rbd: kill rbd_update_mapping_size()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kexec.c
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
35
36 #include <asm/page.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/sections.h>
40
41 /* Per cpu memory for storing cpu states in case of system crash. */
42 note_buf_t __percpu *crash_notes;
43
44 /* vmcoreinfo stuff */
45 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
46 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
47 size_t vmcoreinfo_size;
48 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
49
50 /* Location of the reserved area for the crash kernel */
51 struct resource crashk_res = {
52 .name = "Crash kernel",
53 .start = 0,
54 .end = 0,
55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
56 };
57 struct resource crashk_low_res = {
58 .name = "Crash kernel",
59 .start = 0,
60 .end = 0,
61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
62 };
63
64 int kexec_should_crash(struct task_struct *p)
65 {
66 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
67 return 1;
68 return 0;
69 }
70
71 /*
72 * When kexec transitions to the new kernel there is a one-to-one
73 * mapping between physical and virtual addresses. On processors
74 * where you can disable the MMU this is trivial, and easy. For
75 * others it is still a simple predictable page table to setup.
76 *
77 * In that environment kexec copies the new kernel to its final
78 * resting place. This means I can only support memory whose
79 * physical address can fit in an unsigned long. In particular
80 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
81 * If the assembly stub has more restrictive requirements
82 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
83 * defined more restrictively in <asm/kexec.h>.
84 *
85 * The code for the transition from the current kernel to the
86 * the new kernel is placed in the control_code_buffer, whose size
87 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
88 * page of memory is necessary, but some architectures require more.
89 * Because this memory must be identity mapped in the transition from
90 * virtual to physical addresses it must live in the range
91 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
92 * modifiable.
93 *
94 * The assembly stub in the control code buffer is passed a linked list
95 * of descriptor pages detailing the source pages of the new kernel,
96 * and the destination addresses of those source pages. As this data
97 * structure is not used in the context of the current OS, it must
98 * be self-contained.
99 *
100 * The code has been made to work with highmem pages and will use a
101 * destination page in its final resting place (if it happens
102 * to allocate it). The end product of this is that most of the
103 * physical address space, and most of RAM can be used.
104 *
105 * Future directions include:
106 * - allocating a page table with the control code buffer identity
107 * mapped, to simplify machine_kexec and make kexec_on_panic more
108 * reliable.
109 */
110
111 /*
112 * KIMAGE_NO_DEST is an impossible destination address..., for
113 * allocating pages whose destination address we do not care about.
114 */
115 #define KIMAGE_NO_DEST (-1UL)
116
117 static int kimage_is_destination_range(struct kimage *image,
118 unsigned long start, unsigned long end);
119 static struct page *kimage_alloc_page(struct kimage *image,
120 gfp_t gfp_mask,
121 unsigned long dest);
122
123 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
124 unsigned long nr_segments,
125 struct kexec_segment __user *segments)
126 {
127 size_t segment_bytes;
128 struct kimage *image;
129 unsigned long i;
130 int result;
131
132 /* Allocate a controlling structure */
133 result = -ENOMEM;
134 image = kzalloc(sizeof(*image), GFP_KERNEL);
135 if (!image)
136 goto out;
137
138 image->head = 0;
139 image->entry = &image->head;
140 image->last_entry = &image->head;
141 image->control_page = ~0; /* By default this does not apply */
142 image->start = entry;
143 image->type = KEXEC_TYPE_DEFAULT;
144
145 /* Initialize the list of control pages */
146 INIT_LIST_HEAD(&image->control_pages);
147
148 /* Initialize the list of destination pages */
149 INIT_LIST_HEAD(&image->dest_pages);
150
151 /* Initialize the list of unusable pages */
152 INIT_LIST_HEAD(&image->unuseable_pages);
153
154 /* Read in the segments */
155 image->nr_segments = nr_segments;
156 segment_bytes = nr_segments * sizeof(*segments);
157 result = copy_from_user(image->segment, segments, segment_bytes);
158 if (result) {
159 result = -EFAULT;
160 goto out;
161 }
162
163 /*
164 * Verify we have good destination addresses. The caller is
165 * responsible for making certain we don't attempt to load
166 * the new image into invalid or reserved areas of RAM. This
167 * just verifies it is an address we can use.
168 *
169 * Since the kernel does everything in page size chunks ensure
170 * the destination addresses are page aligned. Too many
171 * special cases crop of when we don't do this. The most
172 * insidious is getting overlapping destination addresses
173 * simply because addresses are changed to page size
174 * granularity.
175 */
176 result = -EADDRNOTAVAIL;
177 for (i = 0; i < nr_segments; i++) {
178 unsigned long mstart, mend;
179
180 mstart = image->segment[i].mem;
181 mend = mstart + image->segment[i].memsz;
182 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
183 goto out;
184 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
185 goto out;
186 }
187
188 /* Verify our destination addresses do not overlap.
189 * If we alloed overlapping destination addresses
190 * through very weird things can happen with no
191 * easy explanation as one segment stops on another.
192 */
193 result = -EINVAL;
194 for (i = 0; i < nr_segments; i++) {
195 unsigned long mstart, mend;
196 unsigned long j;
197
198 mstart = image->segment[i].mem;
199 mend = mstart + image->segment[i].memsz;
200 for (j = 0; j < i; j++) {
201 unsigned long pstart, pend;
202 pstart = image->segment[j].mem;
203 pend = pstart + image->segment[j].memsz;
204 /* Do the segments overlap ? */
205 if ((mend > pstart) && (mstart < pend))
206 goto out;
207 }
208 }
209
210 /* Ensure our buffer sizes are strictly less than
211 * our memory sizes. This should always be the case,
212 * and it is easier to check up front than to be surprised
213 * later on.
214 */
215 result = -EINVAL;
216 for (i = 0; i < nr_segments; i++) {
217 if (image->segment[i].bufsz > image->segment[i].memsz)
218 goto out;
219 }
220
221 result = 0;
222 out:
223 if (result == 0)
224 *rimage = image;
225 else
226 kfree(image);
227
228 return result;
229
230 }
231
232 static void kimage_free_page_list(struct list_head *list);
233
234 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
235 unsigned long nr_segments,
236 struct kexec_segment __user *segments)
237 {
238 int result;
239 struct kimage *image;
240
241 /* Allocate and initialize a controlling structure */
242 image = NULL;
243 result = do_kimage_alloc(&image, entry, nr_segments, segments);
244 if (result)
245 goto out;
246
247 /*
248 * Find a location for the control code buffer, and add it
249 * the vector of segments so that it's pages will also be
250 * counted as destination pages.
251 */
252 result = -ENOMEM;
253 image->control_code_page = kimage_alloc_control_pages(image,
254 get_order(KEXEC_CONTROL_PAGE_SIZE));
255 if (!image->control_code_page) {
256 printk(KERN_ERR "Could not allocate control_code_buffer\n");
257 goto out_free;
258 }
259
260 image->swap_page = kimage_alloc_control_pages(image, 0);
261 if (!image->swap_page) {
262 printk(KERN_ERR "Could not allocate swap buffer\n");
263 goto out_free;
264 }
265
266 *rimage = image;
267 return 0;
268
269 out_free:
270 kimage_free_page_list(&image->control_pages);
271 kfree(image);
272 out:
273 return result;
274 }
275
276 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
277 unsigned long nr_segments,
278 struct kexec_segment __user *segments)
279 {
280 int result;
281 struct kimage *image;
282 unsigned long i;
283
284 image = NULL;
285 /* Verify we have a valid entry point */
286 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
287 result = -EADDRNOTAVAIL;
288 goto out;
289 }
290
291 /* Allocate and initialize a controlling structure */
292 result = do_kimage_alloc(&image, entry, nr_segments, segments);
293 if (result)
294 goto out;
295
296 /* Enable the special crash kernel control page
297 * allocation policy.
298 */
299 image->control_page = crashk_res.start;
300 image->type = KEXEC_TYPE_CRASH;
301
302 /*
303 * Verify we have good destination addresses. Normally
304 * the caller is responsible for making certain we don't
305 * attempt to load the new image into invalid or reserved
306 * areas of RAM. But crash kernels are preloaded into a
307 * reserved area of ram. We must ensure the addresses
308 * are in the reserved area otherwise preloading the
309 * kernel could corrupt things.
310 */
311 result = -EADDRNOTAVAIL;
312 for (i = 0; i < nr_segments; i++) {
313 unsigned long mstart, mend;
314
315 mstart = image->segment[i].mem;
316 mend = mstart + image->segment[i].memsz - 1;
317 /* Ensure we are within the crash kernel limits */
318 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
319 goto out_free;
320 }
321
322 /*
323 * Find a location for the control code buffer, and add
324 * the vector of segments so that it's pages will also be
325 * counted as destination pages.
326 */
327 result = -ENOMEM;
328 image->control_code_page = kimage_alloc_control_pages(image,
329 get_order(KEXEC_CONTROL_PAGE_SIZE));
330 if (!image->control_code_page) {
331 printk(KERN_ERR "Could not allocate control_code_buffer\n");
332 goto out_free;
333 }
334
335 *rimage = image;
336 return 0;
337
338 out_free:
339 kfree(image);
340 out:
341 return result;
342 }
343
344 static int kimage_is_destination_range(struct kimage *image,
345 unsigned long start,
346 unsigned long end)
347 {
348 unsigned long i;
349
350 for (i = 0; i < image->nr_segments; i++) {
351 unsigned long mstart, mend;
352
353 mstart = image->segment[i].mem;
354 mend = mstart + image->segment[i].memsz;
355 if ((end > mstart) && (start < mend))
356 return 1;
357 }
358
359 return 0;
360 }
361
362 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
363 {
364 struct page *pages;
365
366 pages = alloc_pages(gfp_mask, order);
367 if (pages) {
368 unsigned int count, i;
369 pages->mapping = NULL;
370 set_page_private(pages, order);
371 count = 1 << order;
372 for (i = 0; i < count; i++)
373 SetPageReserved(pages + i);
374 }
375
376 return pages;
377 }
378
379 static void kimage_free_pages(struct page *page)
380 {
381 unsigned int order, count, i;
382
383 order = page_private(page);
384 count = 1 << order;
385 for (i = 0; i < count; i++)
386 ClearPageReserved(page + i);
387 __free_pages(page, order);
388 }
389
390 static void kimage_free_page_list(struct list_head *list)
391 {
392 struct list_head *pos, *next;
393
394 list_for_each_safe(pos, next, list) {
395 struct page *page;
396
397 page = list_entry(pos, struct page, lru);
398 list_del(&page->lru);
399 kimage_free_pages(page);
400 }
401 }
402
403 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
404 unsigned int order)
405 {
406 /* Control pages are special, they are the intermediaries
407 * that are needed while we copy the rest of the pages
408 * to their final resting place. As such they must
409 * not conflict with either the destination addresses
410 * or memory the kernel is already using.
411 *
412 * The only case where we really need more than one of
413 * these are for architectures where we cannot disable
414 * the MMU and must instead generate an identity mapped
415 * page table for all of the memory.
416 *
417 * At worst this runs in O(N) of the image size.
418 */
419 struct list_head extra_pages;
420 struct page *pages;
421 unsigned int count;
422
423 count = 1 << order;
424 INIT_LIST_HEAD(&extra_pages);
425
426 /* Loop while I can allocate a page and the page allocated
427 * is a destination page.
428 */
429 do {
430 unsigned long pfn, epfn, addr, eaddr;
431
432 pages = kimage_alloc_pages(GFP_KERNEL, order);
433 if (!pages)
434 break;
435 pfn = page_to_pfn(pages);
436 epfn = pfn + count;
437 addr = pfn << PAGE_SHIFT;
438 eaddr = epfn << PAGE_SHIFT;
439 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
440 kimage_is_destination_range(image, addr, eaddr)) {
441 list_add(&pages->lru, &extra_pages);
442 pages = NULL;
443 }
444 } while (!pages);
445
446 if (pages) {
447 /* Remember the allocated page... */
448 list_add(&pages->lru, &image->control_pages);
449
450 /* Because the page is already in it's destination
451 * location we will never allocate another page at
452 * that address. Therefore kimage_alloc_pages
453 * will not return it (again) and we don't need
454 * to give it an entry in image->segment[].
455 */
456 }
457 /* Deal with the destination pages I have inadvertently allocated.
458 *
459 * Ideally I would convert multi-page allocations into single
460 * page allocations, and add everything to image->dest_pages.
461 *
462 * For now it is simpler to just free the pages.
463 */
464 kimage_free_page_list(&extra_pages);
465
466 return pages;
467 }
468
469 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
470 unsigned int order)
471 {
472 /* Control pages are special, they are the intermediaries
473 * that are needed while we copy the rest of the pages
474 * to their final resting place. As such they must
475 * not conflict with either the destination addresses
476 * or memory the kernel is already using.
477 *
478 * Control pages are also the only pags we must allocate
479 * when loading a crash kernel. All of the other pages
480 * are specified by the segments and we just memcpy
481 * into them directly.
482 *
483 * The only case where we really need more than one of
484 * these are for architectures where we cannot disable
485 * the MMU and must instead generate an identity mapped
486 * page table for all of the memory.
487 *
488 * Given the low demand this implements a very simple
489 * allocator that finds the first hole of the appropriate
490 * size in the reserved memory region, and allocates all
491 * of the memory up to and including the hole.
492 */
493 unsigned long hole_start, hole_end, size;
494 struct page *pages;
495
496 pages = NULL;
497 size = (1 << order) << PAGE_SHIFT;
498 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
499 hole_end = hole_start + size - 1;
500 while (hole_end <= crashk_res.end) {
501 unsigned long i;
502
503 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
504 break;
505 /* See if I overlap any of the segments */
506 for (i = 0; i < image->nr_segments; i++) {
507 unsigned long mstart, mend;
508
509 mstart = image->segment[i].mem;
510 mend = mstart + image->segment[i].memsz - 1;
511 if ((hole_end >= mstart) && (hole_start <= mend)) {
512 /* Advance the hole to the end of the segment */
513 hole_start = (mend + (size - 1)) & ~(size - 1);
514 hole_end = hole_start + size - 1;
515 break;
516 }
517 }
518 /* If I don't overlap any segments I have found my hole! */
519 if (i == image->nr_segments) {
520 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
521 break;
522 }
523 }
524 if (pages)
525 image->control_page = hole_end;
526
527 return pages;
528 }
529
530
531 struct page *kimage_alloc_control_pages(struct kimage *image,
532 unsigned int order)
533 {
534 struct page *pages = NULL;
535
536 switch (image->type) {
537 case KEXEC_TYPE_DEFAULT:
538 pages = kimage_alloc_normal_control_pages(image, order);
539 break;
540 case KEXEC_TYPE_CRASH:
541 pages = kimage_alloc_crash_control_pages(image, order);
542 break;
543 }
544
545 return pages;
546 }
547
548 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
549 {
550 if (*image->entry != 0)
551 image->entry++;
552
553 if (image->entry == image->last_entry) {
554 kimage_entry_t *ind_page;
555 struct page *page;
556
557 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
558 if (!page)
559 return -ENOMEM;
560
561 ind_page = page_address(page);
562 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
563 image->entry = ind_page;
564 image->last_entry = ind_page +
565 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
566 }
567 *image->entry = entry;
568 image->entry++;
569 *image->entry = 0;
570
571 return 0;
572 }
573
574 static int kimage_set_destination(struct kimage *image,
575 unsigned long destination)
576 {
577 int result;
578
579 destination &= PAGE_MASK;
580 result = kimage_add_entry(image, destination | IND_DESTINATION);
581 if (result == 0)
582 image->destination = destination;
583
584 return result;
585 }
586
587
588 static int kimage_add_page(struct kimage *image, unsigned long page)
589 {
590 int result;
591
592 page &= PAGE_MASK;
593 result = kimage_add_entry(image, page | IND_SOURCE);
594 if (result == 0)
595 image->destination += PAGE_SIZE;
596
597 return result;
598 }
599
600
601 static void kimage_free_extra_pages(struct kimage *image)
602 {
603 /* Walk through and free any extra destination pages I may have */
604 kimage_free_page_list(&image->dest_pages);
605
606 /* Walk through and free any unusable pages I have cached */
607 kimage_free_page_list(&image->unuseable_pages);
608
609 }
610 static void kimage_terminate(struct kimage *image)
611 {
612 if (*image->entry != 0)
613 image->entry++;
614
615 *image->entry = IND_DONE;
616 }
617
618 #define for_each_kimage_entry(image, ptr, entry) \
619 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
620 ptr = (entry & IND_INDIRECTION)? \
621 phys_to_virt((entry & PAGE_MASK)): ptr +1)
622
623 static void kimage_free_entry(kimage_entry_t entry)
624 {
625 struct page *page;
626
627 page = pfn_to_page(entry >> PAGE_SHIFT);
628 kimage_free_pages(page);
629 }
630
631 static void kimage_free(struct kimage *image)
632 {
633 kimage_entry_t *ptr, entry;
634 kimage_entry_t ind = 0;
635
636 if (!image)
637 return;
638
639 kimage_free_extra_pages(image);
640 for_each_kimage_entry(image, ptr, entry) {
641 if (entry & IND_INDIRECTION) {
642 /* Free the previous indirection page */
643 if (ind & IND_INDIRECTION)
644 kimage_free_entry(ind);
645 /* Save this indirection page until we are
646 * done with it.
647 */
648 ind = entry;
649 }
650 else if (entry & IND_SOURCE)
651 kimage_free_entry(entry);
652 }
653 /* Free the final indirection page */
654 if (ind & IND_INDIRECTION)
655 kimage_free_entry(ind);
656
657 /* Handle any machine specific cleanup */
658 machine_kexec_cleanup(image);
659
660 /* Free the kexec control pages... */
661 kimage_free_page_list(&image->control_pages);
662 kfree(image);
663 }
664
665 static kimage_entry_t *kimage_dst_used(struct kimage *image,
666 unsigned long page)
667 {
668 kimage_entry_t *ptr, entry;
669 unsigned long destination = 0;
670
671 for_each_kimage_entry(image, ptr, entry) {
672 if (entry & IND_DESTINATION)
673 destination = entry & PAGE_MASK;
674 else if (entry & IND_SOURCE) {
675 if (page == destination)
676 return ptr;
677 destination += PAGE_SIZE;
678 }
679 }
680
681 return NULL;
682 }
683
684 static struct page *kimage_alloc_page(struct kimage *image,
685 gfp_t gfp_mask,
686 unsigned long destination)
687 {
688 /*
689 * Here we implement safeguards to ensure that a source page
690 * is not copied to its destination page before the data on
691 * the destination page is no longer useful.
692 *
693 * To do this we maintain the invariant that a source page is
694 * either its own destination page, or it is not a
695 * destination page at all.
696 *
697 * That is slightly stronger than required, but the proof
698 * that no problems will not occur is trivial, and the
699 * implementation is simply to verify.
700 *
701 * When allocating all pages normally this algorithm will run
702 * in O(N) time, but in the worst case it will run in O(N^2)
703 * time. If the runtime is a problem the data structures can
704 * be fixed.
705 */
706 struct page *page;
707 unsigned long addr;
708
709 /*
710 * Walk through the list of destination pages, and see if I
711 * have a match.
712 */
713 list_for_each_entry(page, &image->dest_pages, lru) {
714 addr = page_to_pfn(page) << PAGE_SHIFT;
715 if (addr == destination) {
716 list_del(&page->lru);
717 return page;
718 }
719 }
720 page = NULL;
721 while (1) {
722 kimage_entry_t *old;
723
724 /* Allocate a page, if we run out of memory give up */
725 page = kimage_alloc_pages(gfp_mask, 0);
726 if (!page)
727 return NULL;
728 /* If the page cannot be used file it away */
729 if (page_to_pfn(page) >
730 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
731 list_add(&page->lru, &image->unuseable_pages);
732 continue;
733 }
734 addr = page_to_pfn(page) << PAGE_SHIFT;
735
736 /* If it is the destination page we want use it */
737 if (addr == destination)
738 break;
739
740 /* If the page is not a destination page use it */
741 if (!kimage_is_destination_range(image, addr,
742 addr + PAGE_SIZE))
743 break;
744
745 /*
746 * I know that the page is someones destination page.
747 * See if there is already a source page for this
748 * destination page. And if so swap the source pages.
749 */
750 old = kimage_dst_used(image, addr);
751 if (old) {
752 /* If so move it */
753 unsigned long old_addr;
754 struct page *old_page;
755
756 old_addr = *old & PAGE_MASK;
757 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
758 copy_highpage(page, old_page);
759 *old = addr | (*old & ~PAGE_MASK);
760
761 /* The old page I have found cannot be a
762 * destination page, so return it if it's
763 * gfp_flags honor the ones passed in.
764 */
765 if (!(gfp_mask & __GFP_HIGHMEM) &&
766 PageHighMem(old_page)) {
767 kimage_free_pages(old_page);
768 continue;
769 }
770 addr = old_addr;
771 page = old_page;
772 break;
773 }
774 else {
775 /* Place the page on the destination list I
776 * will use it later.
777 */
778 list_add(&page->lru, &image->dest_pages);
779 }
780 }
781
782 return page;
783 }
784
785 static int kimage_load_normal_segment(struct kimage *image,
786 struct kexec_segment *segment)
787 {
788 unsigned long maddr;
789 unsigned long ubytes, mbytes;
790 int result;
791 unsigned char __user *buf;
792
793 result = 0;
794 buf = segment->buf;
795 ubytes = segment->bufsz;
796 mbytes = segment->memsz;
797 maddr = segment->mem;
798
799 result = kimage_set_destination(image, maddr);
800 if (result < 0)
801 goto out;
802
803 while (mbytes) {
804 struct page *page;
805 char *ptr;
806 size_t uchunk, mchunk;
807
808 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
809 if (!page) {
810 result = -ENOMEM;
811 goto out;
812 }
813 result = kimage_add_page(image, page_to_pfn(page)
814 << PAGE_SHIFT);
815 if (result < 0)
816 goto out;
817
818 ptr = kmap(page);
819 /* Start with a clear page */
820 clear_page(ptr);
821 ptr += maddr & ~PAGE_MASK;
822 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
823 if (mchunk > mbytes)
824 mchunk = mbytes;
825
826 uchunk = mchunk;
827 if (uchunk > ubytes)
828 uchunk = ubytes;
829
830 result = copy_from_user(ptr, buf, uchunk);
831 kunmap(page);
832 if (result) {
833 result = -EFAULT;
834 goto out;
835 }
836 ubytes -= uchunk;
837 maddr += mchunk;
838 buf += mchunk;
839 mbytes -= mchunk;
840 }
841 out:
842 return result;
843 }
844
845 static int kimage_load_crash_segment(struct kimage *image,
846 struct kexec_segment *segment)
847 {
848 /* For crash dumps kernels we simply copy the data from
849 * user space to it's destination.
850 * We do things a page at a time for the sake of kmap.
851 */
852 unsigned long maddr;
853 unsigned long ubytes, mbytes;
854 int result;
855 unsigned char __user *buf;
856
857 result = 0;
858 buf = segment->buf;
859 ubytes = segment->bufsz;
860 mbytes = segment->memsz;
861 maddr = segment->mem;
862 while (mbytes) {
863 struct page *page;
864 char *ptr;
865 size_t uchunk, mchunk;
866
867 page = pfn_to_page(maddr >> PAGE_SHIFT);
868 if (!page) {
869 result = -ENOMEM;
870 goto out;
871 }
872 ptr = kmap(page);
873 ptr += maddr & ~PAGE_MASK;
874 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
875 if (mchunk > mbytes)
876 mchunk = mbytes;
877
878 uchunk = mchunk;
879 if (uchunk > ubytes) {
880 uchunk = ubytes;
881 /* Zero the trailing part of the page */
882 memset(ptr + uchunk, 0, mchunk - uchunk);
883 }
884 result = copy_from_user(ptr, buf, uchunk);
885 kexec_flush_icache_page(page);
886 kunmap(page);
887 if (result) {
888 result = -EFAULT;
889 goto out;
890 }
891 ubytes -= uchunk;
892 maddr += mchunk;
893 buf += mchunk;
894 mbytes -= mchunk;
895 }
896 out:
897 return result;
898 }
899
900 static int kimage_load_segment(struct kimage *image,
901 struct kexec_segment *segment)
902 {
903 int result = -ENOMEM;
904
905 switch (image->type) {
906 case KEXEC_TYPE_DEFAULT:
907 result = kimage_load_normal_segment(image, segment);
908 break;
909 case KEXEC_TYPE_CRASH:
910 result = kimage_load_crash_segment(image, segment);
911 break;
912 }
913
914 return result;
915 }
916
917 /*
918 * Exec Kernel system call: for obvious reasons only root may call it.
919 *
920 * This call breaks up into three pieces.
921 * - A generic part which loads the new kernel from the current
922 * address space, and very carefully places the data in the
923 * allocated pages.
924 *
925 * - A generic part that interacts with the kernel and tells all of
926 * the devices to shut down. Preventing on-going dmas, and placing
927 * the devices in a consistent state so a later kernel can
928 * reinitialize them.
929 *
930 * - A machine specific part that includes the syscall number
931 * and the copies the image to it's final destination. And
932 * jumps into the image at entry.
933 *
934 * kexec does not sync, or unmount filesystems so if you need
935 * that to happen you need to do that yourself.
936 */
937 struct kimage *kexec_image;
938 struct kimage *kexec_crash_image;
939
940 static DEFINE_MUTEX(kexec_mutex);
941
942 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
943 struct kexec_segment __user *, segments, unsigned long, flags)
944 {
945 struct kimage **dest_image, *image;
946 int result;
947
948 /* We only trust the superuser with rebooting the system. */
949 if (!capable(CAP_SYS_BOOT))
950 return -EPERM;
951
952 /*
953 * Verify we have a legal set of flags
954 * This leaves us room for future extensions.
955 */
956 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
957 return -EINVAL;
958
959 /* Verify we are on the appropriate architecture */
960 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
961 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
962 return -EINVAL;
963
964 /* Put an artificial cap on the number
965 * of segments passed to kexec_load.
966 */
967 if (nr_segments > KEXEC_SEGMENT_MAX)
968 return -EINVAL;
969
970 image = NULL;
971 result = 0;
972
973 /* Because we write directly to the reserved memory
974 * region when loading crash kernels we need a mutex here to
975 * prevent multiple crash kernels from attempting to load
976 * simultaneously, and to prevent a crash kernel from loading
977 * over the top of a in use crash kernel.
978 *
979 * KISS: always take the mutex.
980 */
981 if (!mutex_trylock(&kexec_mutex))
982 return -EBUSY;
983
984 dest_image = &kexec_image;
985 if (flags & KEXEC_ON_CRASH)
986 dest_image = &kexec_crash_image;
987 if (nr_segments > 0) {
988 unsigned long i;
989
990 /* Loading another kernel to reboot into */
991 if ((flags & KEXEC_ON_CRASH) == 0)
992 result = kimage_normal_alloc(&image, entry,
993 nr_segments, segments);
994 /* Loading another kernel to switch to if this one crashes */
995 else if (flags & KEXEC_ON_CRASH) {
996 /* Free any current crash dump kernel before
997 * we corrupt it.
998 */
999 kimage_free(xchg(&kexec_crash_image, NULL));
1000 result = kimage_crash_alloc(&image, entry,
1001 nr_segments, segments);
1002 crash_map_reserved_pages();
1003 }
1004 if (result)
1005 goto out;
1006
1007 if (flags & KEXEC_PRESERVE_CONTEXT)
1008 image->preserve_context = 1;
1009 result = machine_kexec_prepare(image);
1010 if (result)
1011 goto out;
1012
1013 for (i = 0; i < nr_segments; i++) {
1014 result = kimage_load_segment(image, &image->segment[i]);
1015 if (result)
1016 goto out;
1017 }
1018 kimage_terminate(image);
1019 if (flags & KEXEC_ON_CRASH)
1020 crash_unmap_reserved_pages();
1021 }
1022 /* Install the new kernel, and Uninstall the old */
1023 image = xchg(dest_image, image);
1024
1025 out:
1026 mutex_unlock(&kexec_mutex);
1027 kimage_free(image);
1028
1029 return result;
1030 }
1031
1032 /*
1033 * Add and remove page tables for crashkernel memory
1034 *
1035 * Provide an empty default implementation here -- architecture
1036 * code may override this
1037 */
1038 void __weak crash_map_reserved_pages(void)
1039 {}
1040
1041 void __weak crash_unmap_reserved_pages(void)
1042 {}
1043
1044 #ifdef CONFIG_COMPAT
1045 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1046 unsigned long nr_segments,
1047 struct compat_kexec_segment __user *segments,
1048 unsigned long flags)
1049 {
1050 struct compat_kexec_segment in;
1051 struct kexec_segment out, __user *ksegments;
1052 unsigned long i, result;
1053
1054 /* Don't allow clients that don't understand the native
1055 * architecture to do anything.
1056 */
1057 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1058 return -EINVAL;
1059
1060 if (nr_segments > KEXEC_SEGMENT_MAX)
1061 return -EINVAL;
1062
1063 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1064 for (i=0; i < nr_segments; i++) {
1065 result = copy_from_user(&in, &segments[i], sizeof(in));
1066 if (result)
1067 return -EFAULT;
1068
1069 out.buf = compat_ptr(in.buf);
1070 out.bufsz = in.bufsz;
1071 out.mem = in.mem;
1072 out.memsz = in.memsz;
1073
1074 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1075 if (result)
1076 return -EFAULT;
1077 }
1078
1079 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1080 }
1081 #endif
1082
1083 void crash_kexec(struct pt_regs *regs)
1084 {
1085 /* Take the kexec_mutex here to prevent sys_kexec_load
1086 * running on one cpu from replacing the crash kernel
1087 * we are using after a panic on a different cpu.
1088 *
1089 * If the crash kernel was not located in a fixed area
1090 * of memory the xchg(&kexec_crash_image) would be
1091 * sufficient. But since I reuse the memory...
1092 */
1093 if (mutex_trylock(&kexec_mutex)) {
1094 if (kexec_crash_image) {
1095 struct pt_regs fixed_regs;
1096
1097 crash_setup_regs(&fixed_regs, regs);
1098 crash_save_vmcoreinfo();
1099 machine_crash_shutdown(&fixed_regs);
1100 machine_kexec(kexec_crash_image);
1101 }
1102 mutex_unlock(&kexec_mutex);
1103 }
1104 }
1105
1106 size_t crash_get_memory_size(void)
1107 {
1108 size_t size = 0;
1109 mutex_lock(&kexec_mutex);
1110 if (crashk_res.end != crashk_res.start)
1111 size = resource_size(&crashk_res);
1112 mutex_unlock(&kexec_mutex);
1113 return size;
1114 }
1115
1116 void __weak crash_free_reserved_phys_range(unsigned long begin,
1117 unsigned long end)
1118 {
1119 unsigned long addr;
1120
1121 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1122 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1123 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1124 free_page((unsigned long)__va(addr));
1125 totalram_pages++;
1126 }
1127 }
1128
1129 int crash_shrink_memory(unsigned long new_size)
1130 {
1131 int ret = 0;
1132 unsigned long start, end;
1133 unsigned long old_size;
1134 struct resource *ram_res;
1135
1136 mutex_lock(&kexec_mutex);
1137
1138 if (kexec_crash_image) {
1139 ret = -ENOENT;
1140 goto unlock;
1141 }
1142 start = crashk_res.start;
1143 end = crashk_res.end;
1144 old_size = (end == 0) ? 0 : end - start + 1;
1145 if (new_size >= old_size) {
1146 ret = (new_size == old_size) ? 0 : -EINVAL;
1147 goto unlock;
1148 }
1149
1150 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1151 if (!ram_res) {
1152 ret = -ENOMEM;
1153 goto unlock;
1154 }
1155
1156 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1157 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1158
1159 crash_map_reserved_pages();
1160 crash_free_reserved_phys_range(end, crashk_res.end);
1161
1162 if ((start == end) && (crashk_res.parent != NULL))
1163 release_resource(&crashk_res);
1164
1165 ram_res->start = end;
1166 ram_res->end = crashk_res.end;
1167 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1168 ram_res->name = "System RAM";
1169
1170 crashk_res.end = end - 1;
1171
1172 insert_resource(&iomem_resource, ram_res);
1173 crash_unmap_reserved_pages();
1174
1175 unlock:
1176 mutex_unlock(&kexec_mutex);
1177 return ret;
1178 }
1179
1180 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1181 size_t data_len)
1182 {
1183 struct elf_note note;
1184
1185 note.n_namesz = strlen(name) + 1;
1186 note.n_descsz = data_len;
1187 note.n_type = type;
1188 memcpy(buf, &note, sizeof(note));
1189 buf += (sizeof(note) + 3)/4;
1190 memcpy(buf, name, note.n_namesz);
1191 buf += (note.n_namesz + 3)/4;
1192 memcpy(buf, data, note.n_descsz);
1193 buf += (note.n_descsz + 3)/4;
1194
1195 return buf;
1196 }
1197
1198 static void final_note(u32 *buf)
1199 {
1200 struct elf_note note;
1201
1202 note.n_namesz = 0;
1203 note.n_descsz = 0;
1204 note.n_type = 0;
1205 memcpy(buf, &note, sizeof(note));
1206 }
1207
1208 void crash_save_cpu(struct pt_regs *regs, int cpu)
1209 {
1210 struct elf_prstatus prstatus;
1211 u32 *buf;
1212
1213 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1214 return;
1215
1216 /* Using ELF notes here is opportunistic.
1217 * I need a well defined structure format
1218 * for the data I pass, and I need tags
1219 * on the data to indicate what information I have
1220 * squirrelled away. ELF notes happen to provide
1221 * all of that, so there is no need to invent something new.
1222 */
1223 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1224 if (!buf)
1225 return;
1226 memset(&prstatus, 0, sizeof(prstatus));
1227 prstatus.pr_pid = current->pid;
1228 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1229 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1230 &prstatus, sizeof(prstatus));
1231 final_note(buf);
1232 }
1233
1234 static int __init crash_notes_memory_init(void)
1235 {
1236 /* Allocate memory for saving cpu registers. */
1237 crash_notes = alloc_percpu(note_buf_t);
1238 if (!crash_notes) {
1239 printk("Kexec: Memory allocation for saving cpu register"
1240 " states failed\n");
1241 return -ENOMEM;
1242 }
1243 return 0;
1244 }
1245 module_init(crash_notes_memory_init)
1246
1247
1248 /*
1249 * parsing the "crashkernel" commandline
1250 *
1251 * this code is intended to be called from architecture specific code
1252 */
1253
1254
1255 /*
1256 * This function parses command lines in the format
1257 *
1258 * crashkernel=ramsize-range:size[,...][@offset]
1259 *
1260 * The function returns 0 on success and -EINVAL on failure.
1261 */
1262 static int __init parse_crashkernel_mem(char *cmdline,
1263 unsigned long long system_ram,
1264 unsigned long long *crash_size,
1265 unsigned long long *crash_base)
1266 {
1267 char *cur = cmdline, *tmp;
1268
1269 /* for each entry of the comma-separated list */
1270 do {
1271 unsigned long long start, end = ULLONG_MAX, size;
1272
1273 /* get the start of the range */
1274 start = memparse(cur, &tmp);
1275 if (cur == tmp) {
1276 pr_warning("crashkernel: Memory value expected\n");
1277 return -EINVAL;
1278 }
1279 cur = tmp;
1280 if (*cur != '-') {
1281 pr_warning("crashkernel: '-' expected\n");
1282 return -EINVAL;
1283 }
1284 cur++;
1285
1286 /* if no ':' is here, than we read the end */
1287 if (*cur != ':') {
1288 end = memparse(cur, &tmp);
1289 if (cur == tmp) {
1290 pr_warning("crashkernel: Memory "
1291 "value expected\n");
1292 return -EINVAL;
1293 }
1294 cur = tmp;
1295 if (end <= start) {
1296 pr_warning("crashkernel: end <= start\n");
1297 return -EINVAL;
1298 }
1299 }
1300
1301 if (*cur != ':') {
1302 pr_warning("crashkernel: ':' expected\n");
1303 return -EINVAL;
1304 }
1305 cur++;
1306
1307 size = memparse(cur, &tmp);
1308 if (cur == tmp) {
1309 pr_warning("Memory value expected\n");
1310 return -EINVAL;
1311 }
1312 cur = tmp;
1313 if (size >= system_ram) {
1314 pr_warning("crashkernel: invalid size\n");
1315 return -EINVAL;
1316 }
1317
1318 /* match ? */
1319 if (system_ram >= start && system_ram < end) {
1320 *crash_size = size;
1321 break;
1322 }
1323 } while (*cur++ == ',');
1324
1325 if (*crash_size > 0) {
1326 while (*cur && *cur != ' ' && *cur != '@')
1327 cur++;
1328 if (*cur == '@') {
1329 cur++;
1330 *crash_base = memparse(cur, &tmp);
1331 if (cur == tmp) {
1332 pr_warning("Memory value expected "
1333 "after '@'\n");
1334 return -EINVAL;
1335 }
1336 }
1337 }
1338
1339 return 0;
1340 }
1341
1342 /*
1343 * That function parses "simple" (old) crashkernel command lines like
1344 *
1345 * crashkernel=size[@offset]
1346 *
1347 * It returns 0 on success and -EINVAL on failure.
1348 */
1349 static int __init parse_crashkernel_simple(char *cmdline,
1350 unsigned long long *crash_size,
1351 unsigned long long *crash_base)
1352 {
1353 char *cur = cmdline;
1354
1355 *crash_size = memparse(cmdline, &cur);
1356 if (cmdline == cur) {
1357 pr_warning("crashkernel: memory value expected\n");
1358 return -EINVAL;
1359 }
1360
1361 if (*cur == '@')
1362 *crash_base = memparse(cur+1, &cur);
1363 else if (*cur != ' ' && *cur != '\0') {
1364 pr_warning("crashkernel: unrecognized char\n");
1365 return -EINVAL;
1366 }
1367
1368 return 0;
1369 }
1370
1371 #define SUFFIX_HIGH 0
1372 #define SUFFIX_LOW 1
1373 #define SUFFIX_NULL 2
1374 static __initdata char *suffix_tbl[] = {
1375 [SUFFIX_HIGH] = ",high",
1376 [SUFFIX_LOW] = ",low",
1377 [SUFFIX_NULL] = NULL,
1378 };
1379
1380 /*
1381 * That function parses "suffix" crashkernel command lines like
1382 *
1383 * crashkernel=size,[high|low]
1384 *
1385 * It returns 0 on success and -EINVAL on failure.
1386 */
1387 static int __init parse_crashkernel_suffix(char *cmdline,
1388 unsigned long long *crash_size,
1389 unsigned long long *crash_base,
1390 const char *suffix)
1391 {
1392 char *cur = cmdline;
1393
1394 *crash_size = memparse(cmdline, &cur);
1395 if (cmdline == cur) {
1396 pr_warn("crashkernel: memory value expected\n");
1397 return -EINVAL;
1398 }
1399
1400 /* check with suffix */
1401 if (strncmp(cur, suffix, strlen(suffix))) {
1402 pr_warn("crashkernel: unrecognized char\n");
1403 return -EINVAL;
1404 }
1405 cur += strlen(suffix);
1406 if (*cur != ' ' && *cur != '\0') {
1407 pr_warn("crashkernel: unrecognized char\n");
1408 return -EINVAL;
1409 }
1410
1411 return 0;
1412 }
1413
1414 static __init char *get_last_crashkernel(char *cmdline,
1415 const char *name,
1416 const char *suffix)
1417 {
1418 char *p = cmdline, *ck_cmdline = NULL;
1419
1420 /* find crashkernel and use the last one if there are more */
1421 p = strstr(p, name);
1422 while (p) {
1423 char *end_p = strchr(p, ' ');
1424 char *q;
1425
1426 if (!end_p)
1427 end_p = p + strlen(p);
1428
1429 if (!suffix) {
1430 int i;
1431
1432 /* skip the one with any known suffix */
1433 for (i = 0; suffix_tbl[i]; i++) {
1434 q = end_p - strlen(suffix_tbl[i]);
1435 if (!strncmp(q, suffix_tbl[i],
1436 strlen(suffix_tbl[i])))
1437 goto next;
1438 }
1439 ck_cmdline = p;
1440 } else {
1441 q = end_p - strlen(suffix);
1442 if (!strncmp(q, suffix, strlen(suffix)))
1443 ck_cmdline = p;
1444 }
1445 next:
1446 p = strstr(p+1, name);
1447 }
1448
1449 if (!ck_cmdline)
1450 return NULL;
1451
1452 return ck_cmdline;
1453 }
1454
1455 static int __init __parse_crashkernel(char *cmdline,
1456 unsigned long long system_ram,
1457 unsigned long long *crash_size,
1458 unsigned long long *crash_base,
1459 const char *name,
1460 const char *suffix)
1461 {
1462 char *first_colon, *first_space;
1463 char *ck_cmdline;
1464
1465 BUG_ON(!crash_size || !crash_base);
1466 *crash_size = 0;
1467 *crash_base = 0;
1468
1469 ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1470
1471 if (!ck_cmdline)
1472 return -EINVAL;
1473
1474 ck_cmdline += strlen(name);
1475
1476 if (suffix)
1477 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1478 crash_base, suffix);
1479 /*
1480 * if the commandline contains a ':', then that's the extended
1481 * syntax -- if not, it must be the classic syntax
1482 */
1483 first_colon = strchr(ck_cmdline, ':');
1484 first_space = strchr(ck_cmdline, ' ');
1485 if (first_colon && (!first_space || first_colon < first_space))
1486 return parse_crashkernel_mem(ck_cmdline, system_ram,
1487 crash_size, crash_base);
1488 else
1489 return parse_crashkernel_simple(ck_cmdline, crash_size,
1490 crash_base);
1491
1492 return 0;
1493 }
1494
1495 /*
1496 * That function is the entry point for command line parsing and should be
1497 * called from the arch-specific code.
1498 */
1499 int __init parse_crashkernel(char *cmdline,
1500 unsigned long long system_ram,
1501 unsigned long long *crash_size,
1502 unsigned long long *crash_base)
1503 {
1504 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1505 "crashkernel=", NULL);
1506 }
1507
1508 int __init parse_crashkernel_high(char *cmdline,
1509 unsigned long long system_ram,
1510 unsigned long long *crash_size,
1511 unsigned long long *crash_base)
1512 {
1513 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1514 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1515 }
1516
1517 int __init parse_crashkernel_low(char *cmdline,
1518 unsigned long long system_ram,
1519 unsigned long long *crash_size,
1520 unsigned long long *crash_base)
1521 {
1522 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1523 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1524 }
1525
1526 static void update_vmcoreinfo_note(void)
1527 {
1528 u32 *buf = vmcoreinfo_note;
1529
1530 if (!vmcoreinfo_size)
1531 return;
1532 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1533 vmcoreinfo_size);
1534 final_note(buf);
1535 }
1536
1537 void crash_save_vmcoreinfo(void)
1538 {
1539 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1540 update_vmcoreinfo_note();
1541 }
1542
1543 void vmcoreinfo_append_str(const char *fmt, ...)
1544 {
1545 va_list args;
1546 char buf[0x50];
1547 int r;
1548
1549 va_start(args, fmt);
1550 r = vsnprintf(buf, sizeof(buf), fmt, args);
1551 va_end(args);
1552
1553 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1554 r = vmcoreinfo_max_size - vmcoreinfo_size;
1555
1556 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1557
1558 vmcoreinfo_size += r;
1559 }
1560
1561 /*
1562 * provide an empty default implementation here -- architecture
1563 * code may override this
1564 */
1565 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1566 {}
1567
1568 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1569 {
1570 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1571 }
1572
1573 static int __init crash_save_vmcoreinfo_init(void)
1574 {
1575 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1576 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1577
1578 VMCOREINFO_SYMBOL(init_uts_ns);
1579 VMCOREINFO_SYMBOL(node_online_map);
1580 #ifdef CONFIG_MMU
1581 VMCOREINFO_SYMBOL(swapper_pg_dir);
1582 #endif
1583 VMCOREINFO_SYMBOL(_stext);
1584 VMCOREINFO_SYMBOL(vmlist);
1585
1586 #ifndef CONFIG_NEED_MULTIPLE_NODES
1587 VMCOREINFO_SYMBOL(mem_map);
1588 VMCOREINFO_SYMBOL(contig_page_data);
1589 #endif
1590 #ifdef CONFIG_SPARSEMEM
1591 VMCOREINFO_SYMBOL(mem_section);
1592 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1593 VMCOREINFO_STRUCT_SIZE(mem_section);
1594 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1595 #endif
1596 VMCOREINFO_STRUCT_SIZE(page);
1597 VMCOREINFO_STRUCT_SIZE(pglist_data);
1598 VMCOREINFO_STRUCT_SIZE(zone);
1599 VMCOREINFO_STRUCT_SIZE(free_area);
1600 VMCOREINFO_STRUCT_SIZE(list_head);
1601 VMCOREINFO_SIZE(nodemask_t);
1602 VMCOREINFO_OFFSET(page, flags);
1603 VMCOREINFO_OFFSET(page, _count);
1604 VMCOREINFO_OFFSET(page, mapping);
1605 VMCOREINFO_OFFSET(page, lru);
1606 VMCOREINFO_OFFSET(page, _mapcount);
1607 VMCOREINFO_OFFSET(page, private);
1608 VMCOREINFO_OFFSET(pglist_data, node_zones);
1609 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1610 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1611 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1612 #endif
1613 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1614 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1615 VMCOREINFO_OFFSET(pglist_data, node_id);
1616 VMCOREINFO_OFFSET(zone, free_area);
1617 VMCOREINFO_OFFSET(zone, vm_stat);
1618 VMCOREINFO_OFFSET(zone, spanned_pages);
1619 VMCOREINFO_OFFSET(free_area, free_list);
1620 VMCOREINFO_OFFSET(list_head, next);
1621 VMCOREINFO_OFFSET(list_head, prev);
1622 VMCOREINFO_OFFSET(vm_struct, addr);
1623 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1624 log_buf_kexec_setup();
1625 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1626 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1627 VMCOREINFO_NUMBER(PG_lru);
1628 VMCOREINFO_NUMBER(PG_private);
1629 VMCOREINFO_NUMBER(PG_swapcache);
1630 VMCOREINFO_NUMBER(PG_slab);
1631 #ifdef CONFIG_MEMORY_FAILURE
1632 VMCOREINFO_NUMBER(PG_hwpoison);
1633 #endif
1634 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1635
1636 arch_crash_save_vmcoreinfo();
1637 update_vmcoreinfo_note();
1638
1639 return 0;
1640 }
1641
1642 module_init(crash_save_vmcoreinfo_init)
1643
1644 /*
1645 * Move into place and start executing a preloaded standalone
1646 * executable. If nothing was preloaded return an error.
1647 */
1648 int kernel_kexec(void)
1649 {
1650 int error = 0;
1651
1652 if (!mutex_trylock(&kexec_mutex))
1653 return -EBUSY;
1654 if (!kexec_image) {
1655 error = -EINVAL;
1656 goto Unlock;
1657 }
1658
1659 #ifdef CONFIG_KEXEC_JUMP
1660 if (kexec_image->preserve_context) {
1661 lock_system_sleep();
1662 pm_prepare_console();
1663 error = freeze_processes();
1664 if (error) {
1665 error = -EBUSY;
1666 goto Restore_console;
1667 }
1668 suspend_console();
1669 error = dpm_suspend_start(PMSG_FREEZE);
1670 if (error)
1671 goto Resume_console;
1672 /* At this point, dpm_suspend_start() has been called,
1673 * but *not* dpm_suspend_end(). We *must* call
1674 * dpm_suspend_end() now. Otherwise, drivers for
1675 * some devices (e.g. interrupt controllers) become
1676 * desynchronized with the actual state of the
1677 * hardware at resume time, and evil weirdness ensues.
1678 */
1679 error = dpm_suspend_end(PMSG_FREEZE);
1680 if (error)
1681 goto Resume_devices;
1682 error = disable_nonboot_cpus();
1683 if (error)
1684 goto Enable_cpus;
1685 local_irq_disable();
1686 error = syscore_suspend();
1687 if (error)
1688 goto Enable_irqs;
1689 } else
1690 #endif
1691 {
1692 kernel_restart_prepare(NULL);
1693 printk(KERN_EMERG "Starting new kernel\n");
1694 machine_shutdown();
1695 }
1696
1697 machine_kexec(kexec_image);
1698
1699 #ifdef CONFIG_KEXEC_JUMP
1700 if (kexec_image->preserve_context) {
1701 syscore_resume();
1702 Enable_irqs:
1703 local_irq_enable();
1704 Enable_cpus:
1705 enable_nonboot_cpus();
1706 dpm_resume_start(PMSG_RESTORE);
1707 Resume_devices:
1708 dpm_resume_end(PMSG_RESTORE);
1709 Resume_console:
1710 resume_console();
1711 thaw_processes();
1712 Restore_console:
1713 pm_restore_console();
1714 unlock_system_sleep();
1715 }
1716 #endif
1717
1718 Unlock:
1719 mutex_unlock(&kexec_mutex);
1720 return error;
1721 }