **envp, gfp_t gfp_mask)
361 {
362 struct subprocess_info *sub_info;
363 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
364 if (!sub_info)
365 goto out;
366
367 INIT_WORK(&sub_info->work, __call_usermodehelper);
368 sub_info->path = path;
369 sub_info->argv = argv;
370 sub_info->envp = envp;
371 out:
372 return sub_info;
373 }
374 EXPORT_SYMBOL(call_usermodehelper_setup);
375
376 /**
377 * call_usermodehelper_setfns - set a cleanup/init function
378 * @info: a subprocess_info returned by call_usermodehelper_setup
379 * @cleanup: a cleanup function
380 * @init: an init function
381 * @data: arbitrary context sensitive data
382 *
383 * The init function is used to customize the helper process prior to
384 * exec. A non-zero return code causes the process to error out, exit,
385 * and return the failure to the calling process
386 *
387 * The cleanup function is just before ethe subprocess_info is about to
388 * be freed. This can be used for freeing the argv and envp. The
389 * Function must be runnable in either a process context or the
390 * context in which call_usermodehelper_exec is called.
391 */
392 void call_usermodehelper_setfns(struct subprocess_info *info,
393 int (*init)(struct subprocess_info *info, struct cred *new),
394 void (*cleanup)(struct subprocess_info *info),
395 void *data)
396 {
397 info->cleanup = cleanup;
398 info->init = init;
399 info->data = data;
400 }
401 EXPORT_SYMBOL(call_usermodehelper_setfns);
402
403 /**
404 * call_usermodehelper_exec - start a usermode application
405 * @sub_info: information about the subprocessa
406 * @wait: wait for the application to finish and return status.
407 * when -1 don't wait at all, but you get no useful error back when
408 * the program couldn't be exec'ed. This makes it safe to call
409 * from interrupt context.
410 *
411 * Runs a user-space application. The application is started
412 * asynchronously if wait is not set, and runs as a child of keventd.
413 * (ie. it runs with full root capabilities).
414 */
415 int call_usermodehelper_exec(struct subprocess_info *sub_info,
416 enum umh_wait wait)
417 {
418 DECLARE_COMPLETION_ONSTACK(done);
419 int retval = 0;
420
421 helper_lock();
422 if (sub_info->path[0] == '\0')
423 goto out;
424
425 if (!khelper_wq || usermodehelper_disabled) {
426 retval = -EBUSY;
427 goto out;
428 }
429
430 sub_info->complete = &done;
431 sub_info->wait = wait;
432
433 queue_work(khelper_wq, &sub_info->work);
434 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
435 goto unlock;
436 wait_for_completion(&done);
437 retval = sub_info->retval;
438
439 out:
440 call_usermodehelper_freeinfo(sub_info);
441 unlock:
442 helper_unlock();
443 return retval;
444 }
445 EXPORT_SYMBOL(call_usermodehelper_exec);
446
447 static int proc_cap_handler(struct ctl_table *table, int write,
448 void __user *buffer, size_t *lenp, loff_t *ppos)
449 {
450 struct ctl_table t;
451 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
452 kernel_cap_t new_cap;
453 int err, i;
454
455 if (write && (!capable(CAP_SETPCAP) ||
456 !capable(CAP_SYS_MODULE)))
457 return -EPERM;
458
459 /*
460 * convert from the global kernel_cap_t to the ulong array to print to
461 * userspace if this is a read.
462 */
463 spin_lock(&umh_sysctl_lock);
464 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
465 if (table->data == CAP_BSET)
466 cap_array[i] = usermodehelper_bset.cap[i];
467 else if (table->data == CAP_PI)
468 cap_array[i] = usermodehelper_inheritable.cap[i];
469 else
470 BUG();
471 }
472 spin_unlock(&umh_sysctl_lock);
473
474 t = *table;
475 t.data = &cap_array;
476
477 /*
478 * actually read or write and array of ulongs from userspace. Remember
479 * these are least significant 32 bits first
480 */
481 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
482 if (err < 0)
483 return err;
484
485 /*
486 * convert from the sysctl array of ulongs to the kernel_cap_t
487 * internal representation
488 */
489 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
490 new_cap.cap[i] = cap_array[i];
491
492 /*
493 * Drop everything not in the new_cap (but don't add things)
494 */
495 spin_lock(&umh_sysctl_lock);
496 if (write) {
497 if (table->data == CAP_BSET)
498 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
499 if (table->data == CAP_PI)
500 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
501 }
502 spin_unlock(&umh_sysctl_lock);
503
504 return 0;
505 }
506
507 struct ctl_table usermodehelper_table[] = {
508 {
509 .procname = "bset",
510 .data = CAP_BSET,
511 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
512 .mode = 0600,
513 .proc_handler = proc_cap_handler,
514 },
515 {
516 .procname = "inheritable",
517 .data = CAP_PI,
518 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
519 .mode = 0600,
520 .proc_handler = proc_cap_handler,
521 },
522 { }
523 };
524
525 void __init usermodehelper_init(void)
526 {
527 khelper_wq = create_singlethread_workqueue("khelper");
528 BUG_ON(!khelper_wq);
529 }